1
|
Zeng L, Yan H, Jiang W, Qin H, Dai J, Zhang Y, Wei S, Chen S, Liu L, Xiong Y, Yang H, Li Y, Wang Z, Deng L, Xu Q, Peng L, Zhang R, Fang C, Chen X, Deng J, Wang J, Li T, Liu H, Zhang G, Yang N, Zhang Y. Toripalimab plus platinum-doublet chemotherapy as perioperative therapy for initially unresectable NSCLC: An open-label, phase 2 trial. MED 2025; 6:100574. [PMID: 39892382 DOI: 10.1016/j.medj.2025.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Perioperative treatment with toripalimab combined with chemotherapy was efficacious and safe in resectable stage II-IIIA non-small cell lung cancer (NSCLC); however, little is known about whether this treatment regimen could convert unresectable NSCLC to resectable. METHODS This study enrolled 40 treatment-naive patients with initially unresectable stage IIIA-IIIB NSCLC. Toripalimab (240 mg) and platinum-doublet chemotherapy were administered every 3 weeks for 2-4 cycles. Surgical resection was decided after assessing the efficacy of induction therapy. The primary outcome was the R0 resection rate. The secondary outcomes included safety, overall survival, disease-free survival, event-free survival, objective response rate, major pathological response (MPR), and pathological complete response (pCR). Available baseline tumor biopsy samples were used for molecular biomarker analyses, including bulk RNA sequencing and multiplex immunostaining. This study was registered at ClinicalTrials.gov: NCT04144608. FINDINGS Of the 40 patients who received induction toripalimab plus chemotherapy, 29 (72.5%) patients received surgery, and all achieved R0 resection (100% R0 rate). Of these patients, 17 (58.6%) achieved MPR, with 10 (34.5%) patients evaluated as pCR. With a median follow-up of 31.8 months (95% confidence interval [CI]: 24.2-39.4), the median event-free survival and overall survival were not reached. Molecular analyses revealed highly expressed gene sets for germinal center B cells (signatures of tertiary lymphoid structure [TLS]) at baseline among patients with pCR compared to patients with non-pCR, suggesting that the TLS status of the patients was associated with the induction of immunotherapy responses. CONCLUSIONS Toripalimab-based induction treatment of initially unresectable NSCLC yielded a high R0 rate and MPR rate, with a good safety profile and encouraging survival outcomes. FUNDING This work was funded by the National Natural Science Foundation of China.
Collapse
MESH Headings
- Humans
- Male
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Non-Small-Cell Lung/mortality
- Female
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Lung Neoplasms/mortality
- Middle Aged
- Aged
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Adult
Collapse
Affiliation(s)
- Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Huan Yan
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Wenjuan Jiang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Haoyue Qin
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jiacheng Dai
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yuda Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shiyou Wei
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shanmei Chen
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Li Liu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yi Xiong
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Haiyan Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yizhi Li
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Zhan Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Li Deng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining 810000, China
| | - Ling Peng
- Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Fang
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Jun Deng
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Jing Wang
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Ting Li
- Department of Medical Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Gao Zhang
- Faculty of Dentistry, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Department of Medical Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
2
|
Kim YH, Jang J, Kang N, Jeong JH, Kim J, Ahn YM, Kim YS, Kim SH. Revealing differential psychotic symptoms in schizophrenia and bipolar I disorder by manifold learning and network analyses. Transl Psychiatry 2025; 15:194. [PMID: 40481013 PMCID: PMC12144236 DOI: 10.1038/s41398-025-03403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2025] [Accepted: 05/20/2025] [Indexed: 06/11/2025] Open
Abstract
The field of psychiatry has encountered ongoing challenges in understanding the intricate nature of psychotic symptoms, particularly when they manifest in individuals diagnosed with bipolar disorder or schizophrenia. In this study, we employed manifold and network analyses to investigate whether the pattern of symptom occurrence differs between schizophrenia and bipolar I disorder. We analyzed data collected from 555 individuals, 282 of whom were diagnosed with schizophrenia-related disorders and 273 with bipolar I disorder. In the context of schizophrenia, negative symptoms, particularly avolition, were prominent with manifold and network analyses, identifying avolition as a high central symptom associated with clozapine use, patterns of deterioration, tendency toward remission, and illness severity. Conversely, bipolar I disorder exhibits discernible patterns where positive symptoms play a central role in network analysis. Unexpectedly, manifold analysis revealed two distinct clusters of patients, suggesting variability in psychotic symptom profiles within bipolar I disorder. In conclusion, schizophrenia and bipolar I disorder, while sharing psychotic symptoms, exhibit distinct co-occurrence patterns. Schizophrenia demonstrates negative symptoms, whereas bipolar I disorder exhibits a stronger interconnectivity of psychotic symptoms, highlighting the complexity of psychotic symptom patterns and their relevance for understanding psychiatric disorders. These findings highlight the complexity of psychotic symptom patterns and their relevance for understanding psychiatric disorders.
Collapse
Affiliation(s)
- Young Hoon Kim
- Department of Psychiatry, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jinhyeok Jang
- Department of Psychiatry, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Nuree Kang
- Department of Psychiatry, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jae Hoon Jeong
- Department of Psychiatry, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jayoun Kim
- Medical Research Collaborating Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yong Sik Kim
- Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, 327 Gongneung-ro, Nowon-gu, Seoul, 01830, Republic of Korea.
| | - Se Hyun Kim
- Department of Psychiatry, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Xia C, Alliey-Rodriguez N, Tamminga CA, Keshavan MS, Pearlson GD, Keedy SK, Clementz B, McDowell JE, Parker D, Lencer R, Hill SK, Bishop JR, Ivleva EI, Wen C, Dai R, Chen C, Liu C, Gershon ES. Genetic analysis of psychosis Biotypes: shared Ancestry-adjusted polygenic risk and unique genomic associations. Mol Psychiatry 2025; 30:2673-2685. [PMID: 39709506 DOI: 10.1038/s41380-024-02876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples. Applied to schizophrenia PRS, we found the Khera AAPRS method to show superior portability and comparable prediction accuracy as compared with the Ge method. The three Biotypes of psychosis disorders had similar AAPRSs across ancestries. In genomic analysis of Biotypes, 12 genes, and isoforms showed significant genomic associations with specific Biotypes in a Transcriptome-Wide Association Study (TWAS) of genetically regulated expression (GReX) in the adult brain and fetal brain. TWAS inflation was addressed by the inclusion of genotype principal components in the association analyses. Seven of these 12 genes/isoforms satisfied Mendelian Randomization (MR) criteria for putative causality, including four genes TMEM140, ARTN, C1orf115, CYREN, and three transcripts ENSG00000272941, ENSG00000257176, ENSG00000287733. These genes are enriched in the biological pathways of Rearranged during Transfection (RET) signaling, Neural Cell Adhesion Molecule 1 (NCAM1) interactions, and NCAM signaling for neurite out-growth. The specific associations with Biotypes suggest that pharmacological clinical trials and biological investigations might benefit from analyzing Biotypes separately.
Collapse
Affiliation(s)
- Cuihua Xia
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Institute of Living, Hartford Healthcare Corp, Hartford, CT, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Brett Clementz
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - David Parker
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebekka Lencer
- Institute for Translational Psychiatry, Münster University, Münster, Germany
- Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck, Germany
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Elena I Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cindy Wen
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Witt KM, Harper DN, Ellenbroek BA. A review on the validity of animal models for neuropsychiatric disorders: an exploration of anhedonia. Behav Pharmacol 2025; 36:165-170. [PMID: 40336486 DOI: 10.1097/fbp.0000000000000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Despite major advances in neuroscience, there has been limited progress in improving pharmacological treatment for neuropsychiatric disorders. Neuropsychiatric disorders are heterogeneous with variance in symptoms within disorders and partial overlap in symptoms between disorders, leading to symptoms that remain untreated. To improve treatment outcomes, neuroscience has shifted to examining the neurobiological mechanisms underlying individual components, or dysfunctions, across disorders. Anhedonia, a decreased capacity to experience pleasure from positive stimuli or rewards, is a prominent symptom associated with poor functional outcome across neuropsychiatric disorders. This article reflects on Professor Paul Willner's contributions to the field of behavioural neuroscience, specifically his promotion of validity in animal models of neuropsychiatric disorders. Research can build upon Willner's scholarship by continuing to refine and explore the validity of animal models as our understanding of neuropsychiatric disorders improves. To exemplify this, we discuss current understanding of the neurobiological basis and clinical presentation of the two domains of anhedonia: anticipation and consumption. We argue for the examination of anticipatory anhedonia and consummatory anhedonia within a single paradigm to improve understanding of these domains, aligning animal models to the clinical reality in humans.
Collapse
Affiliation(s)
- Kate M Witt
- Behavioural Neurogenetics Group, Victoria University of Wellington, Wellington, New Zealand
| | | | | |
Collapse
|
5
|
Bigdeli TB, Harvey PD. Recent Advances in Schizophrenia Genomics and Emerging Clinical Implications. Psychiatr Clin North Am 2025; 48:311-330. [PMID: 40348420 DOI: 10.1016/j.psc.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The conceptualization of schizophrenia has evolved from Emil Kraepelin's identification of "dementia praecox" as a distinct illness characterized by cognitive and functional deficits to the modern understanding of its complex nature. Recent research, including the "deficit syndrome," highlights enduring negative symptoms that correlate with poor functional outcomes. Genetic epidemiologic studies reveal a strong heritable basis (60%-80%) for schizophrenia, with its polygenic architecture overlapping with various mental health disorders. This complexity raises questions about targeted precision medicine. Recent advancements in biobanks and neurogenomics research are providing valuable insights that aim to improve patient outcomes through enhanced genomic understanding.
Collapse
Affiliation(s)
- Tim B Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; Veterans Affairs (VA) New York Harbor Healthcare System, New York, USA.
| | - Philip D Harvey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL 33136, USA; Bruce W. Carter Miami Veterans Affairs (VA) Medical Center, Miami, FL, USA.
| |
Collapse
|
6
|
Strom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Bäckman J, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O'Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, et alStrom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Bäckman J, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O'Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, Riddle MA, Ripke S, Rosário MC, Sampaio AS, Schiele MA, Skogholt AH, Sloofman LG, Smit J, Artigas MS, Thomas LF, Tifft E, Vallada H, van Kirk N, Veenstra-VanderWeele J, Vulink NN, Walker CP, Wang Y, Wendland JR, Winsvold BS, Yao Y, Zhou H, Estonian Biobank, 23andMe Inc., Agrawal A, Alonso P, Berberich G, Bucholz KK, Bulik CM, Cath D, Denys D, Eapen V, Edenberg H, Falkai P, Fernandez TV, Fyer AJ, Gaziano JM, Geller DA, Grabe HJ, Greenberg BD, Hanna GL, Hickie IB, Hougaard DM, Kathmann N, Kennedy J, Lai D, Landén M, Hellard SL, Leboyer M, Lochner C, McCracken JT, Medland SE, Mortensen PB, Neale BM, Nicolini H, Nordentoft M, Pato M, Pato C, Pauls DL, Piacentini J, Pittenger C, Posthuma D, Ramos-Quiroga JA, Rasmussen SA, Richter MA, Rosenberg DR, Ruhrmann S, Samuels JF, Sandin S, Sandor P, Spalletta G, Stein DJ, Stewart SE, Storch EA, Stranger BE, Turiel M, Werge T, Andreassen OA, Børglum AD, Walitza S, Hveem K, Hansen BK, Rück C, Martin NG, Milani L, Mors O, Reichborn-Kjennerud T, Ribasés M, Kvale G, Mataix-Cols D, Domschke K, Grünblatt E, Wagner M, Zwart JA, Breen G, Nestadt G, Kaprio J, Arnold PD, Grice DE, Knowles JA, Ask H, Verweij KJ, Davis LK, Smit DJ, Crowley JJ, Scharf JM, Stein MB, Gelernter J, Mathews CA, Derks EM, Mattheisen M. Genome-wide analyses identify 30 loci associated with obsessive-compulsive disorder. Nat Genet 2025; 57:1389-1401. [PMID: 40360802 PMCID: PMC12165847 DOI: 10.1038/s41588-025-02189-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
Obsessive-compulsive disorder (OCD) affects ~1% of children and adults and is partly caused by genetic factors. We conducted a genome-wide association study (GWAS) meta-analysis combining 53,660 OCD cases and 2,044,417 controls and identified 30 independent genome-wide significant loci. Gene-based approaches identified 249 potential effector genes for OCD, with 25 of these classified as the most likely causal candidates, including WDR6, DALRD3 and CTNND1 and multiple genes in the major histocompatibility complex (MHC) region. We estimated that ~11,500 genetic variants explained 90% of OCD genetic heritability. OCD genetic risk was associated with excitatory neurons in the hippocampus and the cortex, along with D1 and D2 type dopamine receptor-containing medium spiny neurons. OCD genetic risk was shared with 65 of 112 additional phenotypes, including all the psychiatric disorders we examined. In particular, OCD shared genetic risk with anxiety, depression, anorexia nervosa and Tourette syndrome and was negatively associated with inflammatory bowel diseases, educational attainment and body mass index.
Collapse
Grants
- R01 MH071507 NIMH NIH HHS
- R01 MH101493 NIMH NIH HHS
- R01 DA054869 NIDA NIH HHS
- S10 RR025141 NCRR NIH HHS
- R01 MH079488 NIMH NIH HHS
- I01 CX001849 CSRD VA
- R01 MH079494 NIMH NIH HHS
- RC2 GM092618 NIGMS NIH HHS
- P50 GM115305 NIGMS NIH HHS
- R01 MH124871 NIMH NIH HHS
- R56 AG068026 NIA NIH HHS
- R01 MH113362 NIMH NIH HHS
- R56 MH120736 NIMH NIH HHS
- K99 MH128540 NIMH NIH HHS
- R01 MH124851 NIMH NIH HHS
- R01 MH103657 NIMH NIH HHS
- R01 NS102371 NINDS NIH HHS
- UL1 TR000445 NCATS NIH HHS
- R01 MH079487 NIMH NIH HHS
- R01 MH050214 NIMH NIH HHS
- IK2 BX005058 BLRD VA
- R01 MH124679 NIMH NIH HHS
- IP1 HX002375 HSRD VA
- T32 GM080178 NIGMS NIH HHS
- R01 NS105746 NINDS NIH HHS
- U19 HL065962 NHLBI NIH HHS
- R21 MH109938 NIMH NIH HHS
- R01 MH079489 NIMH NIH HHS
- R01 MH085321 NIMH NIH HHS
- R01 MH059299 NIMH NIH HHS
- R01 MH124873 NIMH NIH HHS
- R01 MH093381 NIMH NIH HHS
- R01 AA026364 NIAAA NIH HHS
- R01 HD074711 NICHD NIH HHS
- R01 MH114927 NIMH NIH HHS
- U01 HG006378 NHGRI NIH HHS
- K23 MH066284 NIMH NIH HHS
- R01 MH058376 NIMH NIH HHS
- UL1 RR024975 NCRR NIH HHS
- R01 MH105500 NIMH NIH HHS
- R01 NS032830 NINDS NIH HHS
- U01 HG004798 NHGRI NIH HHS
- U10 AA008401 NIAAA NIH HHS
- R01 MH110427 NIMH NIH HHS
- UL1 TR002243 NCATS NIH HHS
- ZFG is supported by NIH/NIA AG068026
- Supported received from the following grants (Joel Gelernter): CSP575b I01CX001849-01 1P1HX002375 National Center for PTSD Research 5R01DA054869-01
- A.A. was supported by the Foundation Volksbond Rotterdam
- NIMH grant 7R01MH103657 (GPC-OCD)
- This study represents independent research part funded by the National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.
- The EPOC study was funded by the Deutsche Forschungsgemeinschaft (DFG; KA815/6-1 and WA731/10-1).
- SA acknowledge her Miguel Servet contract (CP22/00026) awarded by the Instituto de Salud Carlos III and co-funded by the European Union Found: Fondo Social Europeo Plus, FSE +.
- grant EU FP7-HEALTH-2007-A-201550, and grant MIUR-CNR PB05
- NHMRC Project Grant 1145645; University of Queensland Health Research Accelerator Program (HeRA)
- K99MH128540-01A1
- Italian Ministry of Health grant RC-18-19-20-21/A
- NIMH K23 MH066284
- Stiftelsen KG Jebsen (SKGJ MED-02)
- NIH R21 MH109938
- R01MH071507
- LifeGene was supported by the Swedish Research Council, the Karolinska Institutet/Stockholm County Council research grants, AFA Insurance and the Torsten and Ragnar Söderbergs Foundation
- Fabrizio Piras is supported by the Italian Ministry of Health RC18-19-20-21/
- Federica Piras is supported by the Italian Ministry of Health RC18-19-20-21/A grant
- This work was in part supported by the German Research Foundation (DFG) grants: [RA1971/8-1], [RA1971/7-1]; and by the Bundesministerium für Bildung und Forschung (BMBF)grant: 01ED2007A to Alfredo Ramirez
- 1R01MH124873-01
- The Instituto de Salud Carlos III (P19/01224, PI22/00464 and CP22/00128) and the European Regional Development Fund (ERDF).
- U10AA008401
- Spanish Ministry of Science, Innovation and Universities (ISCIII PI22/00752) and Fundació La Marató 202201-30
- R01 MH124871 (Sullivan/Bulik) PGC4
- R01MH114927
- This work (GENOS) was supported by the German Research Fundation (GR 1912/1-1)
- National Institute of Mental Health (R01 MH58376), National Institute of Mental Health (K20 MH01065), National Institute of Mental Health (R01 MH101493), National Institute of Mental Health (R01 MH085321)
- Deutsche Forschungsgemeinschaft (DFG) KA815/6-1
- Funding support was provided by the from the Klarman Foundation.
- SEM is supported by an Australian NHMRC Investigator Grant (APP1172917).
- R01MH124851
- National Institute of Mental Health: R01MH50214: Collaborative OCD Genetics Study (G. Nestadt, PI; J. McCracken, UCLA PI).
- This work is supported by the Netherlands Organization for Scientific Research—Gravitation project ‘BRAINSCAPES: a Roadmap from Neurogenetics to Neurobiology’ (024.004.012) and the European Research Council advanced grant ‘From GWAS to Function’ (ERC- 2018-ADG 834057).
- Canadian Institutes for Health Research
- Supported by NIMH R01MH059299
- NIMH Grant Number: MH071507
- Italian Ministry of Health grant RC18-19-20-21
- 1R01MH093381
- Grant support from RCN (324499,273291,262656,248778,223273), KG Jebsen Stiftelsen, NordForsk #164218
- Swedish Research Council (grants 2012-07111 and 2018-02487), Swedish Research Council for Health, Working Life and Welfare 2018-00221 and Center for Innovative Medicine – CIMED.
- The AGDS was primarily funded by National Health and Medical Research Council (NHMRC) of Australia grant 1086683. This work was further supported by NHMRC grants 1145645, 1078901 and 1087889. LCC is supported by a QIMR Berghofer Institute fellowship.
- The work done by the EstBB team has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant agreement 847776 (CoMorMent).
- "This work was supported by the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR, 2017SGR-1461, 2021SGR-00840), the Instituto de Salud Carlos III (PI20/00041, PI23/00404 and PI23/00026), the European Regional Development Fund (ERDF); the ECNP Network ‘ADHD across the Lifespan’; “la Marató de TV3” (202228-30 and 202228-31)."
- NORDiC is funded by NIMH R01 MH110427 (PI Crowley), NIMH R01 MH105500 (PI Crowley) and the Swedish Research Council grant # 2015–02271 (PI Mataix-Cols).
- NIMH Grant Numbers: MH071507 (G N), MH079489 (DAG), MH079487 (JM), MH079488 (AF), and MH079494 (JK).
- Centre of Excellence in Complex Disease Genetics (Academy of Finland grant 352792)
- MH124679-01
- NIMH R01MH079494-01A1 and IOCDF
- NIMH OCGAS and OCGS
- The Research Council of Norway supported H. Ask, A. Havdahl and T. Reichborn-Kjennerud (274611). A. Havdahl was also supported by South East Norway Health Authority (2020022). Grant support for the MoBa team was also provided from RCN (273291, 262656, 248778, 223273) and the KG Jebsen Stiftelsen.
- Funded by the Veterans Affairs Administration (United States VA)
- The iPSYCH team was supported by grants from the Lundbeck Foundation (R102-A9118, R155-2014-1724, and R248-2017-2003), NIH/NIMH (1R01MH124851-01 to A.D.B.) and the Universities and University Hospitals of Aarhus and Copenhagen. The Danish National Biobank resource was supported by the Novo Nordisk Foundation. High-performance computer capacity for handling and statistical analysis of iPSYCH data on the GenomeDK HPC facility was provided by the Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark (grant to A.D.B.). A.D.B. was also supported by the EU’s HORIZON-HLTH-2021-STAYHLTH-01programme, project number 101057385: Risk and Resilience in Developmental Diversity and Mental Health (R2D2-MH).
- This work was supported by funding from the Department of Veterans Affairs Office of Research and Development, USVA, grants I01CX001849, and the VA Cooperative Studies Program study, no. 575B; the VA National Center for PTSD Research, and the West Haven VA Mental Illness Research, Education and Clinical Center; and by NIH grant R01 AA026364 (JG). D.F.L. is supported by a Career Development Award CDA-2 from the Veterans Affairs Office of Research and Development (1IK2BX005058-01A2) and is Aimee Mann Fellow of Psychiatric Genetics.
Collapse
Affiliation(s)
- Nora I Strom
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany.
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Zachary F Gerring
- Department of Mental Health and Neuroscience, Translational Neurogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Population Health and Immunity, Healthy Development and Ageing, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Marco Galimberti
- Department of Psychiatry, Human Genetics, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dongmei Yu
- Department of Center for Genomic Medicine, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew W Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Cristina Rodriguez-Fontenla
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Genomics and Bioinformatics, University of Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Genetics, Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Julia M Sealock
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tim Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Jonathan R Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Behrang Mahjani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jackson G Thorp
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christie L Burton
- Department of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jurjen J Luykx
- Department of Psychiatry, Brain University Medical Center Utrecht, Utrecht, the Netherlands
- Second Opinion Outpatient Clinic, GGNet, Warnsveld, the Netherlands
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Christine Andre
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Kathleen D Askland
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Hamilton, Ontario, Canada
| | - Julia Bäckman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Judith Becker Nissen
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
- Institute of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - O Joseph Bienvenu
- Department of Psychiatry and Behavioral Sciences, General Hospital Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Black
- Departments of Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael H Bloch
- Department of Child Study Center and Psychiatry, Yale University, New Haven, CT, USA
| | - Sigrid Børte
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Rosa Bosch
- Department of Child and Adolescent Mental Health, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Instituto de Salut Carlos III, Centro de Investigación Biomédica en Red de Salut Mental (CIBERSAM), Madrid, Spain
| | - Michael Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian P Brennan
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Helena Brentani
- Department of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Enda M Byrne
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Judit Cabana-Dominguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Beatriz Camarena
- Pharmacogenetics Department, Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Mexico City, México
| | | | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Angel Carracedo
- CiMUS, Genomics and Bioinformatics Group, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Medicina Genómica, Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Miguel Casas
- Programa MIND Escoles, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Departamento de Psiquiatría y Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Edwin H Cook
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Jesse Crosby
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bernadette A Cullen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elles J De Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Richard Delorme
- Child and Adolesccent Psychiatry Department, APHP, Paris, France
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jason A Elias
- Psychiatry, McLean Hospital OCDI, Harvard Medical School, Belmont, MA, USA
- Adult Psychological Services, CBTeam LLC, Lexington, MA, USA
| | - Xavier Estivill
- qGenomics (Quantitative Genomics Laboratories), Esplugues de Llobregat, Spain
| | - Martha J Falkenstein
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bengt T Fundin
- Department of Medical Epidemiology and Biostatistics, Center for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| | - Lauryn Garner
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Christina Gironda
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Fernando S Goes
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Marco A Grados
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus, Denmark
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kristen Hagen
- Department of Psychiatry, Møre og Romsdal Hospital Trust, Molde, Norway
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
| | - Kelly Harrington
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Kira D Höffler
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Dr. Einar Martens Research Group for Biological Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ana G Hounie
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Donald Hucks
- Department of Medicine, Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Janecka
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Eric Jenike
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Elinor K Karlsson
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Kelley
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Janice E Krasnow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christoph Lange
- Department of Biostatistics, T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Daniel Levey
- Department of Psychiatry, Yale University, West Haven, CT, USA
- Office of Research and Development, United States Department of Veterans Affairs, West Haven, CT, USA
| | - Kerstin Lindblad-Toh
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Fabio Macciardi
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brittany Mathes
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nicole C McLaughlin
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Butler Hospital, Providence, RI, USA
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Euripedes C Miguel
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maureen Mulhern
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Paul S Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | - Erika L Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin S O'Connell
- Department of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Lisa Osiecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Harvard Medical School, Boston, MA, USA
| | - Olga Therese Ousdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Haukeland University Hospital, Bergen, Norway
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Department of Clinical Neuroscience and Neurorehabilitation, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sriramya Potluri
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics, IBUB, Universitat de Barcelona, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red, Madrid, Spain
- Department of Human Molecular Genetics, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, Bonn, Germany
- DZNE Bonn, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Cologne Excellence Cluster for Stress Responses in Ageing-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Scott Rauch
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Abraham Reichenberg
- Department of Mental Disorders, Norwegian Institute of Public Health, New York, NY, USA
| | - Mark A Riddle
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Site Berlin-Potsdam, German Center for Mental Health (DZPG), Berlin, Germany
| | - Maria C Rosário
- Department of Psychiatry, Child and Adolescent Psychiatry Unit (UPIA), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Aline S Sampaio
- Department of Neurosciences and Mental Health, Medical School, Federal University of Bahia, Salvador, Brazil
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
| | - Anne Heidi Skogholt
- Department of Public Health and Nursing, HUNT Center for Molecular and Clinical Epidemiology, Trondheim, Norway
| | - Laura G Sloofman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Smit
- Department of Psychiatry, Faculty of Medicine, Locaion VUmc, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Laurent F Thomas
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Trondheim, Norway
- BioCore, Bioinformatics Core Facility, NTNU, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eric Tifft
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Homero Vallada
- Department of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
- Department of Molecular Medicine and Surgery, CMM, Karolinska Institutet, Stockholm, Sweden
| | - Nathanial van Kirk
- OCD Institute, Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Nienke N Vulink
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ying Wang
- Department of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jens R Wendland
- Laboratory of Clinical Science, NIMH Intramural Research Program, Bethesda, MD, USA
| | - Bendik S Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Yin Yao
- Department of Computional Biology, Institute of Life Science, Fudan University, Fudan, China
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Pino Alonso
- Department of Psychiatry, OCD Clinical and Research Unit, Bellvitge Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Department of Psychiatry and Mental Health, Bellvitge Biomedical Research Institute IDIBELLL, Barcelona, Spain
- CIBERSAM, Mental Health Network Biomedical Research Center, Madrid, Spain
| | - Götz Berberich
- Psychosomatic Department, Windach Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| | - Kathleen K Bucholz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danielle Cath
- Departments of Rijksuniversiteit Groningen and Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
- Department of Specialized Training, Drenthe Mental Health Care Institute, Groningen, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Institute of the Royal Netherlands Academy of Arts and Sciences (NIN-KNAW), Amsterdam, the Netherlands
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia
- Academic Unit of Child Psychiatry South-West Sydney, South-West Sydney Clinical School, SWSLHD and Ingham Institute, Sydney, New South Wales, Australia
| | - Howard Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Department of Psychiatry, Max Planck Institute, Munich, Germany
| | - Thomas V Fernandez
- Child Study Center and Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Abby J Fyer
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - J M Gaziano
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Mass General Brigham, Boston, MA, USA
| | - Dan A Geller
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Child Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Benjamin D Greenberg
- COBRE Center on Neuromodulation, Butler Hospital, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Gregory L Hanna
- Department of Psychiatry, Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ian B Hickie
- Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - David M Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - James Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Stéphanie Le Hellard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Marion Leboyer
- Department of Addictology and Psychiatry, Université Paris-Est Créteil, AP-HP, Inserm, Paris, France
| | - Christine Lochner
- Department of Psychiatry, SA MRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Stellenbosch, South Africa
| | - James T McCracken
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah E Medland
- Department of Mental Health, Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Preben B Mortensen
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Benjamin M Neale
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Humberto Nicolini
- Department of Psychiatry, Psychiatry, Carracci Medical Group, Mexico City, México
- Psiquiatría, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Copenhagen Research Center for Mental Health, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michele Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - Carlos Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - David L Pauls
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences, Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Danielle Posthuma
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Child and Adolescent Psychiatric, Section Complex Trait Genetics, VU Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Barcelona, Spain
- CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Margaret A Richter
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Child and Adolescent Psychiatry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jack F Samuels
- Department of Psychiatry and Behavioral Sciences, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sven Sandin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul Sandor
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - S Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Barbara E Stranger
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital, Mental Health Services (RHP), Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole A Andreassen
- Institute of Clinical Medicine, NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Center for Precision Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Research, Innovation and Education, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjarne K Hansen
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Centre for Crisis Psychology, Psychology, University of Bergen, Bergen, Norway
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Nicholas G Martin
- Department of Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ole Mors
- Psychosis Research Unit, Psychiatry, Aarhus University Hospital, Aarhus, Denmark
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Gerd Kvale
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
- Department of Clinical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
- Partner Site Berlin, DZPG, Berlin, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- DZNE, Bonn, Germany
| | - John-Anker Zwart
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Research and Innovation, Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatric Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Paul D Arnold
- Department of Psychiatry, the Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James A Knowles
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Helga Ask
- PsychGen Center for Genetic Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Karin J Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dirk J Smit
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - James J Crowley
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremiah M Scharf
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Human Genetics (Psychiatry), Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Carol A Mathews
- Psychiatry and Genetics Institute, Evelyn F. and William L. Mc Knight Brain Institute, Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA
| | - Eske M Derks
- Department of Mental Health and Neuroscience, QIMR Berghofer, Brisbane, Queensland, Australia
| | - Manuel Mattheisen
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Community Health and Epidemiology and Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
Collaborators
Andres Metspalu, Tõnu Esko, Reedik Mägi, Mari Nelis, Georgi Hudjashov,
Collapse
|
7
|
Fazioli L, Abu-Akel A, Hadad BS, Yashar A. Validation of the Hebrew version of the Community Assessment of Psychic Experiences in a sample of Israeli Hebrew speakers. Front Psychiatry 2025; 16:1548310. [PMID: 40438330 PMCID: PMC12116564 DOI: 10.3389/fpsyt.2025.1548310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/16/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction The Community Assessment of Psychic Experiences (CAPE-42) is a reliable tool to assess psychotic experiences (PEs) in clinical and non-clinical populations, in research and clinical settings. Methods To investigate cultural differences in PEs and control for pathological behavior in non-clinical groups, we developed a Hebrew version of the CAPE-42 using the translation/back-translation method. A total of 359 Hebrew speaking Israelis participated in an online study comprising the CAPE-42, the Autistic Quotient (AQ), the Center for Epidemiological Study - Depression Scale (CES-D), and the Prodromal Questionnaire - Brief Version (PQ-B). We examined the psychometric properties of the Hebrew CAPE-42-including its factor structure, internal consistency, gender invariance, and validity. We also investigated the independent and interaction effects of psychotic and autistic traits on depressive symptoms. Results Reliability analysis demonstrated very good internal consistency, and confirmatory factor analysis supported the eight-factor model, which included depressive, social withdrawal, affective flattening, avolition, bizarre experiences, perceptual abnormalities, persecutory ideation, and magical thinking. Demonstrating its predictive and convergent validity, we found significant correlations with the CES-D and the PQ-B. The predictive model showed that both psychotic and autistic traits are independent, non-interacting, predictors of depressive symptoms. Conclusions The Hebrew CAPE-42 offers a valuable instrument for investigating PEs in the Hebrew-speaking population and facilitates cross-cultural studies.
Collapse
Affiliation(s)
- Laurina Fazioli
- Department of Special Education, University of Haifa, Haifa, Israel
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub (HBBH), University of Haifa, Haifa, Israel
| | - Bat-Sheva Hadad
- Department of Special Education, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub (HBBH), University of Haifa, Haifa, Israel
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Amit Yashar
- Department of Special Education, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub (HBBH), University of Haifa, Haifa, Israel
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| |
Collapse
|
8
|
Morén C, Olivares-Berjaga D, Martínez-Pinteño A, Bioque M, Rodríguez N, Gassó P, Martorell L, Parellada E. Mitochondrial Oxidative Phosphorylation System Dysfunction in Schizophrenia. Int J Mol Sci 2025; 26:4415. [PMID: 40362652 PMCID: PMC12072258 DOI: 10.3390/ijms26094415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Schizophrenia (SCZ) is a severe, chronic mental disorder of unknown etiology and limited therapeutic options. Bioenergetic deficits in the oxidative phosphorylation system (OXPHOS) during early postnatal brain development may underlie disrupted neuronal metabolism and synaptic signaling, contributing to the neurodevelopmental and behavioral disturbances observed in patients. This narrative review summarizes updated evidence linking mitochondrial-OXPHOS dysfunction to SCZ pathophysiology. The novelty lies in the focus on OXPHOS dysfunction at the enzymatic/functional level, rather than on genetic, transcriptional, or oxidative parameters. While complex I impairment has long been highlighted and proposed as a peripheral marker of the disease, recent studies also report alterations in other OXPHOS complexes and their precursors. These findings suggest that OXPHOS dysfunction is not isolated to a single enzymatic component but affects broader mitochondrial function, alongside oxidative stress, contributing to disease progression through mechanisms involving apoptosis, accelerated aging, and synaptic deterioration. OXPHOS dysfunction in both central and peripheral tissues further supports its relevance to SCZ. Overall, the literature points to mitochondrial OXPHOS abnormalities as a significant biological feature of SCZ. Whether these alterations are causal factors or consequences of disease processes remains unclear. Understanding OXPHOS dysregulation may open new avenues for targeted therapies.
Collapse
Affiliation(s)
- Constanza Morén
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (M.B.); (E.P.)
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Department of Fundamental and Clinical Nursing, Nursing Faculty, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - David Olivares-Berjaga
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Basic and Clinical Practice Department, University of Barcelona, 08036 Barcelona, Spain
| | - Albert Martínez-Pinteño
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Basic and Clinical Practice Department, University of Barcelona, 08036 Barcelona, Spain
| | - Miquel Bioque
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (M.B.); (E.P.)
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Natàlia Rodríguez
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Basic and Clinical Practice Department, University of Barcelona, 08036 Barcelona, Spain
| | - Patricia Gassó
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Basic and Clinical Practice Department, University of Barcelona, 08036 Barcelona, Spain
| | - Lourdes Martorell
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Hospital Universitari Institut Pere Mata (HUIPM), Institut d’Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), 43206 Reus, Spain
| | - Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (M.B.); (E.P.)
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
9
|
Zhang R, Luo J, Wang T, Wang W, Sun J, Zhang D. Identifying novel protein biomarkers with cross-psychiatric disorders effects and potential intervention targets: Evidence from proteomic-Mendelian randomization. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111396. [PMID: 40334965 DOI: 10.1016/j.pnpbp.2025.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Plasma proteins are the potential therapeutic targets for psychiatric disorders due to their important roles in signal transduction. We aimed to explore the plasma protein biomarkers with cross-psychiatric disorders effects. Proteome-wide Mendelian randomization (MR) and colocalization analyses were performed to investigate the potential causal relationship between plasma protein biomarkers and 12 psychiatric disorders and further identify the potential proteins with cross-effects. To assess the directionality and exclude potential reverse causation, Steiger directionality tests and reverse MR analyses were additionally conducted. Then, validation analysis was performed by employing summary data from cross-psychiatric disorder GWAS to validate the cross-psychiatric effects of proteins. Protein-protein interactions were conducted to evaluate the interaction between candidate proteins and druggability assessment was used to prioritize potential drug targets for psychiatric disorders. We identified novel plasma proteins that possessed cross-psychiatric disorder effects, especially BTN2A1 and BTN3A2 associated with major depressive disorder (MDD), schizophrenia (SCZ), and bipolar disorder (BIP); ITIH1, ITIH3, ITIH4 and FES associated with SCZ and BIP, and the cross-effects of these proteins on SCZ and BIP were confirmed by validation analyses. Steiger tests and reverse MR supported causal directionality. Besides, the protein-protein interactions (PPI) analysis indicated cross-effects proteins had significant interaction, especially ITIH1-ITIH3. The druggability assessment prioritized eight proteins, two of which (ITIH3 and NCAM1) has been targeted by antipsychotic drugs. Our findings provided insights into shared biological mechanisms underlying these conditions.
Collapse
Affiliation(s)
- Ronghui Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Jia Luo
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Tong Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
10
|
Cao Y, Xie Q, Zheng Q, Zhang J, Yao M, Du Z, Zhang L, Hu T, Zhao Y, Du J, Li Y, Feng Y, Melgiri ND, Zhao X, Huang R, Sun Y. Macrophage HM13/SPP Enhances Foamy Macrophage Formation and Atherogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412498. [PMID: 40112173 PMCID: PMC12079524 DOI: 10.1002/advs.202412498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/28/2025] [Indexed: 03/22/2025]
Abstract
Aryl Hydrocarbon Receptor-Interacting Protein (AIP) reduces macrophage cholesterol-ester accumulation and may prevent atherogenic foamy macrophage formation. Analyzing AIP-associated regulatory gene networks can aid in identifying key regulatory mechanism(s) underlying foamy macrophage formation. A weighted gene co-expression network analysis on the Stockholm Atherosclerosis Gene Expression (STAGE) patient cohort identifies AIP as a negative correlate of Histocompatibility Minor 13 (HM13), which encodes the ER-associated degradation (ERAD) protein Signal Peptide Peptidase (HM13/SPP). The negative correlation between AIP and HM13/SPP on mRNA and protein levels is validated in oxLDL-stimulated macrophages and human plaque foamy macrophages. Mechanistically, AIP, via its chaperone interaction with Aryl Hydrocarbon Receptor (AHR), inhibits p38-c-JUN-mediated HM13 transactivation, thereby suppressing macrophage lipid accumulation. Myeloid HM13/SPP overexpression enhances oxLDL-induced foamy macrophage formation in vitro as well as atherogenesis and plaque foamy macrophage load in vivo, while myeloid HM13/SPP knockout produces the opposite effects. Mechanistically, myeloid HM13/SPP enhances oxLDL-induced foamy macrophage formation in vitro as well as atherogenesis and plaque foamy macrophage load in vivo via promoting ERAD-mediated proteasomal degradation of the metabolic regulator Heme Oxygenase-1 (HO-1). In conclusion, AIP downregulates macrophage HM13/SPP, a driver of oxLDL-induced lipid loading, foamy macrophage generation, and atherogenesis.
Collapse
Affiliation(s)
- Yu Cao
- Department of Cardiovascular Surgerythe First People’s Hospital of Yunnan ProvinceNo. 157, Jinbi Road, Xishan DistrictKunmingYunnan650032China
- Center for Translational Research in Clinical Medicinethe Affiliated Hospital of Kunming University of Science and TechnologyNo. 68, Wenchang Road, Wuhua DistrictKunmingYunnan650093China
| | - Qirong Xie
- Department of UltrasoundChongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo. 76, Linjiang Road, Yuzhong DistrictChongqing400010China
| | - Qiang Zheng
- Department of Cardiovascular Surgerythe First People’s Hospital of Yunnan ProvinceNo. 157, Jinbi Road, Xishan DistrictKunmingYunnan650032China
- Center for Translational Research in Clinical Medicinethe Affiliated Hospital of Kunming University of Science and TechnologyNo. 68, Wenchang Road, Wuhua DistrictKunmingYunnan650093China
| | - Jingping Zhang
- Department of Hematopathologythe First People's Hospital of Yunnan ProvinceNo. 157, Jinbi Road, Xishan DistrictKunmingYunnan650032China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan ProvinceYunnan Key Laboratory of Innovative Application of Traditional Chinese Medicinethe First People's Hospital of Yunnan ProvinceNo. 157, Jinbi Road, Xishan DistrictKunmingYunnan650032China
| | - Mengyu Yao
- Department of Cardiovascular Surgerythe First People’s Hospital of Yunnan ProvinceNo. 157, Jinbi Road, Xishan DistrictKunmingYunnan650032China
- Center for Translational Research in Clinical Medicinethe Affiliated Hospital of Kunming University of Science and TechnologyNo. 68, Wenchang Road, Wuhua DistrictKunmingYunnan650093China
| | - Zhongyong Du
- Department of Cardiovascular Surgerythe First People’s Hospital of Yunnan ProvinceNo. 157, Jinbi Road, Xishan DistrictKunmingYunnan650032China
- Center for Translational Research in Clinical Medicinethe Affiliated Hospital of Kunming University of Science and TechnologyNo. 68, Wenchang Road, Wuhua DistrictKunmingYunnan650093China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan ProvinceYunnan Key Laboratory of Innovative Application of Traditional Chinese Medicinethe First People's Hospital of Yunnan ProvinceNo. 157, Jinbi Road, Xishan DistrictKunmingYunnan650032China
| | - Lujun Zhang
- Precision Medicine Centerthe Second Affiliated Hospital of Chongqing Medical UniversityNo. 76, Linjiang Road, Yuzhong DistrictChongqing400010China
| | - Tianyang Hu
- Precision Medicine Centerthe Second Affiliated Hospital of Chongqing Medical UniversityNo. 76, Linjiang Road, Yuzhong DistrictChongqing400010China
| | - Yunli Zhao
- Precision Medicine Centerthe Second Affiliated Hospital of Chongqing Medical UniversityNo. 76, Linjiang Road, Yuzhong DistrictChongqing400010China
| | - Jianlin Du
- Department of Cardiologythe Second Affiliated Hospital of Chongqing Medical UniversityNo. 76, Linjiang Road, Yuzhong DistrictChongqing400010China
| | - Yongyong Li
- Department of Geriatric Medicinethe Second Affiliated Hospital of Chongqing Medical UniversityNo. 76, Linjiang Road, Yuzhong DistrictChongqing400010China
| | - Yuxing Feng
- Department of Rehabilitation and Pain Medicinethe Ninth People's Hospital of ChongqingNo. 69, Jialing Village, Beibei DistrictChongqing400700China
| | - ND Melgiri
- Impactys Foundation for Biomedical Research10300 Campus Pointe DriveSan DiegoCA92121USA
| | - Xiaodong Zhao
- Precision Medicine Centerthe Second Affiliated Hospital of Chongqing Medical UniversityNo. 76, Linjiang Road, Yuzhong DistrictChongqing400010China
| | - Rongzhong Huang
- Precision Medicine Centerthe Second Affiliated Hospital of Chongqing Medical UniversityNo. 76, Linjiang Road, Yuzhong DistrictChongqing400010China
| | - Yang Sun
- Department of UltrasoundChongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo. 76, Linjiang Road, Yuzhong DistrictChongqing400010China
| |
Collapse
|
11
|
Nadig A, Replogle JM, Pogson AN, Murthy M, McCarroll SA, Weissman JS, Robinson EB, O'Connor LJ. Transcriptome-wide analysis of differential expression in perturbation atlases. Nat Genet 2025; 57:1228-1237. [PMID: 40259084 DOI: 10.1038/s41588-025-02169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025]
Abstract
Single-cell CRISPR screens such as Perturb-seq enable transcriptomic profiling of genetic perturbations at scale. However, the data produced by these screens are noisy, and many effects may go undetected. Here we introduce transcriptome-wide analysis of differential expression (TRADE)-a statistical model for the distribution of true differential expression effects that accounts for estimation error appropriately. TRADE estimates the 'transcriptome-wide impact', which quantifies the total effect of a perturbation across the transcriptome. Analyzing several large Perturb-seq datasets, we show that many transcriptional effects remain undetected in standard analyses but emerge in aggregate using TRADE. A typical gene perturbation affects an estimated 45 genes, whereas a typical essential gene affects over 500. We find moderate consistency of perturbation effects across cell types, identify perturbations where transcriptional responses vary qualitatively across dosage levels and clarify the relationship between genetic and transcriptomic correlations across neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ajay Nadig
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Joseph M Replogle
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA.
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Pogson
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mukundh Murthy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elise B Robinson
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Luke J O'Connor
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Wang J, Liu Y, Li H, Nguyen TP, Soto-Vargas JL, Wilson R, Wang W, Lam TT, Zhang C, Lin C, Lewis DA, Glausier J, Holtzheimer PE, Friedman MJ, Williams KR, Picciotto MR, Nairn AC, Krystal JH, Duman RS, Young KA, Zhao H, Girgenti MJ. A multi-omic approach implicates novel protein dysregulation in post-traumatic stress disorder. Genome Med 2025; 17:43. [PMID: 40301990 PMCID: PMC12042318 DOI: 10.1186/s13073-025-01473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a common and disabling psychiatric disorder. PTSD involves multiple brain regions and is often comorbid with other psychiatric disorders, such as major depressive disorder (MDD). Recent genome-wide association studies (GWASs) have identified many PTSD risk loci and transcriptomics studies of postmortem brain have found differentially expressed genes associated with PTSD cases. In this study, we integrated genome-wide measures across modalities to identify convergent molecular effects in the PTSD brain. METHODS We performed tandem mass spectrometry (MS/MS) on a large cohort of donors (N = 66) in two prefrontal cortical areas, dorsolateral prefrontal cortex (DLPFC), and subgenual prefrontal cortex (sgPFC). We also coupled the proteomics data with transcriptomics and microRNA (miRNA) profiling from RNA-seq and small-RNA sequencing, respectively for the same cohort. Additionally, we utilized published GWAS results of multiple psychiatric disorders for integrative analysis. RESULTS We found differentially expressed proteins and co-expression protein modules disrupted by PTSD. Integrative analysis with transcriptomics and miRNA data from the same cohort pointed to hsa-mir-589 as a regulatory miRNA responsible for dysregulation of neuronal protein networks for PTSD, including the gamma-aminobutyric acid (GABA) vesicular transporter, SLC32A1. In addition, we identified significant enrichment of risk genes for other psychiatric disorders, such as autism spectrum disorder (ASD) and major depressive disorder (MDD) within PTSD protein co-expression modules, suggesting shared molecular pathology. CONCLUSIONS We integrated genome-wide measures of mRNA and miRNA expression and proteomics profiling from PTSD, MDD, and control (CON) brains to identify convergent and divergent molecular processes across genomic modalities. We substantially expand the number of differentially expressed genes and proteins in PTSD and identify downregulation of GABAergic processes in the PTSD proteome. This provides a novel framework for future studies integrating proteomic profiling with transcriptomics and non-coding RNAs in the human brain studies.
Collapse
Affiliation(s)
- Jiawei Wang
- Program of Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Yujing Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Hongyu Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Tuan P Nguyen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | | | - Rashaun Wilson
- NIDA Neuroproteomics Center, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Weiwei Wang
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - TuKiet T Lam
- NIDA Neuroproteomics Center, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06511, USA
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Chi Zhang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Chen Lin
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jill Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Paul E Holtzheimer
- National Center for PTSD, United States Department of Veterans Affairs, White River Junction, VT, 05009, USA
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Matthew J Friedman
- National Center for PTSD, United States Department of Veterans Affairs, White River Junction, VT, 05009, USA
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Kenneth R Williams
- NIDA Neuroproteomics Center, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- NIDA Neuroproteomics Center, Yale School of Medicine, New Haven, CT, 06511, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- National Center for PTSD, United States Department of Veterans Affairs, White River Junction, VT, 05009, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
- National Center for PTSD, United States Department of Veterans Affairs, White River Junction, VT, 05009, USA
| | - Keith A Young
- Central Texas Veterans Health Care System, Research Service, Temple, TX, 76504, USA
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| | - Hongyu Zhao
- Program of Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06511, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
- National Center for PTSD, United States Department of Veterans Affairs, White River Junction, VT, 05009, USA.
| |
Collapse
|
13
|
Méndez FA, Torres-Flores MI, Ordaz B, Peña-Ortega F. Acute and Long-Term Consequences of Neonatal NMDA Blockade in the Cx3cr1 Knock-Out Mouse. Inflammation 2025:10.1007/s10753-025-02272-x. [PMID: 40295453 DOI: 10.1007/s10753-025-02272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/12/2025] [Indexed: 04/30/2025]
Abstract
Neuron-microglia communication through the fractalkine pathway is a critical factor mediating microglial proliferation, migration, release of mediators, and clearance of cellular debris, as well as the function of neuronal NMDA receptors. Disruption of the fractalkine-mediated microglia-neuron communication is associated with divergent outcomes, from damaging to protective, in different neurological conditions (including schizophrenia and epilepsy). In the present work we explore the impact of the absence of the fractalkine receptor (CX3CR1) after neonatal blockade of NMDA receptors, which induces acute and long-term alterations in behavior, neuronal integrity and excitability. Wild-type (WT) and Cx3cr1-/- (KO) mice of both sexes randomly received either a low (0.5 mg/kg) or high dose (1 mg/kg) of MK-801 (NMDA receptor antagonist) or saline, for five consecutive days, during early postnatal development. Neuronal apoptosis was assessed at a midpoint of the pharmacological protocol. Survival and growth rates were determined up to adulthood when innate behaviors, unconditioned anxiety, contextual memory and seizure susceptibility were evaluated, as well as hippocampal local field potential and sensory gating. CX3CR1 depletion and neonatal MK-801 treatment had a synergistic acute effect, increasing neuronal apoptosis and overall mortality. Both factors independently induced long-lasting impairments in the wide array of behavioral tasks assessed during adulthood. However, low MK-801 dose treatment greatly augmented the mortality of pentylenetetrazol-induced seizures in WT mice, an effect prevented by CX3CR1 depletion. MK-801 treatment induced a shift in the power spectrum of the hippocampal local field potential towards higher frequencies that was averted in Cx3cr1-/- mice by an opposite shift. Our results reveal that CX3CR1 depletion severely increases the vulnerability to neonatal NMDA antagonism with additional complex interactions regarding cognitive and neurophysiological effects, which should be considered in the context of neuron-microglia miscommunication in many neurological disorders including schizophrenia and epilepsy.
Collapse
Affiliation(s)
- Felipe A Méndez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico
- Center for Neuroscience, Department of Neurology, University of California Davis, Davis, CA, USA
| | - Mayra Itzel Torres-Flores
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico
- Center for Neuroscience, Department of Neurology, University of California Davis, Davis, CA, USA
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico.
| |
Collapse
|
14
|
Goes FS, Collado-Torres L, Zandi PP, Huuki-Myers L, Tao R, Jaffe AE, Pertea G, Shin JH, Weinberger DR, Kleinman JE, Hyde TM. Large-scale transcriptomic analyses of major depressive disorder reveal convergent dysregulation of synaptic pathways in excitatory neurons. Nat Commun 2025; 16:3981. [PMID: 40295477 PMCID: PMC12037741 DOI: 10.1038/s41467-025-59115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Major Depressive Disorder (MDD) is a common, complex disorder that is a leading cause of disability worldwide and a significant risk factor for suicide. In this study, we have performed the largest molecular analysis of MDD in postmortem human brains (846 samples across 458 individuals) in the subgenual Anterior Cingulate Cortex (sACC) and the Amygdala, two regions central to mood regulation and the pathophysiology of MDD. We found extensive expression differences, particularly at the level of specific transcripts, with prominent enrichment for genes associated with the vesicular functioning, the postsynaptic density, GTPase signaling, and gene splicing. We find associated transcriptional features in 107 of 243 genome-wide significant loci for MDD and, through integrative analyses, highlight convergence of genetic risk, gene expression, and network-based analyses on dysregulated glutamatergic signaling and synaptic vesicular functioning. Together, these results provide an initial mechanistic understanding of MDD and highlight potential targets for novel drug discovery.
Collapse
Affiliation(s)
- Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Stanley and Elizabeth Star Precision Medicine Center of Excellence in Mood Disorders, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Leonardo Collado-Torres
- The Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Stanley and Elizabeth Star Precision Medicine Center of Excellence in Mood Disorders, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Ran Tao
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Andrew E Jaffe
- The Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Geo Pertea
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joo Heon Shin
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Department of Psychiatry and Behavioral Sciences, Stanley and Elizabeth Star Precision Medicine Center of Excellence in Mood Disorders, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Gold PW, Wong ML. Advances in discerning the mechanisms underlying depression and resiliency: relation to the neurobiology of stress and the effects of antidepressants. Mol Psychiatry 2025:10.1038/s41380-025-03019-8. [PMID: 40263526 DOI: 10.1038/s41380-025-03019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 01/30/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
Depression denotes a dysregulated stress response with significant mental and health implications. This review examines the neurobiological mechanisms underlying depression and resilience, focusing on how stress mediators influence vulnerability to severe stressors contrasted with resilience. We analyze structural and functional alterations in key brain regions, genetic factors, and potential therapeutic interventions. Understanding these mechanisms offers insights into preventing depression onset instead of solely treating its manifestations.
Collapse
Affiliation(s)
- Philip W Gold
- Clinical Neuroendocrinology Branch, National Institutes of Health, National Institute of Mental Health Intramural Research Program, Bethesda, MD, 20814, USA.
| | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
16
|
Binan L, Jiang A, Danquah SA, Valakh V, Simonton B, Bezney J, Manguso RT, Yates KB, Nehme R, Cleary B, Farhi SL. Simultaneous CRISPR screening and spatial transcriptomics reveal intracellular, intercellular, and functional transcriptional circuits. Cell 2025; 188:2141-2158.e18. [PMID: 40081369 DOI: 10.1016/j.cell.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/24/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Pooled optical screens have enabled the study of cellular interactions, morphology, or dynamics at massive scale, but they have not yet leveraged the power of highly plexed single-cell resolved transcriptomic readouts to inform molecular pathways. Here, we present a combination of imaging spatial transcriptomics with parallel optical detection of in situ amplified guide RNAs (Perturb-FISH). Perturb-FISH recovers intracellular effects that are consistent with single-cell RNA-sequencing-based readouts of perturbation effects (Perturb-seq) in a screen of lipopolysaccharide response in cultured monocytes, and it uncovers intercellular and density-dependent regulation of the innate immune response. Similarly, in three-dimensional xenograft models, Perturb-FISH identifies tumor-immune interactions altered by genetic knockout. When paired with a functional readout in a separate screen of autism spectrum disorder risk genes in human-induced pluripotent stem cell (hIPSC) astrocytes, Perturb-FISH shows common calcium activity phenotypes and their associated genetic interactions and dysregulated molecular pathways. Perturb-FISH is thus a general method for studying the genetic and molecular associations of spatial and functional biology at single-cell resolution.
Collapse
Affiliation(s)
- Loϊc Binan
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aiping Jiang
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02144, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Serwah A Danquah
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vera Valakh
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brooke Simonton
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jon Bezney
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Robert T Manguso
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02144, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen B Yates
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02144, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian Cleary
- Faculty of Computing and Data Sciences, Boston University, Boston, MA 02215, USA; Department of Biology, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA.
| | - Samouil L Farhi
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Balasubramanian R, Saha D, Arun A, Vinod PK. Hypometabolism in Autism Spectrum Disorder: Insights from Brain and Blood Transcriptomics. Mol Neurobiol 2025:10.1007/s12035-025-04941-2. [PMID: 40232643 DOI: 10.1007/s12035-025-04941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by challenges in social communication, repetitive behaviors, and restricted interests. Recent research has emphasized the importance of metabolic dysfunctions in the pathophysiology of ASD. This study investigates metabolic alterations associated with ASD by analyzing transcriptomic data obtained from the prefrontal cortex (bulk tissue and single-nucleus) and data from peripheral blood mononuclear cells (PBMC). We assessed the metabolic activity of each patient based on gene expression profiles, revealing significant downregulation of vital metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation, indicative of hypometabolism. Our analysis also highlighted dysregulation in lipid, vitamin, amino acid, and heme metabolism, which may contribute to the neurodevelopmental delays associated with ASD. Cell-specific metabolic activities in the ASD brain showed altered pathways in astrocytes, oligodendrocytes, excitatory neurons, and interneurons. Furthermore, we identified critical metabolic pathways and genes from PBMC gene expression data that distinguish ASD patients from typically developing individuals. Our findings demonstrate a consistent pattern of metabolic dysfunction across brain and blood samples. This research provides a comprehensive understanding of metabolic alterations in ASD, paving the way for exploring potential therapeutic strategies targeting metabolic dysregulation.
Collapse
Affiliation(s)
- Rami Balasubramanian
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Debayan Saha
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Ananya Arun
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Palakkad Krishnanunni Vinod
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
18
|
Herrlinger SA, Wang J, Rao BY, Chang J, Gogos JA, Losonczy A, Vitkup D. Rare mutations implicate CGE interneurons as a vulnerable axis of cognitive deficits across psychiatric disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645799. [PMID: 40236134 PMCID: PMC11996443 DOI: 10.1101/2025.03.28.645799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neuropsychiatric disorders such as autism spectrum disorder (ASD) and schizophrenia (SCZ) share genetic risk factors, including rare high penetrance single nucleotide variants and copy number variants (CNVs), and exhibit both overlapping and distinct clinical phenotypes. Cognitive deficits and intellectual disability-critical predictors of long-term outcomes-are common to both conditions. To investigate shared and disorder-specific neurobiological impact of highly penetrant rare mutations in ASD and SCZ, we analyzed human single-nucleus whole-brain sequencing data to identify strongly affected brain cell types. Our analysis revealed Caudal Ganglionic Eminence (CGE)-derived GABAergic interneurons as a key nexus for cognitive deficits across these disorders. Notably, genes within 22q11.2 deletions, known to confer a high risk of SCZ, ASD, and cognitive impairment, showed a strong expression bias toward vasoactive intestinal peptide-expressing cells (VIP+) among CGE subtypes. To explore VIP+ GABAergic interneuron perturbations in the 22q11.2 deletion syndrome in vivo , we examined their activity in the Df(16)A +/- mouse model during a spatial navigation task and observed reduced activity along with altered responses to random rewards. At the population level, VIP+ interneurons exhibited impaired spatial encoding and diminished subtype-specific activity suggesting deficient disinhibition in CA1 microcircuits in the hippocampus, a region essential for learning and memory. Overall, these results demonstrate the crucial role of CGE-derived interneurons in mediating cognitive processes that are disrupted across a range of psychiatric and neurodevelopmental disorders.
Collapse
|
19
|
Bosworth AP, Contreras M, Sancho L, Salas IH, Paumier A, Novak SW, Manor U, Allen NJ. Astrocyte glypican 5 regulates synapse maturation and stabilization. Cell Rep 2025; 44:115374. [PMID: 40048429 PMCID: PMC12013928 DOI: 10.1016/j.celrep.2025.115374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/28/2024] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
The maturation and stabilization of appropriate synaptic connections is a vital step in neural circuit development; however, the molecular signals underlying these processes are not fully understood. We show that astrocytes, through production of glypican 5 (GPC5), are required for maturation and refinement of synapses in the mouse cortex during the critical period. In the absence of astrocyte GPC5, thalamocortical synapses show structural immaturity, including smaller presynaptic terminals, decreased postsynaptic density area, and presence of more postsynaptic partners at multisynaptic connections. This structural immaturity is accompanied by a delay in developmental incorporation of GLUA2-containing AMPARs at intracortical synapses. The functional impact of this is that mice lacking astrocyte GPC5 exhibit increased levels of ocular dominance plasticity in adulthood. This demonstrates that astrocyte GPC5 is necessary for maturation and stabilization of synaptic connections, which has implications for disorders with altered synaptic function where GPC5 levels are altered, including Alzheimer's disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Alexandra P Bosworth
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Minerva Contreras
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura Sancho
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Isabel H Salas
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Adrien Paumier
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA; Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Bast L, Yao S, Martínez-López JA, Memic F, French H, Valiukonyte M, Karlsson R, Wen J, Song J, Zhang R, Abrantes A, Koopmans F, Österholm AM, Rosoklija G, Mann JJ, Stankov A, Trencevska I, Dwork A, Stockmeier CA, Love MI, Giusti-Rodriguez P, Smit AB, Sullivan PF, Hjerling-Leffler J. Transcriptomic and genetic analysis suggests a role for mitochondrial dysregulation in schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.14.25323827. [PMID: 40162239 PMCID: PMC11952597 DOI: 10.1101/2025.03.14.25323827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Schizophrenia is an often devastating disorder characterized by persistent and idiopathic cognitive deficits, delusions and hallucinations. Schizophrenia has been associated with impaired nervous system development and an excitation/inhibition imbalance in the prefrontal cortex. On a molecular level, schizophrenia is moderately heritable and genetically complex. Hundreds of risk genes have been identified, spanning a heterogeneous landscape dominated by loci that confer relatively small risk. Bioinformatic analyses of genetic associations point to a limited set of neurons, mainly excitatory cortical neurons, but other analyses suggest the importance of astrocytes and microglia. To understand different cell type roles in schizophrenia and reveal novel cell-type specific aetiologically relevant perturbations in schizophrenia, our study integrated genetic analysis with single nucleus RNA-seq of 536,618 nuclei from postmortem samples of dorsal prefrontal cortex (Brodmann Area 8/9) of 43 cases with schizophrenia and 42 neurotypical controls. We found no significant difference in cell type abundance. Gene expression in excitatory layer 2-3 intra-telencephalic neurons had the greatest number of differentially expressed transcripts and, together with excitatory deep layer intra-telencephalic neurons, conferred most of the genetic risk for schizophrenia. Most differential expression of genes was found in specific cell types and was dominated by down-regulated transcripts. Down-regulated transcripts were enriched in gene sets including transmembrane transport, mitochondrial function, protein folding, and cell-cell signaling whereas up-regulated transcripts were enriched in gene sets related to RNA processing, including RNA splicing in neurons. Co-regulation network analysis identified 40 schizophrenia-relevant programs across 13 cell types. A gene program largely shared between neuronal subtypes, astrocytes, and oligodendrocytes was significantly enriched for schizophrenia risk, supporting an aetiological role for perturbed protein modification, ion transport, and mitochondrial function. These results were largely consistent with cell-type expression quantitative trait locus and transcriptome-wide association analyses. Moreover, single-cell RNA sequencing results, most prominently mitochondrial dysfunction, had multiple points of convergence with proteomic and long-read RNA sequencing results from samples from the same donors. Our study integrates genetic analysis with transcriptomics to reveal novel cell-type specific aetiologically relevant perturbations in schizophrenia.
Collapse
Affiliation(s)
- Lisa Bast
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - José A. Martínez-López
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Present address: Department of Engineering, Universidad Loyola Andalucía, Seville, Spain
| | - Fatima Memic
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hayley French
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Milda Valiukonyte
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jia Wen
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruyue Zhang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Anthony Abrantes
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Present address: Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin, US
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anne-May Österholm
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gorazd Rosoklija
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences and Arts (MASA), Skopje, Republic of North Macedonia
| | - J. John Mann
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Aleksandar Stankov
- Institute for Forensic Medicine and Criminalistics, School of Medicine, University Ss Cyril and Methodius, Republic of North Macedonia
| | - Iskra Trencevska
- School of Medicine, University Ss Cyril and Methodius, Republic of North Macedonia
| | - Andrew Dwork
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences and Arts (MASA), Skopje, Republic of North Macedonia
- Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Craig A. Stockmeier
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Paola Giusti-Rodriguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
21
|
Borrego-Ruiz A, Borrego JJ. Involvement of virus infections and antiviral agents in schizophrenia. Psychol Med 2025; 55:e73. [PMID: 40059820 PMCID: PMC12055031 DOI: 10.1017/s0033291725000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Schizophrenia is a chronic and complex mental disorder resulting from interactions between cumulative and synergistic genetic and environmental factors. Viral infection during the prenatal stage constitutes one of the most relevant risk factors for the development of schizophrenia later in adulthood. METHODS A narrative review was conducted to explore the link between viral infections and schizophrenia, as well as the neuropsychiatric effects of antiviral drugs, particularly in the context of this specific mental condition. Literature searches were performed using the PubMed, Scopus, and Web of Science databases. RESULTS Several viral infections, such as herpesviruses, influenza virus, Borna disease virus, and coronaviruses, can directly or indirectly disrupt normal fetal brain development by modifying gene expression in the maternal immune system, thereby contributing to the pathophysiological symptoms of schizophrenia. In addition, neuropsychiatric effects caused by antiviral drugs are frequent and represent significant adverse outcomes for viral treatment. CONCLUSIONS Epidemiological evidence suggests a potential relationship between viruses and schizophrenia. Increases in inflammatory cytokine levels and changes in the expression of key genes observed in several viral infections may constitute potential links between these viral infections and schizophrenia. Furthermore, antivirals may affect the central nervous system, although for most drugs, their mechanisms of action are still unclear, and a strong relationship between antivirals and schizophrenia has not yet been established.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
22
|
Arbabi K, Newton DF, Oh H, Davie MC, Lewis DA, Wainberg M, Tripathy SJ, Sibille E. Transcriptomic pathology of neocortical microcircuit cell types across psychiatric disorders. Mol Psychiatry 2025; 30:1057-1068. [PMID: 39237723 DOI: 10.1038/s41380-024-02707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Psychiatric disorders such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are characterized by altered cognition and mood, brain functions that depend on information processing by cortical microcircuits. We hypothesized that psychiatric disorders would display cell type-specific transcriptional alterations in neuronal subpopulations that make up cortical microcircuits: excitatory pyramidal (PYR) neurons and vasoactive intestinal peptide- (VIP), somatostatin- (SST), and parvalbumin- (PVALB) expressing inhibitory interneurons. Using laser capture microdissection followed by RNA sequencing (LCM-seq), we performed cell type-specific molecular profiling of subgenual anterior cingulate cortex, a region implicated in mood and cognitive control. We sequenced libraries from 130 whole cells pooled per neuronal subtype (VIP, SST, PVALB, superficial and deep PYR) in 76 subjects from the University of Pittsburgh Brain Tissue Donation Program, evenly split between MDD, BD and SCZ subjects and healthy controls (totaling 380 bulk transcriptomes from ~50,000 neurons). We identified hundreds of differentially expressed (DE) genes and biological pathways across disorders and neuronal subtypes, with the vast majority in interneurons, particularly PVALB. While DE genes were unique to each cell type, there was a partial overlap across disorders for genes involved in the formation and maintenance of neuronal circuits. We observed coordinated alterations in biological pathways between select pairs of microcircuit cell types, also partially shared across disorders. Finally, DE genes coincided with known risk variants from psychiatric genome-wide association studies, suggesting cell type-specific convergence between genetic and transcriptomic risk for psychiatric disorders. Our study suggests transdiagnostic cortical microcircuit pathology in SCZ, BD, and MDD and sets the stage for larger-scale studies investigating how cell circuit-based changes contribute to shared psychiatric risk.
Collapse
Affiliation(s)
- Keon Arbabi
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dwight F Newton
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Hyunjung Oh
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Melanie C Davie
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Wainberg
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shreejoy J Tripathy
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
He Q, Mi Z, Yin Z, Zheng Z, Guo B. Weighted Gene Networks Derived from Multi-Omics Reveal Core Cancer Genes in Lung Cancer. BIOLOGY 2025; 14:223. [PMID: 40136480 PMCID: PMC11939803 DOI: 10.3390/biology14030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide, driven by its complexity and the heterogeneity of its subtypes, which influence pathogenesis, tumor microenvironment, and genetic alterations. We developed a novel weighted gene regulatory network reconstruction method based on maximum entropy and Markov chain entropy principles, which integrates gene expression and DNA methylation data to generate biologically informed networks. Applied to LUAD and LUSC datasets, we define a network methylation index to determine whether gene methylation acts as oncogenic or tumor-suppressive. By revealing a stable core set of pathogenic genes, we identify not only genes with significant expression changes, such as CD74 and HGF, but also pathogenic genes with stable expression, such as BRAF and KDM6A. Additionally, we uncover potential driver genes, such as CORO2B and C20orf194, associated with disease stage, gender, and smoking status. This method offers a more comprehensive understanding of NSCLC mechanisms, paving the way for improved therapeutic strategies.
Collapse
Affiliation(s)
- Qingcai He
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- LMIB and SKLCCSE, Beihang University, Beijing 100191, China
- Shen Yuan Honors College, Beihang University, Beijing 100191, China
| | - Zhilong Mi
- LMIB and SKLCCSE, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
| | - Ziqiao Yin
- LMIB and SKLCCSE, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
| | - Zhiming Zheng
- LMIB and SKLCCSE, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
| | - Binghui Guo
- LMIB and SKLCCSE, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
| |
Collapse
|
24
|
Smith RL, Mihalik A, Akula N, Auluck PK, Marenco S, Raznahan A, Vértes PE, McMahon FJ. A neuro-immune axis of transcriptomic dysregulation within the subgenual anterior cingulate cortex in schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638357. [PMID: 39990369 PMCID: PMC11844519 DOI: 10.1101/2025.02.14.638357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Many genes are linked to psychiatric disorders, but genome-wide association studies (GWAS) and differential gene expression (DGE) analyses in post-mortem brain tissue often implicate distinct gene sets. This disconnect impedes therapeutic development, which relies on integrating genetic and genomic insights. We address this issue using a novel multivariate technique that reduces DGE bias by leveraging gene co-expression networks and controlling for confounds such as drug exposure. Deep RNA sequencing was performed in bulk post-mortem sgACC from individuals with bipolar disorder (BD; N=35), major depression (MDD; N=51), schizophrenia (SCZ; N=44), and controls (N=55). Toxicology data dimensionality was reduced using multiple correspondence analysis; case-control gene expression was then analyzed using 1) traditional DGE and 2) group regularized canonical correlation analysis (GRCCA) - a multivariate regression method that accounts for feature interdependence. Gene set enrichment analyses compared results with established neuropsychiatric risk genes, gene ontology pathways, and cell type enrichments. GRCCA revealed a significant association with SCZ ( P perm =0.001; no significant BD or MDD association), and the resulting gene weight vector correlated with DGE SCZ-control t-statistics ( R =0.53; P <0.05). Both methods indicated down-regulation of immune and microglial genes and upregulation of ion transport and excitatory neuron genes. However, GRCCA - at both the gene and transcript level - showed stronger enrichments (FDR<0.05). Notably, GRCCA results were enriched for SCZ GWAS-implicated genes (FDR<0.05), while DGE results were not. These findings identify a SCZ-specific sgACC gene expression pattern that highlights SCZ risk genes and implicates neuro-immune pathways, thus demonstrating the utility of multivariate approaches to integrate genetic and genomic signals.
Collapse
|
25
|
Ota VK, Oliveira AM, Bugiga AVG, Conceição HB, Galante PAF, Asprino PF, Schäfer JL, Hoffmann MS, Bressan R, Brietzke E, Manfro GG, Grassi-Oliveira R, Gadelha A, Rohde LA, Miguel EC, Pan PM, Santoro ML, Salum GA, Carvalho CM, Belangero SI. Impact of life adversity and gene expression on psychiatric symptoms in children and adolescents: findings from the Brazilian high risk cohort study. Front Psychiatry 2025; 16:1505421. [PMID: 40018685 PMCID: PMC11866055 DOI: 10.3389/fpsyt.2025.1505421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction While the influence of both genetic and environmental factors on the development of psychiatric symptoms is well-recognized, the precise nature of their interaction throughout development remains a subject of ongoing debate. This study investigated the association between the expression of 78 candidate genes, previously associated with psychiatric phenotypes, in peripheral blood and both adversity and psychopathology in a sample of 298 young individuals assessed at two time points from the Brazilian High Risk Cohort Study for Mental Conditions (BHRCS). Methods Psychopathology was assessed using the Child Behavior Checklist (CBCL), considering the total CBCL, p-factor (i.e. general factor of psychopathology), and internalizing and externalizing symptoms as clinical variables. The life adversities considered in this study includes four composite variables: child maltreatment, stressful life events, threat and deprivation. Gene expression was measured using next-generation sequencing for target genes and differential gene expression was analyzed with the DESeq2 package. Results Mixed models revealed six genes associated with internalizing symptoms: NR3C1, HSPBP1, SIN3A, SMAD4, and CRLF3 genes exhibited a negative correlation with these symptoms, while FAR1 gene showed a positive correlation. Additionally, we also found a negative association between USP38 gene expression and externalizing symptoms. Finally, DENND11 and PRRC1 genes were negatively associated with deprivation, a latent factor characterized by neglect, parental absence, and measures of material forms of deprivation. No mediation or moderation effect was observed of gene expression on the association between life adversities and psychiatric symptoms, meaning that they might influence distinct pathways. Discussion Among these nine genes, NR3C1, which encodes a glucocorticoid receptor, is by far the most investigated, being associated with depressive symptoms, early life adversity, and stress. While further research is needed to fully understand the complex relationship between gene expression, life adversities, and psychopathology, our findings provide valuable insights into the molecular mechanisms underlying mental disorders.
Collapse
Affiliation(s)
- Vanessa Kiyomi Ota
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
- Genetics Division, Department of Morphology and Genetics, UNIFESP, São Paulo, Brazil
| | - Adrielle Martins Oliveira
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
| | - Amanda Victória Gomes Bugiga
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
- Genetics Division, Department of Morphology and Genetics, UNIFESP, São Paulo, Brazil
| | | | | | | | - Julia Luiza Schäfer
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Porto Alegre, Brazil
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mauricio Scopel Hoffmann
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Porto Alegre, Brazil
- Department of Neuropsychiatry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
- Mental Health Epidemiology Group (MHEG), Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, UFRGS, Porto Alegre, Brazil
- Care Policy and Evaluation Centre, London School of Economics and Political Science, London, United Kingdom
| | - Rodrigo Bressan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen’s University School of Medicine, Kingston, ON, Canada
| | - Gisele Gus Manfro
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Porto Alegre, Brazil
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Ary Gadelha
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Porto Alegre, Brazil
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Medical Council, Centro Universitário de Jaguariúna (UNIFAJ), Jaguariúna, Brazil
- Medical Council, Centro Universitário Max Planck (UNIMAX), Indaiatuba, Brazil
| | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
- Departamento de Psiquiatria do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pedro Mario Pan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
| | - Marcos Leite Santoro
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
- Disciplina de Biologia Molecular, Departamento de Bioquímica, UNIFESP, São Paulo, Brazil
| | - Giovanni Abrahao Salum
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Porto Alegre, Brazil
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Global Initiatives, Child Mind Institute, New York, NY, United States
| | - Carolina Muniz Carvalho
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
| | - Sintia Iole Belangero
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
- Genetics Division, Department of Morphology and Genetics, UNIFESP, São Paulo, Brazil
| |
Collapse
|
26
|
Xiang J, Ma C, Chen X, Cheng C. Investigating Connectivity Gradients in Schizophrenia: Integrating Functional, Structural, and Genetic Perspectives. Brain Sci 2025; 15:179. [PMID: 40002512 PMCID: PMC11853694 DOI: 10.3390/brainsci15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Schizophrenia is a complex disorder characterized by disruptions in cognition, behavior, and emotions. Extensive research has uncovered alterations in a single modality (either the brain structure or function) in schizophrenia. However, the limitation is that a single modality could not offer a synchronous result between the brain structure and function because of different samples. Here, a multiparametric approach is essential to understand the common and distinct alterations between the brain structure and function in schizophrenia. Methods: We analyzed structural and functional magnetic resonance imaging data from 146 participants (72 individuals with schizophrenia and 74 healthy controls). Individual morphological similarity and functional connectivity gradients were computed using a nonlinear dimensionality reduction technique with diffusion map embedding. Furthermore, to understand how the alterations may be related to genetic underpinnings, gene expression enrichment analyses were conducted using Allen Brain Human Atlas and GOrilla. Results: Compared with controls, patients with schizophrenia had reduced scores on the principal functional gradient of the visual network and elevated scores on the principal functional gradient of the limbic network, the frontoparietal control network, and the default mode network. Additionally, the main functional gradient in individuals with schizophrenia showed compression along the primary axis compared to the healthy control group. These changes were linked to genes involved in synaptic signaling and neuronal development. Conclusions: These results indicate connectome gradient dysfunction in schizophrenia and its linkage with gene expression profiles, supporting widespread network-level abnormalities. The integration of neuroimaging provides insight into the neurobiological underpinnings and potential biomarkers for treatment evaluation in this disorder.
Collapse
Affiliation(s)
- Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan 030024, China
| | - Chengze Ma
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan 030024, China
| | - Xiuhui Chen
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Chen Cheng
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan 030024, China
| |
Collapse
|
27
|
Yin H, Wang Z, Wang W, Liu J, Xue Y, Liu L, Shen J, Duan L. Dysregulated Pathways During Pregnancy Predict Drug Candidates in Neurodevelopmental Disorders. Neurosci Bull 2025:10.1007/s12264-025-01360-0. [PMID: 39913063 DOI: 10.1007/s12264-025-01360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/06/2024] [Indexed: 02/07/2025] Open
Abstract
Maternal health during pregnancy has a direct impact on the risk and severity of neurodevelopmental disorders (NDDs) in the offspring, especially in the case of drug exposure. However, little progress has been made to assess the risk of drug exposure during pregnancy due to ethical constraints and drug use factors. We collected and manually curated sub-pathways and pathways (sub-/pathways) and drug information to propose an analytical framework for predicting drug candidates. This framework linked sub-/pathway activity and drug response scores derived from gene transcription data and was applied to human fetal brain development and six NDDs. Further, specific and pleiotropic sub-/pathways/drugs were identified using entropy, and sex bias was analyzed in conjunction with logistic regression and random forest models. We identified 19 disorder-associated and 256 regionally pleiotropic and specific candidate drugs that targeted risk sub-/pathways in NDDs, showing temporal or spatial changes across fetal development. Moreover, 5443 differential drug-sub-/pathways exhibited sex-biased differences after filling in the gender labels. A user-friendly NDDP visualization website ( https://ndd-lab.shinyapps.io/NDDP ) was developed to allow researchers and clinicians to access and retrieve data easily. Our framework overcame data gaps and identified numerous pleiotropic and specific candidates across six disorders and fetal developmental trajectories. This could significantly contribute to drug discovery during pregnancy and can be applied to a wide range of traits.
Collapse
Affiliation(s)
- Huamin Yin
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenhang Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxin Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Yirui Xue
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Li Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China.
| | - Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
28
|
Zhen Y, Yang Y, Zheng Y, Zheng Z, Zheng H, Tang S. Aberrant Modular Dynamics of Functional Networks in Schizophrenia and Their Relationship with Neurotransmitter and Gene Expression Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.25.634845. [PMID: 39974915 PMCID: PMC11838238 DOI: 10.1101/2025.01.25.634845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Introduction Numerous studies have emphasized the time-varying modular architecture of functional brain networks and its relevance to cognitive functions in healthy participants. However, how brain modular dynamics change in schizophrenia and how these alterations relate to neurotransmitter and transcriptomic signatures have not been well elucidated. Methods We harmonized resting-state fMRI data from a multi-site sample including 223 patients and 279 healthy controls and applied the multilayer network method to estimate the regional module switching rate (flexibility) of functional brain connectomes. We examined aberrant flexibility in patients relative to controls and explored its relations to neurotransmitter systems and postmortem gene expression. Results Compared with controls, patients with schizophrenia had significantly higher flexibility in the somatomotor and right visual regions, and lower flexibility in the left parahippocampal gyrus, right supramarginal gyrus, right frontal-operculum-insula, bilateral precuneus posterior cingulate cortex, and bilateral inferior parietal gyrus. These alterations were associated with multiple neurotransmitter systems and weighted gene transcriptomic profiles. The most relevant genes were preferentially enriched for biological processes of transmembrane transport and brain development, specific cell types, and previously identified schizophrenia-related genes. Conclusions This study reveals aberrant modular dynamics in schizophrenia and its relations to neurotransmitter systems and schizophrenia-related transcriptomic profiles, providing insights into the understanding of the pathophysiology underlying schizophrenia.
Collapse
Affiliation(s)
- Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yaqian Yang
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Zhiming Zheng
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing 100085, China
| | - Shaoting Tang
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
29
|
Jen Y, Yu SL, Hsiao PC, Kuo PH, Liu CM, Liu CC, Hwang TJ, Hsieh MH, Chien YL, Lin YT, Huang H, Feng YCA, Hsiao CK, Lin YF, Faraone SV, Neale B, Glatt SJ, Tsuang MT, Hwu HG, Chen WJ. Identification of Hub Genes Involved in Early-onset Schizophrenia: From Genetic Susceptibility to Predicted Regulated Gene Expression. RESEARCH SQUARE 2025:rs.3.rs-5833160. [PMID: 39975901 PMCID: PMC11838744 DOI: 10.21203/rs.3.rs-5833160/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Despite a high heritability of schizophrenia (SZ), only limited variance was attributed to gene loci or the polygenic risk score in genome-wide association studies (GWAS). Early-onset SZ, a more homogeneous SZ subtype, may aid in bridging the genotype-phenotype gap and the identification of its hub genes is critical for early intervention in clinical practice. We aimed to examine the gene expression risk score (GeRS) in patients from both multiplex and simplex families to identify hub genes for early-onset SZ, and perform enrichment analysis to understand the biological functions of the hub genes. METHODS Based on the GWAS genotype data from patients with SZ in multiplex families (223 early-onset and 372 late-onset) and those from simplex families (matched for sex and onset age), GeRSs for SZ (SZ-GeRSs) were estimated using the SNP-expression prediction model derived from existing brain tissues of patients with psychiatric disorders. Module-based SZ-GeRS was summed over genes from empirically derived gene clusters, network analysis was conducted to identify hub genes, and enrichment analysis was used for functional mapping. RESULTS Among the 13 modules from existing coexpression analyses of postmortem brains of patients with psychiatric disorders, the meta-analysis revealed that associations with early-onset SZ existed for the GeRS of module 10 in subset, M10sub-GeRS (adjusted odds ratio [aOR] = 1.38, 95% CI = 1.22-1.57), and six hub genes, M10hub-GeRS (aOR = 1.22, 95% CI = 1.07-1.39), after adjustment for covariates. Functional mapping of the genes revealed their enrichment in excitatory neurons and immune-regulatory pathways. CONCLUSIONS GeRS for SZ helps identify six hub genes for early-onset schizophrenia, and the enrichment analysis sheds light on their possible roles in the pathophysiology. These findings will enhance the understanding of SZ etiology and may contribute to early screening and personalized prevention efforts.
Collapse
Affiliation(s)
- Yawen Jen
- Center for Neuropsychiatric Research, National Health Research Institutes
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University
| | - Po-Chang Hsiao
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University
| | | | | | | | | | | | | | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard
| | - Yen-Chen Anne Feng
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University
| | - Chuhsing K Hsiao
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes
| | - Stephen V Faraone
- Departments of Psychiatry and Behavioral Sciences, Neuroscience and Physiology, and Public Health and Preventive Medicine, SUNY Upstate Medical University
| | - Benjamin Neale
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard
| | - Stephen J Glatt
- Departments of Psychiatry and Behavioral Sciences, Neuroscience and Physiology, and Public Health and Preventive Medicine, SUNY Upstate Medical University
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, University of California San Diego
| | | | - Wei J Chen
- Center for Neuropsychiatric Research, National Health Research Institutes
| |
Collapse
|
30
|
Zhang H, Sun H, Li J, Lv Z, Tian Y, Lei X. Gene expression is associated with brain function of insomnia disorder, rather than brain structure. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111209. [PMID: 39617164 DOI: 10.1016/j.pnpbp.2024.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Previous research has found brain structural and functional abnormalities in patients with insomnia disorder (ID). However, the relationship between brain abnormalities in ID and brain gene expression is unclear. This study explored the relationship between gene expression and brain structural or functional abnormalities in ID, and we validated the reliability of the results with two independent datasets (discover dataset: healthy control (HC) = 129, ID = 264; validation dataset: HC = 160, ID = 115). Brain imaging results show that ID has abnormal resting-state spontaneous activity, regional homogeneity, and widespread gray matter volume reduction compared to HC. The association analysis results with gene expression further revealed that brain function abnormalities in ID were significantly associated with gene expression, but structural abnormalities were not. This study establishes a link between transcriptional changes and brain functional abnormalities in ID, revealing a genetic basis that may involve several biological pathways. Specifically, these pathways include hormonal regulation of the hypothalamic-pituitary-adrenal (HPA) axis, which plays a crucial role in stress response and sleep regulation; ion transport across membranes, vital for neuronal communication; and inhibitory neuronal regulation, essential for maintaining normal brain function. Furthermore, the ID-related genes are enriched for brain tissue and cortical cells, emphasizing their relevance in understanding the biological underpinnings of ID.
Collapse
Affiliation(s)
- Haobo Zhang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Haonan Sun
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Jiatao Li
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Zhangwei Lv
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Yun Tian
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
31
|
Richard D, Muthuirulan P, Young M, Yengo L, Vedantam S, Marouli E, Bartell E, Hirschhorn J, Capellini TD. Functional genomics of human skeletal development and the patterning of height heritability. Cell 2025; 188:15-32.e24. [PMID: 39549696 PMCID: PMC11724752 DOI: 10.1016/j.cell.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
Underlying variation in height are regulatory changes to chondrocytes, cartilage cells comprising long-bone growth plates. Currently, we lack knowledge on epigenetic regulation and gene expression of chondrocytes sampled across the human skeleton, and therefore we cannot understand basic regulatory mechanisms controlling height biology. We first rectify this issue by generating extensive epigenetic and transcriptomic maps from chondrocytes sampled from different growth plates across developing human skeletons, discovering novel regulatory networks shaping human bone/joint development. Next, using these maps in tandem with height genome-wide association study (GWAS) signals, we disentangle the regulatory impacts that skeletal element-specific versus global-acting variants have on skeletal growth, revealing the prime importance of regulatory pleiotropy in controlling height variation. Finally, as height is highly heritable, and thus often the test case for complex-trait genetics, we leverage these datasets within a testable omnigenic model framework to discover novel chondrocyte developmental modules and peripheral-acting factors shaping height biology and skeletal growth.
Collapse
Affiliation(s)
- Daniel Richard
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Mariel Young
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Sailaja Vedantam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eric Bartell
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joel Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Terence D Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
32
|
Gong H, Lu Y, Deng SL, Lv KY, Luo J, Luo Y, Du ZL, Wu LF, Liu TY, Wang XQ, Zhao JH, Wang L, Xia ML, Zhu DM, Wang LW, Fan XT. Targeting S100A9 attenuates social dysfunction by modulating neuroinflammation and myelination in a mouse model of autism. Pharmacol Res 2025; 211:107568. [PMID: 39733843 DOI: 10.1016/j.phrs.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/15/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Growing evidence supports a role for dysregulated neuroinflammation in autism. However, the underlying mechanisms of microglia-evoked neuroinflammation in the development of autistic phenotypes have not been elucidated. This study aimed to investigate the role and underlying mechanisms of microglial S100 calcium-binding protein A9 (S100A9) in autistic phenotypes. We utilized the BTBR T + tf/J (BTBR) mouse, a reliable preclinical model for autism that displays core behavioral features of autism as well as persistent immune dysregulation. A combination of behavioral, pharmacological, immunological, genetic, molecular, and transcriptomics approaches were used to uncover the potential role of S100A9 in autism. Significant overexpression of microglial S100A9 was observed in the hippocampus of BTBR mice. BTBR mice displayed decreased social communication and increased repetitive behaviors compared to C57BL/6 mice. Interestingly, the above social dysfunction was attenuated by a pharmacological inhibitor of S100A9, accompanied by a significant reduction in the activated microglia morphological phenotype, inflammatory receptors, and proinflammatory cytokines. Notably, S100A9 inhibition decreased c-Fos+ cells and promoted myelination in the cornu ammonis 3 of BTBR mice. Furthermore, the promyelinating compound administration ameliorated the autism-relevant behaviors in BTBR mice. Our findings indicate that microglia-derived S100A9 triggers the neuroinflammation cascade, myelination deficits, and social dysfunction. Targeting S100A9 could, therefore, be a promising therapeutic strategy for neuroinflammation-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yao Lu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 22100, China
| | - Shi-Long Deng
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Nursing Department, The Affiliated Hospital of Southwest Medical University, Sichuan Province, Luzhou 646000, China
| | - Ke-Yi Lv
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jing Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhu-Lin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Ling-Feng Wu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Battalion 7 of the Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Tian-Yao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Xia-Qing Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jing-Hui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Mei-Ling Xia
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dong-Mei Zhu
- Department of Hospital Infection Control, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Hospital Infection Control, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Li-Wei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou 221009, China; Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, China.
| | - Xiao-Tang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
33
|
Zhang H, Sun H, Li J, Lei X. Subtypes of Insomnia Disorder Identified by Cortical Morphometric Similarity Network. Hum Brain Mapp 2025; 46:e70119. [PMID: 39781599 PMCID: PMC11712197 DOI: 10.1002/hbm.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Insomnia disorder (ID) is a highly heterogeneous psychiatric disease, and the use of neuroanatomical data to objectively define biological subtypes is essential. We aimed to examine the neuroanatomical subtypes of ID by morphometric similarity network (MSN) and the association between MSN changes and specific transcriptional expression patterns. We recruited 144 IDs and 124 healthy controls (HC). We performed heterogeneity through discriminant analysis (HYDRA) and identified subtypes within the MSN strength. Differences in MSN between subtypes and HC were compared, and clinical behavioral differences were compared between subtypes. In addition, we investigated the association between MSN changes and brain gene expression in different ID subtypes using partial least squares regression to assess genetic commonalities in psychiatric disorders and further performed functional enrichment analyses. Two distinct subtypes of ID were identified, each exhibiting different MSN changes compared to HC. Furthermore, subtype 1 is characterized by objective short sleep, impaired cognitive function, and some relationships with major depressive disorder and autism spectrum disorder (ASD). In contrast, subtype 2 has normal objective sleep duration but subjectively reports poor sleep and is only related to ASD. The pathogenesis of subtype 1 may be related to genes that regulate sleep rhythms and sleep-wake cycles. In contrast, subtype 2 is more due to adverse emotion perception and regulation. Overall, these findings provide insights into the neuroanatomical subtypes of ID, elucidating the relationships between structural and molecular aspects of the relevant subtypes.
Collapse
Affiliation(s)
- Haobo Zhang
- Sleep and NeuroImaging Center, Faculty of PsychologySouthwest UniversityChongqingChina
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of EducationChongqingChina
| | - Haonan Sun
- Sleep and NeuroImaging Center, Faculty of PsychologySouthwest UniversityChongqingChina
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of EducationChongqingChina
| | - Jiaqi Li
- Sleep and NeuroImaging Center, Faculty of PsychologySouthwest UniversityChongqingChina
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of EducationChongqingChina
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of PsychologySouthwest UniversityChongqingChina
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of EducationChongqingChina
| |
Collapse
|
34
|
Cocoș R, Popescu BO. Scrutinizing neurodegenerative diseases: decoding the complex genetic architectures through a multi-omics lens. Hum Genomics 2024; 18:141. [PMID: 39736681 DOI: 10.1186/s40246-024-00704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegenerative diseases present complex genetic architectures, reflecting a continuum from monogenic to oligogenic and polygenic models. Recent advances in multi-omics data, coupled with systems genetics, have significantly refined our understanding of how these data impact neurodegenerative disease mechanisms. To contextualize these genetic discoveries, we provide a comprehensive critical overview of genetic architecture concepts, from Mendelian inheritance to the latest insights from oligogenic and omnigenic models. We explore the roles of common and rare genetic variants, gene-gene and gene-environment interactions, and epigenetic influences in shaping disease phenotypes. Additionally, we emphasize the importance of multi-omics layers including genomic, transcriptomic, proteomic, epigenetic, and metabolomic data in elucidating the molecular mechanisms underlying neurodegeneration. Special attention is given to missing heritability and the contribution of rare variants, particularly in the context of pleiotropy and network pleiotropy. We examine the application of single-cell omics technologies, transcriptome-wide association studies, and epigenome-wide association studies as key approaches for dissecting disease mechanisms at tissue- and cell-type levels. Our review introduces the OmicPeak Disease Trajectory Model, a conceptual framework for understanding the genetic architecture of neurodegenerative disease progression, which integrates multi-omics data across biological layers and time points. This review highlights the critical importance of adopting a systems genetics approach to unravel the complex genetic architecture of neurodegenerative diseases. Finally, this emerging holistic understanding of multi-omics data and the exploration of the intricate genetic landscape aim to provide a foundation for establishing more refined genetic architectures of these diseases, enhancing diagnostic precision, predicting disease progression, elucidating pathogenic mechanisms, and refining therapeutic strategies for neurodegenerative conditions.
Collapse
Affiliation(s)
- Relu Cocoș
- Department of Medical Genetics, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
- Genomics Research and Development Institute, Bucharest, Romania.
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
35
|
Cao L, Wang Z, Yuan Z, Luo Q. mFusion: a multiscale fusion method bridging neuroimages to genes through neurotransmissions in mental health disorders. Commun Biol 2024; 7:1699. [PMID: 39719509 DOI: 10.1038/s42003-024-07404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Mental health disorders emerge from complex interactions among neurobiological processes across multiple scales, which poses challenges in uncovering pathological pathways from molecular dysfunction to neuroimaging changes. Here, we proposed a multiscale fusion (mFusion) method to evaluate the relevance of each gene to the neuroimaging traits of mental health disorders. We combined gene-neuroimaging associations with gene-positron emission tomography (PET) and PET-neuroimaging associations using protein-protein interaction networks, where various genes traced by PET maps are involved in neurotransmission. Compared with previous methods, the proposed algorithm identified more disease genes on both simulated and empirical data sets. Applying mFusion to eight mental health disorders, we found that these disorders formed three clusters with distinct associated genes. In summary, mFusion is a promising tool of prioritizing genes for mental health disorders by establishing gene-PET-neuroimaging pathways.
Collapse
Affiliation(s)
- Luolong Cao
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Zhenyi Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing, China
| | - Zhiyuan Yuan
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
- Shanghai Research Center of Acupuncture & Meridian, Shanghai, China.
- MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Nersisyan S, Loher P, Nazeraj I, Shao Z, Fullard JF, Voloudakis G, Girdhar K, Roussos P, Rigoutsos I. Comprehensive profiling of small RNAs and their changes and linkages to mRNAs in schizophrenia and bipolar disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630254. [PMID: 39763727 PMCID: PMC11703252 DOI: 10.1101/2024.12.24.630254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We investigated small non-coding RNAs (sncRNAs) from the prefrontal cortex of 93 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) and 77 controls. We uncovered recurring complex sncRNA profiles, with 98% of all sncRNAs being accounted for by miRNA isoforms (60.6%), tRNA-derived fragments (17.8%), rRNA-derived fragments (11.4%), and Y RNA-derived fragments (8.3%). In SCZ, 15% of all sncRNAs exhibit statistically significant changes in their abundance. In BD, the fold changes (FCs) are highly correlated with those in SCZ but less acute. Non-templated nucleotide additions to the 3´-ends of many miRNA isoforms determine their FC independently of miRNA identity or genomic locus of origin. In both SCZ and BD, disease- and age-associated sncRNAs and mRNAs reveal accelerated aging. Co-expression modules between sncRNAs and mRNAs align with the polarities of SCZ changes and implicate sncRNAs in critical processes, including synaptic signaling, neurogenesis, memory, behavior, and cognition.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Iliza Nazeraj
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhiping Shao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John F. Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), JJ Peters VA Medical Center, Bronx, New York, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), JJ Peters VA Medical Center, Bronx, New York, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
37
|
Liu C, Gershon ES. Endophenotype 2.0: updated definitions and criteria for endophenotypes of psychiatric disorders, incorporating new technologies and findings. Transl Psychiatry 2024; 14:502. [PMID: 39719446 PMCID: PMC11668880 DOI: 10.1038/s41398-024-03195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
Recent genetic studies have linked numerous loci to psychiatric disorders. However, the biological pathways that connect these genetic associations to psychiatric disorders' specific pathophysiological processes are largely unclear. Endophenotypes, first defined over five decades ago, are heritable traits, independent of disease state that are associated with a disease, encompassing a broad range of neurophysiological, biochemical, endocrinological, neuroanatomical, cognitive, and neuropsychological characteristics. Considering the advancements in genetics and genomics over recent decades, we propose a revised definition of endophenotypes as 'genetically influenced phenotypes linked to disease or treatment characteristics and their related events.' We also updated endophenotype criteria to include (1) reliable measurement, (2) association with the disease or its related events, and (3) genetic mediation. 'Genetic mediation' is introduced to differentiate between causality and pleiotropic effects and allows non-linear relationships. Furthermore, this updated Endophenotype 2.0 framework expands to encompass genetically regulated responses to disease-related factors, including environmental risks, illness progression, treatment responses, and resilience phenotypes, which may be state-dependent. This broadened definition paves the way for developing new endophenotypes crucial for genetic analyses in psychiatric disorders. Integrating genetics, genomics, and diverse endophenotypes into multi-dimensional mechanistic models is vital for advancing our understanding of psychiatric disorders. Crucially, elucidating the biological underpinnings of endophenotypes will enhance our grasp of psychiatric genetics, thereby improving disease risk prediction and treatment approaches.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
- School of Life Sciences, Central South University, Changsha, China.
| | - Elliot S Gershon
- Departments of Psychiatry and Human Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
38
|
Luo M, Trindade Pons V, Thomas NS, Drake J, Su MH, Vladimirov V, van Loo HM, Gillespie NA. The Mechanisms Underlying the Intergenerational Transmission of Substance Use and Misuse: An Integrated Research Approach. Twin Res Hum Genet 2024:1-12. [PMID: 39710930 DOI: 10.1017/thg.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Substance use and substance use disorders run in families. While it has long been recognized that the etiology of substance use behaviors and disorders involves a combination of genetic and environmental factors, two key questions remain largely unanswered: (1) the intergenerational transmission through which these genetic predispositions are passed from parents to children, and (2) the molecular mechanisms linking genetic variants to substance use behaviors and disorders. This article aims to provide a comprehensive conceptual framework and methodological approach for investigating the intergenerational transmission of substance use behaviors and disorders, by integrating genetic nurture analysis, gene expression imputation, and weighted gene co-expression network analysis. We also additionally describe two longitudinal cohorts - the Brisbane Longitudinal Twin Study in Australia and the Lifelines Cohort Study in the Netherlands. By applying the methodological framework to these two unique datasets, our future research will explore the complex interplay between genetic factors, gene expression, and environmental influences on substance use behaviors and disorders across different life stages and populations.
Collapse
Affiliation(s)
- Mannan Luo
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Victória Trindade Pons
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nathaniel S Thomas
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John Drake
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, Arizona, USA
| | - Mei-Hsin Su
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Vladimir Vladimirov
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, Arizona, USA
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hanna M van Loo
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
39
|
Dong D, Wang Y, Zhou F, Chang X, Qiu J, Feng T, He Q, Lei X, Chen H. Functional Connectome Hierarchy in Schizotypy and Its Associations With Expression of Schizophrenia-Related Genes. Schizophr Bull 2024; 51:145-158. [PMID: 38156676 PMCID: PMC11661955 DOI: 10.1093/schbul/sbad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizotypy has been conceptualized as a continuum of symptoms with marked genetic, neurobiological, and sensory-cognitive overlaps to schizophrenia. Hierarchical organization represents a general organizing principle for both the cortical connectome supporting sensation-to-cognition continuum and gene expression variability across the cortex. However, a mapping of connectome hierarchy to schizotypy remains to be established. Importantly, the underlying changes of the cortical connectome hierarchy that mechanistically link gene expressions to schizotypy are unclear. STUDY DESIGN The present study applied novel connectome gradient on resting-state fMRI data from 1013 healthy young adults to investigate schizotypy-associated sensorimotor-to-transmodal connectome hierarchy and assessed its similarity with the connectome hierarchy of schizophrenia. Furthermore, normative and differential postmortem gene expression data were utilized to examine transcriptional profiles linked to schizotypy-associated connectome hierarchy. STUDY RESULTS We found that schizotypy was associated with a compressed functional connectome hierarchy. Moreover, the pattern of schizotypy-related hierarchy exhibited a positive correlation with the connectome hierarchy observed in schizophrenia. This pattern was closely colocated with the expression of schizophrenia-related genes, with the correlated genes being enriched in transsynaptic, receptor signaling and calcium ion binding. CONCLUSIONS The compressed connectome hierarchy suggests diminished functional system differentiation, providing a novel and holistic system-level basis for various sensory-cognition deficits in schizotypy. Importantly, its linkage with schizophrenia-altered hierarchy and schizophrenia-related gene expression yields new insights into the neurobiological continuum of psychosis. It also provides mechanistic insight into how gene variation may drive alterations in functional hierarchy, mediating biological vulnerability of schizotypy to schizophrenia.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Yulin Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuebin Chang
- Department of Information Sciences, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
40
|
Ding C, Sun Y, Li K, Xie S, Yan H, Li P, Yan J, Chen J, Wang H, Wang H, Chen Y, Yang Y, Lv L, Zhang H, Lu L, Zhang D, Chen Y, Zhang Z, Jiang T, Liu B. Disorder-specific neurodynamic features in schizophrenia inferred by neurodynamic embedded contrastive variational autoencoder model. Transl Psychiatry 2024; 14:496. [PMID: 39695106 DOI: 10.1038/s41398-024-03200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may offer valuable insights into the pathological mechanisms of schizophrenia (SCZ). In this study, we integrated a neurodynamic model with the classical Contrastive Variational Autoencoder (CVAE) to extract and evaluate macro-scale SCZ-specific features, including subject-level, region-level parameters, and time-varying states. Firstly, we demonstrated the robust fitting of the model within our multi-site dataset. Subsequently, by employing representational similarity analysis and a deep learning classifier, we confirmed the specificity and disorder-related information capturing ability of SCZ-specific features. Moreover, analysis of the attractor characteristics of the neurodynamic system revealed significant differences in attractor space patterns between SCZ-specific states and shared states. Finally, we utilized Partial Least Squares (PLS) regression to examine the multivariate mapping relationship between SCZ-specific features and symptoms, identifying two sets of correlated modes implicating unique molecular mechanisms: one mode corresponding to negative and general symptoms, and another mode corresponding to positive symptoms. Our results provide valuable insights into disorder-specific neurodynamic features and states associated with SCZ, laying the foundation for understanding the intricate pathophysiology of this disorder.
Collapse
Affiliation(s)
- Chaoyue Ding
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuqing Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Kunchi Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Hao Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Peng Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jun Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou, 311100, China.
- Innovation Academy for Artificial Intelligence, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
41
|
Jenkins AK, Ketchesin KD, Becker-Krail DD, McClung CA. Molecular Rhythmicity in Glia: Importance for Brain Health and Relevance to Psychiatric Disease. Biol Psychiatry 2024; 96:909-918. [PMID: 38735357 PMCID: PMC11550267 DOI: 10.1016/j.biopsych.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Circadian rhythms are approximate 24-hour rhythms present in nearly all aspects of human physiology, including proper brain function. These rhythms are produced at the cellular level through a transcriptional-translational feedback loop known as the molecular clock. Diurnal variation in gene expression has been demonstrated in brain tissue from multiple species, including humans, in both cortical and subcortical regions. Interestingly, these rhythms in gene expression have been shown to be disrupted across psychiatric disorders and may be implicated in their underlying pathophysiology. However, little is known regarding molecular rhythms in specific cell types in the brain and how they might be involved in psychiatric disease. Although glial cells (e.g., astrocytes, microglia, and oligodendrocytes) have been historically understudied compared to neurons, evidence of the molecular clock is found within each of these cell subtypes. Here, we review the current literature, which suggests that molecular rhythmicity is essential to functional physiologic outputs from each glial subtype. Furthermore, disrupted molecular rhythms within these cells and the resultant functional deficits may be relevant to specific phenotypes across psychiatric illnesses. Given that circadian rhythm disruptions have been so integrally tied to psychiatric disease, the molecular mechanisms governing these associations could represent exciting new avenues for future research and potential novel pharmacologic targets for treatment.
Collapse
Affiliation(s)
- Aaron K Jenkins
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle D Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Darius D Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
42
|
Xia C, Alliey-Rodriguez N, Tamminga CA, Keshavan MS, Pearlson GD, Keedy SK, Clementz B, McDowell JE, Parker D, Lencer R, Hill SK, Bishop JR, Ivleva EI, Wen C, Dai R, Chen C, Liu C, Gershon ES. Genetic Analysis of Psychosis Biotypes: Shared Ancestry-Adjusted Polygenic Risk and Unique Genomic Associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.05.24318404. [PMID: 39677452 PMCID: PMC11643284 DOI: 10.1101/2024.12.05.24318404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder and bipolar disorder with psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples. Applied to schizophrenia PRS, we found the Khera AAPRS method to show superior portability and comparable prediction accuracy as compared with the Ge method. The three Biotypes of psychosis disorders had similar AAPRSs across ancestries. In genomic analysis of Biotypes, 12 genes and isoforms showed significant genomic associations with specific Biotypes in Transcriptome-Wide Association Study (TWAS) of genetically regulated expression (GReX) in adult brain and fetal brain. TWAS inflation was addressed by inclusion of genotype principal components in the association analyses. Seven of these 12 genes/isoforms satisfied Mendelian Randomization (MR) criteria for putative causality, including four genes TMEM140, ARTN, C1orf115, CYREN, and three transcripts ENSG00000272941, ENSG00000257176, ENSG00000287733. These genes are enriched in the biological pathways of Rearranged during Transfection (RET) signaling, Neural Cell Adhesion Molecule 1 (NCAM1) interactions, and NCAM signaling for neurite out-growth. The specific associations with Biotypes suggest that pharmacological clinical trials and biological investigations might benefit from analyzing Biotypes separately.
Collapse
Affiliation(s)
- Cuihua Xia
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA
| | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Godfrey D. Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Institute of Living, Hartford Healthcare Corp, Hartford, CT 06106, USA
| | - Sarah K. Keedy
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Brett Clementz
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jennifer E. McDowell
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA 30602, USA
| | - David Parker
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rebekka Lencer
- Institute for Translational Psychiatry, Münster University, Münster 48149, Germany
- Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck 23538, Germany
| | - S. Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL 60064, USA
| | - Jeffrey R. Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena I. Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cindy Wen
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, China
- Furong Laboratory, Changsha, Hunan 410000, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan 410000, China
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Elliot S. Gershon
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
43
|
Mould AW, Wright DJ, Bornemann KD, Hengerer B, Pinnock R, Drydale E, Bancroft J, Hall NAL, von Delft A, Brennan PE, Harrison PJ, Haerty W, Tunbridge EM. Identification and characterization of human KALRN mRNA and Kalirin protein isoforms. Cereb Cortex 2024; 34:bhae470. [PMID: 39656879 DOI: 10.1093/cercor/bhae470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Kalirin is a multidomain protein with important roles in neurite outgrowth, and synaptic spine formation and remodeling. Genetic and pathophysiological links with various neuropsychiatric disorders associated with synaptic dysfunction and cognitive impairment have sparked interest in its potential as a pharmacological target. Multiple Kalirin proteoforms are detected in the adult human brain, yet we know little about the diversity of the transcripts that encode them or their tissue profiles. Here, we characterized full-length KALRN transcripts expressed in the adult human frontal lobe and hippocampus using rapid amplification of complementary DNA (cDNA) ends and nanopore long-read sequencing. For comparison with non-neural tissue, we also analyzed KALRN transcripts in the aorta. Multiple novel isoforms were identified and were largely similar between the two brain regions analyzed. Alternative splicing in the brain results in preferential inclusion of exon 37, which encodes 32 amino acids upstream of the second guanine nucleotide exchange factor (GEF) domain. Structural modeling predicts that a subset of these amino acids forms a conserved alpha helix. Although deletion of these amino acids had little effect on GEF activity, it did alter Kalirin-induced neurite outgrowth suggesting that this brain-enriched splicing event may be important for neural function. These data indicate that alternative splicing is potentially important for regulating Kalirin actions in the human brain.
Collapse
Affiliation(s)
- Arne W Mould
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - David J Wright
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
| | - Klaus D Bornemann
- Boehringer Ingelheim Pharma GmbH & Co. KG, 65 Birkendorfer Straße, 88397, Biberach an der Riß, Germany
| | - Bastian Hengerer
- Boehringer Ingelheim Pharma GmbH & Co. KG, 65 Birkendorfer Straße, 88397, Biberach an der Riß, Germany
| | - Rob Pinnock
- Biogen Idec Ltd, 5 Roxborough Way, Maidenhead SL6 3UD, United Kingdom
| | - Edward Drydale
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - James Bancroft
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Nicola A L Hall
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Annette von Delft
- Centre for Medicines Discovery, NDM Research Building, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Paul E Brennan
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, NDM Research Building, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, United Kingdom
- Boehringer Ingelheim Pharma GmbH & Co. KG, 65 Birkendorfer Straße, 88397, Biberach an der Riß, Germany
| |
Collapse
|
44
|
Meng J, Zhang L, Zhang YW. Microglial Dysfunction in Autism Spectrum Disorder. Neuroscientist 2024; 30:744-758. [PMID: 38712859 DOI: 10.1177/10738584241252576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with onset in childhood. The molecular mechanisms underlying ASD have not yet been elucidated completely. Evidence has emerged to support a link between microglial dysfunction and the etiology of ASD. This review summarizes current research on microglial dysfunction in neuroinflammation and synaptic pruning, which are associated with altered transcriptomes and autophagy in ASD. Dysbiosis of gut microbiota in ASD and its correlation with microglial dysfunction are also addressed.
Collapse
Affiliation(s)
- Jian Meng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingliang Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
45
|
Snelleksz M, Scarr E, Dean B. Lower levels of kainate receptors, but not AMPA or NMDA receptors, in Brodmann's area (BA) 9, but not BA 10, from a subgroup of people with schizophrenia who have a marked deficit in cortical muscarinic M1 receptors. Schizophr Res 2024; 274:129-136. [PMID: 39293250 DOI: 10.1016/j.schres.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
In a previous study on ionotropic glutamate receptors, we have shown that [3H]kainate, but not [3H]AMPA or [3H]NMDA, receptor binding was lower in Brodmann's area (BA) 9 from people with schizophrenia. Subsequently, we defined a subgroup within the syndrome of schizophrenia who are termed the Muscarinic Receptor Deficit subgroup of Schizophrenia (MRDS) as they have markedly lower levels of [3H]pirenzepine binding to the muscarinic M1 receptor. The previous glutamate receptor study did not contain enough people with MRDS and other forms of schizophrenia (non-MRDS) to study any subgroup-specific differences. Hence, in this study we first measured [3H]pirenzepine binding to the muscarinic M1 receptor to confirm the MRDS subgroup, then measured [3H]kainate, [3H]AMPA and [3H]NMDA receptor binding using autoradiography in BA 9 from people with MRDS, non-MRDS and controls. We also measured binding in BA 10 as our gene expression study indicated that BA 10 is disproportionally affected by the molecular pathology of schizophrenia. As expected, due to case-selection criteria, [3H]pirenzepine binding to the M1 receptor was lower in BA 9 and BA 10 from people with MRDS, although more profound in BA 10. [3H]kainate receptor binding was lower only in BA 9 from people with MRDS, while [3H]AMPA and [3H]NMDA receptor binding was not altered in either region. Muscarinic M1 receptors and kainate receptors are both located on glutamatergic pyramidal neurons so a perturbation in both receptors could indicate altered excitatory neurotransmission in BA 9 from people with MRDS.
Collapse
Affiliation(s)
- Megan Snelleksz
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
46
|
Hagenauer MH, Sannah Y, Hebda-Bauer EK, Rhoads C, O'Connor AM, Flandreau E, Watson SJ, Akil H. Resource: A curated database of brain-related functional gene sets (Brain.GMT). MethodsX 2024; 13:102788. [PMID: 39049932 PMCID: PMC11267058 DOI: 10.1016/j.mex.2024.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
Transcriptional profiling has become a common tool for investigating the nervous system. During analysis, differential expression results are often compared to functional ontology databases, which contain curated gene sets representing well-studied pathways. This dependence can cause neuroscience studies to be interpreted in terms of functional pathways documented in better studied tissues (e.g., liver) and topics (e.g., cancer), and systematically emphasizes well-studied genes, leaving other findings in the obscurity of the brain "ignorome". To address this issue, we compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types ("Brain.GMT") that can be used within common analysis pipelines (GSEA, limma, edgeR) to interpret results from three species (rat, mouse, human). Brain.GMT includes brain-related gene sets curated from the Molecular Signatures Database (MSigDB) and extracted from public databases (GeneWeaver, Gemma, DropViz, BrainInABlender, HippoSeq) and published studies containing differential expression results. Although Brain.GMT is still undergoing development and currently only represents a fraction of available brain gene sets, "brain ignorome" genes are already better represented than in traditional Gene Ontology databases. Moreover, Brain.GMT substantially improves the quantity and quality of gene sets identified as enriched with differential expression in neuroscience studies, enhancing interpretation. •We compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types ("Brain.GMT").•Brain.GMT can be used within common analysis pipelines (GSEA, limma, edgeR) to interpret neuroscience transcriptional profiling results from three species (rat, mouse, human).•Although Brain.GMT is still undergoing development, it substantially improved the interpretation of differential expression results within our initial use cases.
Collapse
Affiliation(s)
- Megan H. Hagenauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yusra Sannah
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Cosette Rhoads
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
- National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela M. O'Connor
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Stanley J. Watson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
Walker EF, Aberizk K, Yuan E, Bilgrami Z, Ku BS, Guest RM. Developmental perspectives on the origins of psychotic disorders: The need for a transdiagnostic approach. Dev Psychopathol 2024; 36:2559-2569. [PMID: 38406831 PMCID: PMC11345878 DOI: 10.1017/s0954579424000397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Research on serious mental disorders, particularly psychosis, has revealed highly variable symptom profiles and developmental trajectories prior to illness-onset. As Dante Cicchetti pointed out decades before the term "transdiagnostic" was widely used, the pathways to psychopathology emerge in a system involving equifinality and multifinality. Like most other psychological disorders, psychosis is associated with multiple domains of risk factors, both genetic and environmental, and there are many transdiagnostic developmental pathways that can lead to psychotic syndromes. In this article, we discuss our current understanding of heterogeneity in the etiology of psychosis and its implications for approaches to conceptualizing etiology and research. We highlight the need for examining risk factors at multiple levels and to increase the emphasis on transdiagnostic developmental trajectories as a key variable associated with etiologic subtypes. This will be increasingly feasible now that large, longitudinal datasets are becoming available and researchers have access to more sophisticated analytic tools, such as machine learning, which can identify more homogenous subtypes with the ultimate goal of enhancing options for treatment and preventive intervention.
Collapse
Affiliation(s)
- Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Emerald Yuan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Zarina Bilgrami
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan M Guest
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
48
|
Breen MS, Tao R, Yang A, Wang X, Amini P, de Los Santos MR, Brandtjen AC, Deep-Soboslay A, Kaye WH, Hyde TM, Kleinman JE, Buxbaum JD, Grice DE. Convergent molecular signatures across eating disorders and obsessive-compulsive disorder in the human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.27.24318078. [PMID: 39649579 PMCID: PMC11623724 DOI: 10.1101/2024.11.27.24318078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Eating disorders (ED) and obsessive-compulsive disorder (OCD) exhibit significant clinical and genetic overlap, yet their shared molecular mechanisms remain unclear. We conducted a transcriptomic investigation of the dorsolateral prefrontal cortex (DLPFC) and caudate from 86 controls, 57 ED, and 27 OCD cases. ED was associated with robust differentially expressed genes (DEGs): 102 DEGs the DLPFC and 222 in the caudate (FDR < 1%) and replicated in an independent cohort. For OCD, no DEGs reached significance; however, meta-analysis with extant data identified 57 DEGs in the caudate. High concordance in transcriptomic changes was observed between ED and OCD in both regions (DLPFC r=0.67, caudate r=0.75). A combined ED+OCD analysis uncovered 233 DEGs in the DLPFC and 816 in the caudate, implicating disrupted GABAergic neuron function, neuroendocrine pathways, metabolism, and synaptic processes. Genetically regulated expression analysis identified nine genes with strong evidence for increasing ED risk, further validating these pathways. These findings reveal a shared molecular basis for ED and OCD, offering new insights into their pathobiology and potential therapeutic targets.
Collapse
Affiliation(s)
- Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ran Tao
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Andy Yang
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuran Wang
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pardis Amini
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Rodriguez de Los Santos
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Walter H Kaye
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- The Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dorothy E Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Tics, OCD and Related Disorders, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
49
|
Mu C, Liu P, Liu L, Wang Y, Liu K, Li X, Li G, Cheng J, Bu M, Chen H, Tang M, Yao Y, Guan J, Ma T, Zhou Z, Wu Q, Li J, Guo H, Xia K, Hu Z, Peng X, Lang B, Li F, Chen XW, Xu Z, Yuan L. KCTD10 p.C124W variant contributes to schizophrenia by attenuating LLPS-mediated synapse formation. Proc Natl Acad Sci U S A 2024; 121:e2400464121. [PMID: 39565307 PMCID: PMC11621769 DOI: 10.1073/pnas.2400464121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
KCTD10, a member of the potassium channel tetramerization domain (KCTD) family, is implicated in neuropsychiatric disorders and functions as a substrate recognition component within the RING-type ubiquitin ligase complex. A rare de novo variant of KCTD10, p.C124W, was identified in schizophrenia cases, yet its underlying pathogenesis remains unexplored. Here, we demonstrate that heterozygous KCTD10 C124W mice display pronounced synaptic abnormalities and exhibit schizophrenia-like behaviors. Mechanistically, we reveal that KCTD10 undergoes liquid-liquid phase separation (LLPS), a process orchestrated by its intrinsically disordered region (IDR). p.C124W mutation disrupts this LLPS capability, leading to diminished degradation of RHOB and subsequent excessive accumulation in the postsynaptic density fractions. Notably, neither IDR deletion nor p.C124W mutation in KCTD10 mitigates the synaptic abnormalities caused by Kctd10 deficiency. Thus, our findings implicate that LLPS may be associated with the pathogenesis of KCTD10-associated brain disorders and highlight the potential of targeting RHOB as a therapeutic strategy for diseases linked to mutations in KCTD10 or RHOB.
Collapse
Affiliation(s)
- Chenjun Mu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Pan Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Liang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing100053, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Kefu Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Xiangyu Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Guozhong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Jianbo Cheng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Mengyao Bu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Han Chen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Manpei Tang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Yuanhang Yao
- Center for Life Sciences, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing100871, China
| | - Jun Guan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Tiantian Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Zhengrong Zhou
- Department of Basic Medical Sciences, Neuroscience Center, Shantou University Medical College, Shantou, Guangdong515041, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Jiada Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Hui Guo
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Kun Xia
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Zhengmao Hu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Xiaoqing Peng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan410011, China
| | - Faxiang Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Science, Central South University, Changsha, Hunan410078, China
| | - Xiao-wei Chen
- Center for Life Sciences, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing100871, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Ling Yuan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Science, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Science, Central South University, Changsha, Hunan410078, China
| |
Collapse
|
50
|
Yao G, Luo J, Li J, Feng K, Liu P, Xu Y. Functional gradient dysfunction in drug-naïve first-episode schizophrenia and its correlation with specific transcriptional patterns and treatment predictions. Psychol Med 2024:1-13. [PMID: 39552400 DOI: 10.1017/s0033291724001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND First-episode schizophrenia (FES) is a progressive psychiatric disorder influenced by genetics, environmental factors, and brain function. The functional gradient deficits of drug-naïve FES and its relationship to gene expression profiles and treatment outcomes are unknown. METHODS In this study, we engaged a cohort of 116 FES and 100 healthy controls (HC), aged 7 to 30 years, including 15 FES over an 8-week antipsychotic medication regimen. Our examination focused on primary-to-transmodal alterations in voxel-based connection gradients in FES. Then, we employed network topology, Neurosynth, postmortem gene expression, and support vector regression to evaluate integration and segregation functions, meta-analytic cognitive terms, transcriptional patterns, and treatment predictions. RESULTS FES displayed diminished global connectome gradients (Cohen's d = 0.32-0.57) correlated with compensatory integration and segregation functions (Cohen's d = 0.31-0.36). Predominant alterations were observed in the default (67.6%) and sensorimotor (21.9%) network, related to high-order cognitive functions. Furthermore, we identified notable overlaps between partial least squares (PLS1) weighted genes and dysregulated genes in other psychiatric conditions. Genes linked with gradient alterations were enriched in synaptic signaling, neurodevelopment process, specific astrocytes, cortical layers (layer II and IV), and developmental phases from late/mid fetal to young adulthood. Additionally, the onset age influenced the severity of FES, with discernible differences in connection gradients between minor- and adult-FES. Moreover, the connectivity gradients of FES at baseline significantly predicted treatment outcomes. CONCLUSIONS These results offer significant theoretical foundations for elucidating the intricate interplay between macroscopic functional connection gradient changes and microscopic transcriptional patterns during the onset and progression of FES.
Collapse
Affiliation(s)
- Guanqun Yao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Luo
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- College of Humanities and Social Science, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kun Feng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, 100040, China
| | - Pozi Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, 100040, China
| | - Yong Xu
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518031, China
| |
Collapse
|