1
|
Salviati E, Guida F, La Gioia D, Merciai F, Maione S, Di Marzo V, Campiglia P, Piscitelli F, Sommella E. Enhanced visualization of endocannabinoids spatial distribution in mouse brain via MALDI-2 mass spectrometry imaging. Talanta 2025; 290:127811. [PMID: 40015066 DOI: 10.1016/j.talanta.2025.127811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
Endocannabinoids (eCBs) are endogenous lipid messengers that primarily bind cannabinoid receptors CB1/CB2 and together with the enzymes that regulate their biosynthesis and degradation define the endocannabinoid system. The eCB signaling system plays a key role in the central nervous system, and results often altered in neurological disorders. The analysis of eCBs is challenging due to their low concentration in biospecimens, and this is exacerbated in Mass Spectrometry Imaging (MSI) where low sensitivity and tissue dependent ion suppression obscure their spatial visualization. In this work we address this limitation by the application of laser-induced post-ionization (MALDI-2) approach. Herein we demonstrate that MALDI-2 boosts the detection of 2-arachidonylglycerol (2-AG) and N-acylethanolamines (AEA, PEA, OEA) with respect to MALDI, and that eCBs can be visualized in brain at physiological concentration only by MALDI-2-MSI. Root-mean-square (RMS), Total ion count (TIC) and internal standards (I.S.) normalization were evaluated, with I.S. normalization providing improved pixel to pixel variation and more uniform distribution for 2-AG and PEA in specific brain regions. Furthermore, high spatial resolution up to 5 μm pixel size was evaluated, resulting in the detection of all eCBs and confirming the MALDI-2 potential even reducing the ablated tissue amount. As proof of concept, the method was applied to map eCBs in a mouse model of mild traumatic brain injury, the APP-SWE mice, highlighting differences in the modulation of eCBs in Cortex, Hippocampus and Hypothalamus, suggesting the ability to reveal valuable biological insights for neuropharmacology.
Collapse
Affiliation(s)
- Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania L. Vanvitelli, Naples, 80138, Italy
| | - Danila La Gioia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy; Drug Discovery and Development, University of Salerno, Fisciano, SA, 84084, Italy
| | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania L. Vanvitelli, Naples, 80138, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, 80078, Italy; Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec City, Canada
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, 80078, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy.
| |
Collapse
|
2
|
Shen X, Zhang F, Tang C, Soković M, Mišić D, Xu H, Ye Y, Liu J. Advances in Sampling and Analytical Techniques for Single-Cell Metabolomics: Exploring Cellular Heterogeneity. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10045. [PMID: 40223194 DOI: 10.1002/rcm.10045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Single-cell metabolomics is an emerging and powerful technology that uncovers intercellular heterogeneity and reveals microenvironmental dynamics in both physiological and pathological conditions. This technology enables detailed observations of cellular interactions, providing valuable insights into processes such as aging, immune responses, and disease development. Despite significant advances, the need for detailed discussions on sampling and analytical methods in single-cell metabolomics continues to grow, with increasing focus on selecting the most suitable techniques for diverse research objectives. This review addresses these challenges by exploring key sampling and analytical strategies used in single-cell metabolomics. We focus on three main approaches: the capture and isolation of specific cell types, the precise aspiration of individual cells, and in situ mass spectrometry imaging. These methods are critically assessed to highlight strategies for achieving accurate metabolite detection at the single-cell level across diverse research applications.
Collapse
Affiliation(s)
- Xinxin Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangyuan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Chunping Tang
- China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Marina Soković
- China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Danijela Mišić
- China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Ye
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
3
|
Croslow SW, Sirois CH, Sweedler JV. Factorial-Design-Based Optimization of a Commercial MALDI-2 timsTOF Mass Spectrometer for Lipid Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:942-951. [PMID: 40155311 PMCID: PMC12058408 DOI: 10.1021/jasms.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry with laser postionization (MALDI-2 MS) has become an important technique for the analysis of a wide range of biomolecules. It has traditionally been limited to custom lab-built setups until the recent introduction of a commercial timsTOF fleX MALDI-2 system. A comprehensive optimization of the timsTOF fleX system for lipid analysis was performed using a factorial design of experiments (DOE). By examining 13 instrumental parameters across three full factorial DOEs, we performed over 1500 individual runs to assess the impact and cross interactions of these parameters on the lipid signal intensity. We found optimal values for both ion transmission and MALDI-2 parameters to maximize the signals within the lipid region. These results show that laser shot frequency, collision RF, and pre pulse storage were essential for enhancing lipid ion transmission, resulting in a nearly 5-fold increase in signal intensity compared to default parameters. For MALDI-2 optimization, positive and negative modes showed similar optimized values, with TIMS In pressure and laser power being crucial. Overall, optimization of ion optics and MALDI-2 resulted in signal enhancements of nearly 2 orders of magnitude for certain lipid species.
Collapse
Affiliation(s)
- Seth W. Croslow
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chen H. Sirois
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jonathan V. Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Espinoza Miranda SS, Abbaszade G, Hess WR, Drescher K, Saliba AE, Zaburdaev V, Chai L, Dreisewerd K, Grünberger A, Westendorf C, Müller S, Mascher T. Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges. Microbiol Mol Biol Rev 2025; 89:e0013824. [PMID: 39853129 PMCID: PMC11948493 DOI: 10.1128/mmbr.00138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole. During colony differentiation, an almost infinite number of ecological and physiological population-forming forces are at work, creating complex, intricate colony structures with divergent functions. Understanding the assembly and dynamics of such populations requires resolving individual cells or cell groups within such macroscopic structures. Addressing how each cell contributes to the collective action requires pushing the resolution boundaries of key technologies that will be presented in this review. In particular, single-cell techniques provide powerful tools for studying bacterial multicellularity with unprecedented spatial and temporal resolution. These advancements include novel microscopic techniques, mass spectrometry imaging, flow cytometry, spatial transcriptomics, single-bacteria RNA sequencing, and the integration of spatiotemporal transcriptomics with microscopy, alongside advanced microfluidic cultivation systems. This review encourages exploring the synergistic potential of the new technologies in the study of bacterial multicellularity, with a particular focus on individuals in differentiated bacterial biofilms (colonies). It highlights how resolving population structures at the single-cell level and understanding their respective functions can elucidate the overarching functions of bacterial multicellular populations.
Collapse
Affiliation(s)
| | | | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | | | - Antoine-Emmanuel Saliba
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Grünberger
- Microsystems in Bioprocess Engineering (μBVT), Institute of Process Engineering in Life Sciences (BLT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Christian Westendorf
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Shi R, Chen Y, Wu W, Diao X, Chen L, Liu X, Wu H, Wang J, Zhu L, Cai Z. Mass Spectrometry-Based Spatial Multiomics Revealed Bioaccumulation Preference and Region-Specific Responses of PFOS in Mice Cardiac Tissue. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1957-1968. [PMID: 39841981 PMCID: PMC11800377 DOI: 10.1021/acs.est.4c09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence. The bioaccumulation behavior of PFOS is complicated by its dual affinity for phospholipids and protein albumin. It is intriguing to visualize the distribution preference of PFOS and investigate the differential microenvironment responses at a subtissue level. Herein, we developed a mass-spectrometry (MS)-based spatial multiomics workflow, integrating matrix-assisted laser desorption/ionization MS imaging, laser microdissection, and liquid chromatography MS analysis. This integrated workflow elucidates the spatial distribution of PFOS in mouse cardiac tissue, highlighting its preferential accumulation in the pericardium over the myocardium. This distribution pattern results in greater toxicity to the pericardium, significantly altering cardiolipin levels and disrupting energy metabolism and lipid transport pathways. Our integrated approach provides novel insights into the bioaccumulation behavior of PFOS and demonstrates significant potential for revealing complex molecular mechanisms underlying the health impacts of environmental pollutants.
Collapse
Affiliation(s)
- Rui Shi
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yanyan Chen
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Wenlong Wu
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Xin Diao
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Leijian Chen
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Xingxing Liu
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Haijiang Wu
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Jianing Wang
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Lin Zhu
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
- Eastern
Institute of Technology, Ningbo 315200, China
| |
Collapse
|
6
|
Monette A, Aguilar-Mahecha A, Altinmakas E, Angelos MG, Assad N, Batist G, Bommareddy PK, Bonilla DL, Borchers CH, Church SE, Ciliberto G, Cogdill AP, Fattore L, Hacohen N, Haris M, Lacasse V, Lie WR, Mehta A, Ruella M, Sater HA, Spatz A, Taouli B, Tarhoni I, Gonzalez-Kozlova E, Tirosh I, Wang X, Gnjatic S. The Society for Immunotherapy of Cancer Perspective on Tissue-Based Technologies for Immuno-Oncology Biomarker Discovery and Application. Clin Cancer Res 2025; 31:439-456. [PMID: 39625818 DOI: 10.1158/1078-0432.ccr-24-2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025]
Abstract
With immuno-oncology becoming the standard of care for a variety of cancers, identifying biomarkers that reliably classify patient response, resistance, or toxicity becomes the next critical barrier toward improving care. Multiparametric, multi-omics, and computational platforms generating an unprecedented depth of data are poised to usher in the discovery of increasingly robust biomarkers for enhanced patient selection and personalized treatment approaches. Deciding which developing technologies to implement in clinical settings ultimately, applied either alone or in combination, relies on weighing pros and cons, from minimizing patient sampling to maximizing data outputs, and assessing the reproducibility and representativeness of findings, while lessening data fragmentation toward harmonization. These factors are all assessed while taking into consideration the shortest turnaround time. The Society for Immunotherapy of Cancer Biomarkers Committee convened to identify important advances in biomarker technologies and to address advances in biomarker discovery using multiplexed IHC and immunofluorescence, their coupling to single-cell transcriptomics, along with mass spectrometry-based quantitative and spatially resolved proteomics imaging technologies. We summarize key metrics obtained, ease of interpretation, limitations and dependencies, technical improvements, and outward comparisons of these technologies. By highlighting the most interesting recent data contributed by these technologies and by providing ways to improve their outputs, we hope to guide correlative research directions and assist in their evolution toward becoming clinically useful in immuno-oncology.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, The Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Emre Altinmakas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Radiology, Koç University School of Medicine, Istanbul, Turkey
| | - Mathew G Angelos
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nima Assad
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gerald Batist
- McGill Centre for Translational Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Mohammad Haris
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Vincent Lacasse
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Arnav Mehta
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Marco Ruella
- Division of Hematology-Oncology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Alan Spatz
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imad Tarhoni
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | | | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
7
|
Ahrends R, Ellis SR, Verhelst SHL, Kreutz MR. Synaptoneurolipidomics: lipidomics in the study of synaptic function. Trends Biochem Sci 2025; 50:156-170. [PMID: 39753434 DOI: 10.1016/j.tibs.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 02/09/2025]
Abstract
The brain is an exceptionally lipid-rich organ with a very complex lipid composition. Lipids are central in several neuronal processes, including membrane formation and fusion, myelin packing, and lipid-mediated signal transmission. Lipid diversity is associated with the evolution of higher cognitive abilities in primates, is affected by neuronal activity, and is instrumental for synaptic plasticity, illustrating that lipids are not static components of synaptic membranes. Several lines of evidence suggest that the lipid composition of synapses is unique and distinct from other neuronal subcompartments. Here, we delve into the nascent field of synaptoneurolipidomics, offering an overview of current knowledge on the lipid composition of synaptic junctions and technological advances that will allow us to study the impact on synaptic function.
Collapse
Affiliation(s)
- Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria.
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
| | | | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| |
Collapse
|
8
|
Sarretto T, Westerhausen MT, Mckinnon JC, Bishop DP, Ellis SR. Evaluation of combined workflows for multimodal mass spectrometry imaging of elements and lipids from the same tissue section. Anal Bioanal Chem 2025; 417:705-719. [PMID: 39831956 PMCID: PMC11772510 DOI: 10.1007/s00216-024-05696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025]
Abstract
The wide range of mass spectrometry imaging (MSI) technologies enables the spatial distributions of many analyte classes to be investigated. However, as each approach is best suited to certain analytes, combinations of different MSI techniques are increasingly being explored to obtain more chemical information from a sample. In many cases, performing a sequential analysis of the same tissue section is ideal to enable a direct correlation of multimodal data. In this work, we explored different workflows that allow sequential lipid and elemental imaging on the same tissue section using atmospheric pressure laser desorption/ionisation-plasma post-ionisation-MSI (AP-MALDI-PPI-MSI) and laser ablation-inductively coupled plasma-MSI (LA-ICP-MSI), respectively. It is found that performing lipid imaging first using matrix-coated samples, followed by elemental imaging on matrix-coated samples, provides high-quality MSI datasets for both lipids and elements, with the resulting distributions being similar to those obtained when each is performed in isolation. The effect of matrix removal prior to elemental imaging, and of performing elemental imaging first were also investigated but found to generally yield lower quality elemental imaging data but comparable lipid imaging data. Finally, we used the ability to acquire both elemental and lipid imaging data from the same section to investigate the spatial correlations between different lipids (including ceramides, phosphatidylethanolamine, and hexosylceramides) and elements within mouse brain tissue.
Collapse
Affiliation(s)
- Tassiani Sarretto
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Mika T Westerhausen
- Hyphenated Mass Spectrometry Laboratory, University of Technology Sydney, Ultimo, Sydney, NSW, Australia
| | - Jayden C Mckinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, University of Technology Sydney, Ultimo, Sydney, NSW, Australia
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
9
|
Spangenberg P, Bessler S, Widera L, Bottek J, Richter M, Thiebes S, Siemes D, Krauß SD, Migas LG, Kasarla SS, Phapale P, Kleesiek J, Führer D, Moeller LC, Heuer H, Van de Plas R, Gunzer M, Soehnlein O, Soltwisch J, Shevchuk O, Dreisewerd K, Engel DR. msiFlow: automated workflows for reproducible and scalable multimodal mass spectrometry imaging and microscopy data analysis. Nat Commun 2025; 16:1065. [PMID: 39870624 PMCID: PMC11772593 DOI: 10.1038/s41467-024-55306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/08/2024] [Indexed: 01/29/2025] Open
Abstract
Multimodal imaging by matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI MSI) and microscopy holds potential for understanding pathological mechanisms by mapping molecular signatures from the tissue microenvironment to specific cell populations. However, existing software solutions for MALDI MSI data analysis are incomplete, require programming skills and contain laborious manual steps, hindering broadly applicable, reproducible, and high-throughput analysis to generate impactful biological discoveries. Here, we present msiFlow, an accessible open-source, platform-independent and vendor-neutral software for end-to-end, high-throughput, transparent and reproducible analysis of multimodal imaging data. msiFlow integrates all necessary steps from raw data import to analytical visualisation along with state-of-the-art and self-developed algorithms into automated workflows. Using msiFlow, we unravel the molecular heterogeneity of leukocytes in infected tissues by spatial regulation of ether-linked phospholipids containing arachidonic acid. We anticipate that msiFlow will facilitate the broad applicability of MSI in multimodal imaging to uncover context-dependent cellular regulations in disease states.
Collapse
Affiliation(s)
- Philippa Spangenberg
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | | | - Lars Widera
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Jenny Bottek
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Mathis Richter
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Stephanie Thiebes
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Devon Siemes
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Sascha D Krauß
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Lukasz G Migas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
| | - Siva Swapna Kasarla
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Prasad Phapale
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Jens Kleesiek
- Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, Essen, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, Essen, Germany
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, Essen, Germany
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Olga Shevchuk
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | | | - Daniel R Engel
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany.
| |
Collapse
|
10
|
Cao X, Cong P, Song Y, Liu Y, Xue C, Xu J. Promising mass spectrometry imaging: exploring microscale insights in food. Crit Rev Food Sci Nutr 2025:1-32. [PMID: 39817602 DOI: 10.1080/10408398.2025.2451189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This review focused on mass spectrometry imaging (MSI), a powerful tool in food analysis, covering its ion source schemes and procedures and their applications in food quality, safety, and nutrition to provide detailed insights into these aspects. The review presented a detailed introduction to both commonly used and emerging ionization sources, including nanoparticle laser desorption/ionization (NPs-LDI), air flow-assisted ionization (AFAI), desorption ionization with through-hole alumina membrane (DIUTHAME), plasma-assisted laser desorption ionization (PALDI), and low-temperature plasma (LTP). In the MSI process, particular emphasis was placed on quantitative MSI (QMSI) and super-resolution algorithms. These two aspects synergistically enhanced MSI's analytical capabilities: QMSI enabled accurate relative and absolute quantification, providing reliable data for composition analysis, while super-resolution algorithms improved molecular spatial imaging resolution, facilitating biomarker and trace substance detection. MSI outperformed conventional methods in comprehensively exploring food functional factors, biomarker discovery, and monitoring processing/storage effects by discerning molecular species and their spatial distributions. However, challenges such as immature techniques, complex data processing, non-standardized instruments, and high costs existed. Future trends in instrument enhancement, multispectral integration, and data analysis improvement were expected to deepen our understanding of food chemistry and safety, highlighting MSI's revolutionary potential in food analysis and research.
Collapse
Affiliation(s)
- Xinyu Cao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Lei J, Zhao Z, Wu Q, Lu H. Graphene Oxide/TiO 2 Nanocomposite-Assisted Two-Step Ambient Liquid Extraction Mass Spectrometry Imaging for Comprehensively Enhancing Lipid Coverage in Spatial Lipidomics. Anal Chem 2024; 96:19456-19465. [PMID: 39593233 DOI: 10.1021/acs.analchem.4c03955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
It is challenging to have comprehensive spatial lipidomic analysis by mass spectrometry imaging (MSI) due to the strong ion suppression and peak interference from high-abundance polar lipids to low-abundance poorly ionizable lipids. In this work, we proposed a new MSI approach via ambient liquid extraction techniques assisted by a new mixed-mode adsorptive material, graphene oxide (GO)/TiO2 nanocomposite. The material combines chelation affinity from TiO2 and hydrophobic interaction from GO. By finely tuning the adsorption solvent as 9% H2O-6% ammonia-85% methanol/acetonitrile (1:1, v/v), simultaneous enrichment of poorly ionizable glycolipids and glycerides with separation from high-abundance phospholipids was achieved on the material. In 10 mg/mL glucose-6% ammonia-94% methanol, all of the adsorbed glycolipids and glycerides could be desorbed from the material efficiently. Then, GO/TiO2 nanocomposite was coated onto the sample plate for thaw-mounting the tissue section, and ambient liquid extraction probe was used to have pixel-to-pixel desorption of the lipids on the section in two steps with the above two solvents. The results show that most of the phospholipids were imaged in the first step MSI, and glycolipids and glycerides were selectively imaged in the second step MSI, largely reducing ion suppression and peak interference. Compared with direct ambient liquid extraction MSI, much more glycolipid species (22 vs 9), glyceride species (10 vs 5), phosphatidylethanolamines (11 vs 3), and lysophospholipids (12 vs 2) were detected via GO/TiO2 nanocomposite-assisted two-step MSI. The ion images of most lipids show much higher signals and imaging quality with the new method than with the traditional method. Thus, comprehensive enhancement of lipid coverage in MSI by on-tissue separation was achieved here for the first time, providing more information about spatial lipidomics studies.
Collapse
Affiliation(s)
- Jiawei Lei
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhihao Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
12
|
Yamamoto K, Uzaki M, Takahashi K, Mimura T. Current status of MSI research in Japan to measure the localization of natural products in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102651. [PMID: 39427512 DOI: 10.1016/j.pbi.2024.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
To understand biological functions in organisms, it is important to investigate what is happening in different locations in cells and tissues. The conventional approach is to extract compounds from whole tissue, and then to measure their concentrations or other characteristics using equipment tailored to the different molecules. Recent advances in mass spectrometry have made it possible to measure trace amounts of compounds. Mass spectrometry imaging (MSI), which uses positional information and mass spectrometry data to show where and how much of each compound is present in tissues, has been in the spotlight. Improvements in MSI over the past few decades have enabled its use for visualizing the localization of small molecules including drugs, lipids, and many other compounds in a range of organisms. MSI has also been used to clarify the localization of natural products in plant tissues. This review summarizes the recent research related to MSI technology in Japan.
Collapse
Affiliation(s)
- Kotaro Yamamoto
- School of Science, Yokohama City University, Kanagawa, Japan.
| | - Mai Uzaki
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Katsutoshi Takahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, Japan
| | - Tetsuro Mimura
- Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kyoto, Japan.
| |
Collapse
|
13
|
Guan X, Lu Q, Liu S, Yan X. Postionization Mass Spectrometry Imaging: Past, Present, and Future. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39558446 DOI: 10.1002/mas.21918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024]
Abstract
Mass spectrometry imaging (MSI) technologies are widely used today to study the in situ spatial distributions for a variety of analytes. As these technologies advance, the pursuit of higher resolution in MSI has intensified. The limitation of direct desorption/ionization is its insufficient ionization, posing a constraint on the advancement of high-resolution MSI technologies. The introduction of postionization process compensates the low ionization efficiency caused by sacrificing the desorption area while pursuing high spatial resolution, resolving the conflict between high spatial resolution and high sensitivity in direct desorption/ionization method. Here, we discuss the sampling and ionization steps of MSI separately, and review the postionization methods in MSI according to three different sampling modes: laser sampling, probe sampling, and ion beam sampling. Postionization technology excels in enhancing ionization efficiency, boosting sensitivity, mitigating discrimination effect, simplifying sample preparation, and expanding the scope of applicability. These advantages position postionization technology as a promising tool for biomedical sciences, materials sciences, forensic analysis and other fields.
Collapse
Affiliation(s)
- Xiaokang Guan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instruments and Equipment, Xiamen University, Xiamen, China
| | - Qiao Lu
- Clinical Molecular Diagnostic Center of Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shuxian Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instruments and Equipment, Xiamen University, Xiamen, China
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instruments and Equipment, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
McKinnon JC, Balez R, Young RSE, Brown ML, Lum JS, Robinson L, Belov ME, Ooi L, Tortorella S, Mitchell TW, Ellis SR. MALDI-2-Enabled Oversampling for the Mass Spectrometry Imaging of Metabolites at Single-Cell Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2729-2742. [PMID: 39137242 DOI: 10.1021/jasms.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide valuable insights into the metabolome of complex biological systems such as organ tissues and cells. However, obtaining metabolite data at single-cell spatial resolutions presents a few technological challenges. Generally, spatial resolution is defined by the increment the sample stage moves between laser ablation spots. Stage movements less than the diameter of the focused laser beam (i.e., oversampling) can improve spatial resolution; however, such oversampling conditions result in a reduction in sensitivity. To overcome this, we combine an oversampling approach with laser postionization (MALDI-2), which allows for both higher spatial resolution and improved analyte ionization efficiencies. This approach provides significant enhancements to sensitivity for various metabolite classes (e.g., amino acids, purines, carbohydrates etc.), with mass spectral intensities from 6 to 8 μm pixel sizes (from a laser spot size of ∼13 μm) being commensurate with or higher than those obtained by conventional MALDI at 20 μm pixel sizes for many different metabolites. This technique has been used to map the distribution of metabolites throughout mouse spinal cord tissue to observe how metabolite localizations change throughout specific anatomical regions, such as those distributed to the somatosensory area of the dorsal horn, white matter, gray matter, and ventral horn. Furthermore, this method is utilized for single-cell metabolomics of human iPSC-derived astrocytes at 10 μm pixel sizes whereby many different metabolites, including nucleotides, were detected from individual cells while providing insight into cellular localizations.
Collapse
Affiliation(s)
- Jayden C McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Rachelle Balez
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Mikayla L Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Jeremy S Lum
- Molecular Horizons, School of Medical, Indigenous and Health Science, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Liam Robinson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Mikhail E Belov
- Spectroglyph LLC, Kennewick, Washington 99338, United States
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Sara Tortorella
- Molecular Horizon srl, Via Montelino 30, Bettona, PG 06084, Italy
| | - Todd W Mitchell
- Molecular Horizons, School of Medical, Indigenous and Health Science, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| |
Collapse
|
15
|
Pan S, Yin L, Liu J, Tong J, Wang Z, Zhao J, Liu X, Chen Y, Miao J, Zhou Y, Zeng S, Xu T. Metabolomics-driven approaches for identifying therapeutic targets in drug discovery. MedComm (Beijing) 2024; 5:e792. [PMID: 39534557 PMCID: PMC11555024 DOI: 10.1002/mco2.792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Identification of therapeutic targets can directly elucidate the mechanism and effect of drug therapy, which is a central step in drug development. The disconnect between protein targets and phenotypes under complex mechanisms hampers comprehensive target understanding. Metabolomics, as a systems biology tool that captures phenotypic changes induced by exogenous compounds, has emerged as a valuable approach for target identification. A comprehensive overview was provided in this review to illustrate the principles and advantages of metabolomics, delving into the application of metabolomics in target identification. This review outlines various metabolomics-based methods, such as dose-response metabolomics, stable isotope-resolved metabolomics, and multiomics, which identify key enzymes and metabolic pathways affected by exogenous substances through dose-dependent metabolite-drug interactions. Emerging techniques, including single-cell metabolomics, artificial intelligence, and mass spectrometry imaging, are also explored for their potential to enhance target discovery. The review emphasizes metabolomics' critical role in advancing our understanding of disease mechanisms and accelerating targeted drug development, while acknowledging current challenges in the field.
Collapse
Affiliation(s)
- Shanshan Pan
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Luan Yin
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jie Liu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jie Tong
- Department of Radiology and Biomedical ImagingPET CenterYale School of MedicineNew HavenConnecticutUSA
| | - Zichuan Wang
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Xuesong Liu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouZhejiangChina
| | - Yong Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouZhejiangChina
| | - Jing Miao
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Su Zeng
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Tengfei Xu
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
16
|
Vandergrift GW, Kew W, Andersen A, Lukowski JK, Goo YA, Anderton CR. Experimental and Computational Evaluation of Lipidomic In-Source Fragmentation as a Result of Postionization with Matrix-Assisted Laser Desorption/Ionization. Anal Chem 2024; 96:16127-16133. [PMID: 39297865 DOI: 10.1021/acs.analchem.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide spatially resolved molecular information about a sample. Recently, a postionization approach (MALDI-2) has been commercially integrated with MALDI-MSI, allowing for bettered sensitivity and consequent improved spatial resolution. While advantages of MALDI-2 have previously been established, we demonstrate here statistically increased in-source fragmentation (ISF) results from postionization with a commercial instrument. Via lipid standard analyses, known MALDI ISF pathways (e.g., loss of trimethylamine) were statistically increased in MALDI-2 compared to MALDI-1 (65-172% increase in fragmentation). Gas phase molecular modeling with density functional theory estimated that the most-weighted virtual orbitals to excite within lipids involve ester and phosphate bonds. Protonated lipid excitation energies are furthermore red-shifted compared to those of other adduct types [e.g., 254 nm for protonated PC(16:0/18:1)] and approach the MALDI-2 laser energy (266 nm). Analysis of rat brain homogenate detected statistically more positive-ion mode peaks with MALDI-2 (1090) than that with MALDI-1 (719), where Kernel density estimations showed that the majority of this enhancement occurs with low m/z ions (i.e., m/z 75-500). Taken together with the lipid standard data, these observations may indicate ISF due to postionization. While artifact contributions from matrix blanks were also noted, both experimental and computational data sets suggest that the overall extent of ISF is statistically increased in MALDI-2 compared to MALDI-1.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - William Kew
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Amity Andersen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jessica K Lukowski
- Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108, United States
| | - Young Ah Goo
- Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108, United States
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
17
|
Yin Z, Huang W, Li K, Fernie AR, Yan S. Advances in mass spectrometry imaging for plant metabolomics-Expanding the analytical toolbox. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2168-2180. [PMID: 38990529 DOI: 10.1111/tpj.16924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly popular in plant science due to its ability to characterize complex chemical, spatial, and temporal aspects of plant metabolism. Over the past decade, as the emerging and unique features of various MSI techniques have continued to support new discoveries in studies of plant metabolism closely associated with various aspects of plant function and physiology, spatial metabolomics based on MSI techniques has positioned it at the forefront of plant metabolic studies, providing the opportunity for far higher resolution than was previously available. Despite these efforts, profound challenges at the levels of spatial resolution, sensitivity, quantitative ability, chemical confidence, isomer discrimination, and spatial multi-omics integration, undoubtedly remain. In this Perspective, we provide a contemporary overview of the emergent MSI techniques widely used in the plant sciences, with particular emphasis on recent advances in methodological breakthroughs. Having established the detailed context of MSI, we outline both the golden opportunities and key challenges currently facing plant metabolomics, presenting our vision as to how the enormous potential of MSI technologies will contribute to progress in plant science in the coming years.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Institute of Advanced Science Facilities, Shenzhen, 518107, Guangdong, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Kun Li
- Guangdong Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| |
Collapse
|
18
|
Geng Z, Jin Q, Liu L, Huang Y, Zhou X, Zhang X, Sun W. Enhanced MALDI-2 Sensitivity with Reflecting Post-Ionization Laser for High-Resolution MS Imaging Combined with Real-Time Microscope Imaging. Anal Chem 2024. [PMID: 39093983 DOI: 10.1021/acs.analchem.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Laser-induced matrix-assisted laser desorption/ionization post-ionization (MALDI-2) could improve the MALDI sensitivity of biological metabolites by over 1 order of magnitude. Herein, we demonstrate that MALDI-2 sensitivity can be further enhanced with reflecting post-ionization laser that multiplies the intersection times between laser and MALDI plume. This method, which we named MALDI-2+, typically brought over 2 times sensitivity improvement from conventional MALDI-2. Advancing in sensitivity thereby prompted us to pursue higher mass spectrometry imaging (MSI) spatial resolution. A dedicated T-shaped ion guide was designed to allow perpendicular incidence of ablation laser in reflection geometry MALDI. Although 8-10 μm pixel was used in MALDI imaging due to the limited precision of the motorized stage, the laser spot diameter could be down to 2.5 μm for potentially higher spatial resolution. In addition, this ion source enabled real-time and high-quality microscope imaging from backward of the sample plate. Beneficially, we were able to monitor the actual laser spot condition in real time as well as obtain high-resolution microscopic sample images that inherently register with MSI images. All of these benefits have been demonstrated by analyzing standard samples and imaging of cells. We believe that the enhancement in sensitivity, spatial resolution, and microscope capacity of our design could facilitate spatial omics studies.
Collapse
Affiliation(s)
- Zhi Geng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Qiao Jin
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Lin Liu
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Yuanyuan Huang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Xinfeng Zhou
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| |
Collapse
|
19
|
García-Rojas NS, Sierra-Álvarez CD, Ramos-Aboites HE, Moreno-Pedraza A, Winkler R. Identification of Plant Compounds with Mass Spectrometry Imaging (MSI). Metabolites 2024; 14:419. [PMID: 39195515 DOI: 10.3390/metabo14080419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The presence and localization of plant metabolites are indicative of physiological processes, e.g., under biotic and abiotic stress conditions. Further, the chemical composition of plant parts is related to their quality as food or for medicinal applications. Mass spectrometry imaging (MSI) has become a popular analytical technique for exploring and visualizing the spatial distribution of plant molecules within a tissue. This review provides a summary of mass spectrometry methods used for mapping and identifying metabolites in plant tissues. We present the benefits and the disadvantages of both vacuum and ambient ionization methods, considering direct and indirect approaches. Finally, we discuss the current limitations in annotating and identifying molecules and perspectives for future investigations.
Collapse
Affiliation(s)
- Nancy Shyrley García-Rojas
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | | | - Hilda E Ramos-Aboites
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Abigail Moreno-Pedraza
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Robert Winkler
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| |
Collapse
|
20
|
Hu H, Qiu K, Hao Q, He X, Qin L, Chen L, Yang C, Dai X, Liu H, Xu H, Guo H, Li J, Wu R, Feng J, Zhou Y, Han J, Xiao C, Wang X. Electromagnetic Field-Assisted Frozen Tissue Planarization Enhances MALDI-MSI in Plant Spatial Omics. Anal Chem 2024; 96:11809-11822. [PMID: 38975729 DOI: 10.1021/acs.analchem.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.
Collapse
Affiliation(s)
- Hao Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Kaidi Qiu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Qichen Hao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing 100038, China
| | - Liang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Chenyu Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaoyan Dai
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Haiqiang Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hualei Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hua Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinrong Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Ran Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jun Han
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| |
Collapse
|
21
|
Zhang H, Lu KH, Ebbini M, Huang P, Lu H, Li L. Mass spectrometry imaging for spatially resolved multi-omics molecular mapping. NPJ IMAGING 2024; 2:20. [PMID: 39036554 PMCID: PMC11254763 DOI: 10.1038/s44303-024-00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
The recent upswing in the integration of spatial multi-omics for conducting multidimensional information measurements is opening a new chapter in biological research. Mapping the landscape of various biomolecules including metabolites, proteins, nucleic acids, etc., and even deciphering their functional interactions and pathways is believed to provide a more holistic and nuanced exploration of the molecular intricacies within living systems. Mass spectrometry imaging (MSI) stands as a forefront technique for spatially mapping the metabolome, lipidome, and proteome within diverse tissue and cell samples. In this review, we offer a systematic survey delineating different MSI techniques for spatially resolved multi-omics analysis, elucidating their principles, capabilities, and limitations. Particularly, we focus on the advancements in methodologies aimed at augmenting the molecular sensitivity and specificity of MSI; and depict the burgeoning integration of MSI-based spatial metabolomics, lipidomics, and proteomics, encompassing the synergy with other imaging modalities. Furthermore, we offer speculative insights into the potential trajectory of MSI technology in the future.
Collapse
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Kelly H. Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Malik Ebbini
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
22
|
Colley ME, Esselman AB, Scott CF, Spraggins JM. High-Specificity Imaging Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:1-24. [PMID: 38594938 DOI: 10.1146/annurev-anchem-083023-024546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Imaging mass spectrometry (IMS) enables highly multiplexed, untargeted tissue mapping for a broad range of molecular classes, facilitating in situ biological discovery. Yet, challenges persist in molecular specificity, which is the ability to discern one molecule from another, and spatial specificity, which is the ability to link untargeted imaging data to specific tissue features. Instrumental developments have dramatically improved IMS spatial resolution, allowing molecular observations to be more readily associated with distinct tissue features across spatial scales, ranging from larger anatomical regions to single cells. High-performance mass analyzers and systems integrating ion mobility technologies are also becoming more prevalent, further improving molecular coverage and the ability to discern chemical identity. This review provides an overview of recent advancements in high-specificity IMS that are providing critical biological context to untargeted molecular imaging, enabling integrated analyses, and addressing advanced biomedical research applications.
Collapse
Affiliation(s)
- Madeline E Colley
- 1Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA;
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison B Esselman
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Claire F Scott
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 4Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffrey M Spraggins
- 1Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA;
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- 4Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- 5Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Palomino TV, Muddiman DC. Mass spectrometry imaging of N-linked glycans: Fundamentals and recent advances. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21895. [PMID: 38934211 PMCID: PMC11671621 DOI: 10.1002/mas.21895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
With implications in several medical conditions, N-linked glycosylation is one of the most important posttranslation modifications present in all living organisms. Due to their nontemplate synthesis, glycan structures are extraordinarily complex and require multiple analytical techniques for complete structural elucidation. Mass spectrometry is the most common way to investigate N-linked glycans; however, with techniques such as liquid-chromatography mass spectrometry, there is complete loss of spatial information. Mass spectrometry imaging is a transformative analytical technique that can visualize the spatial distribution of ions within a biological sample and has been shown to be a powerful tool to investigate N-linked glycosylation. This review covers the fundamentals of mass spectrometry imaging and N-linked glycosylation and highlights important findings of recent key studies aimed at expanding and improving the glycomics imaging field.
Collapse
Affiliation(s)
- Tana V. Palomino
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
24
|
Soltwisch J, Palmer A, Hong H, Majer J, Dreisewerd K, Marshall P. Large-Scale Screening of Pharmaceutical Compounds to Explore the Application Space of On-Tissue MALDI and MALDI-2 Mass Spectrometry. Anal Chem 2024; 96:10294-10301. [PMID: 38864171 DOI: 10.1021/acs.analchem.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The successful application of matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in pharmaceutical research is strongly dependent on the detection of the drug of interest at physiologically relevant concentrations. Here we explored how insufficient sensitivity due to low ionization efficiency and/or the interaction of the drug molecule with the local biochemical environment of the tissue can be mitigated for many compound classes using the recently introduced MALDI-MSI coupled with laser-induced postionization, known as MALDI-2-MSI. Leveraging a MALDI-MSI screen of about 1,200 medicines/drug-like compounds from a broad range of medicinal application areas, we demonstrate a significant improvement in drug detection and the degree of sensitivity uplift by using MALDI-2 versus traditional MALDI. Our evaluation was made under simulated imaging conditions using liver homogenate sections as substrate, onto which the compounds were spotted to mimic biological conditions to the first order. To enable an evaluable detection by both MALDI and MALDI-2 for the majority of employed compounds, we spotted 1 μL of a 10 mM solution using a spotting robot and performed our experiments with a Bruker timsTOF fleX MALDI-2 instrument in both positive and negative ion modes. Specifically, we demonstrate using a large cohort of drug-like compounds that ∼60% of the tested compounds showed a more than 10-fold increase in signal intensity and ∼16% showed a more than 100-fold increase upon use of MALDI-2 postionization. Such increases in sensitivity could help advance pharmaceutical MALDI-MSI applications toward the single-cell level.
Collapse
Affiliation(s)
- Jens Soltwisch
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Andrew Palmer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Hyundae Hong
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Jan Majer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Peter Marshall
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
25
|
Chan YH, Pathmasiri KC, Pierre-Jacques D, Hibbard MC, Tao N, Fischer JL, Yang E, Cologna SM, Gao R. Gel-assisted mass spectrometry imaging enables sub-micrometer spatial lipidomics. Nat Commun 2024; 15:5036. [PMID: 38866734 PMCID: PMC11169460 DOI: 10.1038/s41467-024-49384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
A technique capable of label-free detection, mass spectrometry imaging (MSI) is a powerful tool for spatial investigation of native biomolecules in intact specimens. However, MSI has often been precluded from single-cell applications due to the spatial resolution limit set forth by the physical and instrumental constraints of the method. By taking advantage of the reversible interaction between the analytes and a superabsorbent hydrogel, we have developed a sample preparation and imaging workflow named Gel-Assisted Mass Spectrometry Imaging (GAMSI) to overcome the spatial resolution limits of modern mass spectrometers. With GAMSI, we show that the spatial resolution of MALDI-MSI can be enhanced ~3-6-fold to the sub-micrometer level without changing the existing mass spectrometry hardware or analysis pipeline. This approach will vastly enhance the accessibility of MSI-based spatial analysis at the cellular scale.
Collapse
Affiliation(s)
- Yat Ho Chan
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | | | - Maddison C Hibbard
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | | | | | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Laboratory for Integrative Neuroscience, University of Illinois Chicago, Chicago, IL, USA
| | - Ruixuan Gao
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
- Laboratory for Integrative Neuroscience, University of Illinois Chicago, Chicago, IL, USA.
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Prentice BM. Imaging with mass spectrometry: Which ionization technique is best? JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5016. [PMID: 38625003 DOI: 10.1002/jms.5016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
The use of mass spectrometry (MS) to acquire molecular images of biological tissues and other substrates has developed into an indispensable analytical tool over the past 25 years. Imaging mass spectrometry technologies are widely used today to study the in situ spatial distributions for a variety of analytes. Early MS images were acquired using secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. Researchers have also designed and developed other ionization techniques in recent years to probe surfaces and generate MS images, including desorption electrospray ionization (DESI), nanoDESI, laser ablation electrospray ionization, and infrared matrix-assisted laser desorption electrospray ionization. Investigators now have a plethora of ionization techniques to select from when performing imaging mass spectrometry experiments. This brief perspective will highlight the utility and relative figures of merit of these techniques within the context of their use in imaging mass spectrometry.
Collapse
Affiliation(s)
- Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
27
|
Qi K, Lv Y, Xiong Y, Tian C, Liu C, Pan Y. Development of Transmission Ambient Pressure Laser Desorption Ionization/Postphotoionization Mass Spectrometry Imaging. Anal Chem 2024; 96:5489-5498. [PMID: 38527864 DOI: 10.1021/acs.analchem.3c05605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Laser-based high-resolution mass spectrometry imaging at ambient conditions has promising applications in life science. However, the ion yield during laser desorption/ablation is poor. Here, transmission atmospheric pressure laser desorption ionization combined with a compact postphotoionization (t-AP-LDI/PI) assembly with a krypton discharge lamp was developed for the untargeted imaging of various biomolecules. The spatial distributions of numerous lipid classes, fatty acids, neurotransmitters, and amino acids in the subregions of mouse cerebellum tissue were obtained. Compared with single laser ablation, the sensitivities for most analytes were increased by 1 to 3 orders of magnitude by dopant-assisted postphotoionization. After careful optimization, a spatial resolution of 4 μm could be achieved for the metabolites in mouse hippocampus tissue. Finally, the melanoma tissue slices were analyzed using t-AP-LDI/PI MSI, which revealed the metabolic heterogeneity of the melanoma microenvironment and exhibited the phenomenon of abnormal proliferation and invasion trends in tumor cells.
Collapse
Affiliation(s)
- Keke Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yongmei Lv
- Department of Dermatology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
28
|
Hendriks TF, Krestensen KK, Mohren R, Vandenbosch M, De Vleeschouwer S, Heeren RM, Cuypers E. MALDI-MSI-LC-MS/MS Workflow for Single-Section Single Step Combined Proteomics and Quantitative Lipidomics. Anal Chem 2024; 96:4266-4274. [PMID: 38469638 PMCID: PMC10938281 DOI: 10.1021/acs.analchem.3c05850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
We introduce a novel approach for comprehensive molecular profiling in biological samples. Our single-section methodology combines quantitative mass spectrometry imaging (Q-MSI) and a single step extraction protocol enabling lipidomic and proteomic liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis on the same tissue area. The integration of spatially correlated lipidomic and proteomic data on a single tissue section allows for a comprehensive interpretation of the molecular landscape. Comparing Q-MSI and Q-LC-MS/MS quantification results sheds new light on the effect of MSI and related sample preparation. Performing MSI before Q-LC-MS on the same tissue section led to fewer protein identifications and a lower correlation between lipid quantification results. Also, the critical role and influence of internal standards in Q-MSI for accurate quantification is highlighted. Testing various slide types and the evaluation of different workflows for single-section spatial multiomics analysis emphasized the need for critical evaluation of Q-MSI data. These findings highlight the necessity for robust quantification methods comparable to current gold-standard LC-MS/MS techniques. The spatial information from MSI allowed region-specific insights within heterogeneous tissues, as demonstrated for glioblastoma multiforme. Additionally, our workflow demonstrated the efficiency of a single step extraction for lipidomic and proteomic analyses on the same tissue area, enabling the examination of significantly altered proteins and lipids within distinct regions of a single section. The integration of these insights into a lipid-protein interaction network expands the biological information attainable from a tissue section, highlighting the potential of this comprehensive approach for advancing spatial multiomics research.
Collapse
Affiliation(s)
- Tim F.E. Hendriks
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Kasper K. Krestensen
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Ronny Mohren
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Michiel Vandenbosch
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Steven De Vleeschouwer
- Department
of Neurosurgery, Laboratory for Experimental Neurosurgery and Neuroanatomy, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Ron M.A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Eva Cuypers
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
29
|
Sarretto T, Gardner W, Brungs D, Napaki S, Pigram PJ, Ellis SR. A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:466-475. [PMID: 38407924 DOI: 10.1021/jasms.3c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
Collapse
Affiliation(s)
- Tassiani Sarretto
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia, 2522
| | - Wil Gardner
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, Australia, 3086
| | - Daniel Brungs
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia, 2522
| | - Sarbar Napaki
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia, 2522
| | - Paul J Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, Australia, 3086
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia, 2522
| |
Collapse
|
30
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
31
|
Lv Y, Zhao Z, Long Z, Yu C, Lu H, Wu Q. Lewis Acidic Metal-Organic Framework Assisted Ambient Liquid Extraction Mass Spectrometry Imaging for Enhancing the Coverage of Poorly Ionizable Lipids in Brain Tissue. Anal Chem 2024; 96:1073-1083. [PMID: 38206976 DOI: 10.1021/acs.analchem.3c03690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The spatial distribution of lipidomes in tissues is of great importance in studies of living processes, diseases, and therapies. Mass spectrometry imaging (MSI) has become a critical technique for spatial lipidomics. However, MSI of low-abundance or poorly ionizable lipids is still challenging because of the ion suppression from high-abundance lipids. Here, a metal-organic framework (MOF) Zr6O4(OH)4(1,3,5-Tris(4-carboxyphenyl) benzene)2(triflate)6(Zr6OTf-BTB) was prepared and used for selective on-tissue adsorption of phospholipids to reduce ion suppression from them to poorly ionizable lipids. The results show that Zr6OTf-BTB with strong Lewis acidic sites and a large specific surface area (647.9 m2·g-1) could selectively adsorb phospholipids under 1% FA-MeOH. Adsorption efficiencies of phospholipids are 88.4-144.9 times higher than those of other neutral lipids. Moreover, the adsorption capacity and the adsorption kinetic rate constant of the new material to phospholipids are higher than those of Zr6-BTB (242.72 vs 73.96 mg·g-1, 0.0442 vs 0.0220 g·mg-1·min-1). A Zr6OTf-BTB sheet was prepared by a lamination technique for on-tissue phospholipid adsorption from brain tissue. Then, the tissue section on the Zr6OTf-BTB sheet was directly imaged via ambient liquid extraction-MSI with 1% FA-MeOH as the sampling solvent. The results showed that phospholipids could be 100% removed directly on tissue, and the detection coverage of the Zr6OTf-BTB-enhanced MSI method to ceramides (Cers) and hexosylceramides (HexCers) was increased by 5-26 times compared with direct tissue MSI (26 vs 1 and 17 vs 3). The new method provides an efficient and convenient way to eliminate the ion suppression from phospholipids in MSI, largely improving the detection coverage of low-abundance and poorly ionizable lipids.
Collapse
Affiliation(s)
- Yuanxia Lv
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Zhihao Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Zheng Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Chuanxiu Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
32
|
Zhao H, Shi C, Han W, Luo G, Huang Y, Fu Y, Lu W, Hu Q, Shang Z, Yang X. Advanced progress of spatial metabolomics in head and neck cancer research. Neoplasia 2024; 47:100958. [PMID: 38142528 PMCID: PMC10788507 DOI: 10.1016/j.neo.2023.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Head and neck cancer ranks as the sixth most prevalent malignancy, constituting 5 % of all cancer cases. Its inconspicuous onset often leads to advanced stage diagnoses, prompting the need for early detection to enhance patient prognosis. Currently, research into early diagnostic markers relies predominantly on genomics, proteomics, transcriptomics, and other methods, which, unfortunately, necessitate tumor tissue homogenization, resulting in the loss of temporal and spatial information. Emerging as a recent addition to the omics toolkit, spatial metabolomics stands out. This method conducts in situ mass spectrometry analyses on fresh tissue specimens while effectively preserving their spatiotemporal information. The utilization of spatial metabolomics in life science research offers distinct advantages. This article comprehensively reviews the progress of spatial metabolomics in head and neck cancer research, encompassing insights into cancer cell metabolic reprogramming. Various mass spectrometry imaging techniques, such as secondary ion mass spectrometry, stroma-assisted laser desorption/ionization, and desorption electrospray ionization, enable in situ metabolite analysis for head and neck cancer. Finally, significant emphasis is placed on the application of presently available techniques for early diagnosis, margin assessment, and prognosis of head and neck cancer.
Collapse
Affiliation(s)
- Huiting Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Guanfa Luo
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Yumeng Huang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Yujuan Fu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China
| | - Wen Lu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | | | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
33
|
Griffiths WJ, Yutuc E, Wang Y. Mass Spectrometry Imaging of Cholesterol and Oxysterols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:73-87. [PMID: 38036876 DOI: 10.1007/978-3-031-43883-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Mass spectrometry imaging (MSI) is a new technique in the toolbox of the analytical biochemist. It allows the generation of a compound-specific image from a tissue slice where a measure of compound abundance is given pixel by pixel, usually displayed on a color scale. As mass spectra are recorded at each pixel, the data can be interrogated to generate images of multiple different compounds all in the same experiment. Mass spectrometry (MS) requires the ionization of analytes, but cholesterol and other neutral sterols tend to be poorly ionized by the techniques employed in most MSI experiments, so despite their high abundance in mammalian tissues, cholesterol is poorly represented in the MSI literature. In this chapter, we discuss some of the MSI studies where cholesterol has been imaged and introduce newer methods for its analysis by MSI. Disturbed cholesterol metabolism is linked to many disorders, and the potential of MSI to study cholesterol, its precursors, and its metabolites in animal models and from human biopsies will be discussed.
Collapse
Affiliation(s)
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, Wales, UK
| | - Yuqin Wang
- Swansea University Medical School, Swansea, Wales, UK
| |
Collapse
|
34
|
Vandenbosch M, Mutuku SM, Mantas MJQ, Patterson NH, Hallmark T, Claesen M, Heeren RMA, Hatcher NG, Verbeeck N, Ekroos K, Ellis SR. Toward Omics-Scale Quantitative Mass Spectrometry Imaging of Lipids in Brain Tissue Using a Multiclass Internal Standard Mixture. Anal Chem 2023; 95:18719-18730. [PMID: 38079536 PMCID: PMC11372745 DOI: 10.1021/acs.analchem.3c02724] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Mass spectrometry imaging (MSI) has accelerated our understanding of lipid metabolism and spatial distribution in tissues and cells. However, few MSI studies have approached lipid imaging quantitatively and those that have focused on a single lipid class. We overcome this limitation by using a multiclass internal standard (IS) mixture sprayed homogeneously over the tissue surface with concentrations that reflect those of endogenous lipids. This enabled quantitative MSI (Q-MSI) of 13 lipid classes and subclasses representing almost 200 sum-composition lipid species using both MALDI (negative ion mode) and MALDI-2 (positive ion mode) and pixel-wise normalization of each lipid species in a manner analogous to that widely used in shotgun lipidomics. The Q-MSI approach covered 3 orders of magnitude in dynamic range (lipid concentrations reported in pmol/mm2) and revealed subtle changes in distribution compared to data without normalization. The robustness of the method was evaluated by repeating experiments in two laboratories using both timsTOF and Orbitrap mass spectrometers with an ∼4-fold difference in mass resolution power. There was a strong overall correlation in the Q-MSI results obtained by using the two approaches. Outliers were mostly rationalized by isobaric interferences or the higher sensitivity of one instrument for a particular lipid species. These data provide insight into how the mass resolving power can affect Q-MSI data. This approach opens up the possibility of performing large-scale Q-MSI studies across numerous lipid classes and subclasses and revealing how absolute lipid concentrations vary throughout and between biological tissues.
Collapse
Affiliation(s)
- Michiel Vandenbosch
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht 6229ER, Netherlands
| | - Shadrack M Mutuku
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | | | | | | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht 6229ER, Netherlands
| | - Nathan G Hatcher
- Merck & Co., Inc., 770 Sumneytown Pk, West Point, Pennsylvania 19486, United States
| | | | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo 02230, Finland
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
35
|
Schmidt M, Irsig R, Duca D, Peltz C, Passig J, Zimmermann R. Laser-Pulse-Length Effects in Ultrafast Laser Desorption. Anal Chem 2023; 95:18776-18782. [PMID: 38086534 PMCID: PMC10753527 DOI: 10.1021/acs.analchem.3c03558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023]
Abstract
Shortening the laser pulse length opens up new opportunities for laser desorption (LD) of molecules, with benefits for mass spectrometry (MS) sampling and ionization. The capability to ablate any material without the need for an absorbing matrix and the decrease of thermal damage and molecular fragmentation has promoted various applications with very different parameters and postionization techniques. However, the key issues of the optimum laser pulse length and intensity to achieve efficient and gentle desorption of molecules for postionization in MS are not resolved, although these parameters determine the costs and complexity of the required laser system. Here, we address this research gap with a systematic study on the effect of the pulse length on the LD of molecules. Keeping all other optical and ionization parameters constant, we directly compared the pulses in the femtosecond, picosecond, and nanosecond range with respect to LD-induced fragmentation and desorption efficiency. To represent real-world applications, we investigated the LD of over-the-counter medicaments naproxen and ibuprofen directly from tablets as well as the LD of retene and ship emission aerosols from a quartz filter. With our study design, we excluded interfering effects on fragmentation and LD efficiency from, for example, collisional cooling or postionization by performing the experiments in vacuum with resonance-enhanced multiphoton ionization as the postionization technique. Regarding LD-induced fragmentation, we already found benefits for the picosecond pulses. However, the efficiency of LD was found to continuously increase with decreasing pulse length, pointing to the application potential of ultrashort pulses in trace analytics. Because many interfering effects beyond the LD pulse length could be excluded in the experiment, our results may be directly transferable to the LD applied in other techniques.
Collapse
Affiliation(s)
- Marco Schmidt
- Joint
Mass Spectrometry Centre, Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Comprehensive
Molecular Analytics (CMA) Cooperation Group, Helmholtz Centre Munich, 81379 Munich, Germany
- Department
Life, Light & Matter, University of
Rostock, 18059 Rostock, Germany
| | - Robert Irsig
- Department
Life, Light & Matter, University of
Rostock, 18059 Rostock, Germany
- Photonion
GmbH, 19061 Schwerin, Germany
| | - Dumitru Duca
- Joint
Mass Spectrometry Centre, Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Comprehensive
Molecular Analytics (CMA) Cooperation Group, Helmholtz Centre Munich, 81379 Munich, Germany
- Department
Life, Light & Matter, University of
Rostock, 18059 Rostock, Germany
| | - Christian Peltz
- Institute
for Physics, University of Rostock, 18059 Rostock, Germany
| | - Johannes Passig
- Joint
Mass Spectrometry Centre, Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Comprehensive
Molecular Analytics (CMA) Cooperation Group, Helmholtz Centre Munich, 81379 Munich, Germany
- Department
Life, Light & Matter, University of
Rostock, 18059 Rostock, Germany
| | - Ralf Zimmermann
- Joint
Mass Spectrometry Centre, Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Comprehensive
Molecular Analytics (CMA) Cooperation Group, Helmholtz Centre Munich, 81379 Munich, Germany
- Department
Life, Light & Matter, University of
Rostock, 18059 Rostock, Germany
| |
Collapse
|
36
|
Qian Y, Guo X, Wang Y, Ouyang Z, Ma X. Mobility-Modulated Sequential Dissociation Analysis Enables Structural Lipidomics in Mass Spectrometry Imaging. Angew Chem Int Ed Engl 2023; 62:e202312275. [PMID: 37946693 DOI: 10.1002/anie.202312275] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Spatial lipidomics based on mass spectrometry imaging (MSI) is a powerful tool for fundamental biology studies and biomarker discovery. But the structure-resolving capability of MSI is limited because of the lack of multiplexed tandem mass spectrometry (MS/MS) method, primarily due to the small sample amount available from each pixel and the poor ion usage in MS/MS analysis. Here, we report a mobility-modulated sequential dissociation (MMSD) strategy for multiplex MS/MS imaging of distinct lipids from biological tissues. With ion mobility-enabled data-independent acquisition and automated spectrum deconvolution, MS/MS spectra of a large number of lipid species from each tissue pixel are acquired, at no expense of imaging speed. MMSD imaging is highlighted by MS/MS imaging of 24 structurally distinct lipids in the mouse brain and the revealing of the correlation of a structurally distinct phosphatidylethanolamine isomer (PE 18 : 1_18 : 1) from a human hepatocellular carcinoma (HCC) tissue. Mapping of structurally distinct lipid isomers is now enabled and spatial lipidomics becomes feasible for MSI.
Collapse
Affiliation(s)
- Yao Qian
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Xiangyu Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yunfang Wang
- Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
37
|
Bouza M, Ahlmann N, García-Reyes JF, Franzke J. Solvent-Assisted Laser Desorption Flexible Microtube Plasma Mass Spectrometry for Direct Analysis of Dried Samples on Paper. Anal Chem 2023; 95:18370-18378. [PMID: 37902451 PMCID: PMC10733904 DOI: 10.1021/acs.analchem.3c03009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
The present study investigated the potential for solvent-assisted laser desorption coupled with flexible microtube plasma ionization mass spectrometry (SALD-FμTP-MS) as a rapid analytical technique for direct analysis of surface-deposited samples. Paper was used as the demonstrative substrate, and an infrared hand-held laser was employed for sample desorption, aiming to explore cost-effective sampling and analysis methods. SALD-FμTP-MS offers several advantages, particularly for biofluid analysis, including affordability, the ability to analyze low sample volumes (<10 μL), expanded chemical coverage, sample and substrate stability, and in situ analysis and high throughput potential. The optimization process involved exploring the use of viscous solvents with high boiling points as liquid matrices. This approach aimed to enhance desorption and ionization efficiencies. Ethylene glycol (EG) was identified as a suitable solvent, which not only improved sensitivity but also ensured substrate stability during analysis. Furthermore, the addition of cosolvents such as acetonitrile/water (1:1) and ethyl acetate further enhanced sensitivity and reproducibility for a standard solution containing amphetamine, imazalil, and cholesterol. Optimized conditions for reproducible and sensitive analysis were determined as 1000 ms of laser exposure time using a 1 μL solvent mixture of 60% EG and 40% acetonitrile (ACN)/water (1:1). A mixture of 60% EG and 40% ACN/water (1:1) resulted in signal enhancements and relative standard deviations of 12, 20, and 13% for the evaluated standards, respectively. The applicability of SALD-FμTP-MS was further evaluated by successfully analyzing food, water, and biological samples, highlighting the potential of SALD-FμTP-MS analysis, particularly for thermolabile and polarity diverse compounds.
Collapse
Affiliation(s)
- Marcos Bouza
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Norman Ahlmann
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Juan F. García-Reyes
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Joachim Franzke
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| |
Collapse
|
38
|
Krestensen KK, Heeren RMA, Balluff B. State-of-the-art mass spectrometry imaging applications in biomedical research. Analyst 2023; 148:6161-6187. [PMID: 37947390 DOI: 10.1039/d3an01495a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mass spectrometry imaging has advanced from a niche technique to a widely applied spatial biology tool operating at the forefront of numerous fields, most notably making a significant impact in biomedical pharmacological research. The growth of the field has gone hand in hand with an increase in publications and usage of the technique by new laboratories, and consequently this has led to a shift from general MSI reviews to topic-specific reviews. Given this development, we see the need to recapitulate the strengths of MSI by providing a more holistic overview of state-of-the-art MSI studies to provide the new generation of researchers with an up-to-date reference framework. Here we review scientific advances for the six largest biomedical fields of MSI application (oncology, pharmacology, neurology, cardiovascular diseases, endocrinology, and rheumatology). These publications thereby give examples for at least one of the following categories: they provide novel mechanistic insights, use an exceptionally large cohort size, establish a workflow that has the potential to become a high-impact methodology, or are highly cited in their field. We finally have a look into new emerging fields and trends in MSI (immunology, microbiology, infectious diseases, and aging), as applied MSI is continuously broadening as a result of technological breakthroughs.
Collapse
Affiliation(s)
- Kasper K Krestensen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Benjamin Balluff
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
39
|
Walsh LA, Quail DF. Decoding the tumor microenvironment with spatial technologies. Nat Immunol 2023; 24:1982-1993. [PMID: 38012408 DOI: 10.1038/s41590-023-01678-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023]
Abstract
Visualization of the cellular heterogeneity and spatial architecture of the tumor microenvironment (TME) is becoming increasingly important to understand mechanisms of disease progression and therapeutic response. This is particularly relevant in the era of cancer immunotherapy, in which the contexture of immune cell positioning within the tumor landscape has been proven to affect efficacy. Although single-cell technologies have mostly replaced conventional approaches to analyze specific cellular subsets within tumors, those that integrate a spatial dimension are now on the rise. In this Review, we assess the strengths and limitations of emerging spatial technologies with a focus on their applications in tumor immunology, as well as forthcoming opportunities for artificial intelligence (AI) and the value of integrating multiomics datasets to achieve a holistic picture of the TME.
Collapse
Affiliation(s)
- Logan A Walsh
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
40
|
Esch BM, Walter S, Schmidt O, Fröhlich F. Identification of distinct active pools of yeast serine palmitoyltransferase in sub-compartments of the ER. J Cell Sci 2023; 136:jcs261353. [PMID: 37982431 DOI: 10.1242/jcs.261353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023] Open
Abstract
Sphingolipids (SPs) are one of the three major lipid classes in eukaryotic cells and serve as structural components of the plasma membrane. The rate-limiting step in SP biosynthesis is catalyzed by the serine palmitoyltransferase (SPT). In budding yeast (Saccharomyces cerevisiae), SPT is negatively regulated by the two proteins, Orm1 and Orm2. Regulating SPT activity enables cells to adapt SP metabolism to changing environmental conditions. Therefore, the Orm proteins are phosphorylated by two signaling pathways originating from either the plasma membrane or the lysosome (or vacuole in yeast). Moreover, uptake of exogenous serine is necessary for the regulation of SP biosynthesis, which suggests the existence of differentially regulated SPT pools based on their intracellular localization. However, measuring lipid metabolic enzyme activity in different cellular sub-compartments has been challenging. Combining a nanobody recruitment approach with SP flux analysis, we show that the nuclear endoplasmic reticulum (ER)-localized SPT and the peripheral ER localized SPT pools are differentially active. Thus, our data add another layer to the complex network of SPT regulation. Moreover, combining lipid metabolic enzyme re-localization with flux analysis serves as versatile tool to measure lipid metabolism with subcellular resolution.
Collapse
Affiliation(s)
- Bianca M Esch
- Osnabrück University, Department of Biology-Chemistry, Bioanalytical Chemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Stefan Walter
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Oliver Schmidt
- Institute of Cell Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Florian Fröhlich
- Osnabrück University, Department of Biology-Chemistry, Bioanalytical Chemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| |
Collapse
|
41
|
Xing L, Zhao CL, Mou HZ, Pan J, Kang B, Chen HY, Xu JJ. Next Generation of Mass Spectrometry Imaging: from Micrometer to Subcellular Resolution. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:670-682. [PMID: 39474305 PMCID: PMC11504503 DOI: 10.1021/cbmi.3c00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 01/28/2025]
Abstract
Developing an imaging method with micrometer-to-subcellular resolution is of great significance for visualizing biological samples of different sizes. The label-free and high-throughput mass spectrometry imaging (MSI) technology has shown potential in the implementation of this view. Despite many improvements in MSI witnessed over the past decades, it remains a challenge to achieve a flexible resolution from micrometer down to subcellular level with high detection sensitivity. In this Perspective, we focus on the recent development of MSI techniques based on different ionization resources. Furthermore, several designs of instruments and applications in bioimaging have been reviewed and compared. Additionally, we proposed the perspectives and challenges for MSI methods, including pursuing the matrix free and multiscale resolution with high detection sensitivity and deeply combining machine learning in omics research.
Collapse
Affiliation(s)
| | | | - Han-Zhang Mou
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - JianBin Pan
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
42
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
43
|
Molina-Millán L, Körber A, Flinders B, Cillero-Pastor B, Cuypers E, Heeren RMA. MALDI-2 Mass Spectrometry for Synthetic Polymer Analysis. Macromolecules 2023; 56:7729-7736. [PMID: 37841532 PMCID: PMC10569092 DOI: 10.1021/acs.macromol.3c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Indexed: 10/17/2023]
Abstract
Synthetic polymers are ubiquitous in daily life, and their properties offer diverse benefits in numerous applications. However, synthetic polymers also present an increasing environmental burden through their improper disposal and subsequent degradation into secondary micro- and nanoparticles (MNPs). These MNPs accumulate in soil and water environments and can ultimately end up in the food chain, resulting in potential health risks. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has the potential to study localized biological or toxicological changes in organisms exposed to MNPs. Here, we investigate whether MALDI-2 postionization can provide a sensitivity enhancement in polymer analysis that could contribute to the study of MNPs. We evaluated the effect of MALDI-2 by comparing MALDI and MALDI-2 ion yields from polyethyleneglycol (PEG), polypropylene glycol (PPG), polytetrahydrofuran (PTHF), nylon-6, and polystyrene (PS). MALDI-2 caused a signal enhancement of the protonated species for PEG, PPG, PTHF, and nylon-6. PS, by contrast, preferentially formed radical ions, which we attribute to direct resonance-enhanced multiphoton ionization (REMPI). REMPI of PS led to an improvement in sensitivity by several orders of magnitude, even without cationizing salts. The improved sensitivity demonstrated by MALDI-2 for all polymers tested highlights its potential for studying the distribution of certain classes of polymers in biological systems.
Collapse
Affiliation(s)
- Lidia Molina-Millán
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Aljoscha Körber
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Bryn Flinders
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- The
MERLN Institute for Technology-Inspired Regenerative Medicine, Department
of Cell Biology-Inspired Tissue Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Eva Cuypers
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
44
|
Adolphs T, Heeger M, Bosse F, Ravoo BJ, Peterson RE, Arlinghaus HF, Tyler BJ. Matrix-Enhanced SIMS: The Influence of Primary Ion Species and Cluster Size on Ion Yield and Ion Yield Enhancement of Lipids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2211-2221. [PMID: 37713531 DOI: 10.1021/jasms.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Time-of-flight secondary ion mass spectrometry is one of the most promising techniques for label-free analysis of biomolecules with nanoscale spatial resolution. However, high-resolution imaging of larger biomolecules such as phospholipids and peptides is often hampered by low yields of molecular ions. Matrix-enhanced SIMS (ME-SIMS), in which an organic matrix is added to the sample, is one promising approach to enhancing the ion yield for biomolecules. Optimizing this approach has, however, been challenging because the processes involved in increasing the ion yield in ME-SIMS are not yet fully understood. In this work, the matrix α-cyano-4-hydroxycinnamic acid (HCCA) has been combined with cluster primary ion analysis to better understand the roles of proton donation and reduced fragmentation on lipid molecule ion yield. A model system consisting of 1:100 mol ratio dipalmitoylphosphatidylcholine (DPPC) in HCCA as well as an HCCA-coated mouse brain cryosection have been studied using a range of Bi and Ar cluster ions. Although the molecular ion yield increased with an increase in cluster ion size, the enhancement of the signals from intact lipid molecules decreased with an increase in cluster ion size for both the model system and the mouse brain. Additionally, in both systems, protonated molecular ions were significantly more enhanced than sodium and potassium cationized molecules for all of the primary ions utilized. For the model system, the DPPC molecular ion yield was increased by more than an order of magnitude for all of the primary ions studied, and fragmentation of DPPC was dramatically reduced. However, on the brain sample, even though the HCCA matrix reduced DPPC fragmentation for all of the primary ions studied, the matrix coating suppressed the ion yield for some lipids when the larger cluster primary ions were employed. This indicated insufficient migration of the lipids into the matrix coating, so that dilution by the matrix overpowered the enhancement effect. This study provides strong evidence that the HCCA matrix both enhances protonation and reduces fragmentation. For imaging applications, the ability of the analytes to migrate to the surface of the matrix coating is also a critical factor for useful signal enhancement. This work demonstrates that the HCCA matrix provides a softer desorption environment when using Bi cluster ions than that obtained using the large gas cluster ions studied alone, indicating the potential for improved high spatial resolution imaging with ME-SIMS.
Collapse
Affiliation(s)
- Thorsten Adolphs
- Institute of Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Marcel Heeger
- Institute of Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Florian Bosse
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität, Busso-Peus-Straße 10, 48149 Münster, Germany
- Organic Chemistry Institute, Westfälische Wilhelms-Universität, Corrensstrasse 36, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität, Busso-Peus-Straße 10, 48149 Münster, Germany
- Organic Chemistry Institute, Westfälische Wilhelms-Universität, Corrensstrasse 36, 48149 Münster, Germany
| | - Richard E Peterson
- Institute of Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Institute of Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Bonnie J Tyler
- Institute of Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|
45
|
Bourceau P, Geier B, Suerdieck V, Bien T, Soltwisch J, Dreisewerd K, Liebeke M. Visualization of metabolites and microbes at high spatial resolution using MALDI mass spectrometry imaging and in situ fluorescence labeling. Nat Protoc 2023; 18:3050-3079. [PMID: 37674095 DOI: 10.1038/s41596-023-00864-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/31/2023] [Indexed: 09/08/2023]
Abstract
Label-free molecular imaging techniques such as matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enable the direct and simultaneous mapping of hundreds of different metabolites in thin sections of biological tissues. However, in host-microbe interactions it remains challenging to localize microbes and to assign metabolites to the host versus members of the microbiome. We therefore developed a correlative imaging approach combining MALDI-MSI with fluorescence in situ hybridization (FISH) on the same section to identify and localize microbial cells. Here, we detail metaFISH as a robust and easy method for assigning the spatial distribution of metabolites to microbiome members based on imaging of nucleic acid probes, down to single-cell resolution. We describe the steps required for tissue preparation, on-tissue hybridization, fluorescence microscopy, data integration into a correlative image dataset, matrix application and MSI data acquisition. Using metaFISH, we map hundreds of metabolites and several microbial species to the micrometer scale on a single tissue section. For example, intra- and extracellular bacteria, host cells and their associated metabolites can be localized in animal tissues, revealing their complex metabolic interactions. We explain how we identify low-abundance bacterial infection sites as regions of interest for high-resolution MSI analysis, guiding the user to a trade-off between metabolite signal intensities and fluorescence signals. MetaFISH is suitable for a broad range of users from environmental microbiologists to clinical scientists. The protocol requires ~2 work days.
Collapse
Affiliation(s)
- Patric Bourceau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tanja Bien
- Institute of Hygiene, University of Münster, Münster, Germany
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Institute of Human Nutrition and Food Sciences, University of Kiel, Kiel, Germany.
| |
Collapse
|
46
|
Affiliation(s)
- Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Metabolomics Core Facility, EMBL, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, EMBL and Heidelberg University, Heidelberg, Germany.
- Bio Studio, BioInnovation Institute, Copenhagen, Denmark.
| |
Collapse
|
47
|
Yu C, Hou K, Zhang H, Liang X, Chen C, Wang Z, Wu Q, Chen G, He J, Bai E, Li X, Du T, Wang Y, Wang M, Feng S, Wang H, Shen C. Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1243-1260. [PMID: 37219365 DOI: 10.1111/tpj.16315] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Taxol, which is a widely used important chemotherapeutic agent, was originally isolated from Taxus stem barks. However, little is known about the precise distribution of taxoids and the transcriptional regulation of taxoid biosynthesis across Taxus stems. Here, we used MALDI-IMS analysis to visualize the taxoid distribution across Taxus mairei stems and single-cell RNA sequencing to generate expression profiles. A single-cell T. mairei stem atlas was created, providing a spatial distribution pattern of Taxus stem cells. Cells were reordered using a main developmental pseudotime trajectory which provided temporal distribution patterns in Taxus stem cells. Most known taxol biosynthesis-related genes were primarily expressed in epidermal, endodermal, and xylem parenchyma cells, which caused an uneven taxoid distribution across T. mairei stems. We developed a single-cell strategy to screen novel transcription factors (TFs) involved in taxol biosynthesis regulation. Several TF genes, such as endodermal cell-specific MYB47 and xylem parenchyma cell-specific NAC2 and bHLH68, were implicated as potential regulators of taxol biosynthesis. Furthermore, an ATP-binding cassette family transporter gene, ABCG2, was proposed as a potential taxoid transporter candidate. In summary, we generated a single-cell Taxus stem metabolic atlas and identified molecular mechanisms underpinning the cell-specific transcriptional regulation of the taxol biosynthesis pathway.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qicong Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ganlin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiaxu He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Enhui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinfen Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tingrui Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yifan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
48
|
McKinnon JC, Milioli HH, Purcell CA, Chaffer CL, Wadie B, Alexandrov T, Mitchell TW, Ellis SR. Enhancing metabolite coverage in MALDI-MSI using laser post-ionisation (MALDI-2). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4311-4320. [PMID: 37605803 DOI: 10.1039/d3ay01046e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) of metabolites can reveal how metabolism is altered throughout heterogeneous tissues. Here negative ion mode MALDI-MSI has been coupled with laser post-ionisation (MALDI-2) and applied to the MSI of low molecular weight (LMW) metabolites (
Collapse
Affiliation(s)
- J C McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia.
| | - H H Milioli
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - C A Purcell
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - C L Chaffer
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - B Wadie
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - T Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - T W Mitchell
- Molecular Horizons, School of Medical, Indigenous and Health Science, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - S R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia.
| |
Collapse
|
49
|
Parker GD, Hanley L, Yu XY. Mass Spectral Imaging to Map Plant-Microbe Interactions. Microorganisms 2023; 11:2045. [PMID: 37630605 PMCID: PMC10459445 DOI: 10.3390/microorganisms11082045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Plant-microbe interactions are of rising interest in plant sustainability, biomass production, plant biology, and systems biology. These interactions have been a challenge to detect until recent advancements in mass spectrometry imaging. Plants and microbes interact in four main regions within the plant, the rhizosphere, endosphere, phyllosphere, and spermosphere. This mini review covers the challenges within investigations of plant and microbe interactions. We highlight the importance of sample preparation and comparisons among time-of-flight secondary ion mass spectroscopy (ToF-SIMS), matrix-assisted laser desorption/ionization (MALDI), laser desorption ionization (LDI/LDPI), and desorption electrospray ionization (DESI) techniques used for the analysis of these interactions. Using mass spectral imaging (MSI) to study plants and microbes offers advantages in understanding microbe and host interactions at the molecular level with single-cell and community communication information. More research utilizing MSI has emerged in the past several years. We first introduce the principles of major MSI techniques that have been employed in the research of microorganisms. An overview of proper sample preparation methods is offered as a prerequisite for successful MSI analysis. Traditionally, dried or cryogenically prepared, frozen samples have been used; however, they do not provide a true representation of the bacterial biofilms compared to living cell analysis and chemical imaging. New developments such as microfluidic devices that can be used under a vacuum are highly desirable for the application of MSI techniques, such as ToF-SIMS, because they have a subcellular spatial resolution to map and image plant and microbe interactions, including the potential to elucidate metabolic pathways and cell-to-cell interactions. Promising results due to recent MSI advancements in the past five years are selected and highlighted. The latest developments utilizing machine learning are captured as an important outlook for maximal output using MSI to study microorganisms.
Collapse
Affiliation(s)
- Gabriel D. Parker
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
50
|
Bessler S, Soltwisch J, Dreisewerd K. Visualization of Differential Cardiolipin Profiles in Murine Retinal Cell Layers by High-Resolution MALDI Mass Spectrometry Imaging. Anal Chem 2023; 95:11352-11358. [PMID: 37458700 DOI: 10.1021/acs.analchem.3c01465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The precise fatty acyl chain configuration of cardiolipin (CL), a tetrameric mitochondrial-specific membrane lipid, exhibits dependence on cell and tissue types. A powerful method to map CL profiles in tissue sections in a spatially resolved manner is matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). To build on and explore this potential, we employed a quadrupole time-of-flight mass spectrometer along with optimized sample preparation protocols. We imaged the CL profiles of individual murine retinal cell layers at a pixel size of 10 μm. In combination with tandem MS, we obtained detailed insights into the CL composition of individual retinal cell layers. In particular, we found differential expression of the polyunsaturated fatty acids (PUFA) linoleic, arachidonic, and docosahexaenoic acids. PUFAs are prone to peroxidation and hence regarded as critical factors in development and progression of retinal pathologies, such as age-related macular degeneration (AMD). The ability of MALDI-MSI to provide cues on the CL composition in neuronal tissue with close to single-cell resolution can provide important insights into retinal physiology in health and disease.
Collapse
Affiliation(s)
- Sebastian Bessler
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| |
Collapse
|