1
|
Terry JCD, Rossberg AG. Slower but deeper community change: Intrinsic dynamics regulate anthropogenic impacts on species temporal turnover. Ecology 2024; 105:e4430. [PMID: 39358999 DOI: 10.1002/ecy.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 10/04/2024]
Abstract
Understanding the mechanisms behind biodiversity dynamics is central to assessing and forecasting anthropogenic impacts on ecological communities. However, the manner in which external environmental drivers act in concert with intrinsic ecological processes to influence local temporal turnover is currently largely unexplored. Here, we determine how human impacts affect multiple metrics of bird community turnover to establish the ecological mechanisms behind compositional change. We used US Breeding Bird Survey data to calculate transect-level rates of three measures of temporal species turnover: (1) "short-term" (initial rate of decline of Sørensen similarity), (2) "long-term" (asymptotic Sørensen similarity), and (3) "throughput" (overall species accumulation rate from species-time relationship exponents) over 2692 transects across 27 regional habitat types. We then hierarchically fit linear models to estimate the effect of anthropogenic impact on these turnover metrics, using the Human Modification Index proxy, while accounting for observed species richness, the size of the species pool, and annual environmental variability. We found broadly consistent impacts of increased anthropogenic pressures across diverse habitat types. The Human Modification Index was associated with greater turnover at long timescales, but marginally slower short-term turnover. The species "throughput" (accumulation rate) was not notably influenced. Examining anthropogenic impacts on different aspects of species turnover in combination allows greater ecological insight. Observed human impacts on short-term turnover were the opposite of existing expectations and suggest humans are disrupting the background turnover of these systems, rather than simply driving rapid directed turnover. The increased long-term turnover without concurrent increases in species accumulation implies human impacts lead to shifts in species occurrence frequency rather than simply greater arrival of "new" species. These results highlight the role of intrinsic dynamics and caution against simple interpretations of increased species turnover as reflections of environmental change.
Collapse
Affiliation(s)
- J Christopher D Terry
- Department of Biology, University of Oxford, Oxford, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Axel G Rossberg
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Bae MJ, Hwang Y, Ham SN, Kim SY, Kim EJ. Community recovery of benthic macroinvertebrates in a stream influenced by mining activity: Importance of microhabitat monitoring. ENVIRONMENTAL RESEARCH 2023; 234:116499. [PMID: 37429394 DOI: 10.1016/j.envres.2023.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
The decrease in freshwater biodiversity owing to anthropogenic disturbances such as mining activity is a global challenge; hence, there is an urgent need for systematic approaches to continuously monitor such disturbances and/or the recovery of biodiversity in freshwater habitats. The Hwangjicheon Stream is the source of South Korea's longest river and has been subjected to runoff from coal mining. We investigated changes in the diversity of the benthic macroinvertebrate community in various microhabitats, including riffle, run, and pool, to monitor the recovery of biodiversity in the stream following the improvement of a mining water treatment plant in 2019. The dataset comprised 111 samples obtained from four types of microhabitats (riffle, run, pool, and riparian) over a four-year period from 2018 to 2021. The mining-affected sites had lower macroinvertebrate community complexities according to a network analysis, and grouped into the same cluster based on self-organizing map (SOM) analysis. Moreover, 51 taxa selected as indicator species represented each cluster obtained through the SOM analysis. Among them, only Limnodrilus gotoi and Radix auricularia were included as indicator species at the mining-affected sites. However, after 2020, the benthic macroinvertebrate community complexity increased, and some of the microhabitats at the mining-affected sites were included in the same cluster as the reference sites in the SOM analysis, indicating that the recovery of benthic macroinvertebrate communities had initiated in certain microhabitats (e.g., riparian). Further analysis confirmed that the macroinvertebrate community clearly differed according to the survey year, even in different microhabitats at the same sites. This suggests that more acute microhabitat monitoring may be necessary to quickly confirm biodiversity restoration when assessing the degree of the recovery in river biodiversity from anthropogenic disturbances.
Collapse
Affiliation(s)
- Mi-Jung Bae
- Freshwater Biodiversity Research Bureau, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, 37242, South Korea.
| | - Yong Hwang
- Freshwater Biodiversity Research Bureau, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, 37242, South Korea
| | - Seong-Nam Ham
- Freshwater Biodiversity Research Bureau, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, 37242, South Korea
| | - Sun-Yu Kim
- Freshwater Biodiversity Research Bureau, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, 37242, South Korea
| | - Eui-Jin Kim
- Freshwater Biodiversity Research Bureau, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, 37242, South Korea.
| |
Collapse
|
3
|
Avolio ML, Komatsu KJ, Koerner SE, Grman E, Isbell F, Johnson DS, Wilcox KR, Alatalo JM, Baldwin AH, Beierkuhnlein C, Britton AJ, Foster BL, Harmens H, Kern CC, Li W, McLaren JR, Reich PB, Souza L, Yu Q, Zhang Y. Making sense of multivariate community responses in global change experiments. Ecosphere 2022. [DOI: 10.1002/ecs2.4249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Meghan L. Avolio
- Department of Earth and Planetary Sciences Johns Hopkins University Baltimore Maryland USA
| | | | - Sally E. Koerner
- Department of Biology University of North Carolina Greensboro Greensboro North Carolina USA
| | - Emily Grman
- Department of Biology Eastern Michigan University Ypsilanti Michigan USA
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota USA
| | - David S. Johnson
- Virginia Institute of Marine Science William & Mary Gloucester Point Virginia USA
| | - Kevin R. Wilcox
- Department of Ecosystem Science and Management University of Wyoming Laramie Wyoming USA
| | | | - Andrew H. Baldwin
- Department of Environmental Science and Technology University of Maryland College Park Maryland USA
| | | | | | - Bryan L. Foster
- Kansas Biological Survey & Center for Ecological Research, Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas USA
| | - Harry Harmens
- UK Centre for Ecology & Hydrology, Environment Centre Wales Bangor UK
| | - Christel C. Kern
- USDA Forest Service, Northern Research Station Rhinelander Wisconsin USA
| | - Wei Li
- Institute of Soil and Water Conservation Northwest A&F University Yangling China
| | - Jennie R. McLaren
- Department of Biological Sciences University of Texas at El Paso El Paso Texas USA
| | - Peter B. Reich
- Department of Forest Resources, University of Minnestoa and Institute for Global Change Biology University of Michigan St. Paul Minnesota USA
- Institute for Global Change Biology and School for Environment and Sustainability University of Michigan Ann Arbor Michigan USA
- Hawkesbury Institute for the Environment, Western Sydney University New South Wales Australia
| | - Lara Souza
- Oklahoma Biological Survey & Department of Microbiology and Plant Biology University of Oklahoma Norman Oklahoma USA
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
| |
Collapse
|
4
|
Lüttgert L, Heisterkamp S, Jansen F, Klenke R, Kreft K, Seidler G, Bruelheide H. Repeated habitat mapping data reveal gains and losses of plant species. Ecosphere 2022. [DOI: 10.1002/ecs2.4244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Lina Lüttgert
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle‐Wittenberg Halle Germany
| | - Samuel Heisterkamp
- Ministry of Environment, Climate, Energy and Agriculture (BUKEA) Hamburg Germany
| | - Florian Jansen
- Faculty of Agricultural and Environmental Sciences University of Rostock Rostock Germany
| | - Reinhard Klenke
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle‐Wittenberg Halle Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | | | - Gunnar Seidler
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle‐Wittenberg Halle Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle‐Wittenberg Halle Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| |
Collapse
|
5
|
Selvaraj Ramesh Kumar, P.R. Arun, A. Mohamed Samsoor Ali. Effects of wind farm on land bird composition at Kachchh District, Gujarat, India. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.4793.14.9.21826-21835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bird assemblages in wind farm areas tend to change during the construction and operational phases, causing significant impacts in addition to collision mortality. Most existing studies on this issue are reported from North America and Europe, and it is largely under reported in Asian countries. We assessed patterns of bird assemblage in a wind farm and control areas in Kachchh, India, from October 2012 to May 2014, using point count method (79 sampling points with a 50 m radius). We recorded 54 species of land birds, mainly passerines. Species richness and diversity were higher in the control site, and the abundance of most passerine species was lower in the wind farm area, although the abundance of larks and wheatears was higher in the wind farm areas. Species composition was significantly different in both the sites. This difference is attributed to the presence of wind turbines and a difference in land use pattern.
Collapse
|
6
|
Richness, not evenness, varies across water availability gradients in grassy biomes on five continents. Oecologia 2022; 199:649-659. [PMID: 35833986 DOI: 10.1007/s00442-022-05208-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
We sought to understand the role that water availability (expressed as an aridity index) plays in determining regional and global patterns of richness and evenness, and in turn how these water availability-diversity relationships may result in different richness-evenness relationships at regional and global scales. We examined relationships between water availability, richness and evenness for eight grassy biomes spanning broad water availability gradients on five continents. Our study found that relationships between richness and water availability switched from positive for drier (South Africa, Tibet and USA) vs. negative for wetter (India) biomes, though were not significant for the remaining biomes. In contrast, only the India biome showed a significant relationship between water availability and evenness, which was negative. Globally, the richness-water availability relationship was hump-shaped, however, not significant for evenness. At the regional scale, a positive richness-evenness relationship was found for grassy biomes in India and Inner Mongolia, China. In contrast, this relationship was weakly concave-up globally. These results suggest that different, independent factors are determining patterns of species richness and evenness in grassy biomes, resulting in differing richness-evenness relationships at regional and global scales. As a consequence, richness and evenness may respond very differently across spatial gradients to anthropogenic changes, such as climate change.
Collapse
|
7
|
Avolio ML, Komatsu KJ, Collins SL, Grman E, Koerner SE, Tredennick AT, Wilcox KR, Baer S, Boughton EH, Britton AJ, Foster B, Gough L, Hovenden M, Isbell F, Jentsch A, Johnson DS, Knapp AK, Kreyling J, Langley JA, Lortie C, McCulley RL, McLaren JR, Reich PB, Seabloom EW, Smith MD, Suding KN, Suttle KB, Tognetti PM. Determinants of community compositional change are equally affected by global change. Ecol Lett 2021; 24:1892-1904. [PMID: 34170615 DOI: 10.1111/ele.13824] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/21/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
Global change is impacting plant community composition, but the mechanisms underlying these changes are unclear. Using a dataset of 58 global change experiments, we tested the five fundamental mechanisms of community change: changes in evenness and richness, reordering, species gains and losses. We found 71% of communities were impacted by global change treatments, and 88% of communities that were exposed to two or more global change drivers were impacted. Further, all mechanisms of change were equally likely to be affected by global change treatments-species losses and changes in richness were just as common as species gains and reordering. We also found no evidence of a progression of community changes, for example, reordering and changes in evenness did not precede species gains and losses. We demonstrate that all processes underlying plant community composition changes are equally affected by treatments and often occur simultaneously, necessitating a wholistic approach to quantifying community changes.
Collapse
Affiliation(s)
- Meghan L Avolio
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kimberly J Komatsu
- Smithsonian Environmental Research Center, Smithsonian Institution, Edgewater, MD, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Emily Grman
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Sally E Koerner
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Andrew T Tredennick
- Department of Statistics, Western EcoSystems Technology, Inc, Laramie, WY, USA
| | - Kevin R Wilcox
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, USA
| | - Sara Baer
- Kansas Biological Survey and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | | | | | - Bryan Foster
- Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, KS, USA
| | - Laura Gough
- Department of Biological Sciences, Towson University, Towson, MD, USA
| | - Mark Hovenden
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Anke Jentsch
- Department of Disturbance Ecology, University of Bayreuth, Center of Ecology and Environmental Research (BayCEER), Bayreuth, Germany
| | - David S Johnson
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - Alan K Knapp
- Department of Biology, Colorado State University, Fort Collins, CO, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Juergen Kreyling
- Experimental Plant Ecology, Institute for Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - J Adam Langley
- Department of Biology, Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| | - Christopher Lortie
- The National Center for Ecological Analysis and Synthesis, UCSB, Santa Barbara, CA, USA
| | - Rebecca L McCulley
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Jennie R McLaren
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Peter B Reich
- Department Forest Resources, University of Minnesota, Saint Paul, MN, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, CO, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - K Blake Suttle
- Angelo Coast Range Reserve, University of California Natural Reserve System, Branscomb, CA, USA
| | - Pedro M Tognetti
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
8
|
Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, Winemiller KO, Ripple WJ. Scientists' warning to humanity on the freshwater biodiversity crisis. AMBIO 2021; 50:85-94. [PMID: 32040746 PMCID: PMC7708569 DOI: 10.1007/s13280-020-01318-8] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 05/20/2023]
Abstract
Freshwater ecosystems provide irreplaceable services for both nature and society. The quality and quantity of freshwater affect biogeochemical processes and ecological dynamics that determine biodiversity, ecosystem productivity, and human health and welfare at local, regional and global scales. Freshwater ecosystems and their associated riparian habitats are amongst the most biologically diverse on Earth, and have inestimable economic, health, cultural, scientific and educational values. Yet human impacts to lakes, rivers, streams, wetlands and groundwater are dramatically reducing biodiversity and robbing critical natural resources and services from current and future generations. Freshwater biodiversity is declining rapidly on every continent and in every major river basin on Earth, and this degradation is occurring more rapidly than in terrestrial ecosystems. Currently, about one third of all global freshwater discharges pass through human agricultural, industrial or urban infrastructure. About one fifth of the Earth's arable land is now already equipped for irrigation, including all the most productive lands, and this proportion is projected to surpass one third by midcentury to feed the rapidly expanding populations of humans and commensal species, especially poultry and ruminant livestock. Less than one fifth of the world's preindustrial freshwater wetlands remain, and this proportion is projected to decline to under one tenth by midcentury, with imminent threats from water transfer megaprojects in Brazil and India, and coastal wetland drainage megaprojects in China. The Living Planet Index for freshwater vertebrate populations has declined to just one third that of 1970, and is projected to sink below one fifth by midcentury. A linear model of global economic expansion yields the chilling prediction that human utilization of critical freshwater resources will approach one half of the Earth's total capacity by midcentury. Although the magnitude and growth of the human freshwater footprint are greater than is generally understood by policy makers, the news media, or the general public, slowing and reversing dramatic losses of freshwater species and ecosystems is still possible. We recommend a set of urgent policy actions that promote clean water, conserve watershed services, and restore freshwater ecosystems and their vital services. Effective management of freshwater resources and ecosystems must be ranked amongst humanity's highest priorities.
Collapse
Affiliation(s)
- James S. Albert
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503 USA
| | - Georgia Destouni
- Department of Physical Geography, Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| | | | - Anne E. Magurran
- Centre for Biological Diversity, University of St Andrews, St Andrews, KY16 UK
| | - Thierry Oberdorff
- UMR5174 EDB (Laboratoire Evolution et Diversité Biologique), CNRS, IRD, UPS, Université Paul Sabatier, 31062 Toulouse, France
| | - Roberto E. Reis
- Department of Biodiversity and Ecology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900 Brazil
| | - Kirk O. Winemiller
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843 USA
| | - William J. Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97330 USA
| |
Collapse
|
9
|
Pandolfi JM, Staples TL, Kiessling W. Increased extinction in the emergence of novel ecological communities. Science 2020; 370:220-222. [DOI: 10.1126/science.abb3996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
Affiliation(s)
- John M. Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Timothy L. Staples
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Friedrich-Alexander Universität (FAU) Erlangen‐Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Pereira P, Barceló D, Panagos P. Soil and water threats in a changing environment. ENVIRONMENTAL RESEARCH 2020; 186:109501. [PMID: 32325293 DOI: 10.1016/j.envres.2020.109501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Paulo Pereira
- Environmental Management Laboratory, Mykolas Romeris University, Vilnius, Lithuania.
| | - Damià Barceló
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICRA), Barcelona, Spain
| | - Panos Panagos
- European Commission, Joint Research Centre (JRC), I-21027, Ispra (VA), Italy.
| |
Collapse
|
11
|
Madsen B, Treier UA, Zlinszky A, Lucieer A, Normand S. Detecting shrub encroachment in seminatural grasslands using UAS LiDAR. Ecol Evol 2020; 10:4876-4902. [PMID: 32551068 PMCID: PMC7297744 DOI: 10.1002/ece3.6240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 11/11/2022] Open
Abstract
Shrub encroachment in seminatural grasslands threatens local biodiversity unless management is applied to reduce shrub density. Dense vegetation of Cytisus scoparius homogenizes the landscape negatively affecting local plant diversity. Detecting structural change (e.g., biomass) is essential for assessing negative impacts of encroachment. Hence, exploring new monitoring tools to achieve this task is important for effectively capturing change and evaluating management activities.This study combines traditional field-based measurements with novel Light Detection and Ranging (LiDAR) observations from an Unmanned Aircraft System (UAS). We investigate the accuracy of mapping C. scoparius in three dimensions (3D) and of structural change metrics (i.e., biomass) derived from ultrahigh-density point cloud data (>1,000 pts/m2). Presence-absence of 12 shrub or tree genera was recorded across a 6.7 ha seminatural grassland area in Denmark. Furthermore, 10 individuals of C. scoparius were harvested for biomass measurements. With a UAS LiDAR system, we collected ultrahigh-density spatial data across the area in October 2017 (leaf-on) and April 2018 (leaf-off). We utilized a 3D point-based classification to distinguish shrub genera based on their structural appearance (i.e., density, light penetration, and surface roughness).From the identified C. scoparius individuals, we related different volume metrics (mean, max, and range) to measured biomass and quantified spatial variation in biomass change from 2017 to 2018. We obtained overall classification accuracies above 86% from point clouds of both seasons. Maximum volume explained 77.4% of the variation in biomass.The spatial patterns revealed landscape-scale variation in biomass change between autumn 2017 and spring 2018, with a notable decrease in some areas. Further studies are needed to disentangle the causes of the observed decrease, for example, recent winter grazing and/or frost events. Synthesis and applications: We present a workflow for processing ultrahigh-density spatial data obtained from a UAS LiDAR system to detect change in C. scoparius. We demonstrate that UAS LiDAR is a promising tool to map and monitor grassland shrub dynamics at the landscape scale with the accuracy needed for effective nature management. It is a new tool for standardized and nonbiased evaluation of management activities initiated to prevent shrub encroachment.
Collapse
Affiliation(s)
- Bjarke Madsen
- Section for Ecoinformatics & BiodiversityCenter for Biodiversity Dynamics in a Changing WorldDepartment of BiologyAarhus UniversityAarhus CDenmark
| | - Urs A. Treier
- Section for Ecoinformatics & BiodiversityCenter for Biodiversity Dynamics in a Changing WorldDepartment of BiologyAarhus UniversityAarhus CDenmark
| | - András Zlinszky
- Section for Ecoinformatics & BiodiversityCenter for Biodiversity Dynamics in a Changing WorldDepartment of BiologyAarhus UniversityAarhus CDenmark
- MTA Centre for Ecological ResearchTihanyHungary
| | - Arko Lucieer
- Discipline of Geography and Spatial SciencesUniversity of TasmaniaHobartAustralia
| | - Signe Normand
- Section for Ecoinformatics & BiodiversityCenter for Biodiversity Dynamics in a Changing WorldDepartment of BiologyAarhus UniversityAarhus CDenmark
| |
Collapse
|
12
|
Opedal ØH, von Numers M, Tikhonov G, Ovaskainen O. Refining predictions of metacommunity dynamics by modeling species non-independence. Ecology 2020; 101:e03067. [PMID: 32299146 DOI: 10.1002/ecy.3067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/12/2020] [Accepted: 03/16/2020] [Indexed: 11/10/2022]
Abstract
Predicting the dynamics of biotic communities is difficult because species' environmental responses are not independent, but covary due to shared or contrasting ecological strategies and the influence of species interactions. We used latent-variable joint species distribution models to analyze paired historical and contemporary inventories of 585 vascular plant species on 471 islands in the southwest Finnish archipelago. Larger, more heterogeneous islands were characterized by higher colonization rates and lower extinction rates. Ecological and taxonomical species groups explained small but detectable proportions of variance in species' environmental responses. To assess the potential influence of species interactions on community dynamics, we estimated species associations as species-to-species residual correlations for historical occurrences, for colorizations, and for extinctions. Historical species associations could to some extent predict joint colonization patterns, but the overall estimated influence of species associations on community dynamics was weak. These results illustrate the benefits of considering metacommunity dynamics within a joint framework, but also suggest that any influence of species interactions on community dynamics may be hard to detect from observational data.
Collapse
Affiliation(s)
- Øystein H Opedal
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mikael von Numers
- Department of Biosciences, Environmental and Marine Biology, Åbo Akademi University, Åbo, FI-20520, Finland
| | - Gleb Tikhonov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Lennox RJ, Bravener GA, Lin HY, Madenjian CP, Muir AM, Remucal CK, Robinson KF, Rous AM, Siefkes MJ, Wilkie MP, Zielinski DP, Cooke SJ. Potential changes to the biology and challenges to the management of invasive sea lamprey Petromyzon marinus in the Laurentian Great Lakes due to climate change. GLOBAL CHANGE BIOLOGY 2020; 26:1118-1137. [PMID: 31833135 DOI: 10.1111/gcb.14957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Control programs are implemented to mitigate the damage caused by invasive species worldwide. In the highly invaded Great Lakes, the climate is expected to become warmer with more extreme weather and variable precipitation, resulting in shorter iced-over periods and variable tributary flows as well as changes to pH and river hydrology and hydrogeomorphology. We review how climate change influences physiology, behavior, and demography of a damaging invasive species, sea lamprey (Petromyzon marinus), in the Great Lakes, and the consequences for sea lamprey control efforts. Sea lamprey control relies on surveys to monitor abundance of larval sea lamprey in Great Lakes tributaries. The abundance of parasitic, juvenile sea lampreys in the lakes is calculated by surveying wounding rates on lake trout (Salvelinus namaycush), and trap surveys are used to enumerate adult spawning runs. Chemical control using lampricides (i.e., lamprey pesticides) to target larval sea lamprey and barriers to prevent adult lamprey from reaching spawning grounds are the most important tools used for sea lamprey population control. We describe how climate change could affect larval survival in rivers, growth and maturation in lakes, phenology and the spawning migration as adults return to rivers, and the overall abundance and distribution of sea lamprey in the Great Lakes. Our review suggests that Great Lakes sea lamprey may benefit from climate change with longer growing seasons, more rapid growth, and greater access to spawning habitat, but uncertainties remain about the future availability and suitability of larval habitats. Consideration of the biology of invasive species and adaptation of the timing, intensity, and frequency of control efforts is critical to the management of biological invasions in a changing world, such as sea lamprey in the Great Lakes.
Collapse
Affiliation(s)
- Robert J Lennox
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Gale A Bravener
- Fisheries and Oceans Canada, Sea Lamprey Control Centre, Sault Ste. Marie, Ontario, Canada
| | - Hsien-Yung Lin
- Quantitative Fisheries Center, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | | | | | - Christina K Remucal
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelly F Robinson
- Quantitative Fisheries Center, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Andrew M Rous
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada
| | | | - Michael P Wilkie
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | | | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
14
|
Wolff BA, Duggan SB, Clements WH. Resilience and regime shifts: Do novel communities impede ecological recovery in a historically metal‐contaminated stream? J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Brian A. Wolff
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado
| | - Sam B. Duggan
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado
| | - William H. Clements
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado
| |
Collapse
|
15
|
dos Santos AA, Gonçalves WN. Improving Pantanal fish species recognition through taxonomic ranks in convolutional neural networks. ECOL INFORM 2019. [DOI: 10.1016/j.ecoinf.2019.100977] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Wang X, Hua F, Wang L, Wilcove DS, Yu DW. The biodiversity benefit of native forests and mixed‐species plantations over monoculture plantations. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12972] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Xiaoyang Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
- Kunming College of Life Sciences University of Chinese Academy of Sciences Kunming China
| | - Fangyuan Hua
- Conservation Science Group, Department of Zoology University of Cambridge Cambridge UK
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
| | - David S. Wilcove
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA
- Program in Science, Technology and Environmental Policy, School of Public and International Affairs Princeton University Princeton NJ USA
| | - Douglas W. Yu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
- School of Biological Sciences University of East Anglia, Norwich Research Park Norwich UK
| |
Collapse
|
17
|
Ploughe LW, Jacobs EM, Frank GS, Greenler SM, Smith MD, Dukes JS. Community Response to Extreme Drought (CRED): a framework for drought-induced shifts in plant-plant interactions. THE NEW PHYTOLOGIST 2019; 222:52-69. [PMID: 30449035 DOI: 10.1111/nph.15595] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Contents Summary 52 I. Introduction 52 II. The Community Response to Extreme Drought (CRED) framework 55 III. Post-drought rewetting rates: system and community recovery 61 IV. Site-specific characteristics influencing community resistance and resilience 63 V. Conclusions 64 Acknowledgements 65 References 66 SUMMARY: As climate changes, many regions of the world are projected to experience more intense droughts, which can drive changes in plant community composition through a variety of mechanisms. During drought, community composition can respond directly to resource limitation, but biotic interactions modify the availability of these resources. Here, we develop the Community Response to Extreme Drought framework (CRED), which organizes the temporal progression of mechanisms and plant-plant interactions that may lead to community changes during and after a drought. The CRED framework applies some principles of the stress gradient hypothesis (SGH), which proposes that the balance between competition and facilitation changes with increasing stress. The CRED framework suggests that net biotic interactions (NBI), the relative frequency and intensity of facilitative (+) and competitive (-) interactions between plants, will change temporally, becoming more positive under increasing drought stress and more negative as drought stress decreases. Furthermore, we suggest that rewetting rates affect the rate of resource amelioration, specifically water and nitrogen, altering productivity responses and the intensity and importance of NBI, all of which will influence drought-induced compositional changes. System-specific variables and the intensity of drought influence the strength of these interactions, and ultimately the system's resistance and resilience to drought.
Collapse
Affiliation(s)
- Laura W Ploughe
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
| | - Elin M Jacobs
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| | - Graham S Frank
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| | - Skye M Greenler
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| | - Melinda D Smith
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, 251 W. Pitkin St., Fort Collins, CO, 80523, USA
| | - Jeffrey S Dukes
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| |
Collapse
|
18
|
Changes in species richness and composition of boreal waterbird communities: a comparison between two time periods 25 years apart. Sci Rep 2019; 9:1725. [PMID: 30741959 PMCID: PMC6370776 DOI: 10.1038/s41598-018-38167-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/21/2018] [Indexed: 11/29/2022] Open
Abstract
Global measures of biodiversity indicate consistent decline, but trends reported for local communities are more varied. Therefore, we need better understanding of mechanisms that drive changes in diversity of local communities and of differences in temporal trends between components of local diversity, such as species richness and species turnover rate. Freshwater ecosystems are vulnerable to multiple stressors, and severe impacts on their biodiversity have been documented. We studied species richness and composition of local boreal waterbird communities in 1990/1991 and 2016 at 58 lakes distributed over six regions in Finland and Sweden. The study lakes represented not only local trophic gradients but also a latitudinal gradient in the boreal biome. While species richness tended to be lower in 2016 than in 1990/1991, species turnover was relatively high. Within foraging guilds, local species richness of diving ducks and surface feeding waterbirds decreased, whereas that of large herbivores increased. The number of species gained in local communities was higher in lakes with rich vegetation than in lakes with sparse vegetation. Conservation of boreal freshwater ecosystems would benefit from recognizing that large-scale environmental changes can affect local diversity via processes operating at finer scales.
Collapse
|
19
|
Opedal ØH, Albertsen E, Pérez-Barrales R, Armbruster WS, Pélabon C. No evidence that seed predators constrain pollinator-mediated trait evolution in a tropical vine. AMERICAN JOURNAL OF BOTANY 2019; 106:145-153. [PMID: 30625241 DOI: 10.1002/ajb2.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Turnover in biotic communities across heterogeneous landscapes is expected to lead to variation in interactions among plants, their mutualists, and their antagonists. Across a fragmented landscape in northern Costa Rica, populations of the euphorb vine Dalechampia scandens vary widely in mating systems and associated blossom traits. Previous work suggested that populations are well adapted to the local reliability of pollination by apid and megachilid bees. We tested whether variation in the intensity of predispersal seed predation by seed weevils in the genus Nanobaris also contributes to the observed variation in blossom traits. METHODS We studied spatiotemporal variation in the relationships between floral advertisement and the probability of seed predation within three focal populations. Then we assessed among-population covariation of predation rate, pollination reliability, mating system, and blossom traits across 20 populations. KEY RESULTS The probability of seed predation was largely unrelated to variation in floral advertisement both within focal populations and among the larger sample of populations. The rate of seed predation was only weakly associated with the rate of cross-pollination (allogamy) in each population but tended to be proportionally greater in populations experiencing less reliable pollination. CONCLUSIONS These results suggest that geographic variation in the intensity of antagonistic interactions have had only minor modifying effects on the evolutionary trajectories of floral advertisement in plant populations in this system. Thus, pollinator-driven floral trait evolution in D. scandens in the study area appears not to be influenced by conflicting seed-predator-mediated selection.
Collapse
Affiliation(s)
- Øystein H Opedal
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Elena Albertsen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Rocío Pérez-Barrales
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| | - Christophe Pélabon
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| |
Collapse
|
20
|
|
21
|
D'Souza ML, Hebert PDN. Stable baselines of temporal turnover underlie high beta diversity in tropical arthropod communities. Mol Ecol 2018; 27:2447-2460. [DOI: 10.1111/mec.14693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Michelle L. D'Souza
- Centre for Biodiversity Genomics; University of Guelph; Guelph ON Canada
- Department of Integrative Biology; College of Biological Science; University of Guelph; Guelph ON Canada
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics; University of Guelph; Guelph ON Canada
- Department of Integrative Biology; College of Biological Science; University of Guelph; Guelph ON Canada
| |
Collapse
|
22
|
Barceló C, Ciannelli L, Brodeur RD. Pelagic marine refugia and climatically sensitive areas in an eastern boundary current upwelling system. GLOBAL CHANGE BIOLOGY 2018; 24:668-680. [PMID: 28787756 DOI: 10.1111/gcb.13857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Refugia are areas relatively buffered from contemporary climate change that enable the persistence of valued physical, ecological, or sociocultural resources. Spatially identifying refugia is important for conservation and applied management. Yet the concept of refugia has not been broadly extended to marine ecosystems. Here, we analyze data from a unique and long-term (1999-2015) standardized survey of pelagic marine and anadromous species off Oregon and Washington in the northern California Current to identify such refugia. We use quantitative approaches to assess locations with high species richness and community persistence relative to local and basin-scale environmental fluctuations. We have identified a potential climate change refugial zone along the continental shelf of Washington State in the Northeastern Pacific Ocean, characterized by a species-rich community with low interannual temporal community change. This region contrasts with adjacent areas to the south and offshore that have lower species richness, and higher temporal species community change. Also, using spatially variant generalized additive mixed models, we identify areas with species compositions that are more influenced by basin-scale climatic fluctuations than others. We propose that upwelling regions with retentive topographic features, such as wide continental shelves, can function as marine refugia for pelagic fauna, whereas offshore locations are potentially more climatically sensitive and experience high temporal change in species composition. Further identification of these marine refugia using in situ data for pelagic biodiversity and climatically sensitive areas can help guide management in the face of inevitable climatically driven change.
Collapse
Affiliation(s)
- Caren Barceló
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Lorenzo Ciannelli
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Richard D Brodeur
- Fish Ecology Division, Northwest Fisheries Science Center, NOAA Fisheries, Newport, OR, USA
| |
Collapse
|
23
|
Traditional scientific data vs. uncoordinated citizen science effort: A review of the current status and comparison of data on avifauna in Southern Brazil. PLoS One 2017; 12:e0188819. [PMID: 29228053 PMCID: PMC5724844 DOI: 10.1371/journal.pone.0188819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/14/2017] [Indexed: 11/30/2022] Open
Abstract
Data generated by citizen science is particularly valuable in ecological research. If used discerningly with data from traditional scientific references, citizen science can directly contribute to biogeography knowledge and conservation policies by increasing the number of species records in large geographic areas. Considering the current level of knowledge on south Brazilian avifauna, the large volume of data produced by uncoordinated citizen science effort (CS), and the growing need for information on changes in abundance and species composition, we have compiled an updated, general list of bird species occurrence within the state of Paraná. We have listed extinct, invasive and recently-colonizing species as well as indicator species of the state’s vegetation types. We further assess the degree of knowledge of different regions within the state based on data from traditional scientific references, and the effect of including CS data in the same analysis. We have compiled data on 766 bird species, based on 70,346 individual records from traditional scientific references, and 79,468 from CS. Extinct and invasive species were identified by comparing their occurrence and abundance over a series of three time periods. Indicator species analysis pointed to the existence of three areas with bird communities typically found within the state: the Semideciduous Tropical Forest, the Tropical Rainforest and the junction of Grassland and Araucaria Moist Forest. We used rarefaction to measure sampling sufficiency, and found that rarefaction curves reached stabilization for all vegetation types except in Savanna. We observed differences in the level of knowledge of bird biodiversity among the microregions of the state, but including CS data, these differences were mitigated. The same effect was observed in other exploratory analyzes conducted here, emphasizing the fundamental importance of including CS data in macroecological studies. Production of easily accessible data and its unrestricted availability makes CS a very important tool, especially in highly diverse regions as the Neotropics, as it can offer a more accurate picture of bird composition in comparison to the exclusive use of traditional scientific references.
Collapse
|
24
|
Hobbs RJ, Valentine LE, Standish RJ, Jackson ST. Movers and Stayers: Novel Assemblages in Changing Environments. Trends Ecol Evol 2017; 33:116-128. [PMID: 29173900 DOI: 10.1016/j.tree.2017.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/07/2017] [Accepted: 11/01/2017] [Indexed: 11/28/2022]
Abstract
Increased attention to species movement in response to environmental change highlights the need to consider changes in species distributions and altered biological assemblages. Such changes are well known from paleoecological studies, but have accelerated with ongoing pervasive human influence. In addition to species that move, some species will stay put, leading to an array of novel interactions. Species show a variety of responses that can allow movement or persistence. Conservation and restoration actions have traditionally focused on maintaining or returning species in particular places, but increasingly also include interventions that facilitate movement. Approaches are required that incorporate the fluidity of biotic assemblages into the goals set and interventions deployed.
Collapse
Affiliation(s)
- Richard J Hobbs
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| | - Leonie E Valentine
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Rachel J Standish
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Stephen T Jackson
- U.S. Geological Survey, DOI Southwest Climate Science Center, 1064 E. Lowell Street, Tucson, AZ 85721, USA; Department of Geosciences and School of Natural Resources and Environment, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
25
|
Chen Y, Shen TJ. A general framework for predicting delayed responses of ecological communities to habitat loss. Sci Rep 2017; 7:998. [PMID: 28428561 PMCID: PMC5430564 DOI: 10.1038/s41598-017-01070-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/21/2017] [Indexed: 11/27/2022] Open
Abstract
Although biodiversity crisis at different spatial scales has been well recognised, the phenomena of extinction debt and immigration credit at a crossing-scale context are, at best, unclear. Based on two community patterns, regional species abundance distribution (SAD) and spatial abundance distribution (SAAD), Kitzes and Harte (2015) presented a macroecological framework for predicting post-disturbance delayed extinction patterns in the entire ecological community. In this study, we further expand this basic framework to predict diverse time-lagged effects of habitat destruction on local communities. Specifically, our generalisation of KH’s model could address the questions that could not be answered previously: (1) How many species are subjected to delayed extinction in a local community when habitat is destructed in other areas? (2) How do rare or endemic species contribute to extinction debt or immigration credit of the local community? (3) How will species differ between two local areas? From the demonstrations using two SAD models (single-parameter lognormal and logseries), the predicted patterns of the debt, credit, and change in the fraction of unique species can vary, but with consistencies and depending on several factors. The general framework deepens the understanding of the theoretical effects of habitat loss on community dynamic patterns in local samples.
Collapse
Affiliation(s)
- Youhua Chen
- Department of Renewable Resources, University of Alberta, Edmonton, T6G 2H1, Canada. .,Lab of EcoHealth, School of Health Sciences, Wuhan University, Wuhan, 430072, P.R. China.
| | - Tsung-Jen Shen
- Institute of Statistics & Department of Applied Mathematics, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC.
| |
Collapse
|
26
|
Fisheries portfolio diversification and turnover buffer Alaskan fishing communities from abrupt resource and market changes. Nat Commun 2017; 8:14042. [PMID: 28091534 PMCID: PMC5241831 DOI: 10.1038/ncomms14042] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/22/2016] [Indexed: 11/09/2022] Open
Abstract
Abrupt shifts in natural resources and their markets are a ubiquitous challenge to human communities. Building resilient social-ecological systems requires approaches that are robust to uncertainty and to regime shifts. Harvesting diverse portfolios of natural resources and adapting portfolios in response to change could stabilize economies reliant on natural resources and their markets, both of which are prone to unpredictable shifts. Here we use fisheries catch and revenue data from Alaskan fishing communities over 34 years to test whether diversification and turnover in the composition of fishing opportunities increased economic stability during major ocean and market regime shifts in 1989. More than 85% of communities show reduced fishing revenues following these regime shifts. However, communities with the highest portfolio diversity and those that could opportunistically shift the composition of resources they harvest, experienced negligible or even positive changes in revenue. Maintaining diversity in economic opportunities and enabling turnover facilitates sustainability of communities reliant on renewable resources facing uncertain futures. Economies dependent on natural resources could gain resilience to abrupt ecosystem and market shifts through proactive risk-buffering approaches. Using data from Alaskan fisheries, Cline et al. show that communities relying on diverse fisheries were more resilient to major ocean and market regime shifts in 1989.
Collapse
|
27
|
Vellend M, Dornelas M, Baeten L, Beauséjour R, Brown CD, De Frenne P, Elmendorf SC, Gotelli NJ, Moyes F, Myers-Smith IH, Magurran AE, McGill BJ, Shimadzu H, Sievers C. Estimates of local biodiversity change over time stand up to scrutiny. Ecology 2017; 98:583-590. [DOI: 10.1002/ecy.1660] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Mark Vellend
- Département de Biologie; Université de Sherbrooke; 2500 boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Maria Dornelas
- Centre for Biological Diversity and Scottish Oceans Institute; School of Biology; University of St. Andrews; St. Andrews Fife KY16 9TH United Kingdom
| | - Lander Baeten
- Department of Forest and Water Management; Forest & Nature Lab; Ghent University; BE-9090 Melle-Gontrode Belgium
| | - Robin Beauséjour
- Département de Biologie; Université de Sherbrooke; 2500 boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Carissa D. Brown
- Department of Geography; Memorial University; St. John's Newfoundland and Labrador A1B 3X9 Canada
| | - Pieter De Frenne
- Department of Forest and Water Management; Forest & Nature Lab; Ghent University; BE-9090 Melle-Gontrode Belgium
- Department of Plant Production; Ghent University; Proefhoevestraat 22 9090 Melle Belgium
| | | | | | - Faye Moyes
- Centre for Biological Diversity and Scottish Oceans Institute; School of Biology; University of St. Andrews; St. Andrews Fife KY16 9TH United Kingdom
| | - Isla H. Myers-Smith
- School of GeoSciences; University of Edinburgh; Edinburgh EH9 3FF United Kingdom
| | - Anne E. Magurran
- Centre for Biological Diversity and Scottish Oceans Institute; School of Biology; University of St. Andrews; St. Andrews Fife KY16 9TH United Kingdom
| | - Brian J. McGill
- School of Biology and Ecology, Sustainability Solutions Initiative; University of Maine; Orono Maine 04469 USA
| | - Hideyasu Shimadzu
- Department of Mathematical Sciences; Loughborough University; Loughborough Leicestershire LE11 3TU United Kingdom
| | - Caya Sievers
- Centre for Biological Diversity and Scottish Oceans Institute; School of Biology; University of St. Andrews; St. Andrews Fife KY16 9TH United Kingdom
| |
Collapse
|
28
|
Milanovich JR, Barrett K, Crawford JA. Detritus Quality and Locality Determines Survival and Mass, but Not Export, of Wood Frogs at Metamorphosis. PLoS One 2016; 11:e0166296. [PMID: 27824915 PMCID: PMC5100973 DOI: 10.1371/journal.pone.0166296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/24/2016] [Indexed: 11/30/2022] Open
Abstract
Single-site experiments have demonstrated detritus quality in wetlands can have strongly negative, neutral, and even positive influences on wildlife. However, an examination of the influence of detritus quality across several regions is lacking and can provide information on whether impacts from variation in detritus quality are consistent across species with wide ranges. To address this gap in regional studies we examined effects of emergent and allochthonous detritus of different nutrient qualities on amphibians and assessed a mechanism that may contribute to potential impacts. We used aquatic mesocosms to raise wood frogs (Rana sylvatica) from two regions of the United States with whole plants from purple loosestrife (Lythrum salicaria), leaf litter from native hardwood trees, and a mixture of both. We examined several metrics of amphibian fitness and life history, including survival, number of days to metamorphosis, and size at metamorphosis. Further, we quantified whether the effects of detritus type could translate to variation in anuran biomass or standing stock of nitrogen or phosphorus export. Our results show detritus with high nutrient quality (purple loosestrife) negatively influenced survival of wood frogs, but increased size of metamorphic individuals in two different regions of the United States. Despite the decrease in survival, the increase in size of post-metamorphic anurans raised with high quality detritus resulted in anuran biomass and standing stock of N and P export being similar across treatments at both locations. These results further demonstrate the role of plant quality in shaping wetland ecosystem dynamics, and represent the first demonstration that effects are consistent within species across ecoregional boundaries.
Collapse
Affiliation(s)
- Joseph R. Milanovich
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Kyle Barrett
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, South Carolina, United States of America
| | - John A. Crawford
- Department of Biological Sciences, Lindenwood University, St. Charles, Missouri, United States of America
| |
Collapse
|
29
|
Engen S, Solbu EB, Saether BE. Neutral or non-neutral communities: temporal dynamics provide the answer. OIKOS 2016. [DOI: 10.1111/oik.03707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steinar Engen
- Dept of Mathematical Sciences, Centre for Biodiversity Dynamics; Norwegian Univ. of Science and Technology; NO-7491 Trondheim Norway
| | - Erik Blystad Solbu
- Dept of Mathematical Sciences, Centre for Biodiversity Dynamics; Norwegian Univ. of Science and Technology; NO-7491 Trondheim Norway
| | - Bernt-Erik Saether
- Dept of Biology, Centre for Biodiversity Dynamics; Norwegian Univ. of Science and Technology; Trondheim Norway
| |
Collapse
|
30
|
Jonsson M, Snäll T, Asplund J, Clemmensen KE, Dahlberg A, Kumordzi BB, Lindahl BD, Oksanen J, Wardle DA. Divergent responses of β‐diversity among organism groups to a strong environmental gradient. Ecosphere 2016. [DOI: 10.1002/ecs2.1535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Micael Jonsson
- Department of Ecology and Environmental Science Umeå University SE‐901 87 Umeå Sweden
| | - Tord Snäll
- Swedish Species Information Centre Swedish University of Agricultural Sciences Box 7007 SE‐750 07 Uppsala Sweden
| | - Johan Asplund
- Department of Ecology and Natural Resource Management Norwegian University of Life Sciences NO‐1432 Aas Norway
| | - Karina E. Clemmensen
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Box 7026 SE‐750 07 Uppsala Sweden
| | - Anders Dahlberg
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Box 7026 SE‐750 07 Uppsala Sweden
| | - Bright B. Kumordzi
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences SE‐90183 Umeå Sweden
| | - Björn D. Lindahl
- Department of Soil and Environment Swedish University of Agricultural Sciences Box 7014 SE‐75007 Uppsala Sweden
| | - Jari Oksanen
- Department of Ecology University of Oulu FI‐90014 Oulu Finland
| | - David A. Wardle
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences SE‐90183 Umeå Sweden
| |
Collapse
|
31
|
Bálint M, Bahram M, Eren AM, Faust K, Fuhrman JA, Lindahl B, O'Hara RB, Öpik M, Sogin ML, Unterseher M, Tedersoo L. Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiol Rev 2016; 40:686-700. [DOI: 10.1093/femsre/fuw017] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 11/13/2022] Open
|
32
|
Burdon FJ, Reyes M, Alder AC, Joss A, Ort C, Räsänen K, Jokela J, Eggen RIL, Stamm C. Environmental context and magnitude of disturbance influence trait-mediated community responses to wastewater in streams. Ecol Evol 2016; 6:3923-39. [PMID: 27516855 PMCID: PMC4972221 DOI: 10.1002/ece3.2165] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/18/2016] [Accepted: 04/14/2016] [Indexed: 01/20/2023] Open
Abstract
Human land uses and population growth represent major global threats to biodiversity and ecosystem services. Understanding how biological communities respond to multiple drivers of human‐induced environmental change is fundamental for conserving ecosystems and remediating degraded habitats. Here, we used a replicated ‘real‐world experiment’ to study the responses of invertebrate communities to wastewater perturbations across a land‐use intensity gradient in 12 Swiss streams. We used different taxonomy and trait‐based community descriptors to establish the most sensitive indicators detecting impacts and to help elucidate potential causal mechanisms of change. First, we predicted that streams in catchments adversely impacted by human land‐uses would be less impaired by wastewater inputs because their invertebrate communities should be dominated by pollution‐tolerant taxa (‘environmental context’). Second, we predicted that the negative effects of wastewater on stream invertebrate communities should be larger in streams that receive proportionally more wastewater (‘magnitude of disturbance’). In support of the ‘environmental context’ hypothesis, we found that change in the Saprobic Index (a trait‐based indicator of tolerance to organic pollution) was associated with upstream community composition; communities in catchments with intensive agricultural land uses (e.g., arable cropping and pasture) were generally more resistant to eutrophication associated with wastewater inputs. We also found support for the ‘magnitude of disturbance’ hypothesis. The SPEAR Index (a trait‐based indicator of sensitivity to pesticides) was more sensitive to the relative input of effluent, suggesting that toxic influences of wastewater scale with dilution. Whilst freshwater pollution continues to be a major environmental problem, our findings highlight that the same anthropogenic pressure (i.e., inputs of wastewater) may induce different ecological responses depending on the environmental context and community metrics used. Thus, remediation strategies aiming to improve stream ecological status (e.g., rehabilitating degraded reaches) need to consider upstream anthropogenic influences and the most appropriate indicators of restoration success.
Collapse
Affiliation(s)
- Francis J Burdon
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Marta Reyes
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Alfredo C Alder
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Adriano Joss
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Christoph Ort
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Katja Räsänen
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland; ETH-Zurich Swiss Federal Institute of Technology Zurich Switzerland
| | - Jukka Jokela
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland; ETH-Zurich Swiss Federal Institute of Technology Zurich Switzerland
| | - Rik I L Eggen
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland; ETH-Zurich Swiss Federal Institute of Technology Zurich Switzerland
| | - Christian Stamm
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| |
Collapse
|