1
|
Taylor CA, Glover M, Maher J. CAR-T cell technologies that interact with the tumour microenvironment in solid tumours. Expert Rev Clin Immunol 2024; 20:849-871. [PMID: 39021098 DOI: 10.1080/1744666x.2024.2380894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cells have emerged as a ground-breaking therapy for the treatment of hematological malignancies due to their capacity for rapid tumor-specific killing and long-lasting tumor immunity. However, the same success has not been observed in patients with solid tumors. Largely, this is due to the additional challenges imposed by safe and uniform target selection, inefficient CAR T-cell access to sites of disease and the presence of a hostile immunosuppressive tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database from the first description of a CAR by Kuwana, Kurosawa and colleagues in December 1987 through to the present day. This literature indicates that in order to tackle solid tumors, CAR T-cells can be further engineered with additional armoring strategies that facilitate trafficking to and infiltration of malignant lesions together with reversal of suppressive immune checkpoints that operate within solid tumor lesions. EXPERT OPINION In this review, we describe a number of recent advances in CAR T-cell technology that set out to combat the problems imposed by solid tumors including tumor recruitment, infiltration, immunosuppression, metabolic compromise, and hypoxia.
Collapse
Affiliation(s)
| | | | - John Maher
- Leucid Bio Ltd, Guy's Hospital, London, UK
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
2
|
Yuan G, Ye M, Zhang Y, Zeng X. Challenges and strategies in relation to effective CAR-T cell immunotherapy for solid tumors. Med Oncol 2024; 41:126. [PMID: 38652178 DOI: 10.1007/s12032-024-02310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Chimeric Antigen Receptor T cell (CAR-T) therapy has revolutionized cancer treatment, but its application to solid tumors is limited. CAR-T cells have poor incapability of entering, surviving, proliferating, and finally exerting function in the tumor microenvironment. This review summarizes the main strategies related to enhancing the infiltration, efficacy, antigen recognition, and production of CAR-T in solid tumors. Additional applications of CAR-γδ T and macrophages are also discussed. We believe CAR-T will be a milestone in treating solid tumors once these problems are solved.
Collapse
Affiliation(s)
- Guangxun Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Mengke Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Ge R, Huang GM. Targeting transforming growth factor beta signaling in metastatic osteosarcoma. J Bone Oncol 2023; 43:100513. [PMID: 38021074 PMCID: PMC10666000 DOI: 10.1016/j.jbo.2023.100513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Osteosarcoma is a rare type of bone cancer, and half of the cases affect children and adolescents younger than 20 years of age. Despite intensive efforts to improve both chemotherapeutics and surgical management, the clinical outcome for metastatic osteosarcoma remains poor. Transforming growth factor β (TGF-β) is one of the most abundant growth factors in bones. The TGF-β signaling pathway has complex and contradictory roles in the pathogenesis of human cancers. TGF-β is primarily a tumor suppressor that inhibits proliferation and induces apoptosis of premalignant epithelial cells. In the later stages of cancer progression, however, TGF-β functions as a metastasis promoter by promoting tumor growth, inducing epithelial-mesenchymal transition (EMT), blocking antitumor immune responses, increasing tumor-associated fibrosis, and enhancing angiogenesis. In contrast with the dual effects of TGF-β on carcinoma (epithelial origin) progression, TGF-β seems to mainly have a pro-tumoral effect on sarcomas including osteosarcoma (mesenchymal origin). Many drugs that target TGF-β signaling have been developed: neutralizing antibodies that prevent TGF-β binding to receptor complexes; ligand trap employing recombinant Fc-fusion proteins containing the soluble ectodomain of either type II (TβRII) or the type III receptor ((TβRIII), preventing TGF-β from binding to its receptors; antisense nucleotides that reduce TGF-β expression at the transcriptional/translational level; small molecule inhibitors of serine/threonine kinases of the type I receptor (TβRI) preventing downstream signaling; and vaccines that contain cell lines transfected with TβRII antisense genes, or target furin convertase, resulting in reduced TGF-β signaling. TGF-β antagonists have been shown to have effects on osteosarcoma in vitro and in vivo. One of the small molecule TβRI inhibitors, Vactosertib, is currently undergoing a phase 1/2 clinical trial to evaluate its effect on osteosarcoma. Several phase 1/2/3 clinical trials have shown TGF-β antagonists are safe and well tolerated. For instance, Luspatercept, a TGF-β ligand trap, has been approved by the FDA for the treatment of anemia associated with myeloid dysplastic syndrome (MDS) with ring sideroblasts/mutated SF3B1 with acceptable safety. Clinical trials evaluating the long-term safety of Luspatercept are in process.
Collapse
Affiliation(s)
- Rongrong Ge
- Hillman Cancer Center at Central Pennsylvania, University of Pittsburg Medical Center, Harrisburg, PA, 17109, USA
| | - Gavin M. Huang
- Harrisburg Academy School, 10 Erford Rd, Wormleysburg, PA, 17043, USA
| |
Collapse
|
5
|
Arima Y, Matsueda S, Saya H. Significance of Cancer-Associated Fibroblasts in the Interactions of Cancer Cells with the Tumor Microenvironment of Heterogeneous Tumor Tissue. Cancers (Basel) 2023; 15:cancers15092536. [PMID: 37174001 PMCID: PMC10177529 DOI: 10.3390/cancers15092536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor microenvironment (TME) plays a key role in cancer development and progression, as well as contributes to the therapeutic resistance and metastasis of cancer cells. The TME is heterogeneous and consists of multiple cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, and immune cells, as well as various extracellular components. Recent studies have revealed cross talk between cancer cells and CAFs as well as between CAFs and other TME cells, including immune cells. Signaling by transforming growth factor-β, derived from CAFs, has recently been shown to induce remodeling of tumor tissue, including the promotion of angiogenesis and immune cell recruitment. Immunocompetent mouse cancer models that recapitulate interactions of cancer cells with the TME have provided insight into the TME network and support the development of new anticancer therapeutic strategies. Recent studies based on such models have revealed that the antitumor action of molecularly targeted agents is mediated in part by effects on the tumor immune environment. In this review, we focus on cancer cell-TME interactions in heterogeneous tumor tissue, and we provide an overview of the basis for anticancer therapeutic strategies that target the TME, including immunotherapy.
Collapse
Affiliation(s)
- Yoshimi Arima
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| | - Satoko Matsueda
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| | - Hideyuki Saya
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
6
|
Zarrabi KK, Narayan V, Mille PJ, Zibelman MR, Miron B, Bashir B, Kelly WK. Bispecific PSMA antibodies and CAR-T in metastatic castration-resistant prostate cancer. Ther Adv Urol 2023; 15:17562872231182219. [PMID: 37359737 PMCID: PMC10285603 DOI: 10.1177/17562872231182219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Prostate cancer is the most common cancer among men and the second leading cause of cancer-related deaths in men in the United States. The treatment paradigm for prostate cancer has evolved with the emergence of a variety of novel therapies which have improved survival; however, treatment-related toxicities are abundant and durable responses remain rare. Immune checkpoint inhibitors have shown modest activity in a small subset of patients with prostate cancer and have not had an impact on most men with advanced disease. The discovery of prostate-specific membrane antigen (PSMA) and the understanding of its specificity to prostate cancer has identified it as an ideal tumor-associated antigen and has revived the enthusiasm for immunotherapeutics in prostate cancer. T-cell immunotherapy in the form of bispecific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR) T-cell therapy have shown exceptional success in treating various hematologic malignancies, and are now being tested in patients with prostate cancer with drug design centered on various target ligands including not just PSMA, but others as well including six-transmembrane epithelial antigen of the prostate 1 (STEAP1) and prostate stem cell antigen (PSCA). This summative review will focus on the data surrounding PSMA-targeting T-cell therapies. Early clinical studies with both classes of T-cell redirecting therapies have demonstrated antitumor activity; however, there are multiple challenges with this class of agents, including dose-limiting toxicity, 'on-target, off-tumor' immune-related toxicity, and difficulty in maintaining sustained immune responses within a complex and overtly immunosuppressive tumor microenvironment. Reflecting on experiences from recent trials has been key toward understanding mechanisms of immune escape and limitations in developing these drugs in prostate cancer. Newer generation BiTE and CAR T-cell constructs, either alone or as part of combination therapy, are currently under investigation with modifications in drug design to overcome these barriers. Ongoing innovation in drug development will likely foster successful implementation of T-cell immunotherapy bringing transformational change to the treatment of prostate cancer.
Collapse
Affiliation(s)
| | - Vivek Narayan
- Department of Medical Oncology, Abramson Cancer Center and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J. Mille
- Department of Medical Oncology and Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Matthew R. Zibelman
- Department of Medical Oncology, Fox Chase Cancer Center, Temple University, Philadelphia, PA, USA
| | - Benjamin Miron
- Department of Medical Oncology, Fox Chase Cancer Center, Temple University, Philadelphia, PA, USA
| | - Babar Bashir
- Department of Medical Oncology and Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - William Kevin Kelly
- Department of Medical Oncology and Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
7
|
Luo F, Huang Y, Li Y, Zhao X, Xie Y, Zhang Q, Mei J, Liu X. A narrative review of the relationship between TGF-β signaling and gynecological malignant tumor. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1601. [PMID: 34790807 PMCID: PMC8576662 DOI: 10.21037/atm-21-4879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022]
Abstract
Objective This paper reviews the association between transforming growth factor-β (TGF-β) and its receptor and tumor, focusing on gynecological malignant tumors. we hope to provide more methods to help increase the potential of TGF-β signaling targeted treatment of specific cancers. Background The occurrence of a malignant tumor is a complex process of multi-step, multi-gene regulation, and its progression is affected by various components of the tumor cells and/or tumor microenvironment. The occurrence of gynecological diseases not only affect women's health, but also bring some troubles to their normal life. Especially when gynecological malignant tumors occur, the situation is more serious, which will endanger the lives of patients. Due to differences in environmental and economic conditions, not all women have access to assistance and treatment specifically meeting their needs. TGF-β is a multi-potent growth factor that maintains homeostasis in mammals by inhibiting cell growth and promoting apoptosis in vivo. TGF-β signaling is fundamental to inflammatory disease and favors the emergence of tumors, and it also plays an important role in immunosuppression in the tumor microenvironment. In the early stages of the tumor, TGF-β acts as a tumor inhibitor, whereas in advanced tumors, mutations or deletion of the TGF-β signaling core component initiate neogenesis. Methods Literatures about TGF-β and gynecological malignant tumor were extensively reviewed to analyze and discuss. Conclusions We discussed the role of TGF-β signaling in different types of gynecological tumor cells, thus demonstrating that targeted TGF-β signaling may be an effective tumor treatment strategy.
Collapse
Affiliation(s)
- Fangyuan Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yu Huang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yilin Li
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaolan Zhao
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yao Xie
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Qianwen Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Li C, Mei H, Hu Y. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Brief Funct Genomics 2021; 19:175-182. [PMID: 31950135 PMCID: PMC7239310 DOI: 10.1093/bfgp/elz042] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Chimeric antigen receptor(CAR) T-cell therapy has shown remarkable effects and promising prospects in patients with refractory or relapsed malignancies, pending further progress in the next-generation CAR T cells with more optimized structure, enhanced efficacy and reduced toxicities. The clustered regulatory interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) technology holds immense promise for advancing the field owing to its flexibility, simplicity, high efficiency and multiplexing in precise genome editing. Herein, we review the applications and explorations of CRISPR/Cas9 technology in constructing allogenic universal CAR T cells, disrupting inhibitory signaling to enhance potency and exploration of safer and more controllable novel CAR T cells.
Collapse
Affiliation(s)
| | | | - Yu Hu
- Corresponding author: Heng Mei, Hubei clinical medical center of cell therapy for neoplastic disease, Wuhan 430022, Republic of China. Tel: +86-27-85726007, Fax: +86-27-85726387; E-mail:
| |
Collapse
|
9
|
Ventura F, Williams E, Ikeya M, Bullock AN, ten Dijke P, Goumans MJ, Sanchez-Duffhues G. Challenges and Opportunities for Drug Repositioning in Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9020213. [PMID: 33669809 PMCID: PMC7922784 DOI: 10.3390/biomedicines9020213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 01/05/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultrarare congenital disease that progresses through intermittent episodes of bone formation at ectopic sites. FOP patients carry heterozygous gene point mutations in activin A receptor type I ACVR1, encoding the bone morphogenetic protein (BMP) type I serine/threonine kinase receptor ALK2, termed activin receptor-like kinase (ALK)2. The mutant ALK2 displays neofunctional responses to activin, a closely related BMP cytokine that normally inhibits regular bone formation. Moreover, the mutant ALK2 becomes hypersensitive to BMPs. Both these activities contribute to enhanced ALK2 signalling and endochondral bone formation in connective tissue. Being a receptor with an extracellular ligand-binding domain and intrinsic intracellular kinase activity, the mutant ALK2 is a druggable target. Although there is no approved cure for FOP yet, a number of clinical trials have been recently initiated, aiming to identify a safe and effective treatment for FOP. Among other targeted approaches, several repurposed drugs have shown promising results. In this review, we describe the molecular mechanisms underlying ALK2 mutation-induced aberrant signalling and ectopic bone formation. In addition, we recapitulate existing in vitro models to screen for novel compounds with a potential application in FOP. We summarize existing therapeutic alternatives and focus on repositioned drugs in FOP, at preclinical and clinical stages.
Collapse
Affiliation(s)
- Francesc Ventura
- Department de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Eleanor Williams
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (E.W.); (A.N.B.)
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Alex N. Bullock
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (E.W.); (A.N.B.)
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Cardiovascular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Cardiovascular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
- Correspondence:
| |
Collapse
|
10
|
Wang D, Shao Y, Zhang X, Lu G, Liu B. IL-23 and PSMA-targeted duo-CAR T cells in Prostate Cancer Eradication in a preclinical model. J Transl Med 2020; 18:23. [PMID: 31937346 PMCID: PMC6961333 DOI: 10.1186/s12967-019-02206-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Background Prostate cancer is one of the most common adult malignancies in men, and nearly all patients with metastatic prostate cancer can develop and receive resistance to primary androgen deprivation therapy (ADT), a state known as metastatic castration-resistant prostate cancer (mCRPC). Recent reports demonstrated the great breakthroughs made by the chimeric antigen receptor T (CAR-T) cell therapy, which is significantly different from traditional T cells therapies. In spite of the progress of CAR-T technology in the treatment of lymphoma, leukemia, and other blood system tumor, there are still many difficulties in the treatment of solid tumors by CAR-T technology. Methods In this report, we designed a panel of IL23mAb-PSMA-CARs, including PSMA-CAR, IL23mAb-T2A-PSMA-CAR, IL23mAb-PSMA-CAR, and PSMA-CAR (soluble IL23mAb). And we studied the function of these CARs in mice model. Results Co-culture experiments with different CAR T cells have normal lysis function in vitro. The duo-CAR T cells co-expressing the IL-23mAb and PSMA-mAb had a significant higher population than the rest three different CAR T cells in co-culturing experiments at day 28, 35 and 42. A panel of cytokines were differentially secreted at higher amounts in IL23mAb-T2A-PSMA-CAR T cells than CAR T cells in other groups. In NOD/SCID IL-2 gamma (NSG) mice model, IL23mAb-T2A-PSMA-CAR T cells functioned significantly better than CAR T cells from the other groups and eradicated the tumor from these mice starting at day 14 post T cells injection and regained the body weight immediately. In IL23mAb-T2A-PSMA-CAR mice, CD45RO+ CD8+ T cells and CD127+ CD4+ CAR T cells were significantly increased. RNA sequencing revealed a difference expression pattern of genes in IL23mAb-T2A-PSMA-CAR mice. A reverse infusion experiment under the same model further proved the tumor eradication function of IL23mAb-T2A-PSMA-CAR T cells. Conclusions We found that IL-23mAb combined PSMA CARs worked better than PSMA CAR only in Prostate Cancer Eradication, and we further discussed the mechanisms among different IL-23mAb combined PSMA CARs in Prostate Cancer Eradication.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, No.999, Xiwang Road Jiading District, Shanghai, 201800, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, No.999, Xiwang Road Jiading District, Shanghai, 201800, China.
| | - Xiang Zhang
- Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, No.999, Xiwang Road Jiading District, Shanghai, 201800, China
| | - Guoliang Lu
- Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, No.999, Xiwang Road Jiading District, Shanghai, 201800, China
| | - Boke Liu
- Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, No.999, Xiwang Road Jiading District, Shanghai, 201800, China
| |
Collapse
|
11
|
Grandon B, Rincheval-Arnold A, Jah N, Corsi JM, Araujo LM, Glatigny S, Prevost E, Roche D, Chiocchia G, Guénal I, Gaumer S, Breban M. HLA-B27 alters BMP/TGFβ signalling in Drosophila, revealing putative pathogenic mechanism for spondyloarthritis. Ann Rheum Dis 2019; 78:1653-1662. [PMID: 31563893 DOI: 10.1136/annrheumdis-2019-215832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The human leucocyte antigen (HLA)-B27 confers an increased risk of spondyloarthritis (SpA) by unknown mechanism. The objective of this work was to uncover HLA-B27 non-canonical properties that could explain its pathogenicity, using a new Drosophila model. METHODS We produced transgenic Drosophila expressing the SpA-associated HLA-B*27:04 or HLA-B*27:05 subtypes, or the non-associated HLA-B*07:02 allele, alone or in combination with human β2-microglobulin (hβ2m), under tissue-specific drivers. Consequences of transgenes expression in Drosophila were examined and affected pathways were investigated by the genetic interaction experiments. Predictions of the model were further tested in immune cells from patients with SpA. RESULTS Loss of crossveins in the wings and a reduced eye phenotype were observed after expression of HLA-B*27:04 or HLA-B*27:05 in Drosophila but not in fruit flies expressing the non-associated HLA-B*07:02 allele. These HLA-B27-induced phenotypes required the presence of hβ2m that allowed expression of well-folded HLA-B conformers at the cell surface. Loss of crossveins resulted from a dominant negative effect of HLA-B27 on the type I bone morphogenetic protein (BMP) receptor saxophone (Sax) with which it interacted, resulting in elevated mothers against decapentaplegic (Mad, a Drosophila receptor-mediated Smad) phosphorylation. Likewise, in immune cells from patients with SpA, HLA-B27 specifically interacted with activin receptor-like kinase-2 (ALK2), the mammalian Sax ortholog, at the cell surface and elevated Smad phosphorylation was observed in response to activin A and transforming growth factor β (TGFβ). CONCLUSIONS Antagonistic interaction of HLA-B27 with ALK2, which exerts inhibitory functions on the TGFβ/BMP signalling pathway at the cross-road between inflammation and ossification, could adequately explain SpA development.
Collapse
Affiliation(s)
- Benjamin Grandon
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Aurore Rincheval-Arnold
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Nadège Jah
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Jean-Marc Corsi
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Luiza M Araujo
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Erwann Prevost
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Delphine Roche
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Gilles Chiocchia
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Sébastien Gaumer
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Maxime Breban
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
- Rheumatology, Ambroise Paré Hospital, Boulogne Billancourt, France
| |
Collapse
|
12
|
Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture. Histochem Cell Biol 2018; 151:125-143. [PMID: 30382374 PMCID: PMC6394675 DOI: 10.1007/s00418-018-1750-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2018] [Indexed: 01/10/2023]
Abstract
The human ovarian granulosa cells (GCs) surround the oocyte and form the proper architecture of the ovarian follicle. The ability of GCs to proliferate and differentiate in the conditions of in vitro culture has been proven. However, there is still a large field for extensive investigation of molecular basics, as well as marker genes, responsible for these processes. This study aimed to find the new marker genes, encoding proteins that regulate human GCs in vitro capability for proliferation and differentiation during long-term primary culture. The human follicular GCs were collected from hyper-stimulated ovarian follicles during IVF procedures and transferred to a long-term in vitro culture. The culture lasted for 30 days, with RNA samples isolated at days 1, 7, 15, 30. Transcriptomic analysis was then performed with the use of Affymetrix microarray. Obtained results were then subjected to bioinformatical evaluation and sorting. After subjecting the datasets to KEGG analysis, three differentially expressed ontology groups "cell differentiation" (GO:0030154), "cell proliferation" (GO:0008283) and "cell-cell junction organization" (GO:0045216) were chosen for further investigation. All three of those ontology groups are involved in human GCs' in vitro lifespan, proliferation potential, and survival capability. Changes in expression of genes of interest belonging to the chosen GOs were validated with the use of RT-qPCR. In this manuscript, we suggest that VCL, PARVA, FZD2, NCS1, and COL5A1 may be recognized as new markers of GC in vitro differentiation, while KAT2B may be a new marker of their proliferation. Additionally, SKI, GLI2, FERMT2, and CDH2 could also be involved in GC in vitro proliferation and differentiation processes. We demonstrated that, in long-term in vitro culture, GCs exhibit markers that suggest their ability to differentiate into different cells types. Therefore, the higher expression profile of these genes may also be associated with the induction of cellular differentiation processes that take place beyond the long-term primary in vitro culture.
Collapse
|
13
|
TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 2018; 52:112-120. [PMID: 30184463 DOI: 10.1016/j.cellsig.2018.09.002] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor β (TGF-β) plays an important role in normal development and homeostasis. Dysregulation of TGF-β responsiveness and its downstream signaling pathways contribute to many diseases, including cancer initiation, progression, and metastasis. TGF-β ligands bind to three isoforms of the TGF-β receptor (TGFBR) with different affinities. TGFBR1 and 2 are both serine/threonine and tyrosine kinases, but TGFBR3 does not have any kinase activity. They are necessary for activating canonical or noncanonical signaling pathways, as well as for regulating the activation of other signaling pathways. Another prominent feature of TGF-β signaling is its context-dependent effects, temporally and spatially. The diverse effects and context dependency are either achieved by fine-tuning the downstream components or by regulating the expressions and activities of the ligands or receptors. Focusing on the receptors in events in and beyond TGF-β signaling, we review the membrane trafficking of TGFBRs, the kinase activity of TGFBR1 and 2, the direct interactions between TGFBR2 and other receptors, and the novel roles of TGFBR3.
Collapse
|
14
|
Velapasamy S, Dawson CW, Young LS, Paterson IC, Yap LF. The Dynamic Roles of TGF-β Signalling in EBV-Associated Cancers. Cancers (Basel) 2018; 10:E247. [PMID: 30060514 PMCID: PMC6115974 DOI: 10.3390/cancers10080247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signalling pathway plays a critical role in carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-β signalling is strongly context-dependent and is influenced by various factors including cell, tissue and cancer type. Disruption of this pathway can be caused by various means, including genetic and environmental factors. A number of human viruses have been shown to modulate TGF-β signalling during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr virus (EBV)-associated cancers and how EBV interferes with TGF-β signal transduction. The role of TGF-β in regulating the EBV life cycle in tumour cells is also discussed.
Collapse
Affiliation(s)
- Sharmila Velapasamy
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Christopher W Dawson
- Institute of Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | - Lawrence S Young
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Ian C Paterson
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Lee Fah Yap
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Hao R, Zheng Z, Du X, Wang Q, Li J, Deng Y, Chen W. Molecular cloning and characteristics analysis of Pmtgfbr1 from Pinctada fucata martensii. ACTA ACUST UNITED AC 2018; 19:e00262. [PMID: 30003053 PMCID: PMC6041369 DOI: 10.1016/j.btre.2018.e00262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/23/2018] [Accepted: 06/03/2018] [Indexed: 11/24/2022]
Abstract
This study obtains the full length of Pmtgfbr1 of the pearl oyster P. fucata martensii. Pmtgfbr1 possesses the conserved domain of Tgfbr1. Pmtgfbr1 holds negatively effect on the growth of P. fucata martensii.
Pinctada fucata martensii is cultured for pearl production. Growth improvement has received considerable research interest. Transforming growth factor β type Ⅰ receptor (TβR-I), which is involved in signals transmission of transforming growth factor beta (TGF-β), participates in cell proliferation and growth. In this study, we characterized a Tgfbr1 gene which encoded TβR-I from P. fucata martensii (Pmtgfbr1). Pmtgfbr1 cDNA contains an open reading frame of 1569 bp and encodes a polypeptide of 522 amino acids (aa). Pmtgfbr1 possesses a typical TβR-I structure (extracellular receptor ligand domain, transmembrane domain, and cytoplasmic tyrosine kinase catalytic domain). Pmtgfbr1 is expressed in all the studied tissues and exhibited the highest expression level in the adductor muscle. Moreover, Pmtgfbr1 exhibited the lower expression level in the larger group (L) than that in the smaller group (S) and is negatively correlated with growth traits (P < 0.01). Our results indicated that Pmtgfbr1 is a candidate functional gene associated with growth traits.
Collapse
Affiliation(s)
- Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Junhui Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Weiyao Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
16
|
Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, Maus MV, Fraietta JA, Zhao Y, June CH. Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication. Mol Ther 2018; 26:1855-1866. [PMID: 29807781 DOI: 10.1016/j.ymthe.2018.05.003] [Citation(s) in RCA: 443] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023] Open
Abstract
Cancer has an impressive ability to evolve multiple processes to evade therapies. While immunotherapies and vaccines have shown great promise, particularly in certain solid tumors such as prostate cancer, they have been met with resistance from tumors that use a multitude of mechanisms of immunosuppression to limit effectiveness. Prostate cancer, in particular, secretes transforming growth factor β (TGF-β) as a means to inhibit immunity while allowing for cancer progression. Blocking TGF-β signaling in T cells increases their ability to infiltrate, proliferate, and mediate antitumor responses in prostate cancer models. We tested whether the potency of chimeric antigen receptor (CAR) T cells directed to prostate-specific membrane antigen (PSMA) could be enhanced by the co-expression of a dominant-negative TGF-βRII (dnTGF-βRII). Upon expression of the dominant-negative TGF-βRII in CAR T cells, we observed increased proliferation of these lymphocytes, enhanced cytokine secretion, resistance to exhaustion, long-term in vivo persistence, and the induction of tumor eradication in aggressive human prostate cancer mouse models. Based on our observations, we initiated a phase I clinical trial to assess these CAR T cells as a novel approach for patients with relapsed and refractory metastatic prostate cancer (ClinicalTrials.gov: NCT03089203).
Collapse
Affiliation(s)
- Christopher C Kloss
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA; Smilow Center for Translational Research, 3400 Civic Center Blvd., Philadelphia, PA 19104-5156, USA.
| | - Jihyun Lee
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Aaron Zhang
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Jan Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA; Parker Institute for Cancer at the University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Marcela V Maus
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA; Parker Institute for Cancer at the University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Yangbing Zhao
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA; Parker Institute for Cancer at the University of Pennsylvania, Philadelphia, PA 19104-5156, USA; Smilow Center for Translational Research, 3400 Civic Center Blvd., Philadelphia, PA 19104-5156, USA.
| |
Collapse
|
17
|
Haupt J, Xu M, Shore EM. Variable signaling activity by FOP ACVR1 mutations. Bone 2018; 109:232-240. [PMID: 29097342 PMCID: PMC5866189 DOI: 10.1016/j.bone.2017.10.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/10/2017] [Accepted: 10/28/2017] [Indexed: 01/06/2023]
Abstract
Most patients with fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder of heterotopic ossification, have the same causative mutation in ACVR1, R206H. However, additional mutations within the ACVR1 BMP type I receptor have been identified in a small number of FOP cases, often in patients with disease of lesser or greater severity than occurs with R206H mutations. Genotype-phenotype correlations have been suggested in patients, resulting in classification of FOP mutations based on location within different receptor domains and structural modeling. However while each of the mutations induces increased signaling through the BMP-pSmad1/5/8 pathway, the molecular mechanisms underlying functional differences of these FOP variant receptors remained undetermined. We now demonstrate that FOP mutations within the ACVR1 receptor kinase domain are more sensitive to low levels of BMP than mutations in the ACVR1 GS domain. Our data additionally confirm responsiveness of cells with FOP ACVR1 mutations to both BMP and Activin A ligands. We also have determined that constructs with FOP ACVR1 mutations that are engineered without the ligand-binding domain retain increased BMP-pSmad1/5/8 pathway activation relative to wild-type ACVR1, supporting that the mutant receptors can function through ligand-independent mechanisms either directly through mutant ACVR1 or through indirect mechanisms.
Collapse
Affiliation(s)
- Julia Haupt
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Meiqi Xu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Strobl H, Krump C, Borek I. Micro-environmental signals directing human epidermal Langerhans cell differentiation. Semin Cell Dev Biol 2018; 86:36-43. [PMID: 29448069 DOI: 10.1016/j.semcdb.2018.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 01/11/2023]
Abstract
Human Langerhans cells (LC) can be generated ex vivo from hematopoietic precursor cells in response to cytokines and cell-membrane associated ligands. These in vitro differentiation models provided mechanistic insights into the molecular and cellular pathways underlying the development of this unique, epithelia-associated dendritic cell subset. Notably, the human epidermal microenvironment is fully sufficient to induce LC differentiation from hematopoietic progenitors. Hence, dissecting the molecular characteristics of the human epithelial/epidermal LC niche, and testing defined ligands for their capacity to induce LC differentiation, led to a refined molecular model of LC lineage commitment. During epidermal ontogeny, spatially and temporally regulated availability of TGF-β family members cooperate with other keratinocyte-derived signals, such as E-cadherin and Notch ligands, for instructing LC differentiation. In this review, we discuss the signals known to instruct human hematopoietic progenitor cells and myelomonocytic cells to undergo LC lineage commitment. Additionally, the current methods for generation of large numbers of human LC-like cells ex vivo in defined serum-free media are discussed.
Collapse
Affiliation(s)
- Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria.
| | - Corinna Krump
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Izabela Borek
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
19
|
Fahy N, Alini M, Stoddart MJ. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. J Orthop Res 2018; 36:52-63. [PMID: 28763118 DOI: 10.1002/jor.23670] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023]
Abstract
Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018.
Collapse
Affiliation(s)
- Niamh Fahy
- AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
20
|
Khatibi S, Zhu HJ, Wagner J, Tan CW, Manton JH, Burgess AW. Mathematical model of TGF-βsignalling: feedback coupling is consistent with signal switching. BMC SYSTEMS BIOLOGY 2017; 11:48. [PMID: 28407804 PMCID: PMC5390422 DOI: 10.1186/s12918-017-0421-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
Abstract
Background Transforming growth factor β (TGF-β) signalling regulates the development of embryos and tissue homeostasis in adults. In conjunction with other oncogenic changes, long-term perturbation of TGF-β signalling is associated with cancer metastasis. Although TGF-β signalling can be complex, many of the signalling components are well defined, so it is possible to develop mathematical models of TGF-β signalling using reduction and scaling methods. The parameterization of our TGF-β signalling model is consistent with experimental data. Results We developed our mathematical model for the TGF-β signalling pathway, i.e. the RF- model of TGF-β signalling, using the “rapid equilibrium assumption” to reduce the network of TGF-β signalling reactions based on the time scales of the individual reactions. By adding time-delayed positive feedback to the inherent time-delayed negative feedback for TGF-β signalling. We were able to simulate the sigmoidal, switch-like behaviour observed for the concentration dependence of long-term (> 3 hours) TGF-β stimulation. Computer simulations revealed the vital role of the coupling of the positive and negative feedback loops on the regulation of the TGF-β signalling system. The incorporation of time-delays for the negative feedback loop improved the accuracy, stability and robustness of the model. This model reproduces both the short-term and long-term switching responses for the intracellular signalling pathways at different TGF-β concentrations. We have tested the model against experimental data from MEF (mouse embryonic fibroblasts) WT, SV40-immortalized MEFs and Gp130 F/F MEFs. The predictions from the RF- model are consistent with the experimental data. Conclusions Signalling feedback loops are required to model TGF-β signal transduction and its effects on normal and cancer cells. We focus on the effects of time-delayed feedback loops and their coupling to ligand stimulation in this system. The model was simplified and reduced to its key components using standard methods and the rapid equilibrium assumption. We detected differences in short-term and long-term signal switching. The results from the RF- model compare well with experimental data and predict the dynamics of TGF-β signalling in cancer cells with different mutations. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0421-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shabnam Khatibi
- Electrical and Electronic Engineering Department, The University of Melbourne, Parkville, Victoria, 3010, Australia.,The Walter and Eliza Hall Institute of Medical Research (WEHI), 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Hong-Jian Zhu
- Department of Surgery (RMH), The University of Melbourne, Parkville, Victoria, 3050, Australia
| | - John Wagner
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, 87 Grattan Street, Victoria, 3010, Australia.,IBM Research-Australia, 204 Lygon Street Level 5, Carlton, Victoria, 3053, Australia
| | - Chin Wee Tan
- The Walter and Eliza Hall Institute of Medical Research (WEHI), 1G Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jonathan H Manton
- Electrical and Electronic Engineering Department, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Antony W Burgess
- Department of Surgery (RMH), The University of Melbourne, Parkville, Victoria, 3050, Australia. .,The Walter and Eliza Hall Institute of Medical Research (WEHI), 1G Royal Parade, Parkville, Victoria, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
21
|
Hildebrand L, Stange K, Deichsel A, Gossen M, Seemann P. The Fibrodysplasia Ossificans Progressiva (FOP) mutation p.R206H in ACVR1 confers an altered ligand response. Cell Signal 2016; 29:23-30. [PMID: 27713089 DOI: 10.1016/j.cellsig.2016.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/23/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
Patients with Fibrodysplasia Ossificans Progressiva (FOP) suffer from ectopic bone formation, which progresses during life and results in dramatic movement restrictions. Cause of the disease are point mutations in the Activin A receptor type 1 (ACVR1), with p.R206H being most common. In this study we compared the signalling responses of ACVR1WT and ACVR1R206H to different ligands. ACVR1WT, but not ACVR1R206H inhibited BMP signalling of BMP2 or BMP4 in a ligand binding domain independent manner. Likewise, the basal BMP signalling activity of the receptor BMPR1A or BMPR1B was inhibited by ACVR1WT, but enhanced by ACVR1R206H. In comparison, BMP6 or BMP7 activated ACVR1WT and caused a hyper-activation of ACVR1R206H. These effects were dependent on an intact ligand binding domain. Finally, the neofunction of Activin A in FOP was tested and found to depend on the ligand binding domain for activating ACVR1R206H. We conclude that the FOP mutation ACVR1R206H is more sensitive to a number of natural ligands. The mutant receptor apparently lost some essential inhibitory interactions with its ligands and co-receptors, thereby conferring an enhanced ligand-dependent signalling and stimulating ectopic bone formation as observed in the patients.
Collapse
Affiliation(s)
- Laura Hildebrand
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| | - Katja Stange
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany; Leibniz Institute for Farm Animal Biology, Institute for Muscle Biology and Growth, Dummerstorf, Germany.
| | - Alexandra Deichsel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.
| | - Petra Seemann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| |
Collapse
|
22
|
The Discovery and Early Days of TGF-β: A Historical Perspective. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021865. [PMID: 27328871 DOI: 10.1101/cshperspect.a021865] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factors (TGFs) were discovered as activities that were secreted by cancer cells, and later by normal cells, and had the ability to phenotypically and reversibly transform immortalized fibroblasts. TGF-β distinguished itself from TGF-α because it did not bind to the same epidermal growth factor (EGF) receptor as TGF-α and, therefore, acted through different cell-surface receptors and signaling mediators. This review summarizes the discovery of TGF-β, the early developments in its molecular and biological characterization with its many biological activities in different cell and tissue contexts and its roles in disease, the realization that there is a family of secreted TGF-β-related proteins with many differentiation functions in development and activities in normal cell and tissue physiology, and the subsequent identification and characterization of the receptors and effectors that mediate TGF-β family signaling responses.
Collapse
|
23
|
Runa F, Adamian Y, Kelber JA. Ascending the PEAK1 toward targeting TGFβ during cancer progression: Recent advances and future perspectives. CANCER CELL & MICROENVIRONMENT 2016; 3:e1162. [PMID: 29392163 PMCID: PMC5790177 DOI: 10.14800/ccm.1162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is the second leading cause of death in the United States. Mortality in patients with solid, epithelial-derived tumors strongly correlates with disease stage and the systemic metastatic load. In such cancers, notable morphological and molecular changes have been attributed to cells as they pass through a continuum of epithelial-mesenchymal transition (EMT) states and many of these changes are essential for metastasis. While cancer metastasis is a complex cascade that is regulated by cell-autonomous and microenvironmental influences, it is well-accepted that understanding and controlling metastatic disease is a viable method for increasing patient survival. In the past 5 years, the novel non-receptor tyrosine kinase PEAK1 has surfaced as a central regulator of tumor progression and metastasis in the context of solid, epithelial cancers. Here, we review this literature with a special focus on our recent work demonstrating that PEAK1 mediates non-canonical pro-tumorigenic TGFβ signaling and is an intracellular control point between tumor cells and their extracellular microenvironment. We conclude with a brief discussion of potential applications derived from our current understanding of PEAK1 biology.
Collapse
Affiliation(s)
- Farhana Runa
- Department of Biology, California State University, Northridge, CA, USA
| | - Yvess Adamian
- Department of Biology, California State University, Northridge, CA, USA
| | | |
Collapse
|
24
|
Abstract
In cells responding to extracellular polypeptide ligands, regulatory mechanisms at the level of cell surface receptors are increasingly seen to define the nature of the ligand-induced signaling responses. Processes that govern the levels of receptors at the plasma membrane, including posttranslational modifications, are crucial to ensure receptor function and specify the downstream signals. Indeed, extracellular posttranslational modifications of the receptors help define stability and ligand binding, while intracellular modifications mediate interactions with signaling mediators and accessory proteins that help define the nature of the signaling response. The use of various molecular biology and biochemistry techniques, based on chemical crosslinking, e.g., biotin or radioactive labeling, immunofluorescence to label membrane receptors and flow cytometry, allows for quantification of changes of cell surface receptor presentation. Here, we discuss recent progress in our understanding of the regulation of TGF-β receptors, i.e., the type I (TβRI) and type II (TβRII) TGF-β receptors, and describe basic methods to identify and quantify TGF-β cell surface receptors.
Collapse
Affiliation(s)
- Erine H Budi
- Department of Cell and Tissue Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Programs in Cell Biology, and Developmental and Stem Cell Biology, University of California, San Francisco, CA, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Programs in Cell Biology, and Developmental and Stem Cell Biology, University of California, San Francisco, CA, USA.
| |
Collapse
|
25
|
Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. PLoS One 2015; 10:e0146124. [PMID: 26720610 PMCID: PMC4697836 DOI: 10.1371/journal.pone.0146124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Introduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor β (TGFβ) is crucial for inducing chondrogenic differentiation of BMSCs and is known to signal via Activin receptor-Like Kinase (ALK) receptors ALK5 and ALK1. Since the specific role of these two TGFβ receptors in chondrogenesis is unknown, we investigated whether ALK5 and ALK1 are expressed in BMSCs and whether both receptors are required for chondrogenic differentiation of BMSCs. Materials & Methods ALK5 and ALK1 gene expression in human BMSCs was determined with RT-qPCR. To induce chondrogenesis, human BMSCs were pellet-cultured in serum-free chondrogenic medium containing TGFβ1. Chondrogenesis was evaluated by aggrecan and collagen type IIα1 RT-qPCR analysis, and histological stainings of proteoglycans and collagen type II. To overexpress constitutively active (ca) receptors, BMSCs were transduced either with caALK5 or caALK1. Expression of ALK5 and ALK1 was downregulated by transducing BMSCs with shRNA against ALK5 or ALK1. Results ALK5 and ALK1 were expressed in in vitro-expanded as well as in pellet-cultured BMSCs from five donors, but mRNA levels of both TGFβ receptors did not clearly associate with chondrogenic induction. TGFβ increased ALK5 and decreased ALK1 gene expression in chondrogenically differentiating BMSC pellets. Neither caALK5 nor caALK1 overexpression induced cartilage matrix formation as efficient as that induced by TGFβ. Moreover, short hairpin-mediated downregulation of either ALK5 or ALK1 resulted in a strong inhibition of TGFβ-induced chondrogenesis. Conclusion ALK5 as well as ALK1 are required for TGFβ-induced chondrogenic differentiation of BMSCs, and TGFβ not only directly induces chondrogenesis, but also modulates ALK5 and ALK1 receptor signaling in BMSCs. These results imply that optimizing cartilage formation by mesenchymal stem cells will depend on activation of both receptors.
Collapse
|
26
|
Lin W, Du Y, Zhu Y, Chen X. A Cis-Membrane FRET-Based Method for Protein-Specific Imaging of Cell-Surface Glycans. J Am Chem Soc 2014; 136:679-87. [DOI: 10.1021/ja410086d] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Lin
- Beijing
National Laboratory
for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Yifei Du
- Beijing
National Laboratory
for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Yuntao Zhu
- Beijing
National Laboratory
for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Xing Chen
- Beijing
National Laboratory
for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
27
|
Cieslik KA, Trial J, Crawford JR, Taffet GE, Entman ML. Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts. J Mol Cell Cardiol 2013; 70:56-63. [PMID: 24184998 DOI: 10.1016/j.yjmcc.2013.10.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Aging has been associated with adverse fibrosis. Here we formulate a new hypothesis and present new evidence that unresponsiveness of mesenchymal stem cells (MSC) and fibroblasts to transforming growth factor beta (TGF-β), due to reduced expression of TGF-β receptor I (TβRI), provides a foundation for cardiac fibrosis in the aging heart via two mechanisms. 1) TGF-β promotes expression of Nanog, a transcription factor that retains MSC in a primitive state. In MSC derived from the aging heart, Nanog expression is reduced and therefore MSC gradually differentiate and the number of mesenchymal fibroblasts expressing collagen increases. 2) As TGF-β signaling pathway components negatively regulate transcription of monocyte chemoattractant protein-1 (MCP-1), a reduced expression of TβRI prevents aging mesenchymal cells from shutting down their own MCP-1 expression. Elevated MCP-1 levels that originated from MSC attract transendothelial migration of mononuclear leukocytes from blood to the tissue. MCP-1 expressed by mesenchymal fibroblasts promotes further migration of monocytes and T lymphocytes away from the endothelial barrier and supports the monocyte transition into macrophages and finally into myeloid fibroblasts. Both myeloid and mesenchymal fibroblasts contribute to fibrosis in the aging heart via collagen synthesis. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ".
Collapse
Affiliation(s)
- Katarzyna A Cieslik
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA.
| | - JoAnn Trial
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA
| | - Jeffrey R Crawford
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA
| | - George E Taffet
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA
| | - Mark L Entman
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Tao YY, Wang QL, Shen L, Fu WW, Liu CH. Salvianolic acid B inhibits hepatic stellate cell activation through transforming growth factor beta-1 signal transduction pathway in vivo and in vitro. Exp Biol Med (Maywood) 2013; 238:1284-96. [PMID: 24006304 DOI: 10.1177/1535370213498979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Salvianolic acid B (Sal B) is a major water soluble component extracted from Radix Salviae miltiorrhizae, a traditional Chinese herb widely used for treating cardiovascular and hepatic diseases. Sal B has been reported to inhibit transforming growth factor (TGF)-β1-stimulated hepatic stellate cells (HSCs) activation and collagen type I expression. In this study, we further investigated the mechanisms of Sal B on liver fibrosis relating to TGF-β/Smads signalling pathway, especially to TGF-β1 receptors. Liver fibrosis model was induced by intraperitoneal injection of dimethylnitrosamine (DMN) for four weeks. Rats were randomly divided into three groups: normal, model, and Sal B groups. Rats in Sal B group were treated by oral administration of Sal B for four weeks from the first day of DMN exposure. Hydroxyproline (Hyp) content in liver tissue was assayed using Jamall's method and collagen deposition was visualized using Sirius red staining. HSCs were isolated from normal rats, and were cultured primarily in uncoated plastics. At day 4 after isolation, cells were stimulated with 2.5 ng/mL TGF-β1, and treated with 1 and 10 µmol/L Sal B and 10 µmol/L SB-431542 (TβR-I inhibitor) for 24 h, respectively. Cell proliferation was examined with 5-ethynyl-2'-deoxyuridine assay. The expressions of alpha smooth muscle actin (α-SMA) and Smad3 were assayed by immunofluorescent stain and Western blotting. The expression of TβR-I was analysed by Western blotting and real-time polymerase chain reaction. The activity of TβR-I kinase was measured by ADP-Glo kinase assay. The results showed that Sal B could inhibit collagen deposition and reduce Hyp content significantly, and decrease expressions of TGF-β1 and TβR-I in fibrotic liver in vivo. Also, Sal B decreased the expressions of α-SMA and TβR-I, inhibited Smad3 nuclear translocation and down-regulated TβR-I kinase activity in vitro. These findings suggested that Sal B could prevent HSCs activation through TGF-β signalling pathway, i.e. inhibiting TGF-β1 expression, activity of TβR-I kinase and Smads phosphorylation.
Collapse
Affiliation(s)
- Yan-Yan Tao
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | | | | | | | | |
Collapse
|
29
|
Danielpour D. Transforming Growth Factor-Beta in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
30
|
Zhang L, Yu Z, Muranski P, Palmer DC, Restifo NP, Rosenberg SA, Morgan RA. Inhibition of TGF-β signaling in genetically engineered tumor antigen-reactive T cells significantly enhances tumor treatment efficacy. Gene Ther 2012; 20:575-80. [PMID: 22972494 DOI: 10.1038/gt.2012.75] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor β (TGF-β) is a cytokine with complex biological functions that may involve tumor promotion or tumor suppression. It has been reported that multiple types of tumors secrete TGF-β, which can inhibit tumor-specific cellular immunity and may represent a major obstacle to the success of tumor immunotherapy. In this study, we sought to enhance tumor immunotherapy using genetically modified antigen-specific T cells by interfering with TGF-β signaling. We constructed three γ-retroviral vectors, one that expressed TGF-β-dominant-negative receptor II (DNRII) or two that secreted soluble TGF-β receptors: soluble TGF-β receptor II (sRII) and the sRII fused with mouse IgG Fc domain (sRIIFc). We demonstrated that T cells genetically modified with these viral vectors were resistant to exogenous TGF-β-induced smad-2 phosphorylation in vitro. The functionality of antigen-specific T cells engineered to resist TGF-β signaling was further evaluated in vivo using the B16 melanoma tumor model. Antigen-specific CD8+ T cells (pmel-1) or CD4+ T cells (tyrosinase-related protein-1) expressing DNRII dramatically improved tumor treatment efficacy. There was no enhancement in the B16 tumor treatment using cells secreting soluble receptors. Our data support the potential application of the blockade of TGF-β signaling in tumor-specific T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- L Zhang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Gray PC, Vale W. Cripto/GRP78 modulation of the TGF-β pathway in development and oncogenesis. FEBS Lett 2012; 586:1836-45. [PMID: 22306319 PMCID: PMC3723343 DOI: 10.1016/j.febslet.2012.01.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
Cripto is a small, GPI-anchored signaling protein that regulates cellular survival, proliferation, differentiation and migration during normal developmental processes and tumorigenesis. Cripto functions as an obligatory co-receptor for the TGF-β ligands Nodal, GDF1 and GDF3 but attenuates signaling of others such as activin-A, activin-B and TGF-β1. Soluble, secreted forms of Cripto also activate Src, ras/raf/MAPK and PI3K/Akt pathways via a mechanism that remains largely obscure. This review describes the biological roles and signaling mechanisms of Cripto, highlighting our identification of the 78 kDa glucose regulated protein (GRP78) as a cell surface receptor/co-factor required for Cripto signaling via both TGF-β and Src/MAPK/PI3K pathways. We discuss emerging evidence indicating that Cripto/GRP78 signaling regulates normal somatic stem cells and their tumorigenic counterparts.
Collapse
Affiliation(s)
- Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | | |
Collapse
|
32
|
Maehr T, Wang T, González Vecino JL, Wadsworth S, Secombes CJ. Cloning and expression analysis of the transforming growth factor-beta receptors type 1 and 2 in the rainbow trout Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:115-126. [PMID: 22057119 DOI: 10.1016/j.dci.2011.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/07/2011] [Accepted: 10/09/2011] [Indexed: 05/31/2023]
Abstract
Transforming growth factor-β (TGF-β) binding to the TGF-β type I (TGFBR1) and type II (TGFBR2) receptors delivers a plethora of cell-type specific effects. Moreover, the responses to TGF-β are tuned by regulatory mechanisms at the receptor level itself. To further elucidate TGF-β family signal transduction in teleosts, we therefore cloned the first complete set of a putative TGF-β receptor complex in salmonids. Rainbow trout TGFBR1 and TGFBR2 are transmembrane proteins with a serine/threonine kinase domain and are highly conserved within vertebrates. High expression levels in muscle and brain indicate regulation of the TGF-β system in muscular and nervous systems. Lipopolysaccharide (LPS) induced expression of both receptor chains in RTgill cells while bacterial and viral mimics modulated the two receptors inversely in head kidney (HK) macrophages. In addition, T cell mitogens lowered receptor levels in HK leukocytes. These data provide the first insights into TGF-β type I and II receptor modulation during immune responses in teleost fish.
Collapse
Affiliation(s)
- Tanja Maehr
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | | | | | | | | |
Collapse
|
33
|
Toma I, McCaffrey TA. Transforming growth factor-β and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res 2012; 347:155-75. [PMID: 21626289 PMCID: PMC4915479 DOI: 10.1007/s00441-011-1189-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/06/2011] [Indexed: 12/15/2022]
Abstract
Age-related progression of cardiovascular disease is by far the largest health problem in the US and involves vascular damage, progressive vascular fibrosis and the accumulation of lipid-rich atherosclerotic lesions. Advanced lesions can restrict flow to key organs and can trigger occlusive thrombosis resulting in a stroke or myocardial infarction. Transforming growth factor-beta (TGF-β) is a major orchestrator of the fibroproliferative response to tissue damage. In the early stages of repair, TGF-β is released from platelets and activated from matrix reservoirs; it then stimulates the chemotaxis of repair cells, modulates immunity and inflammation and induces matrix production. At later stages, it negatively regulates fibrosis through its strong antiproliferative and apoptotic effects on fibrotic cells. In advanced lesions, TGF-β might be important in arterial calcification, commonly referred to as "hardening of the arteries". Because TGF-β can signal through multiple pathways, namely the SMADs, a MAPK pathway and the Rho/ROCK pathways, selective defects in TGF-β signaling can disrupt otherwise coordinated pathways of tissue regeneration. TGF-β is known to control cell proliferation, cell migration, matrix synthesis, wound contraction, calcification and the immune response, all being major components of the atherosclerotic process. However, many of the effects of TGF-β are essential to normal tissue repair and thus, TGF-β is often thought to be "atheroprotective". The present review attempts to parse systematically the known effects of TGF-β on both the major risk factors for atherosclerosis and to isolate the role of TGF-β in the many component pathways involved in atherogenesis.
Collapse
Affiliation(s)
- Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, 2300 I Street NW. Ross Hall 443, Washington DC 20037, USA
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, 2300 I Street NW. Ross Hall 443, Washington DC 20037, USA
| |
Collapse
|
34
|
Zhang Y. Need for clarification of data in the recent meta-analysis about TGFBR1*6A/9A polymorphism and breast cancer risk. Breast Cancer Res Treat 2011; 130:1073-4. [PMID: 21987037 DOI: 10.1007/s10549-011-1806-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 09/26/2011] [Indexed: 11/30/2022]
|
35
|
Stem cell antigen-1 enhances tumorigenicity by disruption of growth differentiation factor-10 (GDF10)-dependent TGF-beta signaling. Proc Natl Acad Sci U S A 2011; 108:7820-5. [PMID: 21518866 DOI: 10.1073/pnas.1103441108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stem cell antigen (Sca)-1/Ly6A, a glycerophosphatidylinositol-linked surface protein, was found to be associated with murine stem cell- and progenitor cell-enriched populations, and also has been linked to the capacity of tumor-initiating cells. Despite these interesting associations, this protein's functional role in these processes remains largely unknown. To identify the mechanism underlying the protein's possible role in mammary tumorigenesis, Sca-1 expression was examined in Sca-1(+/EGFP) mice during carcinogenesis. Mammary tumor cells derived from these mice readily engrafted in syngeneic mice, and tumor growth was markedly inhibited on down-regulation of Sca-1 expression. The latter effect was associated with significantly elevated expression of the TGF-β ligand growth differentiation factor-10 (GDF10), which was found to selectively activate TGF-β receptor (TβRI/II)-dependent Smad3 phosphorylation. Overexpression of GDF10 attenuated tumor formation; conversely, silencing of GDF10 expression reversed these effects. Sca-1 attenuated GDF10-dependent TGF-β signaling by disrupting the heterodimerization of TβRI and TβRII receptors. These findings suggest a new functional role for Sca-1 in maintaining tumorigenicity, in part by acting as a potent suppressor of TGF-β signaling.
Collapse
|
36
|
Abstract
The biological responses of the transforming growth factor-β (TGF-β) superfamily, which includes Activins and Nodal, are induced by activation of a receptor complex and Smads. A type I receptor, which is a component of the complex, is known as an activin receptor-like kinase (ALK); currently seven ALKs (ALK1-ALK7) have been identified in humans. Activins signaling, which is mediated by ALK4 and 7 together with ActRIIA and IIB, plays a critical role in glucose-stimulated insulin secretion, development/neogenesis, and glucose homeostatic control of pancreatic endocrine cells; the insulin gene is regulated by these signaling pathways via ALK7, which is a receptor for Activins AB and B and Nodal. This review discusses signal transduction of ALKs in pancreatic endocrine cells and the role of ALKs in insulin gene regulation.
Collapse
Affiliation(s)
- Rie Watanabe
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
37
|
Watanabe S, Misawa M, Matsuzaki T, Sakurai T, Muramatsu T, Sato M. A novel glycosylation signal regulates transforming growth factor beta receptors as evidenced by endo-beta-galactosidase C expression in rodent cells. Glycobiology 2010; 21:482-92. [PMID: 21062784 DOI: 10.1093/glycob/cwq186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The αGal (Galα1-3Gal) epitope is a xenoantigen that is responsible for hyperacute rejection in xenotransplantation. This epitope is expressed on the cell surface in the cells of all mammals except humans and Old World monkeys. It can be digested by the enzyme endo-β-galactosidase C (EndoGalC), which is derived from Clostridium perfringens. Previously, we produced EndoGalC transgenic mice to identify the phenotypes that would be induced following EndoGalC overexpression. The mice lacked the αGal epitope in all tissues and exhibited abnormal phenotypes such as postnatal death, growth retardation, skin lesion and abnormal behavior. Interestingly, skin lesions caused by increased proliferation of keratinocytes suggest the role of a glycan structure [in which the αGal epitope has been removed or the N-acetylglucosamine (GlcNAc) residue is newly exposed] as a regulator of signal transduction. To verify this hypothesis, we introduced an EndoGalC expression vector into cultured mouse NIH3T3 cells and obtained several EndoGalC-expressing transfectants. These cells lacked αGal epitope expression and exhibited 1.8-fold higher proliferation than untransfected parental cells. We then used several cytokine receptor inhibitors to assess the signal transduction cascades that were affected. Only SB431542 and LY364947, both of which are transforming growth factor β (TGFβ) receptor type-I (TβR-I) inhibitors, were found to successfully reverse the enhanced cell proliferation rate of EndoGalC transfectants, indicating that the glycan structure is a regulator of TβRs. Biochemical analysis demonstrated that the glycan altered association between TβR-I and TβR-II in the absence of ligands.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Animal Genome Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Nagaraj NS, Datta PK. Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opin Investig Drugs 2010; 19:77-91. [PMID: 20001556 DOI: 10.1517/13543780903382609] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transforming growth factor-ss (TGF-beta) signaling pathway plays a pivotal role in diverse cellular processes. TGF-beta switches its role from a tumor suppressor in normal or dysplastic cells to a tumor promoter in advanced cancers. It is widely believed that the Smad-dependent pathway is involved in TGF-beta tumor-suppressive functions, whereas activation of Smad-independent pathways, coupled with the loss of tumor-suppressor functions of TGF-beta, is important for its pro-oncogenic functions. TGF-beta signaling has been considered a useful therapeutic target. The discovery of oncogenic actions of TGF-beta has generated a great deal of enthusiasm for developing TGF-beta signaling inhibitors for the treatment of cancer. The challenge is to identify the group of patients where targeted tumors are not only refractory to TGF-beta-induced tumor suppressor functions but also responsive to the tumor-promoting effects of TGF-beta. TGF-beta pathway inhibitors, including small and large molecules, have now entered clinical trials. Preclinical studies with these inhibitors have shown promise in a variety of different tumor models. Here, we focus on the mechanisms of signaling and specific targets of the TGF-beta pathway that are critical effectors of tumor progression and invasion. This report also examines the therapeutic intervention of TGF-ss signaling in human cancers.
Collapse
Affiliation(s)
- Nagathihalli S Nagaraj
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Department of Surgery, Nashville, TN 37232, USA
| | | |
Collapse
|
39
|
Abstract
A large body of evidence points to the existence of a close, dynamic relationship between the immune system and the male reproductive tract, which has important implications for our understanding of both systems. The testis and the male reproductive tract provide an environment that protects the otherwise highly immunogenic spermatogenic cells and sperm from immunological attack. At the same time, secretions of the testis, including androgens, influence the development and mature functions of the immune system. Activation of the immune system has negative effects on both androgen and sperm production, so that systemic or local infection and inflammation compromise male fertility. The mechanisms underlying these interactions have begun to receive the attention from reproductive biologists and immunologists that they deserve, but many crucial details remain to be uncovered. A complete picture of male reproductive tract function and its response to toxic agents is contingent upon continued exploration of these interactions and the mechanisms involved.
Collapse
Key Words
- cytokines
- immunity
- immunoregulation
- inflammation
- leydig cell
- lymphocytes
- macrophages
- nitric oxide
- prostanoids
- seminal plasma
- sertoli cell
- sperm
- spermatogenesis
- steroidogenesis
- toll-like receptors
- 16:0a-lpc, 1-palmitoyl-sn-glycero-3-phosphocholine
- 18:1a-lpc, 1-oleoyl-sn-glycero-3-phosphocholine
- 18:2a-lpc, 1-linoleoyl-sn-glycero-3-phosphocholine
- 20:4a-lpc, 1-arachidonyl-sn-glycero-3-phosphocholine
- aid, acquired immune deviation
- aire, autoimmune regulator
- ap1, activated protein 1
- apc, antigen-presenting cell
- bambi, bmp and activin membrane-bound inhibitor
- bmp, bone morphogenetic protein
- cox, cyclooxygenase
- crry, complement receptor-related protein
- ctl, cytotoxic t lymphocyte
- eao, experimental autoimmune orchitis
- eds, ethane dimethane sulfonate
- enos, endothelial nos
- fadd, fas-associated death domain protein
- fasl, fas ligand
- fsh, follicle-stimulating hormone
- gc, glucocorticoid
- hcg, human chorionic gonadotropin
- hla, human leukocyte antigen
- hmgb1, high mobility group box chromosomal protein 1
- ice, il1 converting enzyme
- ifn, interferon
- ifnar, ifnα receptor
- il, interleukin
- il1r, interleukin 1 receptor
- il1ra, il1 receptor antagonist
- inos, inducible nitric oxide synthase
- irf, interferon regulatory factor
- jak/stat, janus kinase/signal transducers and activators of transcription
- jnk, jun n-terminal kinase
- lh, luteinizing hormone
- lpc, lysoglycerophosphatidylcholine
- lps, lipopolysaccharide
- map, mitogen-activated protein
- mhc, major histocompatibility complex
- mif, macrophage migration inhibitory factor
- myd88, myeloid differentiation primary response protein 88
- nfκb, nuclear factor kappa b
- nk, cell natural killer cell
- nkt cell, natural killer t cell
- nlr, nod-like receptor
- nnos, neuronal nos
- nod, nucleotide binding oligomerization domain
- p450c17, 17α-hydroxylase/c17-c20 lyase
- p450scc, cholesterol side-chain cleavage complex
- paf, platelet-activating factor
- pamp, pathogen-associated molecular pattern
- pc, phosphocholine
- pg, prostaglandin
- pges, pge synthase
- pgi, prostacyclin
- pla2, phospholipase a2
- pmn, polymorphonuclear phagocyte
- pparγ, peroxisome proliferator-activated receptor γ
- rig, retinoic acid-inducible gene
- rlh, rig-like helicase
- ros, reactive oxygen species
- star, steroidogenic acute regulatory
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tir, toll/il1r
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- tnfr, tnf receptor
- tr1, t regulatory 1
- tradd, tnfr-associated death domain protein
- traf, tumor necrosis factor receptor-associated factor
- treg, regulatory t cell
- trif, tir domain-containing adaptor protein inducing interferon β
- tx, thromboxane
- txas, thromboxane a synthase
Collapse
|
40
|
TGFBR1*6A/9A polymorphism and cancer risk: a meta-analysis of 13,662 cases and 14,147 controls. Mol Biol Rep 2009; 37:3227-32. [PMID: 19882361 DOI: 10.1007/s11033-009-9906-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
Abstract
Published data on the association between TGFBR1*6A/9A polymorphism and cancer risk are inconclusive. To derive a more precise estimation of the relationship, a meta-analysis was performed. A total of 32 studies including 13,662 cases and 14,147 controls were involved in this meta-analysis. Overall, significantly elevated cancer risks were associated with TGFBR1*6A in all genetic models (for allelic effect: OR = 1.11; 95% CI = 1.03-1.21; for 6A/6A vs. 9A/9A: OR = 1.30; 95% CI = 1.01-1.69; for 9A/6A vs. 9A/9A: OR = 1.08; 95% CI = 1.01-1.15; for dominant model: OR = 1.08; 95% CI = 1.02-1.15; for recessive model: OR = 1.29; 95% CI = 1.00-1.68). In the subgroup analysis by cancer types, significant associations were found in breast cancer (for allelic effect: OR = 1.16; 95% CI = 1.01-1.34) and ovarian cancer (for allelic effect: OR = 1.24; 95% CI = 1.00-1.54; for 6A/6A vs. 9A/9A: OR = 2.34; 95% CI = 1.03-5.33). However, no significant associations were found in colorectal cancer, bladder cancer, prostate cancer and lung cancer for all genetic models. In summary, this meta-analysis suggests that the TGFBR1*6A/9A polymorphism is associated with cancer susceptibility, increasing the risk of breast and ovarian cancer.
Collapse
|
41
|
Skoglund Lundin J, Vandrovcova J, Song B, Zhou X, Zelada-Hedman M, Werelius B, Houlston RS, Lindblom A. TGFBR1 variants TGFBR1(*)6A and Int7G24A are not associated with an increased familial colorectal cancer risk. Br J Cancer 2009; 100:1674-9. [PMID: 19401691 PMCID: PMC2696757 DOI: 10.1038/sj.bjc.6605054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Variants of the transforming growth factor-beta receptor type 1 (TGFBR1) gene, TGFBR1*6A and Int7G24A, have been suggested to act as low-penetrance tumour susceptibility alleles with TGFBR1*6A being causally responsible for some cases of familial colorectal cancer (CRC). We performed a case–control study of 262 unrelated familial CRC cases; 83 hereditary non-polyposis colorectal cancer (HNPCC) and 179 non-HNPCC. Patients were genotyped for TGFBR1*6A and Int7G24A and compared with 856 controls. Further, we screened the coding region of TGFBR1 in affected members of a large family with CRC linked to 9q22.32-31.1. TGFBR1*6A allelic frequency was not significantly different in all of the familial cases compared with controls (0.107 and 0.106, respectively; P=0.915). In a subgroup analysis allele frequencies were, however, different between HNPCC and non-HNPCC familial cases (0.157 and 0.084, respectively; P=0.013). TGFBR1*6A genotype did not influence age of onset. Int7G24A allele frequencies were similar in cases and controls. No germ-line mutation was identified in the family with CRC linked to this chromosomal region. Our study provides no substantial support for the hypothesis that the polymorphic variants TGFBR1*6A or Int7G24A contribute to familial CRC risk. We cannot, however, exclude the possibility that TGFBR1 variants have a modifying effect on inherited risk per se.
Collapse
Affiliation(s)
- J Skoglund Lundin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bharathy S, Xie W, Yingling JM, Reiss M. Cancer-associated transforming growth factor beta type II receptor gene mutant causes activation of bone morphogenic protein-Smads and invasive phenotype. Cancer Res 2008; 68:1656-66. [PMID: 18339844 DOI: 10.1158/0008-5472.can-07-5089] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transforming growth factor beta (TGFbeta) plays a key role in maintaining tissue homeostasis by inducing cell cycle arrest, differentiation and apoptosis, and ensuring genomic integrity. Furthermore, TGFbeta orchestrates the response to tissue injury and mediates repair by inducing epithelial to mesenchymal transition and by stimulating cell motility and invasiveness. Although loss of the homeostatic activity of TGFbeta occurs early on in tumor development, many advanced cancers have coopted the tissue repair function to enhance their metastatic phenotype. How these two functions of TGFbeta become uncoupled during cancer development remains poorly understood. Here, we show that, in human keratinocytes, TGFbeta induces phosphorylation of Smad2 and Smad3 as well as Smad1 and Smad5 and that both pathways are dependent on the kinase activities of the type I and II TGFbeta receptors (T beta R). Moreover, cancer-associated missense mutations of the T beta RII gene (TGFBR2) are associated with at least two different phenotypes. One type of mutant (TGFBR2(E526Q)) is associated with loss of kinase activity and all signaling functions. In contrast, a second mutant (TGFBR2(R537P)) is associated with high intrinsic kinase activity, loss of Smad2/3 activation, and constitutive activation of Smad1/5. Furthermore, this TGFBR2 mutant endows the carcinoma cells with a highly motile and invasive fibroblastoid phenotype. This activated phenotype is T beta RI (Alk-5) independent and can be reversed by the action of a dual T beta RI and T beta RII kinase inhibitor. Thus, identification of such activated T beta RII receptor mutations in tumors may have direct implications for appropriately targeting these cancers with selective therapeutic agents.
Collapse
MESH Headings
- Bone Morphogenetic Proteins/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Keratinocytes/enzymology
- Mutation, Missense
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Recombinant Proteins/pharmacology
- Smad Proteins/metabolism
- Transfection
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Savita Bharathy
- Department of Internal Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | | | | | | |
Collapse
|
43
|
Austin AF, Compton LA, Love JD, Brown CB, Barnett JV. Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFbeta. Dev Dyn 2008; 237:366-76. [PMID: 18213583 DOI: 10.1002/dvdy.21421] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cells derived from the epicardium are required for coronary vessel development. Transforming growth factor beta (TGFbeta) induces loss of epithelial character and smooth muscle differentiation in chick epicardial cells. Here, we show that epicardial explants from embryonic day (E) 11.5 mouse embryos incubated with TGFbeta1 or TGFbeta2 lose epithelial character and undergo smooth muscle differentiation. To further study TGFbeta Signaling, we generated immortalized mouse epicardial cells. Cells from E10.5, 11.5, and 13.5 formed tightly packed epithelium and expressed the epicardial marker Wilm's tumor 1 (WT1). TGFbeta induced the loss of zonula occludens-1 (ZO-1) and the appearance of SM22alpha and calponin consistent with smooth muscle differentiation. Inhibition of activin receptor-like kinase (ALK) 5 or p160 rho kinase activity prevented the effects of TGFbeta while inhibition of p38 mitogen activated protein (MAP) kinase did not. These data demonstrate that TGFbeta induces epicardial cell differentiation and that immortalized epicardial cells provide a suitable model for differentiation.
Collapse
Affiliation(s)
- Anita F Austin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | |
Collapse
|
44
|
Kou I, Nakajima M, Ikegawa S. Expression and Regulation of the Osteoarthritis-associated Protein Asporin. J Biol Chem 2007; 282:32193-9. [PMID: 17804408 DOI: 10.1074/jbc.m706262200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asporin (ASPN) is a small leucine-rich proteoglycan that is involved in pathological processes of osteoarthritis. Previously, we showed that asporin can inhibit transforming growth factor-beta1 (TGF-beta1)-mediated expression of cartilage matrix genes and chondrogenesis in vitro (Kizawa, H., Kou, I., Iida, A., Sudo, A., Miyamoto, Y., Fukuda, A., Mabuchi, A., Kotani, A., Kawakami, A., Yamamoto, S., Uchida, A., Nakamura, K., Notoya, K., Nakamura, Y., and Ikegawa, S. (2005) Nat. Genet. 37, 138-144). However, details about regulation of asporin itself are not yet known. Here, we examined ASPN expression in skeletal tissue and potential regulation of ASPN by TGF-beta. In situ hybridization revealed the presence of ASPN mRNA in the perichondrium/periosteum of long bones, but its absence in articular cartilage and growth plates. Immunohistochemical analysis also showed ASPN protein expression predominantly in the perichondrium/periosteum. TGF-beta1 induced endogenous ASPN mRNA expression over time in vitro, and this induction was suppressed by the TGF-beta type I receptor kinase inhibitor SB431542. Inhibition of Smad3 significantly reduced TGF-beta1-induced ASPN expression, whereas overexpression of Smad3 augmented the induction. Characterization of the human ASPN promoter region revealed a region from -126 to -82 that is sufficient for full promoter activity; however, TGF-beta1 failed to increase activity through the ASPN promoter. Our findings indicate that TGF-beta1 induces ASPN through Smad3 but that this induction is indirect.
Collapse
Affiliation(s)
- Ikuyo Kou
- Laboratory for Bone and Joint Disease, SNP Research Center, RIKEN, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
45
|
Compton LA, Potash DA, Brown CB, Barnett JV. Coronary Vessel Development Is Dependent on the Type III Transforming Growth Factor β Receptor. Circ Res 2007; 101:784-91. [PMID: 17704211 DOI: 10.1161/circresaha.107.152082] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transforming growth factor (TGF)β receptor III (TGFβR3), or β-glycan, binds all 3 TGFβ ligands and inhibin with high affinity but lacks the serine/threonine kinase domain found in the type I and type II receptors (TGFβR1, TGFβR2). TGFβR3 facilitates signaling via TGFβR1/TGFβR2 but also has been suggested to play a unique and nonredundant role in TGFβ signaling. Targeted deletion of
Tgfbr3
revealed a requirement for
Tgfbr3
during development of the coronary vessels. Coronary vasculogenesis is significantly impaired in null mice, with few vessels evident and numerous, persistent blood islands found throughout the epicardium.
Tgfbr3
-null mice die at embryonic day 14.5, the time when functional coronary vasculature is required for embryo viability. However, in null mice nascent coronary vessels attach to the aorta, form 2 coronary ostia, and initiate smooth muscle recruitment by embryonic day 14. Analysis of earlier developmental stages revealed defects in the epicardium. At embryonic day 13.5, these defects include an irregular and hypercellular epicardium with abundant subepicardial mesenchyme and a thin compact zone myocardium.
Tgfbr3
-null mice also displayed other defects in coronary development, including dysmorphic and distended vessels along the atrioventricular groove and subepicardial hemorrhage. In null mice, vessels throughout the yolk sac and embryo form and recruit smooth muscle in a pattern indistinguishable from heterozygous or wild-type littermates. These data demonstrate a requirement for
Tgfbr3
during coronary vessel development that is essential for embryonic viability.
Collapse
Affiliation(s)
- Leigh A Compton
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | | | |
Collapse
|
46
|
Skoglund J, Song B, Dalén J, Dedorson S, Edler D, Hjern F, Holm J, Lenander C, Lindforss U, Lundqvist N, Olivecrona H, Olsson L, Påhlman L, Rutegård J, Smedh K, Törnqvist A, Houlston RS, Lindblom A. Lack of an association between the TGFBR1*6A variant and colorectal cancer risk. Clin Cancer Res 2007; 13:3748-52. [PMID: 17575241 DOI: 10.1158/1078-0432.ccr-06-2865] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Recently a common variant of the TGFBR1 gene, TGFBR1*6A, has been proposed to act as a low-penetrance tumor susceptibility allele for colorectal cancer, but data from published studies with individually low statistical power are conflicting. To further evaluate the relationship between TGFBR1*6A and colorectal cancer risk, we have conducted a large case-control study and a meta-analysis of previously published studies. EXPERIMENTAL DESIGN A total of 1,042 colorectal cancer cases and 856 population controls were genotyped for the TGFBR1*6A polymorphism. Previously published case-control studies of the relationship between TGFBR1*6A and colorectal cancer were identified, and a meta-analysis was conducted. RESULTS We found no evidence that homozygosity, heterozygosity or carrier status for the TGFBR1*6A allele confers an increased risk of colorectal cancer; respective odds ratios (OR) were 1.05 [95% confidence interval (95% CI), 0.83-1.32], 0.82 (95% CI, 0.34-1.99), and 0.92 (95% CI, 0.74-1.15), respectively. A meta-analysis of our case-control study and seven other studies that provided data on 2,627 colorectal cancer cases and 3,387 controls also yielded no evidence that possession of the TGFBR1*6A allele is associated with an elevated risk of colorectal cancer; pooled estimate of the OR were 1.20 (95% CI, 0.64-2.24) for homozygosity, 1.11 (95% CI, 0.96-1.29) for heterozygosity, and 1.13 (95% CI, 0.98-1.30) for carriers of TGFBR1*6A. CONCLUSION Current data provide limited support for the hypothesis that sequence variation in TGFBR1 defined by the TGFBR1*6A allele confers an elevated risk of colorectal cancer.
Collapse
Affiliation(s)
- Johanna Skoglund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Craft CS, Romero D, Vary CPH, Bergan RC. Endoglin inhibits prostate cancer motility via activation of the ALK2-Smad1 pathway. Oncogene 2007; 26:7240-50. [PMID: 17496924 PMCID: PMC2199239 DOI: 10.1038/sj.onc.1210533] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endoglin is a transforming growth factor beta (TGFbeta) superfamily auxiliary receptor. We had previously shown that it suppressed prostate cancer (PCa) cell motility, and that its expression was lost during PCa progression. The mechanism by which endoglin inhibits PCa cell motility is unknown. Here we demonstrate that endoglin abrogates TGFbeta-mediated cell motility, but does not alter cell surface binding of TGFbeta. By measuring Smad-specific phosphorylation and Smad-responsive promoter activity, endoglin was shown to constitutively activate Smad1, with little-to-no effect upon Smad3. Knockdown of Smad1 increased motility and abrogated endoglin's effects. As type I activin receptor-like kinases (ALKs) are necessary for Smad activation, we went on to show that knockdown of ALK2, but not TGFbetaRI (ALK5), abrogated endoglin-mediated decreases in cell motility and constitutively active ALK2 was sufficient to restore a low-motility phenotype in endoglin deficient cells. These findings provide the first evidence that endoglin decreases PCa cell motility through activation of the ALK2-Smad1 pathway.
Collapse
Affiliation(s)
- CS Craft
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, Northwestern University and the Robert H Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | - D Romero
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - CPH Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - RC Bergan
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, Northwestern University and the Robert H Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
48
|
Ungefroren H, Schniewind B, Groth S, Chen WB, Müerköster SS, Kalthoff H, Fändrich F. Antitumor activity of ALK1 in pancreatic carcinoma cells. Int J Cancer 2007; 120:1641-51. [PMID: 17230504 DOI: 10.1002/ijc.22393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, the authors investigated the expression of activin receptor-like kinase 1 (ALK1) in pancreatic carcinoma and evaluated its potential role as a tumor suppressor in vitro and in vivo. Endogenous ALK1 expression was demonstrated by immunohistochemistry in both pancreatic tumor tissue and peritumoral normal tissue from 6 patients and by RT-PCR in 8/12 established pancreatic cancer cell lines. Ectopic expression of a constitutively active (ca) ALK1 mutant in TGF-beta sensitive PANC-1 and COLO-357 cells augmented transcriptional activation of a Smad2/3 responsive reporter, and slowed down basal growth in vitro. Both effects were further enhanced by TGF-beta/ALK5 stimulation, suggesting largely independent nuclear Smad signaling by both type I receptors. Upon orthotopic transplantation of PANC-1-caALK1 into immunodeficient mice, tumor size was strongly reduced and was associated with a lower microvessel density in the PANC-1-caALK1-derived tumors. In vitro, this mutant efficiently blocked TGF-beta-induced epithelial-to-mesenchymal transdifferentiation and suppressed TGF-beta/ALK5-mediated activation of the p38 MAPK pathway. Mechanistically, caALK1 silenced MyD118, an immediate TGF-beta target gene whose protein product, GADD45beta, couples Smad signaling to p38 activation. These results show that ALK1 activation in pancreatic tumor cells is antioncogenic by inducing ALK5-independent growth inhibition and by blocking TGF-beta/ALK5-mediated epithelial-to-mesenchymal transdifferentiation and, possibly, invasion and metastatic progression.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Adenocarcinoma/genetics
- Adenocarcinoma/therapy
- Animals
- Antigens, Differentiation/metabolism
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Epithelial Cells/metabolism
- Female
- Gene Expression Regulation, Neoplastic/physiology
- Genes, Tumor Suppressor/physiology
- Humans
- Immunoblotting
- Immunohistochemistry
- Mesoderm/cytology
- Mesoderm/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Nuclear Proteins/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/therapy
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Receptors, Transforming Growth Factor beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Smad Proteins/metabolism
- Transcriptional Activation
- Transfection
- Transforming Growth Factor beta/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Hendrik Ungefroren
- Department of General Surgery and Thoracic Surgery, UKSH, Campus Kiel, Arnold-Heller-Str. 7, 24105 Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Huo YY, Hu YC, He XR, Wang Y, Song BQ, Zhou PK, Zhu MX, Li G, Wu DC. Activation of extracellular signal-regulated kinase by TGF-beta1 via TbetaRII and Smad7 dependent mechanisms in human bronchial epithelial BEP2D cells. Cell Biol Toxicol 2006; 23:113-28. [PMID: 17096210 DOI: 10.1007/s10565-006-0097-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 09/13/2006] [Indexed: 01/13/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) can activate mitogen-activated protein kinases (MAPKs) in many types of cells. The mechanism of this activation is not well elucidated. Here, we explore the role of TGF-beta/Smads signaling compounds in TGF-beta1-mediated activation of extracellular signal-regulated kinase (ERK) MAPK in human papillomavirus (HPV)-18 immortalized human bronchial epithelial cell line BEP2D and the role of TGF-beta1-induced phosphorylation of ERK in proliferation and apoptosis of BEP2D. The cell models of siRNA-mediated silencing of TGF-beta receptor type II (TbetaRII), Smad2, Smad3, Smad4, and Smad7 were employed in this study. Our results demonstrate that TGF-beta1 activates ERK in a time-dependent manner with a maximum effect at 60 min; overexpression of Smad7 increased this TGF-beta1-mediated phosphorylation of the ERK; and siRNA-mediated silencing of TbetaRII, Smad3, Smad4, and Smad7 abrogated this effect. Moreover, we observed that overexpression of Smad7 restored TGF-beta1-mediated ERK phosphorylation in Smad4 knockdown cells but not in TbetaRII knockdown cells. In BEP2D cells, TGF-beta1 treatment effectively inhibited cells' proliferation and induced their apoptosis. Pretreatment with U0126, an inhibitor of ERK1/2, significantly enhanced the TGF-beta1-mediated antiproliferative and apoptosis induction effects in BEP2D cells. These data revealed that TbetaRII and Smad7 play the critical roles in TGF-beta1-mediated activation of ERK; Smad3 and Smad4 can play an indirect role through up-regulating Smad7 expression; and TGF-beta1-induced phosphorylation of ERK may participate in BEP2D cell proliferation and apoptosis regulation.
Collapse
Affiliation(s)
- Y-Y Huo
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Skoglund J, Djureinovic T, Zhou XL, Vandrovcova J, Renkonen E, Iselius L, Bisgaard ML, Peltomäki P, Lindblom A. Linkage analysis in a large Swedish family supports the presence of a susceptibility locus for adenoma and colorectal cancer on chromosome 9q22.32-31.1. J Med Genet 2006; 43:e7. [PMID: 16467217 PMCID: PMC2564647 DOI: 10.1136/jmg.2005.033928] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The best known hereditary colorectal cancer syndromes, familial adenomatous polyposis (FAP) and hereditary non-polyposis colorectal cancer (HNPCC), constitute about 2% of all colorectal cancers, and there are at least as many non-FAP, non-HNPCC cases where the family history suggests a dominantly inherited colorectal cancer risk. Recently, a locus on chromosome 9q22.2-31.2 was identified by linkage analysis in sib pairs with colorectal cancer or adenoma. METHODS Linkage analysis for the suggested locus on chromosome 9 was carried out in an extended Swedish family. This family had previously been investigated but following the identification of adenomas in several previously unaffected family members, these subjects were now considered to be gene carriers. RESULTS In the present study, we found linkage of adenoma and colorectal cancer to chromosome 9q22.32-31.1 with a multipoint LOD score of 2.4. We were also able to define the region for this locus to 7.9 cM between the markers D9S280 and D9S277. CONCLUSIONS Our result supports the presence of a susceptibility locus predisposing to adenoma and colorectal cancer in this chromosomal region.
Collapse
|