1
|
Yuasa-Kawada J, Kinoshita-Kawada M, Hiramoto M, Yamagishi S, Mishima T, Yasunaga S, Tsuboi Y, Hattori N, Wu JY. Neuronal guidance signaling in neurodegenerative diseases: Key regulators that function at neuron-glia and neuroimmune interfaces. Neural Regen Res 2026; 21:612-635. [PMID: 39995079 DOI: 10.4103/nrr.nrr-d-24-01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The nervous system processes a vast amount of information, performing computations that underlie perception, cognition, and behavior. During development, neuronal guidance genes, which encode extracellular cues, their receptors, and downstream signal transducers, organize neural wiring to generate the complex architecture of the nervous system. It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system. This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system. Supporting this view, these pathways continue to regulate synaptic connectivity, plasticity, and remodeling, and overall brain homeostasis throughout adulthood. Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders. Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified, emerging evidence points to several common themes, including dysfunction in neurons, microglia, astrocytes, and endothelial cells, along with dysregulation of neuron-microglia-astrocyte, neuroimmune, and neurovascular interactions. In this review, we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions. For instance, recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation. We discuss the challenges ahead, along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases. Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions. Specifically, we examine the crosstalk between neuronal guidance signaling and TREM2, a master regulator of microglial function, in the context of pathogenic protein aggregates. It is well-established that age is a major risk factor for neurodegeneration. Future research should address how aging and neuronal guidance signaling interact to influence an individual's susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
Collapse
Affiliation(s)
| | | | | | - Satoru Yamagishi
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayasu Mishima
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jane Y Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Wu Y, Yang L, Jiang W, Zhang X, Yao Z. Glycolytic dysregulation in Alzheimer's disease: unveiling new avenues for understanding pathogenesis and improving therapy. Neural Regen Res 2025; 20:2264-2278. [PMID: 39101629 PMCID: PMC11759019 DOI: 10.4103/nrr.nrr-d-24-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments. The current therapeutic strategies, primarily based on cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, offer limited symptomatic relief without halting disease progression, highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease. Recent studies have provided insights into the critical role of glycolysis, a fundamental energy metabolism pathway in the brain, in the pathogenesis of Alzheimer's disease. Alterations in glycolytic processes within neurons and glial cells, including microglia, astrocytes, and oligodendrocytes, have been identified as significant contributors to the pathological landscape of Alzheimer's disease. Glycolytic changes impact neuronal health and function, thus offering promising targets for therapeutic intervention. The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression. Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments, emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.
Collapse
Affiliation(s)
- You Wu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijie Yang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wanrong Jiang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xinyuan Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Byrne RAJ, Nimmo J, Torvell M, Carpanini SM, Daskoulidou N, Hughes TR, Noble LV, Veteleanu A, Watkins LM, Zelek WM, O'Donovan MC, Morgan BP. The schizophrenia-associated gene CSMD1 encodes a complement classical pathway inhibitor predominantly expressed by astrocytes and at synapses in mice and humans. Brain Behav Immun 2025; 127:287-302. [PMID: 40112933 DOI: 10.1016/j.bbi.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025] Open
Abstract
CUB and sushi multiple domains 1 (CSMD1) is predominantly expressed in brain and robustly associated with schizophrenia risk; however, understanding of which cells express CSMD1 in brain and how it impacts risk is lacking. CSMD1 encodes a large transmembrane protein including fifteen tandem short consensus repeats (SCRs), resembling complement C3 convertase regulators. CSMD1 complement regulatory activity has been reported and mapped to SCR17-21. We expressed two SCR domains of CSMD1, SCR17-21 and SCR23-26, and characterised their complement regulatory activity using a panel of functional assays testing convertase and terminal pathway inhibition. Both domains inhibited the classical pathway C3 convertase by acting as factor I cofactors; neither domain caused any inhibition in alternative or terminal pathway assays. Novel anti-CSMD1 monoclonal antibodies cross-reactive with human and mouse CSMD1 were generated that detected endogenous CSMD1 in human and rodent brain; immunostaining showed predominantly astrocyte and synaptic localisation of CSMD1, the latter confirmed using isolated synapses. Using iPSC-derived cells, astrocyte expression was confirmed and expression on cortical neurons demonstrated. We show that CSMD1 is a classical pathway-specific complement regulator expressed predominantly on astrocytes, neurons, and synapses in human and mouse brain. These findings will help reveal the mechanism by which CSMD1 impacts schizophrenia risk.
Collapse
Affiliation(s)
- Robert A J Byrne
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK.
| | - Jacqui Nimmo
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Megan Torvell
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Sarah M Carpanini
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Lucy V Noble
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Aurora Veteleanu
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Lewis M Watkins
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Wioleta M Zelek
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Michael C O'Donovan
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK
| | - Bryan Paul Morgan
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK.
| |
Collapse
|
4
|
Zhang W, Luo S, Jiang M, Chen Y, Ren R, Wu Y, Wang P, Zhou P, Qin J, Liao W. CSMD1 as a causative gene of developmental and epileptic encephalopathy and generalized epilepsies. Genes Dis 2025; 12:101473. [PMID: 40330149 PMCID: PMC12052674 DOI: 10.1016/j.gendis.2024.101473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 11/02/2024] [Indexed: 05/08/2025] Open
Abstract
Genetic factors are the major causes of epilepsies, such as developmental and epileptic encephalopathy (DEE) and idiopathic generalized epilepsy (IGE). However, the etiology of most patients remains elusive. This study performed exon sequencing in a cohort of 173 patients with IGE. Additional cases were recruited from the matching platform in China. The excess and damaging effect of variants, the genotype-phenotype correlation, and the correlation between gene expression and phenotype were studied to validate the gene-disease association. CSMD1 compound heterozygous variants were identified in four unrelated cases with IGE. Additional CSMD1 variants were identified in five cases with DEE featured by generalized seizures from the matching platform, including two with de novo and three with compound heterozygous variants. Two patients were refractory to antiseizure medications and all patients were on long-term therapy. The CSMD1 variants presented a significantly high excess of variants in the case-cohort. Besides de novo origination, the DEE cases had each of the paired variants located closer to each other than the IGE cases or more significant alterations in hydrophobicity. The DEE-associated variants were all absent in the normal population and presented significantly lower minor allele frequency than the IGE-associated variants, suggesting a minor allele frequency-phenotype severity correlation. Gene expression analysis showed that CSMD1 was extensively expressed throughout the brain, particularly in the cortex. The CSMD1 temporal expression pattern correlated with the disease onset and outcomes. This study suggests that CSMD1 is associated with epilepsy and is a novel causative gene of DEE and generalized epilepsies.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
- School of Medical Laboratory, Shao Yang University, Shaoyang, Hunan 422000, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Mi Jiang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Yongxin Chen
- Department of Pediatrics, Guangdong General Hospital, Guangzhou, Guangdong 510000, China
| | - Rongna Ren
- Department of Pediatrics, The 900 Hospital of the Joint Service Support Force of the People's Liberation Army of China, Fuzhou, Fujian 350000, China
| | - Yunhong Wu
- Department of Neurology, Children's Hospital of Shanxi, Taiyuan, Shanxi 030000, China
| | - Pengyu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - Weiping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| |
Collapse
|
5
|
Wang YY, Zhou YN, Wang S, Liu L, Jiang L, Zhang Y, Zhang L, Zhou CN, Luo YM, Tang J, Liang X, Xiao Q, Dou XY, Zhou JR, Chao FL, Tang Y. Voluntary wheel exercise improves learning and memory impairment caused by hippocampal Hb-α deficiency by reducing microglial activation and reversing synaptic damage. Brain Behav Immun 2025; 127:81-95. [PMID: 40058668 DOI: 10.1016/j.bbi.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025] Open
Abstract
Decreased hemoglobin (Hb) levels in peripheral blood may be a risk factor for Alzheimer's disease (AD). Hb-α is a monomeric form of Hb that exists in the central nervous system. Our previous RNA sequencing results revealed a decrease in the expression of the Hb-α gene in the hippocampus of AD model mice. However, the effects of Hb-α deficiency in the hippocampus on cognitive function and the underlying mechanism are unclear. Running exercise has been shown to improve cognition, but whether it can reverse the damage caused by Hb-α deficiency in the hippocampus needs to be further researched. In the present study, Mendelian randomization (MR) analyses revealed that lower levels of mean corpuscular Hb and Hemoglobin alpha 1 (HBA1) increased the risk of developing AD. When an adeno-associated virus (AAV) was used to knock down hippocampal Hb-α, the learning and memory ability of the resulting model mice decreased, similar to that of AD model mice. Moreover, the expression levels of advanced glycation end products (AGE) and their receptor (RAGE) were upregulated, microglia were activated, and the number of engulfed synapses increased, which damaged the number and structure of hippocampal synapses in the model mice. However, four weeks of voluntary wheel exercise effectively improved these conditions. In addition, we found that voluntary wheel exercise may compensate for Hb-α protein deficiency in the hippocampus by increasing the expression levels of Hb-α protein in plasma, cerebrospinal fluid, and other brain regions without altering Hb-α mRNA in the hippocampus of model mice. These results highlight the key role of Hb-α in hippocampal synaptic damage, elucidate the mechanism by which running exercise improves cognition by connecting the peripheral circulation and central nervous system through Hb-α, and provide new ideas for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Yi-Ying Wang
- College of Nursing, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Ning Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Shun Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan 646000, PR China
| | - Lin Jiang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Yi Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Lei Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-Ni Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan-Min Luo
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Qian Xiao
- Department of Radioactive Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiao-Yun Dou
- Technology Innovation Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Jian-Rong Zhou
- College of Nursing, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-Lei Chao
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
6
|
Shi J, Zhang M, Hu Y, Liu J, Li K, Sun X, Chen S, Liu J, Ye L, Fan J, Jia J. Differences in transcriptome characteristics and drug repositioning of Alzheimer's disease according to sex. Neurobiol Dis 2025; 210:106909. [PMID: 40220916 DOI: 10.1016/j.nbd.2025.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Previous studies have shown significant sex differences in AD with regarding its epidemiology, pathophysiology, clinical presentation, and treatment response. However, the transcriptome variances associated with sex in AD remain unclear. METHODS RNA sequencing (RNA-seq) and transcriptomic analyses were performed on peripheral blood samples from total of 54 patients, including male AD patients (n = 15), female AD patients (n = 10), male MCI patients (n = 7), female MCI patients (n = 11), male healthy controls (n = 6), female healthy controls (n = 5). The snRNA-seq dataset (GSE167494, GSE157827) of prefrontal cortex tissues was obtained from the Gene Expression Omnibus (GEO). We conducted an investigation into differentially expressed genes and pathways in the peripheral blood cells as well as prefrontal cortex tissues of both male and female AD patients with consideration to sex-related factors. Additionally, we analyzed the distribution and characteristics of cells in the cerebral cortex as well as the interaction and communication between cells of male and female AD patients. Connectivity Map (CMap) was utilized for predicting and screening potential sex-specific drugs for AD. RESULTS The transcriptome profile and associated biological processes in the peripheral blood of male and female AD and MCI patients exhibit discernible differences, including upregulation of BASP1 in AD male patients and arousing TNS1 in AD female patients. The distribution of various cell types in the prefrontal cortex tissues differs between male and female AD patients, like neuron and oligodendrocyte decreased and endothelial cell and astrocyte increased in female compared with male, while a multitude of genes exhibit significant differential expression. The results of cell communication analysis, such as collagen signaling pathway, suggest that sex disparities impact intercellular interactions within prefrontal cortex tissues among individuals with AD. By drug repositioning, several drugs, including torin-2 and YM-298198, might have the potential to therapeutic value of MCI or AD, while drugs like homoharringtonine and teniposide have potential opposite effects in different sexes. CONCLUSION The characteristics of the transcriptome in peripheral blood and single-cell transcriptome in the prefrontal cortex exhibit significant differences between male and female patients with AD, which providing a basis for future sex stratified treatment of AD.
Collapse
Affiliation(s)
- Jingqi Shi
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Minghua Zhang
- Medical Supplies Center of PLA General Hospital, Beijing 100853, China
| | - Yazhuo Hu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ke Li
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xuan Sun
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianwei Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ling Ye
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China.
| | - Jianjun Jia
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
7
|
Wang M, Jin G, Duan T, Li R, Gao Y, Yu M, Xu Y. Microglial phagocytosis and regulatory mechanisms: Key players in the pathophysiology of depression. Neuropharmacology 2025; 271:110383. [PMID: 39993469 DOI: 10.1016/j.neuropharm.2025.110383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Depression is a globally prevalent emotional disorder with a complex pathophysiology. Microglia are resident immune cells in the central nervous system, playing crucial roles in regulating inflammation, synaptic plasticity, immune phagocytosis, and other functions, thereby exerting significant impacts on neuropsychiatric disorders like depression. Increasing research indicates that abnormal phagocytic function of microglia in the brain is involved in depression, showing excessive or insufficient phagocytosis in different states. Here, we have provided a review of the signaling molecules involved in microglial phagocytosis in depression, including "eat me" signals such as phosphatidylserine (PS), complement, and "don't eat me" signals such as CD47, CD200 and related receptors. Furthermore, we discuss the regulatory effects of existing pharmaceuticals and dietary nutrients on microglial phagocytosis in depression, emphasizing the need for tailored modulation based on the varying phagocytic states of microglia. This review aims to facilitate a deeper understanding of the role of microglial phagocytosis in depression and provide a roadmap for potential therapeutic strategies for depression targeting microglial phagocytosis.
Collapse
Affiliation(s)
- Man Wang
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Guimin Jin
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Tingting Duan
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Run Li
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Yubin Gao
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Ming Yu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Yuhao Xu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China; Department of Neuroimaging Laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
8
|
Gomez AR, Byun HR, Wu S, Muhammad AKMG, Ikbariyeh J, Chen J, Muro A, Li L, Bernstein KE, Ainsworth R, Tourtellotte WG. Boosting angiotensin-converting enzyme (ACE) in microglia protects against Alzheimer's disease in 5xFAD mice. NATURE AGING 2025:10.1038/s43587-025-00879-1. [PMID: 40490625 DOI: 10.1038/s43587-025-00879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 04/17/2025] [Indexed: 06/11/2025]
Abstract
Genome-wide association studies have identified many gene polymorphisms associated with an increased risk of developing late-onset Alzheimer's disease (LOAD). Many of these LOAD risk-associated alleles alter disease pathogenesis by influencing innate immune responses and lipid metabolism of microglia (MG). Here we show that boosting the expression of angiotensin-converting enzyme (ACE), a genome-wide association study LOAD risk-associated gene product, specifically in MG, reduces amyloid-β (Aβ) plaque load, preserves vulnerable neurons and excitatory synapses, and significantly reduces learning and memory abnormalities in the 5xFAD amyloid mouse model of AD. ACE-expressing MG surround plaques more frequently and they have increased Aβ phagocytosis, endolysosomal trafficking and spleen tyrosine kinase activation downstream of the major Aβ receptors, triggering receptor expressed on myeloid cells 2 (Trem2) and C-type lectin domain family 7 member A (Clec7a). These findings establish a role for ACE in enhancing microglial immune function and they identify a potential use for ACE-expressing MG as a cell-based therapy to augment endogenous microglial responses to Aβ in AD.
Collapse
Affiliation(s)
- Andrew R Gomez
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyae Ran Byun
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shaogen Wu
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - A K M Ghulam Muhammad
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jasmine Ikbariyeh
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jaelin Chen
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alek Muro
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lin Li
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard Ainsworth
- Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Shan S, Cheng D, Li H, Yao W, Kou R, Ji J, Liu N, Zeng T, Zhao X. Short-term PS-NP exposure in early adulthood induces neuronal damage in middle-aged mice via microglia-mediated neuroinflammation. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137615. [PMID: 39978191 DOI: 10.1016/j.jhazmat.2025.137615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Nanoplastics (NPs) are ubiquitous environmental pollutants that have garnered considerable attention for their potential adverse health effects. In this study, male C57BL/6 J mice were orally treated with a mixture of 50-nm and 200-nm polystyrene (PS)-NPs for one week followed by measurements of their neurobehavioral performance and neuronal damage 10 months later. Notably, PS-NPs were detected in the brains of the mice by transmission electron microscopy (TEM) and a nanoscale hyperspectral microscope imaging system 10 months after the PS-NP exposure. The mice exposed to short-term PS-NPs exhibited cognitive dysfunction and anxiety-like symptoms, neuronal damage and synapse loss, and an increase in the number of M1-polarized microglia and A1-reactive astrocytes. Interestingly, the inhibition of microglial activation by minocycline significantly mitigated the PS-NP-induced synapse loss and neuron damage. In vitro studies showed that PS-NPs could be readily internalized by three types of neurovascular unit (NVU) cells, including microglia, astrocytes, and brain microvascular endothelial cells, via multiple pathways. RNA-seq analysis confirmed that microglia-mediated neuronal injury was associated with disturbances in synapse and cell death signaling pathways. Collectively, these findings suggest that short-term PS-NP exposure-induced neuroinflammation in early adulthood may not be resolved naturally but may deteriorate under the interaction of microglia and astrocytes, leading to synapse loss, neuron degeneration, and cognitive dysfunction in middle age. The results of the present study provide important insights into the potential neurological impacts of NPs and suggest that targeting microglia to suppress inflammation might be a potential intervention strategy for neurodegeneration induced by NPs.
Collapse
Affiliation(s)
- Shan Shan
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dong Cheng
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Hui Li
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Wenhuan Yao
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Ruirui Kou
- Experimental Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Ji
- Experimental Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Na Liu
- Experimental Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
10
|
Das S, Devinney MJ, Berger M, Brown CH. Mind the messenger: role of extracellular vesicle signalling in postoperative neurocognitive dysfunction. Br J Anaesth 2025; 134:1610-1612. [PMID: 40251056 PMCID: PMC12106891 DOI: 10.1016/j.bja.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/04/2025] [Indexed: 04/20/2025] Open
Abstract
Extracellular vesicles are secreted by virtually every cell and allow the transfer of bioactive molecules including proteins, nucleic acids, and lipids to other cell types across the body. This study of the role of extracellular vesicles and their cargo in postoperative cognitive dysfunction after hip or knee replacement surgery reports differential protein and microRNA expression in patients with postoperative cognitive decline versus improvement. This small study in a select surgical population highlights the potential for extracellular vesicles and their contents to play a signalling role in postoperative neurocognitive disorders.
Collapse
Affiliation(s)
- Samarjit Das
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Devinney
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles H Brown
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Chunchai T, Pintana H, Kunasol C, Pantiya P, Arunsak B, Kerdphoo S, Nawara W, Donchada S, Apaijai N, Sripetchwandee J, Thonusin C, Chattipakorn N, Chattipakorn SC. Chronic High-Fat Diet Consumption Followed by Lipopolysaccharide Challenge Induces Persistent and Long-Lasting Microglial Priming, Mediates Synaptic Elimination via Complement C1q, and Leads to Behavioral Abnormalities in Male Wistar Rats. Acta Physiol (Oxf) 2025; 241:e70060. [PMID: 40387445 DOI: 10.1111/apha.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/18/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
AIM Microglia exhibit innate immune memory, altering their responses to subsequent challenges. Consumption of high-fat diet (HFD) triggers innate immune responses, but the characteristics of HFD-induced microglial priming remain unclear. We aim to investigate how HFD-induced microglial priming, followed by a lipopolysaccharide (LPS) challenge, affects brain functions. METHODS Male Wistar rats were divided into control, unprimed, and primed groups. The primed groups received either a single LPS injection (0.5 mg/kg, intraperitoneally) or HFD consumption for 4-8 weeks. Following the priming phase, all rats (except controls) were subjected to an LPS challenge with a 4- or 8-week interval. After 24 h of LPS challenge, cognition, anxiety-, and depressive-like behaviors were assessed. The brain and hippocampus were collected for further analysis. RESULTS Both LPS- and 4-week HFD-primed groups, followed by LPS challenge, exhibited increased peripheral and brain oxidative stress, impaired neurogenesis, disrupted neurotransmitter balance, and altered glycolysis and Krebs cycle substrates. These changes also caused microglial morphological alterations, elevated C1q levels, and synaptic loss, which were associated with anxiety- and depressive-like behaviors, indicating that 4-week HFD consumption has a similar immune priming ability to a single dose of LPS injection. Extending HFD priming to 8 weeks exacerbated microglial and brain inflammation, synaptic loss, and behavioral deficits. Furthermore, prolonging the interval between priming and LPS challenge worsened inflammation and cognitive decline, suggesting the persistent effects of microglial priming. CONCLUSIONS HFD consumption persistently and time-dependently primes microglia similar to a single LPS injection, influencing immune responses and contributing to behavioral abnormalities.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Hiranya Pintana
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanon Kunasol
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharapong Pantiya
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Suriphan Donchada
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
12
|
Zou W, Kou L, Wang Y, Jin Z, Xiong N, Wang T, Xia Y. Complement C4 exacerbates astrocyte-mediated neuroinflammation and promotes α-synuclein pathology in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:141. [PMID: 40436856 PMCID: PMC12119883 DOI: 10.1038/s41531-025-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/21/2025] [Indexed: 06/01/2025] Open
Abstract
Complement C4, implicated in neuroinflammation and synaptic dysfunction, plays a poorly defined role in Parkinson's disease (PD). Here, we demonstrate elevated C4 levels in PD patient plasma and the substantia nigra of α-synuclein preformed fibril (α-syn PFF)-injected mice, correlating with disease severity. α-syn PFF treatment induces complement C4 expression, particularly in neurons, with astrocytes further enhancing this response. Complement C4 was found to amplify astrocytic inflammatory responses, leading to increased neuronal apoptosis and synaptic damage. Additionally, conditioned media from astrocytes treated with α-syn PFF and complement C4 accelerated α-syn aggregation and synaptic loss in cultured neurons. In vivo, complement C4 exacerbated motor dysfunction, dopaminergic neuronal loss, and α-syn pathology in α-syn PFF-injected mice. These findings reveal that complement C4 significantly contributes to the neuroinflammatory environment and α-syn pathology in PD, highlighting its potential as a therapeutic target for mitigating neurodegeneration in this disorder.
Collapse
Affiliation(s)
- Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Srivastava I, Goikolea J, Ayberk Kaya T, Latorre-Leal M, Eroli F, Pereira Iglesias M, Álvarez-Jiménez L, Arroyo-García LE, Shimozawa M, Nilsson P, Fisahn A, Lindskog M, Maioli S, Loera-Valencia R. Reactive Astrocytes with Reduced Function of Glutamate Transporters in the AppNL-G-F Knock-in Mice. ACS Chem Neurosci 2025. [PMID: 40421586 DOI: 10.1021/acschemneuro.4c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Alzheimer's disease (AD) is associated with synaptic and memory dysfunction. One of the hallmarks of AD is reactive astrogliosis, with reactive astrocytes surrounding amyloid plaques in the brain. Astrocytes have also been shown to be actively involved in disease progression, nevertheless, mechanistic information about their role in synaptic transmission during AD pathology is lacking. Astrocytes maintain synaptic transmission by taking up extracellular glutamate during synaptic activity through astrocytic glutamate transporter GLT-1, but its function has been difficult to measure in real-time in AD pathology. Here, we used an App knock-in AD model (AppNL-G-F) carrying the Swedish, Arctic and Beyreuther mutations associated with AD and exhibiting AD-like Aβ plaque deposition and memory impairment. Using immunohistochemistry, patch-clamp of astrocytes, and Western blot from tissue and FACS isolated synaptosomes, we found that AppNL-G-F mice at 6-8 months of age have astrocytes with clearly altered morphology compared to wild-type (WT). Moreover, astrocyte glutamate clearance function in AppNL-G-F mice, measured as electrophysiological recordings of glutamate transporter currents, was severely impaired compared to WT animals. The reduction of glutamate uptake by astrocytes cannot be explained by GLT-1 protein levels, which were unchanged in synaptosomes and hippocampus of AppNL-G-F mice. Our data suggest that astrocytic glutamate transporters are affected by excess Aβ42 in the brain contributing to synaptic dysfunction in the hippocampus. This data contributes to the notion of restoring astrocyte synaptic function as a potential therapeutic strategy to treat AD.
Collapse
Affiliation(s)
- Ipsit Srivastava
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Julen Goikolea
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Tamer Ayberk Kaya
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - María Latorre-Leal
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Francesca Eroli
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Marta Pereira Iglesias
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Laura Álvarez-Jiménez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Luis Enrique Arroyo-García
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Makoto Shimozawa
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - André Fisahn
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Maria Lindskog
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Silvia Maioli
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Raúl Loera-Valencia
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Chihuahua, Av. H. Colegio Militar 4700, Nombre de Dios, 31150 Chihuahua, Chih. Mexico
| |
Collapse
|
14
|
Chen ZP, Zhao X, Wang S, Cai R, Liu Q, Ye H, Wang MJ, Peng SY, Xue WX, Zhang YX, Li W, Tang H, Huang T, Zhang Q, Li L, Gao L, Zhou H, Hang C, Zhu JN, Li X, Liu X, Cong Q, Yan C. GABA-dependent microglial elimination of inhibitory synapses underlies neuronal hyperexcitability in epilepsy. Nat Neurosci 2025:10.1038/s41593-025-01979-2. [PMID: 40425792 DOI: 10.1038/s41593-025-01979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
Neuronal hyperexcitability is a common pathophysiological feature of many neurological diseases. Neuron-glia interactions underlie this process but the detailed mechanisms remain unclear. Here, we reveal a critical role of microglia-mediated selective elimination of inhibitory synapses in driving neuronal hyperexcitability. In epileptic mice of both sexes, hyperactive inhibitory neurons directly activate surveilling microglia via GABAergic signaling. In response, these activated microglia preferentially phagocytose inhibitory synapses, disrupting the balance between excitatory and inhibitory synaptic transmission and amplifying network excitability. This feedback mechanism depends on both GABA-GABAB receptor-mediated microglial activation and complement C3-C3aR-mediated microglial engulfment of inhibitory synapses, as pharmacological or genetic blockage of both pathways effectively prevents inhibitory synapse loss and ameliorates seizure symptoms in mice. Additionally, putative cell-cell interaction analyses of brain tissues from males and females with temporal lobe epilepsy reveal that inhibitory neurons induce microglial phagocytic states and inhibitory synapse loss. Our findings demonstrate that inhibitory neurons can directly instruct microglial states to control inhibitory synaptic transmission through a feedback mechanism, leading to the development of neuronal hyperexcitability in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Xiansen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Suji Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Qiangqiang Liu
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meng-Ju Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shi-Yu Peng
- School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, China
| | - Wei-Xuan Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hua Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tengfei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhou
- Department of Cell Biology, College of Life Sciences, Anhui Medical University, Hefei, China
| | - Chunhua Hang
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Xiangyu Liu
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China.
| |
Collapse
|
15
|
Laabi S, LeMmon C, Vogel C, Chacon M, Jimenez VM. Psilocybin and psilocin regulate microglial immunomodulation and support neuroplasticity via serotonergic and AhR signaling. Int Immunopharmacol 2025; 159:114940. [PMID: 40424654 DOI: 10.1016/j.intimp.2025.114940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/22/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Psilocybin, a serotonergic psychedelic, has demonstrated therapeutic potential in neuropsychiatric disorders. While its neuroplastic and immunomodulatory effects are recognized, the underlying mechanisms remain unclear. This study investigates how psilocybin and its active metabolite, psilocin, influence microglial inflammatory responses and neurotrophic factor expression through serotonergic and AhR signaling. METHODS Using in vitro models of resting and LPS-activated microglia, we evaluated the effects of psilocybin and psilocin on the expression of pro-inflammatory cytokines (TNF-α), anti-inflammatory cytokines (IL-10), and neuroplasticity-related markers (BDNF). Receptor-specific contributions were assessed using selective antagonists for 5-HT2A, 5-HT2B, 5-HT7, TrkB, and AhR. RESULTS Psilocybin and psilocin significantly suppressed TNF-α expression and increased BDNF levels in LPS-activated microglia. These effects were mediated by 5-HT2A, 5-HT2B, 5-HT7, and TrkB signaling, while AhR activation was required for psilocin-induced BDNF upregulation but not TNF-α suppression. IL-10 levels remained unchanged under normal conditions but increased significantly when serotonergic, TrkB, or AhR signaling was blocked, suggesting a compensatory shift in anti-inflammatory pathways. CONCLUSION Psilocybin and psilocin promote a microglial phenotype that reduces inflammation and supports neuroplasticity via receptor-specific mechanisms. Their effects on TNF-α and BDNF depend on distinct serotonergic and neurotrophic pathways, with AhR playing a selective role in psilocin's action. These findings clarify the receptor-mediated dynamics of psilocybin's therapeutic effects and highlight alternative anti-inflammatory pathways that may be relevant for clinical applications.
Collapse
Affiliation(s)
- Salma Laabi
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Claire LeMmon
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Callie Vogel
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Mariana Chacon
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States
| | - Victor M Jimenez
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, 2162 S 180 E, Provo, UT 84606, United States; Department of Pharmacy, Roseman University of Health Sciences, 10920 S River Front Pkwy, South Jordan, UT 84095, United States.
| |
Collapse
|
16
|
Xu Y, Zhang H, Jiao X, Zhang Y, Yin G, Wang C, Du Z, Liang M, Gao X, Gu Z, Jiang Y, Du B, Bi X. Dysregulations of C1QA, C1QB, C1QC and C5AR1 as candidate biomarkers of vascular dementia. NPJ AGING 2025; 11:42. [PMID: 40414977 DOI: 10.1038/s41514-025-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 04/22/2025] [Indexed: 05/27/2025]
Abstract
Vascular dementia (VaD) is the second most common cause of dementia. Few bioinformatic analysis has been done to explore its biomarkers. This study aimed to excavate potential biomarkers for VaD using bioinformatic analysis and validate them at both animal and patient levels. Based on microarray data of GSE122063, bioinformatic analysis revealed 502 DEGs in the frontal and 674 DEGs in the temporal cortex of VaD patients. Afterward, the hub genes between two regions, including C1QA, C1QB, C1QC, and C5AR1, were dugout. Interestingly, compared with sham mice or controls, the above four complements were highly expressed in the cortices of VaD animals and in the peripheral serum of VaD patients. Moreover, receiver operating characteristic curve analysis conformed to good diagnostic powers of these complements, with C1QB having the most prominent capacity (AUC = 0.799, 95%CI 0.722-0.875). That means the complements, especially subunits of C1Q, might be used as specific early VaD diagnostic biomarkers.
Collapse
Affiliation(s)
- Yawen Xu
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian University of Technology, Dalian, PR China
| | - Hailing Zhang
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Xuehao Jiao
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ge Yin
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Cui Wang
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian University of Technology, Dalian, PR China
| | - Zengkan Du
- Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai, PR China
| | - Meng Liang
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Xin Gao
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Zhengsheng Gu
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Yan Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, PR China
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bingying Du
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China.
- State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Disease, Fudan University, Shanghai, PR China.
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China.
| |
Collapse
|
17
|
Choi J, Strickland A, Loo HQ, Dong W, Barbar L, Bloom AJ, Sasaki Y, Jin SC, DiAntonio A, Milbrandt J. Diverse cell types establish a pathogenic immune environment in peripheral neuropathy. J Neuroinflammation 2025; 22:138. [PMID: 40410792 PMCID: PMC12100903 DOI: 10.1186/s12974-025-03459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/01/2025] [Indexed: 05/25/2025] Open
Abstract
Neuroinflammation plays a complex and context-dependent role in many neurodegenerative diseases. We identified a key pathogenic function of macrophages in a mouse model of a rare human congenital neuropathy in which SARM1, the central executioner of axon degeneration, is activated by hypomorphic mutations in the axon survival factor NMNAT2. Macrophage depletion blocked and reversed neuropathic phenotypes in this sarmopathy model, revealing SARM1-dependent neuroimmune mechanisms as key drivers of disease pathogenesis. In this study, we investigated the impact of chronic subacute SARM1 activation on the peripheral nerve milieu using single cell/nucleus RNA-sequencing (sc/snRNA-seq). Our analyses reveal an expansion of immune cells (macrophages and T lymphocytes) and repair Schwann cells, as well as significant transcriptional alterations to a wide range of nerve-resident cell types. Notably, endoneurial fibroblasts show increased expression of chemokines (Ccl9, Cxcl5) and complement components (C3, C4b, C6) in response to chronic SARM1 activation, indicating enhanced immune cell recruitment and immune response regulation by non-immune nerve-resident cells. Analysis of CD45+ immune cells in sciatic nerves revealed an expansion of an Il1b+ macrophage subpopulation with increased expression of markers associated with phagocytosis and T cell activation/proliferation. We also found a significant increase in T cells in sarmopathic nerves. Remarkably, T cell depletion rescued motor phenotypes in the sarmopathy model. These findings delineate the significant changes chronic SARM1 activation induces in peripheral nerves and highlights the potential of immunomodulatory therapies for SARM1-dependent peripheral neurodegenerative disease.
Collapse
Affiliation(s)
- Julie Choi
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hui Qi Loo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wendy Dong
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lilianne Barbar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - A Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO, 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO, 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
18
|
Wang X, Sun Y, Yu H, Xue C, Pei X, Chen Y, Guan Y. The regulation of microglia by aging and autophagy in multiple sclerosis. Pharmacol Res 2025; 216:107786. [PMID: 40398690 DOI: 10.1016/j.phrs.2025.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/19/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
Multiple sclerosis (MS) is an inflammatory disease that is often characterized by the development of irreversible clinical disability. Age is a strong risk factor that is strongly associated with the clinical course and progression of MS. Several lines of evidence suggest that with aging, microglia have an aging-related gene expression signature and are close to disease-associated microglia (DAM), which exhibit decreased phagocytosis but increased production of inflammatory factors. The gene expression signatures of microglia in MS overlap with those in aging, inflammation and DAM. Moreover, the clearance of damaged myelin by microglia is impaired in the aged brain. Autophagy is a cellular process that decreases in activity with age. In this review, we provide an overview of the role of autophagy and aging in MS. We describe the impact of autophagy and aging on microglial activation in MS and the molecules involved in autophagy and aging, which are related to the phagocytosis and activation of microglia. We propose that a decrease in autophagy in microglia occurs with aging, leading to a decrease in phagocytosis. Decreases in phagocytosis and increases in the production of inflammatory factors by microglia contribute to chronic inflammation in the aged brain and disease progression in MS. Thus, the modulation of autophagy in microglia serves as a potential therapeutic target for MS.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Sun
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunran Xue
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuzhong Pei
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Chen
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Shen T, Tai W, Jiang D, Ma S, Zhong X, Zou Y, Zhang CL. GADD45G operates as a pathological sensor orchestrating reactive gliosis and neurodegeneration. Neuron 2025:S0896-6273(25)00345-9. [PMID: 40409253 DOI: 10.1016/j.neuron.2025.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/28/2025] [Accepted: 04/29/2025] [Indexed: 05/25/2025]
Abstract
Reactive gliosis is a hallmark of neuropathology and offers a potential target for addressing numerous neurological diseases. Here, we show that growth arrest and DNA damage inducible gamma (GADD45G), a stress sensor in astrocytes, is a nodal orchestrator of reactive gliosis and neurodegeneration. GADD45G expression in astrocytes is sufficient to incite astrogliosis, microgliosis, synapse loss, compromised animal behavior, and the aggravation of Alzheimer's disease (AD). Conversely, silencing GADD45G specifically in astrocytes preserves synapses and rescues the histological and behavioral phenotypes of AD. Mechanistically, GADD45G controls the mitogen-activated protein kinase kinase kinase 4 (MAP3K4) and neuroimmune signaling pathways, including nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF3), leading to profound molecular changes and the secretion of various factors that regulate both cell-autonomous and cell-nonautonomous reactive gliosis and glia-neuron interactions. These results uncover GADD45G signaling as a promising therapeutic target for AD and potentially for numerous other neurological disorders.
Collapse
Affiliation(s)
- Tianjin Shen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dongfang Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuaipeng Ma
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoling Zhong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Yousefpour N, Tansley SN, Locke S, Sharif B, Parisien M, Bourojeni FB, Deamond H, Mathur V, Arana NRK, Austin JS, Bourassa V, Wang C, Cabana VC, Wong C, Lister KC, Rodrigues R, St-Louis M, Paquet ME, Carroll MC, Andrews-Zwilling Y, Seguela P, Kania A, Yednock T, Mogil JS, De Koninck Y, Diatchenko L, Khoutorsky A, Ribeiro-da-Silva A. Targeting C1q prevents microglia-mediated synaptic removal in neuropathic pain. Nat Commun 2025; 16:4590. [PMID: 40382320 PMCID: PMC12085617 DOI: 10.1038/s41467-025-59849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Activation of spinal microglia following peripheral nerve injury is a central component of neuropathic pain pathology. While the contributions of microglia-mediated immune and neurotrophic signalling have been well-characterized, the phagocytic and synaptic pruning roles of microglia in neuropathic pain remain less understood. Here, we show that peripheral nerve injury induces microglial engulfment of dorsal horn synapses, leading to a preferential loss of inhibitory synapses and a shift in the balance between inhibitory and excitatory synapse density. This synapse removal is dependent on the microglial complement-mediated synapse pruning pathway, as mice deficient in complement C3 and C4 do not exhibit synapse elimination. Furthermore, pharmacological inhibition of the complement protein C1q prevents dorsal horn inhibitory synapse loss and attenuates neuropathic pain. Therefore, these results demonstrate that the complement pathway promotes persistent pain hypersensitivity via microglia-mediated engulfment of dorsal horn synapses in the spinal cord, revealing C1q as a therapeutic target in neuropathic pain.
Collapse
Affiliation(s)
- Noosha Yousefpour
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Annexon Biosciences, Brisbane, CA, USA
| | - Shannon N Tansley
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Samantha Locke
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Behrang Sharif
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, Dept. of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Farin B Bourojeni
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Haley Deamond
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | | | | | | | - Valerie Bourassa
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Chengyang Wang
- Dept. of Psychology, McGill University, Montréal, QC, Canada
| | - Valérie C Cabana
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Calvin Wong
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Kevin C Lister
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Rose Rodrigues
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Manon St-Louis
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Marie-Eve Paquet
- Dép. de biochimie, microbiologie et bioinformatique, Université Laval, Québec, QC, Canada
- CERVO Brain Research Centre, Québec, QC, Canada
| | - Michael C Carroll
- Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | | | - Philippe Seguela
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, Dept. of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Artur Kania
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Science, McGill University, Montréal, QC, Canada
| | | | - Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
| | - Yves De Koninck
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- CERVO Brain Research Centre, Québec, QC, Canada
- Dép. de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Arkady Khoutorsky
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada.
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
21
|
Xia T, Yan Z, Shen P, Chang M, Zhang N, Zhang Y, Chen Q, Wang R, Tong L, Zhou W, Ni Z, Gao Y. Neuroprotective Effects of Qi Jing Wan and Its Active Ingredient Diosgenin Against Cognitive Impairment in Plateau Hypoxia. Pharmaceuticals (Basel) 2025; 18:738. [PMID: 40430556 PMCID: PMC12114856 DOI: 10.3390/ph18050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/03/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: High-altitude environments have a significant detrimental impact on the cognitive functions of the brain. Qi Jing Wan (QJW), a traditional herbal formula composed of Angelica sinensis, Astragalus membranaceus, and Rhizoma Polygonati Odorati, has demonstrated potential efficacy in treating cognitive disorders. However, its effects on cognitive dysfunction in plateau hypoxic environments remain unclear. Methods: In this study, acute and chronic plateau cognitive impairment mouse models were constructed to investigate the preventive and therapeutic effects of QJW and its significant active ingredient, diosgenin (Dio). Behavioral experiments were conducted to assess learning and memory in mice. Morphological changes in hippocampal neurons and synapses were assessed, and microglial activation and inflammatory factor levels were measured to evaluate brain damage. Potential active ingredients capable of crossing the blood-brain barrier were identified through chemical composition analysis and network database screening, followed by validation in animal and brain organoid experiments. Transcriptomics analysis, immunofluorescence staining, and molecular docking techniques were employed to explore the underlying mechanisms. Results: QJW significantly enhanced learning and memory abilities in plateau model mice, reduced structural damage to hippocampal neurons, restored NeuN expression, inhibited inflammatory factor levels and microglial activation, and improved hippocampal synaptic damage. Transcriptomics analysis revealed that Dio alleviated hypoxic brain damage and protected cognitive function by regulating the expression of PDE4C. Conclusions: These findings indicate that QJW and its significant active ingredient Dio effectively mitigate hypoxic brain injury and prevent cognitive impairment in high-altitude environments.
Collapse
Affiliation(s)
- Tiantian Xia
- Department of Tranditional Chinese Medicine, Qinghai Unversity Medical College, Xining 810016, China; (T.X.); (N.Z.); (L.T.)
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
| | - Ziqiao Yan
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
- Chinese PLA Medical School, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100036, China
| | - Pan Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
| | - Mingyang Chang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Nan Zhang
- Department of Tranditional Chinese Medicine, Qinghai Unversity Medical College, Xining 810016, China; (T.X.); (N.Z.); (L.T.)
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
| | - Yunan Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qi Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
- Chinese PLA Medical School, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100036, China
| | - Rui Wang
- General Hospital of Xinjiang Military Command, PLA, Urumqi 830000, China;
| | - Li Tong
- Department of Tranditional Chinese Medicine, Qinghai Unversity Medical College, Xining 810016, China; (T.X.); (N.Z.); (L.T.)
| | - Wei Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
| | - Zhexin Ni
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
| | - Yue Gao
- Department of Tranditional Chinese Medicine, Qinghai Unversity Medical College, Xining 810016, China; (T.X.); (N.Z.); (L.T.)
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
22
|
Liss A, Siddiqi MT, Marsland P, Varodayan FP. Neuroimmune regulation of the prefrontal cortex tetrapartite synapse. Neuropharmacology 2025; 269:110335. [PMID: 39904409 DOI: 10.1016/j.neuropharm.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
The prefrontal cortex (PFC) is an essential driver of cognitive, affective, and motivational behavior. There is clear evidence that the neuroimmune system directly influences PFC synapses, in addition to its role as the first line of defense against toxins and pathogens. In this review, we first describe the core structures that form the tetrapartite PFC synapse, focusing on the signaling microdomain created by astrocytic cradling of the synapse as well as the emerging role of the extracellular matrix in synaptic organization and plasticity. Neuroimmune signals (e.g. pro-inflammatory interleukin 1β) can impact the function of each core structure within the tetrapartite synapse, as well as promote intra-synaptic crosstalk, and we will provide an overview of recent advances in this field. Finally, evidence from post mortem human brain tissue and preclinical studies indicate that inflammation may be a key contributor to PFC dysfunction. Therefore, we conclude with a mechanistic discussion of neuroimmune-mediated maladaptive plasticity in neuropsychiatric disorders, with a focus on alcohol use disorder (AUD). Growing recognition of the neuroimmune system's role as a critical regulator of the PFC tetrapartite synapse provides strong support for targeting the neuroimmune system to develop new pharmacotherapeutics.
Collapse
Affiliation(s)
- Andrea Liss
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Mahum T Siddiqi
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Florence P Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA.
| |
Collapse
|
23
|
Kim K, Abramishvili D, Du S, Papadopoulos Z, Cao J, Herz J, Smirnov I, Thomas JL, Colonna M, Kipnis J. Meningeal lymphatics-microglia axis regulates synaptic physiology. Cell 2025; 188:2705-2719.e23. [PMID: 40120575 DOI: 10.1016/j.cell.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/30/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
Meningeal lymphatics serve as an outlet for cerebrospinal fluid, and their dysfunction is associated with various neurodegenerative conditions. Previous studies have demonstrated that dysfunctional meningeal lymphatics evoke behavioral changes, but the neural mechanisms underlying these changes have remained elusive. Here, we show that prolonged impairment of meningeal lymphatics alters the balance of cortical excitatory and inhibitory synaptic inputs, accompanied by deficits in memory tasks. These synaptic and behavioral alterations induced by lymphatic dysfunction are mediated by microglia, leading to increased expression of the interleukin 6 gene (Il6). IL-6 drives inhibitory synapse phenotypes via a combination of trans- and classical IL-6 signaling. Restoring meningeal lymphatic function in aged mice reverses age-associated synaptic and behavioral alterations. Our findings suggest that dysfunctional meningeal lymphatics adversely impact cortical circuitry through an IL-6-dependent mechanism and identify a potential target for treating aging-associated cognitive decline.
Collapse
Affiliation(s)
- Kyungdeok Kim
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| | - Daviti Abramishvili
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Siling Du
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Zachary Papadopoulos
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA; Neuroscience Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jay Cao
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jasmin Herz
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Paris Brain Institute, Université Pierre et Marie Curie Paris 06, UMRS1127, Sorbonne Université, Paris, France
| | - Marco Colonna
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
24
|
Butovsky O, Rosenzweig N. Alzheimer's disease and age-related macular degeneration: Shared and distinct immune mechanisms. Immunity 2025; 58:1120-1139. [PMID: 40324382 DOI: 10.1016/j.immuni.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) represent the leading causes of dementia and vision impairment in the elderly, respectively. The retina is an extension of the brain, yet these two central nervous system (CNS) compartments are often studied separately. Despite affecting cognition vs. vision, AD and AMD share neuroinflammatory pathways. By comparing these diseases, we can identify converging immune mechanisms and potential cross-applicable therapies. Here, we review immune mechanisms highlighting the shared and distinct aspects of these two age-related neurodegenerative conditions, focusing on responses to hallmark disease manifestations, the opposite role of overlapping immune risk loci, and potential unified therapeutic approaches. We also discuss unique tissue requirements that may dictate different outcomes of conserved immune mechanisms and how we can reciprocally utilize lessons from AD therapeutics to AMD. Looking forward, we suggest promising directions for research, including the exploration of regenerative medicine, gene therapies, and innovative diagnostics.
Collapse
Affiliation(s)
- Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Neta Rosenzweig
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Pikus P, Turner RS, Rebeck GW. Mouse models of Anti-Aβ immunotherapies. Mol Neurodegener 2025; 20:57. [PMID: 40361247 PMCID: PMC12076828 DOI: 10.1186/s13024-025-00836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/05/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The development of anti-amyloid-beta (Aβ) immunotherapies as the first disease modifying therapy for Alzheimer's Disease (AD) is a breakthrough of basic research and translational science. MAIN TEXT Genetically modified mouse models developed to study AD neuropathology and physiology were used for the discovery of Aβ immunotherapies and helped ultimately propel therapies to FDA approval. Nonetheless, the combination of modest efficacy and significant rates of an adverse side effect (amyloid related imaging abnormalities, ARIA), has prompted reverse translational research in these same mouse models to better understand the mechanism of the therapies. CONCLUSION This review considers the use of these mouse models in understanding the mechanisms of Aβ clearance, cerebral amyloid angiopathy (CAA), blood brain barrier breakdown, neuroinflammation, and neuronal dysfunction in response to Aβ immunotherapy.
Collapse
Affiliation(s)
- Philip Pikus
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University Medical Center, 3800 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA.
| |
Collapse
|
26
|
Vara-Pérez M, Movahedi K. Border-associated macrophages as gatekeepers of brain homeostasis and immunity. Immunity 2025; 58:1085-1100. [PMID: 40324381 PMCID: PMC12094687 DOI: 10.1016/j.immuni.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
The brain's border tissues serve as essential hubs for neuroimmune regulation and the trafficking of biomaterials to and from the brain. These complex tissues-including the meninges, perivascular spaces, choroid plexus, and circumventricular organs-balance the brain's need for immune privilege with immune surveillance and blood-brain communication. Macrophages are integral components of these tissues, taking up key strategic positions within the brain's circulatory system. These border-associated macrophages, or "BAMs," are therefore emerging as pivotal for brain homeostasis and disease. BAMs perform trophic functions that help to support border homeostasis but also act as immune sentinels essential for border defense. In this review, we integrate recent findings on BAM origins, cell states, and functions, aiming to provide global insights and perspectives on the complex relationship between these macrophages and their border niche.
Collapse
Affiliation(s)
- Mónica Vara-Pérez
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
27
|
McCrea LT, Batorsky RE, Bowen JJ, Yeh H, Thanos JM, Fu T, Perlis RH, Sheridan SD. Identifying brain-penetrant small-molecule modulators of human microglia using a cellular model of synaptic pruning. Neuropsychopharmacology 2025:10.1038/s41386-025-02123-1. [PMID: 40346178 DOI: 10.1038/s41386-025-02123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/03/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
Microglia dysregulation is implicated across a range of neurodevelopmental and neurodegenerative disorders, making their modulation a promising therapeutic target. Using PBMC-derived induced microglia-like cells (piMGLCs) in a scalable assay, we screened 489 CNS-penetrant compounds for modulation of microglial phagocytosis of human synaptosomes in a validated assay for microglia-mediated synaptic pruning. Compounds from the library that reduced phagocytosis by ≥2 standard deviations across the library without cytotoxicity were validated in secondary screens, with 28 of them further confirmed to reduce phagocytosis by 50% or more. These compounds comprise a wide range of therapeutic classes with different mechanisms of action, including immunosuppressants, kinase inhibitors, antipsychotics, and epigenetic modulators. Image-based morphological measurements were calculated to measure the degree of ramified vs. ameboid morphotypes as an indicator of activation state. Additionally, transcriptomic profiling indicated divergent effects on cell signaling, metabolism, activation, and actin dynamics across confirmed compounds. In particular, multiple CNS-penetrant small molecules with prior FDA approval or demonstration of safety in vivo demonstrated modulatory effects on microglia. For example, identified drugs such as the tyrosine kinase inhibitors lapatinib, alectinib, and lazertinib and the epigenetic modulator vorinostat have been approved for various cancer treatments and are being investigated for other indications; however, they have not been extensively studied in patients for neurodevelopmental and neurodegenerative disorders. These potential disease-modifying agents represent high-priority candidates for repositioning studies in neurodevelopmental, neuroinflammatory, or neurodegenerative disorders.
Collapse
Affiliation(s)
- Liam T McCrea
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca E Batorsky
- Tufts Institute for Artificial Intelligence, Tufts University, Medford, MA, USA
| | - Joshua J Bowen
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Hana Yeh
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jessica M Thanos
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Ting Fu
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Roy H Perlis
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Steven D Sheridan
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Du B, Zou Q, Wang X, Wang H, Yang X, Wang Q, Wang K. Multi-targeted engineered hybrid exosomes as Aβ nanoscavengers and inflammatory modulators for multi-pathway intervention in Alzheimer's disease. Biomaterials 2025; 322:123403. [PMID: 40347851 DOI: 10.1016/j.biomaterials.2025.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
The pathogenesis of Alzheimer's disease (AD) was complex, including excessive deposition of β-amyloid (Aβ), microglia dysfunction, and neuroinflammation. Therefore, single-pathway treatment was not sufficient to ameliorate the multifaceted pathological changes associated with AD. Moreover, the low permeability of blood-brain barrier (BBB) and the lack of AD locus selectivity further limited the intervention efficacy of current AD drugs. In this study, a novel nanoparticle coating was designed by hybridizing the membrane from brain microvascular endothelial cell exosomes and macrophage exosomes, and combining polydopamine nanoparticles, resveratrol and Aβ-targeting aptamers to construct engineered exosomes (RPDA@Rb-A) with multiple targeting capabilities to intervene in Aβ clearance and regulate microglial dysfunction. Based on the homing effect of brain microvascular endothelial cell exosomes and the natural inflammation targeting ability of macrophage exosomes, RPDA@Rb-A can easily penetrate the blood brain barrier and accumulate in the brain inflammation site after capturing Aβ aggregates. RPDA@Rb-A can effectively intervene in AD through multi-pathway, including degraded toxic Aβ aggregates through local heating induced by near-infrared laser irradiation and alleviated neurotoxicity, promoted microglial clearance of Aβ by capturing Aβ, and modulated microglia-induced neuroinflammation by efficient delivery of small molecule drugs. In AD mouse model, the administration of RPDA@Rb-A resulted in a significant reduction in amyloid plaque deposition, neuroinflammation, and cognitive impairments. The engineered exosomes based on membrane hybridization overcome the shortcomings of traditional drug carriers in poor penetration and insufficient targeting to the central nervous system, and provide a potential platform for multi pathways intervention in AD.
Collapse
Affiliation(s)
- Bin Du
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Qingqing Zou
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Xin Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Hongqiang Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Xiaohai Yang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Qing Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China.
| | - Kemin Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
29
|
Chen J, Xu S, Wang L, Liu X, Liu G, Tan Q, Li W, Zhang S, Du Y. Refining the interactions between microglia and astrocytes in Alzheimer's disease pathology. Neuroscience 2025; 573:183-197. [PMID: 40120713 DOI: 10.1016/j.neuroscience.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Microglia and astrocytes are central to the pathogenesis and progression of Alzheimer's Disease (AD), working both independently and collaboratively to regulate key pathological processes such as β-amyloid protein (Aβ) deposition, tau aggregation, neuroinflammation, and synapse loss. These glial cells interact through complex molecular pathways, including IL-3/IL-3Ra and C3/C3aR, which influence disease progression and cognitive decline. Emerging research suggests that modulating these pathways could offer therapeutic benefits. For instance, recombinant IL-3 administration in mice reduced Aβ plaques and improved cognitive functions, while C3aR inhibition alleviated Aβ and tau pathologies, restored synaptic function, and corrected immune dysregulation. However, the effects of these interactions are context-dependent. Acute C3/C3aR activation enhances microglial Aβ clearance, whereas chronic activation impairs it, highlighting the dual roles of glial signaling in AD. Furthermore, C3/C3aR signaling not only impacts Aβ clearance but also modulates tau pathology and synaptic integrity. Given AD's multifactorial nature, understanding the specific pathological environment is crucial when investigating glial cell contributions. The interplay between microglia and astrocytes can be both neuroprotective and neurotoxic, depending on the disease stage and brain region. This complexity underscores the need for targeted therapies that modulate glial cell activity in a context-specific manner. By elucidating the molecular mechanisms underlying microglia-astrocyte interactions, this research advances our understanding of AD and paves the way for novel therapeutic strategies aimed at mitigating neurodegeneration and cognitive decline in AD and related disorders.
Collapse
Affiliation(s)
- Jiangmin Chen
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuyu Xu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Li Wang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Xinyuan Liu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qian Tan
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Weixian Li
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuai Zhang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Yanjun Du
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China; Hubei Shizhen Laboratory, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, China; Hubei Provincial Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
30
|
Ji Y, Chen X, Wang Z, Meek CJ, McLean JL, Yang Y, Yuan C, Rochet JC, Liu F, Xu R. Alzheimer's disease patient brain extracts induce multiple pathologies in novel vascularized neuroimmune organoids for disease modeling and drug discovery. Mol Psychiatry 2025:10.1038/s41380-025-03041-w. [PMID: 40316675 DOI: 10.1038/s41380-025-03041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia, afflicting 55 million individuals worldwide, with limited treatment available. Current AD models mainly focus on familial AD (fAD), which is due to genetic mutations. However, models for studying sporadic AD (sAD), which represents over 95% of AD cases without specific genetic mutations, are severely limited. Moreover, the fundamental species differences between humans and animals might significantly contribute to clinical failures for AD therapeutics that have shown success in animal models, highlighting the urgency to develop more translational human models for studying AD, particularly sAD. In this study, we developed a complex human pluripotent stem cell (hPSC)-based vascularized neuroimmune organoid model, which contains multiple cell types affected in human AD brains, including human neurons, microglia, astrocytes, and blood vessels. Importantly, we demonstrated that brain extracts from individuals with sAD can effectively induce multiple AD pathologies in organoids four weeks post-exposure, including amyloid beta (Aβ) plaque-like aggregates, tau tangle-like aggregates, neuroinflammation, elevated microglial synaptic pruning, synapse/neuronal loss, and impaired neural network activity. Proteomics analysis also revealed disrupted AD-related pathways in our vascularized AD neuroimmune organoids. Furthermore, after treatment with Lecanemab, an FDA-approved antibody drug targeting Aβ, AD brain extracts exposed organoids showed a significant reduction of amyloid burden, along with an elevated vascular inflammation response. Thus, the vascularized neuroimmune organoid model provides a unique opportunity to study AD, particularly sAD, under a pathophysiological relevant three-dimensional (3D) human cell environment. It also holds great promise to facilitate AD drug development, particularly for immunotherapies.
Collapse
Affiliation(s)
- Yanru Ji
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoling Chen
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Connor Joseph Meek
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Jenna Lillie McLean
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Yang
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Ranjie Xu
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
31
|
Augusto-Oliveira M, Arrifano GDP, Leal-Nazaré CG, Chaves-Filho A, Santos-Sacramento L, Lopes-Araujo A, Tremblay MÈ, Crespo-Lopez ME. Morphological diversity of microglia: Implications for learning, environmental adaptation, ageing, sex differences and neuropathology. Neurosci Biobehav Rev 2025; 172:106091. [PMID: 40049541 DOI: 10.1016/j.neubiorev.2025.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Microglia are the brain resident macrophages that respond rapidly to any insult. These non-neuroectodermal cells are decorated with plenty of receptors allowing them to recognise and respond precisely to a multitude of stimuli. To do so, microglia undergo structural and functional changes aiming to actively keep the brain's homeostasis. However, some microglial responses, when sustained or exacerbated, can contribute to neuropathology and neurodegeneration. Many microglial molecular and cellular changes were identified that display a strong correlation with neuronal damage and neuroinflammation/disease status, as well as present key sex-related differences that modulate microglial outcomes. Nevertheless, the relationship between microglial structural and functional features is just beginning to be unravelled. Several reports show that microglia undergo soma and branch remodelling in response to environmental stimuli, ageing, neurodegenerative diseases, trauma, and systemic inflammation, suggesting a complex form and function link. Also, it is reasonable overall to suppose that microglia diminishing their process length and ramification also reduce their monitoring activity of synapses, which is critical for detecting any synaptic disturbance and performing synaptic remodelling. Elucidating the complex interactions between microglial morphological plasticity and its functional implications appears essential for the understanding of complex cognitive and behavioural processes in health and neuropathological conditions.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| | - Gabriela de Paula Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Amanda Lopes-Araujo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec, Qubec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada; College Member of the Royal Society of Canada, Canada.
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| |
Collapse
|
32
|
Tenner AJ, Petrisko TJ. Knowing the enemy: strategic targeting of complement to treat Alzheimer disease. Nat Rev Neurol 2025; 21:250-264. [PMID: 40128350 DOI: 10.1038/s41582-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
The complement system protects against infection, positively responds to tissue damage, clears cell debris, directs and modulates the adaptive immune system, and functions in neuronal development, normal synapse elimination and intracellular metabolism. However, complement also has a role in aberrant synaptic pruning and neuroinflammation - processes that lead to a feedforward loop of inflammation, injury and neuronal death that can contribute to neurodegenerative and neurological disorders, including Alzheimer disease. This Review provides justification, largely from preclinical mouse models but also from correlates with human tissue and biomarkers, for targeting specific complement components for therapeutic intervention in Alzheimer disease. We discuss promising strategies to slow the progression of cognitive loss with minimal undesired effects. The diverse interactions and functions of complement system components can influence biological processes in the healthy and diseased brain; here, these functions are described as a prerequisite to selecting appropriate, safe and effective therapeutic targets for translation to the clinic.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
33
|
Liu Y, Chen R, Mu C, Diao J, Guo Y, Yao X, Shi S, Wang M, Zhang Z, Qin X, Tang C. Enhanced Microglial Engulfment of Dopaminergic Synapses Induces Parkinson's Disease-Related Executive Dysfunction in an Acute LPC Infusion Targeting the mPFC. Aging Cell 2025; 24:e70003. [PMID: 39954245 PMCID: PMC12073916 DOI: 10.1111/acel.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025] Open
Abstract
The dysfunction of the dopaminergic projection from the ventral tegmental area (VTA) to the medial prefrontal cortex (mPFC) is believed to play a key role in the pathophysiology of Parkinson's disease (PD) accompanied by executive dysfunction (EDF). In this study, we identified an abnormal increase in lysophosphatidylcholine (LPC) levels in PD patients, which closely correlates with the severity of cognitive impairment. LPC disrupts the miR-2885/TDP-43 signaling pathway in microglia, driving dopaminergic presynaptic engulfment. In LPC-exposed mice, microglial activation via miR-2885/TDP-43/p65 signaling led to inflammatory cytokine and complement release, marking dopaminergic synapses for phagocytosis with a "PS/C1q" signal. Following the inhibition of LPC-induced microglial activation through chemogenetic methods, we observed a significant reduction in the phagocytosis of dopaminergic synapses, resulting in improved executive function. The miR-2885 disrupted LPC-induced dopaminergic phagocytosis and alleviated EDF. Furthermore, the accumulation of excessive TDP-43 due to the loss of miR-2885 promoted the engulfment of dopaminergic synapses by facilitating the entry of p65 into the nucleus. Inhibiting TDP-43 levels effectively mitigated LPC-induced EDF. Additionally, supplementing dopamine receptor agonists enhanced the excitability of regional glutamatergic neurons, leading to improved executive function. In summary, LPC exposure in the mPFC impairs microglial regulation, leading to dopaminergic synaptic loss and underactivity of glutamatergic neurons. These changes drive the development of executive dysfunction in PD.
Collapse
Affiliation(s)
- Yehao Liu
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Rui Chen
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Department of NeurologyThe Second People's Hospital of Huai'an and the Affiliated Huai'an Hospital of Xuzhou Medical UniversityJiangsuChina
| | - Chunyan Mu
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Junjie Diao
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yurong Guo
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Xiaoyu Yao
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Shijie Shi
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public HealthPeking University Health Science CenterBeijingChina
| | - Zhi Zhang
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Xiaoling Qin
- Department of NeurologyShanghai Xuhui Central Hospital, Zhongshan‐Xuhui Hospital, Fudan UniversityShanghaiChina
| | - Chuanxi Tang
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
34
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
35
|
Strackeljan L, Baidoe-Ansah D, Mirzapourdelavar H, Jia S, Kaushik R, Cangalaya C, Dityatev A. Partial microglial depletion through inhibition of colony-stimulating factor 1 receptor improves synaptic plasticity and cognitive performance in aged mice. Exp Neurol 2025; 387:115186. [PMID: 39956381 DOI: 10.1016/j.expneurol.2025.115186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Microglia depletion, followed by repopulation, improves cognitive functions in the aged mouse brain. However, even temporal ablation of microglia puts the brain at a high risk of infection. Hence, in the present work, we studied if the partial reduction of microglia with PLX3397 (pexidartinib), an inhibitor of the colony-stimulating factor 1 receptor (CSF1R), could bring similar benefits as reported for microglia ablation. Aged (two-years-old) mice were treated with PLX3397 for a total of 6 weeks, which reduced microglia numbers in the hippocampus and retrosplenial cortex (RSC) to the levels seen in young mice and resulted in layer-specific ablation in the expression of microglial complement protein C1q mediating synaptic remodeling. This treatment boosted long-term potentiation in the CA1 region and improved performance in the hippocampus-dependent novel object location recognition task. Although PLX3397 treatment did not alter the number or total intensity of Wisteria floribunda agglutinin-positive perineuronal nets (PNNs) in the CA1 region of the hippocampus, it changed the fine structure of PNNs. It also elevated the expression of perisynaptic proteoglycan brevican, presynaptic vGluT1 at excitatory synapses, and vGAT in inhibitory ones in the CA1 stratum radiatum. Thus, targeting the CSF1R may provide a safe and efficient strategy to boost synaptic and cognitive functions in the aged brain.
Collapse
Affiliation(s)
- Luisa Strackeljan
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - David Baidoe-Ansah
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hadi Mirzapourdelavar
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Shaobo Jia
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Carla Cangalaya
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
36
|
Wood LB, Singer AC. Neurons as Immunomodulators: From Rapid Neural Activity to Prolonged Regulation of Cytokines and Microglia. Annu Rev Biomed Eng 2025; 27:55-72. [PMID: 39805040 DOI: 10.1146/annurev-bioeng-110122-120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Regulation of the brain's neuroimmune system is central to development, normal function, and disease. Neuronal communication to microglia, the primary immune cells of the brain, is well known to involve purinergic signaling mediated via ATP secretion and the cytokine fractalkine. Recent evidence shows that neurons release multiple cytokines beyond fractalkine, yet these are less studied and poorly understood. In contrast to ATP, cytokines are a class of signaling molecule that are much larger, with longer signaling and farther diffusion. We posit that neuron-expressed cytokines are an essential mechanism of neuron-microglia communication that arises as part of both normal learning and memory and in response to tissue pathology. Thus, neurons are underappreciated immunomodulatory cells that express diverse immunomodulatory signals. While neuronally sourced cytokines have been understudied, new technical advances make this a timely topic. The goal of this review is to define what is known about the cytokines expressed from neurons, how they are regulated, and the effects of these cytokines on microglia. We delineate key knowledge gaps and needs for new tools to define and analyze neuronal roles in immunomodulation. Given that cytokines are central regulators of microglial function, a broad new body of work is required to illuminate functional links between these neuronally expressed cytokines and sustained and transient microglial function.
Collapse
Affiliation(s)
- Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; ,
| | - Annabelle C Singer
- Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; ,
| |
Collapse
|
37
|
Rodriguez-Lopez A, Esteban D, Domínguez-Romero AN, Gevorkian G. Tg-SwDI transgenic mice: A suitable model for Alzheimer's disease and cerebral amyloid angiopathy basic research and preclinical studies. Exp Neurol 2025; 387:115189. [PMID: 39978567 DOI: 10.1016/j.expneurol.2025.115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the most frequent cause of dementia. Characteristic features observed in the brain of AD patients are the accumulation of amyloid beta peptide (Aβ) aggregates, neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau protein, neuronal and synaptic loss, and elevated levels of oxidative stress and inflammatory markers. Cerebral amyloid angiopathy (CAA) is another common cause of cognitive decline characterized by the accumulation of Aβ in the cerebral vasculature. The precise overlapping pathogenic mechanisms underlying the co-occurrence of AD and CAA are not very well understood. However, vascular dysfunction observed at early stages is considered a key phenomenon. Tg-SwDI transgenic mice expressing human Aβ precursor protein (AβPP) harboring the Swedish K670N/M671L and vasculotropic Dutch/Iowa E693Q/D694N mutations in the brain have been extensively used to study many pathological features observed in AD/CAA patients and to design biomarkers and therapeutic strategies. The present review summarizes studies addressing different features mimicking human disease in Tg-SwDI mice: parenchymal and cerebral vascular amyloid accumulation, neuroinflammation, complement overactivation, cerebrovascular, mitochondrial and GABAergic system dysfunction, altered NO synthesis, circadian rhythm disruptions, lead exposure effect, among others. Also, reports that evaluated anti-Aβ and anti-inflammatory strategies and compounds capable of delaying or reversing vascular dysfunction and the impairment of GABAergic transmission in Tg-SwDI mice are analyzed. This review may help researchers determine this model's appropriateness for future studies of a particular mechanism or a novel treatment protocol.
Collapse
Affiliation(s)
- Adrian Rodriguez-Lopez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Daniel Esteban
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Allan Noé Domínguez-Romero
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico.
| |
Collapse
|
38
|
Yin T, Sun S, Peng L, Yang M, Li M, Yang X, Yuan F, Zhu H, Wang S. Targeting microglial NAAA-regulated PEA signaling counters inflammatory damage and symptom progression of post-stroke anxiety. Cell Commun Signal 2025; 23:211. [PMID: 40312408 PMCID: PMC12046839 DOI: 10.1186/s12964-025-02202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/12/2025] [Indexed: 05/03/2025] Open
Abstract
Post-stroke anxiety (PSA) manifests as anxiety symptoms after stroke, with unclear mechanisms and limited treatment strategies. Endocannabinoids, reported to mitigate fear, anxiety, and stress, undergo dynamic alterations after stroke linked to prognosis intricately. However, endocannabinoid metabolism in ischemic microenvironment and their associations with post-stroke anxiety-like behavior remain largely uncovered. Our findings indicated that endocannabinoid metabolism was dysregulated after stroke, characterized by elevated N-palmitoylethanolamide (PEA) hydrolase N-acylethanolamine-acid amidase (NAAA) in activated microglia from ischemic area, accompanied by rapid PEA exhaustion. Microglial PEA metabolite exhaustion is directly associated with more severe pathological damage, anxiety symptoms and pain sensitivity. Naaa knockout or pharmacological supplementation to boost PEA pool content can effectively promote stroke recovery and alleviate anxiety-like behaviors. In addition, maintaining PEA pool content in ischemic area reduces overactivated microglia by confronting against mitochondria dysfunction and inflammasome cascade triggered IL-18 release and diffusion to contralateral hemisphere. Meanwhile, maintenance of microglial PEA pool content in ischemic-damaged lesion can preserve contralateral vCA1 synaptic integrity, enhancing anxiolytic pBLA-vCA1Calb1+ circuit activity by alleviating microglial phagocytosis-mediated synaptic loss. Thus, we conclude that microglial NAAA-regulated lipid signaling in the ischemic focus remodels contralateral anxiolytic circuit to participate in post-stroke anxiety progression. Blocking PEA signaling breakdown promotes stroke recovery and mitigates anxiety-like symptoms.
Collapse
Affiliation(s)
- Tianyue Yin
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Shuaijie Sun
- Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Mengmeng Yang
- Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Mengyu Li
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Xinlu Yang
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Fengyun Yuan
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Hongrui Zhu
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
39
|
Chen Y, Qi W, Peng W, Fang W, Song G, Hao Y, Wang Y. Cyanidin-3-glucoside improves cognitive impairment in naturally aging mice by modulating the gut microbiota and activating the ERK/CREB/BDNF pathway. Food Res Int 2025; 208:116086. [PMID: 40263878 DOI: 10.1016/j.foodres.2025.116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 02/22/2025] [Indexed: 04/24/2025]
Abstract
Aging-related cognitive impairment has emerged as a major health-threatening factor among the elderly, and cyanidin-3-glucoside (C3G) is a prominent anthocyanin with biological activities, including antioxidant, anti-inflammatory, and alleviation of neurodegeneration. However, the role of C3G in alleviating natural aging-induced cognitive impairment and the underlying mechanisms thereof remain unclear. In this study, experimental methods mainly included biochemical analysis, pathological analysis, immunofluorescence staining, transmission electron microscopy analysis, western blot, as well as the determination of the gut microbiota composition and detection of metabolites. We found that C3G may exert neuroprotective effects and promote brain health by alleviating brain atrophy and neuroinflammation, enhancing brain antioxidant capacity, regulating neurotransmitter expression and hypothalamic-pituitary-adrenal axis activity, and attenuating blood-brain barrier and hippocampal synaptic damage. Furthermore, C3G also promotes gut health by decreasing inflammatory responses and intestinal tissue crypt damage, upregulating the expression of tight junction proteins, and attenuating intestinal damage. Notably, C3G regulated the microbiota composition in different intestinal segments and intestinal mucosa, as well as the metabolic homeostasis of gut microbiota metabolites, such as short-chain fatty acids (SCFAs), amino acids, and bile acids. Substantially increased levels of SCFAs could activate the extracellular signal-regulated kinase (ERK)/cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway by acting on the G protein-coupled receptors. Correlation analysis indicated that increased gut microbiota, such as Faecalibaculum and Bifidobacterium, and elevated SCFAs were positively correlated with behavioral improvement and brain health. In conclusion, our findings reveal that C3G has the potential to improve natural aging-induced cognitive impairment by modulating the gut microbiota and its metabolite SCFAs, thereby activating the ERK/CREB/BDNF pathway.
Collapse
Affiliation(s)
- Yuyu Chen
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wentao Qi
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Wenting Peng
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Wei Fang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100093, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China.
| |
Collapse
|
40
|
Yan Q, Li XJ, Wang QQ, Jia W, Wang SL. FGF21 Exhibits Neuroprotective Effects by Promoting 5-HT 1AR-FGFR1 Heteroreceptor Complexes and Triggering MEK 1/2-ERK 1/2 Signaling Pathway. Mol Neurobiol 2025; 62:6369-6382. [PMID: 39789238 DOI: 10.1007/s12035-024-04673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Approaches of promoting a neural milieu permissive for plasticity and resilience against neuronal injury are important strategies for the treatment of a range of neurological disorders. Fibroblast growth factor 21 (FGF21) which is known for its role as a potent regulator of glucose and energy metabolism has also proved to be neuroprotective against various mental diseases. However, the underlying molecular mechanisms remain elusive. Here, we report a study of the neuroprotective effects of FGF21 by promoting 5-HT1AR-FGFR1 heteroreceptor formation and triggering MEK1/2-ERK1/2 signaling pathway in normal or abnormal neurological conditions. First, the in vitro cellular experiments demonstrated that FGF21 exerted a protective effect against glutamate-induced cytotoxicity and promoted cell differentiation and growth. Then, in wild-type and FGF21-/- mice, exogenous FGF21 promoted FGFR1-5-HT1AR heteromers formation in the CA3 and dentate gyrus region of the hippocampus and activated MEK1/2-ERK1/2 signaling. Coordinately, FGF21 exerted similar influences in the hippocampi of IBA-induced neurological injury mice or combined stress-exposed mice. Besides, FGF21 treatment activated the phosphorylation of FGFR1 and elevated the expression of synaptophysin in these mice with neurological injury or combined stress exposure. These results illustrated that FGF21 alleviated neurological impairment through FGFR1-5-HT1AR heteromer and ERK1/2 signal activation and suggested that the regulation of FGFR1-5-HT1AR heteromers and MEK1/2/ERK1/2 pathway may play a key role in mediating the neuroprotective effects of FGF21 against various neurodegeneration conditions.
Collapse
Affiliation(s)
- Qian Yan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiao-Jun Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qi-Qi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wei Jia
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shu-Ling Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
41
|
Li S, Li M, Li G, Li L, Yang X, Zuo Z, Zhang L, Hu X, He X. Physical Exercise Decreases Complement-Mediated Synaptic Loss and Protects Against Cognitive Impairment by Inhibiting Microglial Tmem9-ATP6V0D1 in Alzheimer's Disease. Aging Cell 2025; 24:e14496. [PMID: 39871402 PMCID: PMC12073899 DOI: 10.1111/acel.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025] Open
Abstract
Physical exercise is known to slow synaptic neurodegeneration and cognitive aging in Alzheimer's disease (AD). The benefits of physical exercise are related to reduced amyloid beta (Aβ) deposition and increased synaptic plasticity. Yet little is known about the mechanisms that mediate these effects. Here, we show that physical exercise down-regulated the microglial Tmem9 protein, inhibited C1q activation, and decreased C1q-dependent microglial synapse engulfment, eventually ameliorating cognitive impairment in 5xFAD mice. Furthermore, using oAβ cultured-BV2 in vitro, we show that downregulation of microglial Tmem9 was sufficient to restrain complement activity and decrease microglia-mediated synaptic loss, whereas overexpression of microglial Tmem9 tended to promote complement activation and induced synaptic loss, abolishing exercise-associated protection. Finally, we show that microglial Tmem9 contributed to complement activation by regulating ATP6V0D1, a vesicular (H+) ATP-dependent proton pump (V-ATPase) subunit that regulates V-ATPase assembly. Together, our results demonstrate that exercise is a potential treatment for AD patients. In an AD mouse model, it decreased the levels of microglial Tmem9 to inhibit the activation of complement, alleviated complement-dependent synaptic loss, and eventually ameliorated emotional and cognitive disorders.
Collapse
Affiliation(s)
- Shiyin Li
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Mingyue Li
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouGuangdongChina
| | - Lili Li
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiaofeng Yang
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Zejie Zuo
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Liying Zhang
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiquan Hu
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiaofei He
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
42
|
d'Errico P, Früholz I, Meyer-Luehmann M, Vlachos A. Neuroprotective and plasticity promoting effects of repetitive transcranial magnetic stimulation (rTMS): A role for microglia. Brain Stimul 2025; 18:810-821. [PMID: 40118248 DOI: 10.1016/j.brs.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to modulate neocortical excitability, with expanding applications in neurological and psychiatric disorders. However, the cellular and molecular mechanisms underlying its effects, particularly the role of microglia -the resident immune cells of the central nervous system- remain poorly understood. This review synthesizes recent findings on how different rTMS protocols influence microglial function under physiological conditions and in disease models. Emerging evidence indicates that rTMS modulates microglial activation, promoting neuroprotective and plasticity-enhancing processes not only in models of brain disorders, such as Alzheimer's and Parkinson's disease, but also in healthy neural circuits. While much of the current research has focused on the inflammatory profile of microglia, critical aspects such as activity-dependent synaptic remodeling, phagocytic activity, and process motility remain underexplored. Given the substantial heterogeneity of microglial responses across brain regions, age, and sex, as well as their differential roles in health and disease, a deeper understanding of their involvement in rTMS-induced plasticity is essential. Future studies should integrate selective microglial manipulation and advanced structural, functional, and molecular profiling techniques to clarify their causal involvement. Addressing these gaps will be pivotal in optimizing rTMS protocols and maximizing its therapeutic potential across a spectrum of neurological and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Paolo d'Errico
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Iris Früholz
- Department of Neurology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
43
|
Lee J, Noh K, Lee S, Kim KH, Chung S, Lim H, Hwang M, Lee JH, Chung WS, Chang S, Lee SJ. Ganglioside GT1b prevents selective spinal synapse removal following peripheral nerve injury. EMBO Rep 2025:10.1038/s44319-025-00452-2. [PMID: 40307621 DOI: 10.1038/s44319-025-00452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
After peripheral nerve injury, the structure of the spinal cord is actively regulated by glial cells, contributing to the chronicity of neuropathic pain. However, the mechanism by which peripheral nerve injury leads to synaptic imbalance remains elusive. Here, we use a pH-reporter system and find that nerve injury triggers a reorganization of excitatory synapses that is influenced by the accumulation of the ganglioside GT1b at afferent terminals. GT1b acts as a protective signal against nerve injury-induced spinal synapse elimination. Inhibition of GT1b-synthesis increases glial phagocytosis of excitatory pre-synapses and reduces excitatory synapses post-injury. In vitro analyses reveal a positive correlation between GT1b accumulation and the frequency of pre-synaptic calcium activity, with GT1b-mediated suppression of glial phagocytosis occurring through SYK dephosphorylation. Our study highlights GT1b's pivotal role in preventing synapse elimination after nerve injury and offers new insight into the molecular underpinning of activity-dependent synaptic stability and glial phagocytosis.
Collapse
Affiliation(s)
- Jaesung Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Physiology and Biomedical Sciences, Dementia Research Center, College of Medicine, Seoul National University, Seoul, 08226, Republic of Korea
| | - Kyungchul Noh
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Subeen Lee
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang Hwan Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seohyun Chung
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyoungsub Lim
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyu Hwang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joon-Hyuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Dementia Research Center, College of Medicine, Seoul National University, Seoul, 08226, Republic of Korea.
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
44
|
Di Liberto G, Egervari K, Vogrig A, Spatola M, Piccinno M, Vincenti I, Wagner I, Kreutzfeldt M, Endmayr V, Ostertag K, Rahimi J, Vicino A, Pröbstel AK, Meyronet D, Frank S, Prinz M, Hewer E, Brouland JP, de Leval L, Parkkinen L, Draganski B, Desestret V, Dubey D, Pittock SJ, Roemer SF, Dickson DW, Höftberger R, Irani SR, Honnorat J, Du Pasquier R, Merkler D. Neuronal pSTAT1 hallmarks synaptic pathology in autoimmune encephalitis against intracellular antigens. Acta Neuropathol 2025; 149:35. [PMID: 40278930 PMCID: PMC12031792 DOI: 10.1007/s00401-025-02882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Autoimmune encephalitis (AE) is an inflammatory syndrome of the central nervous system (CNS) triggered by aberrant immune responses against neuronal intracellular (IC-AE) or surface (NS-AE) autoantigens. The resulting neuronal alterations and clinical trajectories differ, with IC-AE often leading to fatal outcomes. Unfortunately, the scarce availability of tissue from AE cases has hampered systematic analyses that would allow an understanding of the pathogenesis underlying neuronal alterations in T cell-mediated AE syndromes. Here, we assembled a cohort comprising both NS-AE (n = 8) and IC-AE (n = 12) from multiple institutions to delineate key histopathological features that distinguish neuronal pathology between IC-AE and NS-AE. In contrast to NS-AE, IC-AE lesions present a prominent neuronal pSTAT1 signature, accompanied by a high proportion of brain-resident memory CD8 + T cells and neurodegenerative GPNMB + phagocytes which show synaptic engulfment with little C3-complement deposition. Our findings highlight distinct histopathological features of IC-AE compared to NS-AE, providing actionable biomarkers for diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Neurology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Alberto Vogrig
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Marianna Spatola
- Neuroimmunology Program, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona and Caixa Research Institute (CRI), Barcelona, Spain
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | - Jasmin Rahimi
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders Klinik Donaustadt, Vienna, Austria
| | - Alex Vicino
- Department of Clinical Neurosciences, Neurology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anne-Katrin Pröbstel
- Department of Neurology and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Center of Neurology, Department of Neuroimmunology, University Hospital and University Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Meyronet
- Institute of Neuropathology, Hospices Civils de Lyon, 69008, Lyon, France
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, CEDEX 08, 69373, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69373, Lyon, France
| | - Stephan Frank
- Department of Neuropathology, Institute of Pathology, Basel University Hospital, Basel, Switzerland
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ekkehard Hewer
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Brouland
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Bogdan Draganski
- Universitätsklinik für Neurologie, Inselspital, University of Bern, Bern, Switzerland
- University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Virginie Desestret
- French Reference Center On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Divyanshu Dubey
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Shanu F Roemer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sarosh R Irani
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Autoimmune Neurology Group, West Wing, Level 3, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jérôme Honnorat
- French Reference Center On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Neurology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
45
|
Liu K, Hong J, Li Y, Wang Q, Dong R, Liu T, Guo X, Chen L, Li Z. A novel postoperative delayed neurocognitive recovery model established based on preoperative rapid eye movement sleep deprivation in adult mice. Int Immunopharmacol 2025; 153:114508. [PMID: 40147264 DOI: 10.1016/j.intimp.2025.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/05/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUNDS Postoperative delayed neurocognitive recovery (dNCR) usually occurs in older patients, however, the extremely high cost of older animals has hindered postoperative dNCR research to some extent. Preoperative sleep disturbance increases the risk of postoperative dNCR in patients. Therefore, this study aimed to construct a dNCR model in adult mice based on preoperative sleep disturbance. METHODS A modified multiple platform method was used to induce rapid eye movement sleep deprivation (REM-SD), and the surgical model was established by laparotomy in 3-month-old C57BL/6 J mice. The Morris water maze and fear conditioning test were used to assess the cognitive function of mice. Immunofluorescence was used to detect microglia and astrocyte activation, and quantitative real-time PCR was used to measure the mRNA levels of inflammatory cytokines. RESULTS Neither laparotomy nor 12 h of REM-SD caused cognitive impairment in mice, but the combination of the two methods induced hippocampus-dependent cognitive dysfunction. Furthermore, hippocampal microglia of mice with 12 h of preoperative REM-SD were polarized to the M1-type, accompanied by increased interleukin-6 and decreased interleukin-10 at the mRNA level. CONCLUSIONS We successfully established an adult mouse model of postoperative dNCR based on preoperative REM-SD, which provides an alternative model to explore the pathogenesis and therapeutic measures of dNCR.
Collapse
Affiliation(s)
- Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Qian Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Rui Dong
- Department of Anesthesiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China.
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
46
|
Wu F, Dallaire-Théroux C, Michaud É, Bergeron F, Lavoie M, Soucy JP, Dirani A, Laforce RJ. Diagnosing neurodegenerative disorders using retina as an external window: A systematic review of OCT-MRI correlations. J Alzheimers Dis 2025:13872877251331231. [PMID: 40255034 DOI: 10.1177/13872877251331231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BackgroundRecent studies have explored optical coherence tomography (OCT) and OCT-angiography (OCT-A) as biomarkers for Alzheimer's disease (AD). However, correlations between OCT/OCT-A and neurodegeneration metrics remain underexplored.ObjectiveWe performed a systematic review of OCT/OCT-A and structural brain imaging using MRI across various neurodegenerative disorders.MethodsWe searched Medline, Embase, and various other databases from January to June 2023 using keywords regarding neurodegenerative conditions and OCT/OCT-A. Out of 2962 citations. 93 articles were reviewed, and 28 met our inclusion criteria.ResultsLayer-or-region-specific retinal metrics were the most promising for non-vascular neurodegeneration, while vascular retinal parameters had the unique capacity to reflect vascular lesions. Both types of biomarkers correlated with global brain atrophy. Microstructural brain alterations best correlated with layer-specific thinning of retina.ConclusionsA better understanding of associations between retinal and brain lesions could eventually lead to the clinical application of retinal biomarkers for the early diagnosis of neurodegenerative conditions.
Collapse
Affiliation(s)
- Fei Wu
- Research Chair on Primary Progressive Aphasia - Fondation de la famille Lemaire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Caroline Dallaire-Théroux
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Faculté de médecine, Université Laval, Québec City, QC, Canada
- Division of Neuroscience, Hôpital de l'Enfant-Jésus, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
| | - Élodie Michaud
- Faculté de médecine, Université Laval, Québec City, QC, Canada
| | | | - Monica Lavoie
- Research Chair on Primary Progressive Aphasia - Fondation de la famille Lemaire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
| | - Jean-Paul Soucy
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Ali Dirani
- Faculté de médecine, Université Laval, Québec City, QC, Canada
- Centre universitaire d'ophtalmologie, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
| | - Robert Jr Laforce
- Research Chair on Primary Progressive Aphasia - Fondation de la famille Lemaire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Faculté de médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
47
|
Yu A, Fang C, Tan LX, Lakkaraju A, Della Santina L, Ou Y. Microglia target synaptic sites early during excitatory circuit disassembly in neurodegeneration. iScience 2025; 28:112201. [PMID: 40212592 PMCID: PMC11984620 DOI: 10.1016/j.isci.2025.112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/20/2024] [Accepted: 03/06/2025] [Indexed: 04/25/2025] Open
Abstract
During development, microglia prune excess synapses to refine neuronal circuits. In neurodegeneration, understanding the role of microglia-mediated synaptic pruning in circuit remodeling and dysfunction is important for developing therapies aimed at modulating microglial function. Here, we analyzed microglia-mediated synapse disassembly of degenerating postsynaptic neurons in the inner retina. After inducing transient intraocular pressure elevation to injure retinal ganglion cells, microglia increase in number, shift to hyper-ramified morphology, and exhibit greater process movement. Furthermore, due to the greater number of microglia, there is increased colocalization of microglia with synaptic components throughout the inner plexiform layer and with excitatory synaptic sites along individual ganglion cell dendrites. Microglia depletion partially protects ganglion cell function, suggesting that microglia activation may be neurotoxic in early neurodegeneration. Our results demonstrate the important role of microglia in synapse disassembly in degenerating circuits, highlighting that microgliosis is the primary mechanism for increased synapse colocalization early after neuronal injury.
Collapse
Affiliation(s)
- Alfred Yu
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
| | - Camille Fang
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Aparna Lakkaraju
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
| | - Luca Della Santina
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
- College of Optometry, University of Houston, Houston, TX, USA
| | - Yvonne Ou
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
| |
Collapse
|
48
|
Badia-Soteras A, Mak A, Blok TM, Boers-Escuder C, van den Oever MC, Min R, Smit AB, Verheijen MHG. Astrocyte-synapse structural plasticity in neurodegenerative and neuropsychiatric diseases. Biol Psychiatry 2025:S0006-3223(25)01125-4. [PMID: 40254258 DOI: 10.1016/j.biopsych.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/18/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Synaptic dysfunction is a common feature across a broad spectrum of brain diseases, spanning from psychopathologies such as post-traumatic stress disorder (PTSD) and substance use disorders (SUD) to neurodegenerative diseases like Alzheimer's and Parkinson's disease (AD and PD). While neuroscience research aiming to understand the mechanisms underlying synaptic dysfunction has traditionally focused on the neuronal elements of the synapse, recent research increasingly acknowledges the contribution of astrocytes as a third element controlling synaptic transmission. This also sparked interest to investigate the tripartite synapse and its role in the etiology of neurological diseases. According to recent evidence, changes in the structural interaction between astrocytes and synapses not only play a pivotal role in modulating synaptic function and behavioral states, but are also implicated in the initiation and progression of various brain diseases. This review aims to integrate recent findings that provide insight into the molecular mechanisms underpinning astrocytic structural changes at the synapse. We offer a comprehensive discussion of the potential implications of compromised astrocyte-synapse interactions, and put forward that astrocytic synaptic coverage is generally reduced in numerous neurological disorders, with the extent of it being disease- and stage- specific. Finally, we propose outstanding questions on astrocyte-synapse structural plasticity that are relevant for future therapeutic strategies to tackle neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Aina Badia-Soteras
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Brain Scienes, Imperial College London, London , United Kingdom; UK Dementia Research Institute at Imperial College London, London , United Kingdom
| | - Aline Mak
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Thomas M Blok
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Cristina Boers-Escuder
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rogier Min
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam, University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
50
|
Nelson DE, Olszewski MA. Editorial: Exploring the molecular mechanisms that regulate macrophage polarization. Front Immunol 2025; 16:1599215. [PMID: 40308610 PMCID: PMC12041800 DOI: 10.3389/fimmu.2025.1599215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Affiliation(s)
- David E. Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Michal A. Olszewski
- Department of Veterans’ Affairs, Ann Arbor Health System, Ann Arbor, MI, United States
- Division of Pulmonary & Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|