1
|
Olson MC, Pierce LR, Orchard RC. Development of a replication competent murine norovirus reporter system. PLoS Pathog 2025; 21:e1012834. [PMID: 40402985 DOI: 10.1371/journal.ppat.1012834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
Caliciviruses are significant agricultural and human pathogens that are poorly understood due to the dearth of molecular tools, including reporter systems. We report the development of a robust luciferase-based reporter system for a model calicivirus, murine norovirus (MNoV). Genetic insertion of a HiBiT tag, an 11 amino acid fragment of nanolucifersase, at the junction of the nonstructural proteins NS4 and NS5 yields infectious virus. The resultant MNoV-HiBiT produces a robust signal that is detected early in infection and occurs only in cells susceptible to MNoV infection. The MNoV-HiBiT reporter is effective at monitoring acute infection in STAT1 deficient mice. Furthermore, we used this tool to characterize two unappreciated host directed anti-MNoV compounds. The use of the MNoV-HiBiT virus enables new mechanistic studies by a rapid and quantitative means of measuring MNoV replication. The HiBiT insertion strategy we describe may be useful for the generation of other calicivirus reporters.
Collapse
Affiliation(s)
- Mikayla C Olson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Linley R Pierce
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
2
|
Soriaga LB, Balce DR, Bartha I, Park A, Wong E, McAllaster M, Mueller EA, Barauskas O, Carabajal E, Kowalski B, Lee S, Lo G, Mahoney TF, Metruccio M, Sahakyan A, Somasundaram L, Steinfeld T, Wang L, Wedel L, Yim SS, Yin L, Zhou J, Newby Z, Tse W, Grosse J, Virgin HW, Hwang S, Telenti A. Shared host genetic landscape of respiratory viral infection. Proc Natl Acad Sci U S A 2025; 122:e2414202122. [PMID: 40372436 DOI: 10.1073/pnas.2414202122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/01/2025] [Indexed: 05/16/2025] Open
Abstract
Respiratory viruses represent a major global health burden. Although these viruses have different life cycles, they may depend on common host genetic factors, which could be targeted by broad-spectrum host-directed therapies. We used genome-wide CRISPR screens and advanced data analytics to map a network of host genes that support infection by nine human respiratory viruses [influenza A virus, parainfluenza virus, human rhinovirus, respiratory syncytial virus, human coronavirus (HCoV)-229E, HCoV-NL63, HCoV-OC43, Middle East respiratory syndrome-related coronavirus, and severe acute respiratory syndrome-related coronavirus 2]. We explored shared pathways using knowledge graphs to inform on pharmacological targets. We selected and validated STT3A/B proteins of the N-oligosaccharyltransferase complex as host targets of broad-spectrum antiviral small molecules. Our work highlights the commonalities of viral host genetic dependencies and the feasibility of using this information to develop broad-spectrum antiviral agents.
Collapse
Affiliation(s)
| | | | | | - Arnold Park
- Vir Biotechnology Inc., San Francisco, CA 94158
| | - Emily Wong
- Vir Biotechnology Inc., San Francisco, CA 94158
| | | | | | | | | | | | | | - Gary Lo
- Vir Biotechnology Inc., San Francisco, CA 94158
| | | | | | | | | | | | - Lisha Wang
- Vir Biotechnology Inc., San Francisco, CA 94158
| | - Laura Wedel
- Vir Biotechnology Inc., San Francisco, CA 94158
| | | | - Li Yin
- Vir Biotechnology Inc., San Francisco, CA 94158
| | - Jiayi Zhou
- Vir Biotechnology Inc., San Francisco, CA 94158
| | - Zach Newby
- Vir Biotechnology Inc., San Francisco, CA 94158
| | - Winston Tse
- Vir Biotechnology Inc., San Francisco, CA 94158
| | | | | | | | | |
Collapse
|
3
|
Stewart BM, Pierce LR, Olson MC, Ji C, Orchard RC. Membrane asymmetry facilitates murine norovirus entry and persistent enteric infection. PLoS Biol 2025; 23:e3003147. [PMID: 40245088 PMCID: PMC12052208 DOI: 10.1371/journal.pbio.3003147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/05/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
Norovirus, the leading cause of gastroenteritis worldwide, is a non-enveloped virus whose tropism is determined in part by the expression patterns of entry receptors. However, the contribution of cellular lipids to viral entry is not well understood. Here, we determined that the asymmetrical distribution of lipids within membrane bilayers is required for murine norovirus (MNV) replication. Specifically, TMEM30a, an essential subunit of lipid flippases, is required for MNV replication in vitro. Disruption of TMEM30a in mouse intestinal epithelial cells prevents persistent, enteric infection by MNV in vivo. Mechanistically, TMEM30a facilitates MNV binding and entry. Surprisingly, exoplasmic phosphatidylserine (PS), a typical marker of dying cells, does not inhibit MNV infection. Rather, TMEM30a maintains a lipid-ordered state that impacts membrane fluidity that is necessary for the low affinity, high avidity binding of MNV to cells. Our data provides a new role for lipid asymmetry in promoting non-enveloped virus infection in vitro and norovirus persistence in vivo.
Collapse
Affiliation(s)
- Brittany M. Stewart
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Linley R. Pierce
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mikayla C. Olson
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chengyuan Ji
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Robert C. Orchard
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
4
|
Firdaus MER, Dukhno E, Kapoor R, Gerlach P. Two Birds With One Stone: RNA Virus Strategies to Manipulate G3BP1 and Other Stress Granule Components. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70005. [PMID: 40170442 PMCID: PMC11962251 DOI: 10.1002/wrna.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Stress granules (SGs) are membrane-less organelles forming in the cytoplasm in response to various types of stress, including viral infection. SGs and SG-associated proteins can play either a proviral role, by facilitating viral replication, or an antiviral role, by limiting the translation capacity, sequestering viral RNA, or contributing to the innate immune response of the cell. Consequently, viruses frequently target stress granules while counteracting cellular translation shut-off and the antiviral response. One strategy is to sequester SG components, not only to impair their assembly but also to repurpose and incorporate them into viral replication sites. G3BP1 is a key SG protein, driving its nucleation through protein-protein and protein-RNA interactions. Many cellular proteins, including other SG components, interact with G3BP1 via their ΦxFG motifs. Notably, SARS-CoV N proteins and alphaviral nsP3 proteins contain similar motifs, allowing them to compete for G3BP1. Several SG proteins have been shown to interact with the flaviviral capsid protein, which is primarily responsible for anchoring the viral genome inside the virion. There are also numerous examples of structured elements within coronaviral and flaviviral RNAs recruiting or sponging SG proteins. Despite these insights, the structural and biochemical details of SG-virus interactions remain largely unexplored and are known only for a handful of cases. Exploring their molecular relevance for infection and discovering new examples of direct SG-virus contacts is highly important, as advances in this area will open new possibilities for the design of targeted therapies and potentially broad-spectrum antivirals.
Collapse
Affiliation(s)
- Moh Egy Rahman Firdaus
- IMol Polish Academy of SciencesWarsawPoland
- ReMedy International Research Agenda UnitIMol Polish Academy of SciencesWarsawPoland
| | - Eliana Dukhno
- IMol Polish Academy of SciencesWarsawPoland
- ReMedy International Research Agenda UnitIMol Polish Academy of SciencesWarsawPoland
| | | | - Piotr Gerlach
- IMol Polish Academy of SciencesWarsawPoland
- ReMedy International Research Agenda UnitIMol Polish Academy of SciencesWarsawPoland
| |
Collapse
|
5
|
Song J, Zhang L, Moon S, Fang A, Wang G, Gheshm N, Loeb SA, Cao P, Wallace JR, Alfajaro MM, Strine MS, Beatty WL, Jamieson AM, Orchard RC, Robinson BA, Nice TJ, Wilen CB, Orvedahl A, Reese TA, Lee S. Norovirus co-opts NINJ1 for selective protein secretion. SCIENCE ADVANCES 2025; 11:eadu7985. [PMID: 40020060 PMCID: PMC11870086 DOI: 10.1126/sciadv.adu7985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Plasma membrane rupture by Ninjurin-1 (NINJ1) executes programmed cell death, releasing large cellular damage-associated molecular patterns (DAMPs). However, the regulation and selectivity of NINJ1-mediated DAMP release remain unexplored. Here, we uncover that murine norovirus (MNoV) strategically co-opts NINJ1 to selectively release the intracellular viral protein NS1, while NINJ1-mediated plasma membrane rupture simultaneously bulk-releases various cellular DAMPs. Host caspase-3 cleaves the precursor NS1/2, leading to NS1 secretion via an unconventional pathway. An unbiased CRISPR screen identifies NINJ1 as an essential factor for NS1 secretion. During infection, NINJ1 is recruited to the viral replication site, where it oligomerizes and forms speckled bodies, directly interacting with NS1. Subsequent mutagenesis studies identify critical amino acid residues of NS1 necessary for its interaction with NINJ1 and selective secretion. Genetic ablation or pharmaceutical inhibition of caspase-3 inhibits oral MNoV infection in mice. This study underscores the co-option of NINJ1 for controlled release of an intracellular viral protein.
Collapse
Affiliation(s)
- Jaewon Song
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Li Zhang
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Seokoh Moon
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Ariana Fang
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Newsha Gheshm
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Skylar A. Loeb
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Paul Cao
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Joselynn R. Wallace
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
| | - Madison S. Strine
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Amanda M. Jamieson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bridget A. Robinson
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Timothy J. Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tiffany A. Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
6
|
Chen J, Madhiyan M, Moor KJ, Chen H, Shuai D. Kinetics and Mechanisms of Solar UVB Disinfection of Vesicle-Cloaked Murine Norovirus Clusters and Free Noroviruses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2461-2472. [PMID: 39893675 DOI: 10.1021/acs.est.4c12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Human norovirus, a major global cause of gastroenteritis, forms vesicle-cloaked virus clusters (known as viral vesicles), showing increased infectivity and persistence in aquatic environments. We investigated UVB disinfection, a key mechanism of solar disinfection commonly employed in developing countries, targeting murine norovirus vesicles and free murine noroviruses as surrogates for human noroviruses. At low viral concentrations of 109 gene copies per liter, viral infectivity loss as quantified by the integrated cell culture-reverse transcription-quantitative polymerase chain reaction (ICC-RT-qPCR) indicated that vesicles were 1.51 to 1.73 times more resistant to disinfection compared to free viruses. Virus inactivation was primarily due to protein damage as quantified by bicinchoninic acid and Western blot assays, and the damage of virus binding to host cells as quantified by RT-qPCR. Molecular simulations predicted that the oxidation of a tyrosine residue in the viral protein 1 prohibited binding. UVB irradiation of viral/vesicle proteins resulted in 1O2 formation as quantified by time-resolved phosphorescence, and for the first time, endogenous 1O2 was confirmed to contribute to virus inactivation by UVB. Our study recognizes the limitation of UVB disinfection of viral vesicles particularly in solar wastewater treatment and advocates for enhanced disinfection strategies to protect public health.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Monika Madhiyan
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| | - Kyle J Moor
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| | - Hanning Chen
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
7
|
Chen X, Zheng M, Lin S, Huang M, Chen S, Chen S. The application of CRISPR/Cas9-based genome-wide screening to disease research. Mol Cell Probes 2025; 79:102004. [PMID: 39709065 DOI: 10.1016/j.mcp.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
High-throughput genetic screening serves as an indispensable approach for deciphering gene functions and the intricate relationships between phenotypes and genotypes. The CRISPR/Cas9 system, with its ability to precisely edit genomes on a large scale, has revolutionized the field by enabling the construction of comprehensive genomic libraries. This technology has become a cornerstone for genome-wide screenings in disease research. This review offers a comprehensive examination of how CRISPR/Cas9-based genetic screening has been leveraged to uncover genes that play a role in disease mechanisms, focusing on areas such as cancer development and viral replication processes. The insights presented in this review hold promise for the development of novel therapeutic strategies and precision medicine approaches.
Collapse
Affiliation(s)
- Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Su Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Meiqing Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China.
| |
Collapse
|
8
|
Olson MC, Orchard RC. Development of a replication competent murine norovirus reporter system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633260. [PMID: 39868277 PMCID: PMC11760427 DOI: 10.1101/2025.01.15.633260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Caliciviruses are significant agricultural and human pathogens that are poorly understood due to the dearth of molecular tools, including reporter systems. We report the development of a stable, faithful, and robust luciferase-based reporter system for a model calicivirus, murine norovirus (MNoV). Genetic insertion of a HiBiT tag, an 11 amino acid fragment of nanolucifersase, at the junction of the nonstructural proteins NS4 and NS5 yields infectious virus. The resultant MNoV-HiBiT produces robust signal that is detected early in infection and occurs only in cells susceptible to MNoV infection. As proof of principle, we used this tool to characterize two unappreciated host directed anti-MNoV compounds. The use of the MNoV-HiBiT virus enables new mechanistic studies by a rapid and quantitative means of measuring MNoV replication. Furthermore, the HiBiT insertion strategy we describe may be useful for the generation of other calicivirus reporters.
Collapse
Affiliation(s)
- Mikayla C. Olson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Deng W, Almeida G, Gibson KE. Virus Association with Bacteria and Bacterial Cell Components Enhance Virus Infectivity. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:15. [PMID: 39789292 PMCID: PMC11717783 DOI: 10.1007/s12560-025-09633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
The transmission and infection of enteric viruses can be influenced by co-existing bacteria within the environment and host. However, the viral binding ligands on bacteria and the underlying interaction mechanisms remain unclear. This study characterized the association of norovirus surrogate Tulane virus (TuV) and murine norovirus (MNV) as well as the human enteric virus Aichi virus (AiV) with six bacteria strains (Pantoea agglomerans, Pantoea ananatis, Bacillus cereus, Enterobacter cloacae, Exiguobacterium sibiricum, Pseudomonas spp.). At room temperature, the viruses bound to all bacteria in strain-dependent rates and remained bound for at least 2 h. The virus association with two gram-positive bacteria B. cereus and E. sibiricum was less efficient than gram-negative bacteria. Next, the bacterial envelope components including lipopolysaccharides (LPS), extracellular polymeric substances (EPS), and peptidoglycan (PG) from selected strains were co-incubated with viruses to evaluate their effect on virus infectivity. All the tested bacteria components significantly increased virus infection to variable degrees as compared to PBS. The LPS of E. coli O111:B4 resulted in the greatest increases of infection by 0.19 log PFU for TuV as determined by plaque assay. Lastly, bacterial whole cell lysate of B. cereus and E. cloacae was examined for their impact on the infectivity of MNV and TuV. The co-incubation with whole cell lysates significantly increased the infectivity of TuV by 0.2 log PFU but not MNV. This study indicated that both the individual bacteria components and whole bacterial cell lysate can enhance virus infectivity, providing key insights for understanding virus-bacteria interaction.
Collapse
Affiliation(s)
- Wenjun Deng
- College of Life Science, Qingdao University, Qingdao, People's Republic of China
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
| | - Giselle Almeida
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Arkansas Children's Hospital, Little Rock, AR, USA
| | - Kristen E Gibson
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.
| |
Collapse
|
10
|
Tamiya S, Matsumoto N, Kurokawa S, Nakamura Y, Takahashi Y, Sakon N, Inoue M, Koike Y, Uchida K, Yuki Y, Ushijima H, Kiyono H, Sato S. H and B Blood Antigens Are Essential for In Vitro Replication of GII.2 Human Norovirus. Open Forum Infect Dis 2025; 12:ofae714. [PMID: 39758750 PMCID: PMC11697099 DOI: 10.1093/ofid/ofae714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Background Human norovirus (HuNoV) is a major cause of enteric infectious gastroenteritis and is classified into several genotypes based on its capsid protein amino acid sequence and nucleotide sequence of the polymerase gene. Among these, GII.4 is the major genotype worldwide. Epidemiological studies have highlighted the prevalence of GII.2. Although recent advances using human tissue- and induced pluripotent stem cell (iPSC)-derived intestinal epithelial cells (IECs) have enabled in vitro replication of multiple HuNoV genotypes, GII.2 HuNoV could replicate only in tissue-derived IECs and not in iPSC-derived IECs. Methods We investigated the factors influencing GII.2 HuNoV replication in IECs, focusing on histo-blood group antigens. We also assessed the immunogenicity of GII.2 virus-like particles (VLPs) and their ability to induce neutralizing antibodies. Antibody cross-reactivity was tested to determine whether GII.2 VLPs could neutralize other HuNoV genotypes, including GII.4, GII.3, GII.6, and GII.17. Results Our findings indicated that GII.2 HuNoV replication in vitro requires the presence of both H and B antigens. Moreover, GII.2 VLPs generated neutralizing antibodies effective against both GII.2 and GII.4 but not against GII.3, GII.6, or GII.17. Comparatively, GII.2 and GII.17 VLPs induced broader neutralizing responses than GII.4 VLPs. Conclusions The findings of this study suggests that GII.2 and GII.17 VLPs may be advantageous as HuNoV vaccine candidates because they elicit neutralizing antibodies against the predominant GII.4 genotype, which could be particularly beneficial for infants without prior HuNoV exposure. These insights will contribute to the development of effective HuNoV vaccines.
Collapse
Affiliation(s)
- Shigeyuki Tamiya
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
- Department of Virology, Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Naomi Matsumoto
- Department of Virology, Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shiho Kurokawa
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Yutaka Nakamura
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Mikihiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Mie, Japan
- Department of Pediatric Surgery, Fujita Health University, Aichi, Japan
| | - Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Keiichi Uchida
- Department of Pediatric Surgery, Mie Prefectural General Medical Center, Mie, Japan
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Departments of Medicine and Pathology, University of California, San Diego, California, USA
| | - Shintaro Sato
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
- Department of Virology, Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Feng X, Flüchter P, De Tenorio JC, Schneider C. Tuft cells in the intestine, immunity and beyond. Nat Rev Gastroenterol Hepatol 2024; 21:852-868. [PMID: 39327439 DOI: 10.1038/s41575-024-00978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/28/2024]
Abstract
Tuft cells have gained substantial attention over the past 10 years due to numerous reports linking them with type 2 immunity and microorganism-sensing capacity in many mucosal tissues. This heightened interest is fuelled by their unique ability to produce an array of biological effector molecules, including IL-25, allergy-related eicosanoids, and the neurotransmitter acetylcholine, enabling downstream responses in diverse cell types. Operating through G protein-coupled receptor-mediated signalling pathways reminiscent of type II taste cells in oral taste buds, tuft cells emerge as chemosensory sentinels that integrate luminal conditions, eliciting appropriate responses in immune, epithelial and neuronal populations. How tuft cells promote tissue alterations and adaptation to the variety of stimuli at mucosal surfaces has been explored in multiple studies in the past few years. Since the initial recognition of the role of tuft cells, the discovery of diverse tuft cell effector functions and associated feedback loops have also revealed the complexity of tuft cell biology. Although earlier work largely focused on extraintestinal tissues, novel genetic tools and recent mechanistic studies on intestinal tuft cells established fundamental concepts of tuft cell activation and functions. This Review is an overview of intestinal tuft cells, providing insights into their development, signalling and interaction modules in immunity and other states.
Collapse
Affiliation(s)
- Xiaogang Feng
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Flüchter
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
12
|
Matsushima Y, Levenson EA, Chaimongkol N, Harris L, Zhao Y, Turan S, Otaizo-Carrasquero F, Ganesan S, Hornick KM, Martens C, Sosnovtsev SV, Green KY. Single-cell transcriptional analysis of murine norovirus infection in a human intestinal cell line. J Virol 2024; 98:e0161724. [PMID: 39475272 PMCID: PMC11575399 DOI: 10.1128/jvi.01617-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/20/2024] Open
Abstract
Noroviruses are a major agent of acute gastroenteritis in humans, but host cell requirements for efficient replication in vitro have not been established. We engineered a human intestinal cell line (designated mCD300lf-hCaco2) expressing the murine norovirus (MNV) receptor, mouse CD300lf to become fully permissive for MNV replication. To explore the replicative machinery and host response of these cells, we performed a single-cell RNA sequencing (scRNA-seq) transcriptomics analysis of an MNV infection over time. Marked similarities were observed between certain global features of MNV infection in human cells compared to those previously reported in mouse cells by whole population transcriptomics such as downregulation of ribosome biogenesis, mitochondrial dysfunction, and cell cycle preference for G1. Our scRNA-seq analysis allowed further resolution of an infected cell population into distinct clusters with varying levels of viral RNA and interferon-stimulated gene ISG15 transcripts. Cells with high viral replication displayed downregulated ribosomal protein small (RPS) and large (RPL) genes and mitochondrial complexes I, III, IV, and V genes during exponential viral propagation. Ferritin subunit genes FTL and FTH1 were also downregulated during active MNV replication, suggesting that inhibition of iron metabolism may increase replication efficiency. Consistent with this, transcriptional activation of these genes with ferric ammonium citrate and overexpression of FTL lowered virus yields. Comparative studies of cells that support varying levels of norovirus replication efficiency, as determined by scRNA-seq may lead to improved human cell-based culture systems and effective viral interventions.IMPORTANCEHuman noroviruses cause acute gastroenteritis in all age groups. Vaccines and antiviral drugs are not yet available, in part, because it is difficult to propagate the viruses causing human disease in standard laboratory cell culture systems. In contrast, a norovirus found in mice [murine norovirus (MNV)] replicates efficiently in murine-based cell culture and has served as a model system. In this study, we established a new human intestinal cell line that was genetically modified to express the murine norovirus receptor so that the human cells became permissive to murine norovirus infection. We then defined the host response to MNV infection in the engineered human cell line at a single-cell resolution and identified cellular genes associated with the highest levels of MNV replication. This study may lead to the improvement of the current human norovirus cell culture systems and help to identify norovirus-host interactions that could be targeted for antiviral drugs.
Collapse
Affiliation(s)
- Yuki Matsushima
- Caliciviruses Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric A. Levenson
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Natthawan Chaimongkol
- Caliciviruses Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Loyall Harris
- Caliciviruses Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongmei Zhao
- Sequencing Facility Bioinformatics Group, Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sevilay Turan
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Francisco Otaizo-Carrasquero
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine M. Hornick
- Collaborative Bioinformatics Resource, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Craig Martens
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stanislav V. Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kim Y. Green
- Caliciviruses Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
See WR, Yousefi M, Ooi YS. A review of virus host factor discovery using CRISPR screening. mBio 2024; 15:e0320523. [PMID: 39422472 PMCID: PMC11559068 DOI: 10.1128/mbio.03205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The emergence of genome-scale forward genetic screening techniques, such as Haploid Genetic screen and clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen has opened new horizons in our understanding of virus infection biology. CRISPR screening has become a popular tool for the discovery of novel host factors for several viruses due to its specificity and efficiency in genome editing. Here, we review how CRISPR screening has revolutionized our understanding of virus-host interactions from scientific and technological viewpoints. A summary of the published screens conducted thus far to uncover virus host factors is presented, highlighting their experimental design and significant findings. We will outline relevant methods for customizing the CRISPR screening process to answer more specific hypotheses and compile a glossary of conducted CRISPR screens to show their design aspects. Furthermore, using flaviviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as examples, we hope to offer a broad-based perspective on the capabilities of CRISPR screening to serve as a reference point to guide future unbiased discovery of virus host factors.
Collapse
Affiliation(s)
- Wayne Ren See
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
14
|
Stewart BM, Pierce LR, Olson MC, Orchard RC. Membrane asymmetry facilitates murine norovirus entry and persistent enteric infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622376. [PMID: 39574648 PMCID: PMC11580941 DOI: 10.1101/2024.11.06.622376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Norovirus, the leading cause of gastroenteritis worldwide, is a non-enveloped virus whose tropism is determined in part by the expression patterns of entry receptors. However, the contribution of cellular lipids to viral entry is not well understood. Here, we determined that the asymmetrical distribution of lipids within membrane bilayers is required for murine norovirus (MNV) replication. Specifically, TMEM30a, an essential subunit of lipid flippases, is required for MNV replication in vitro. Disruption of TMEM30a in mouse intestinal epithelial cells prevents persistent, enteric infection by MNV in vivo. Mechanistically, TMEM30a facilitates MNV binding and entry. Surprisingly, exoplasmic phosphatidylserine (PS), a typical marker of dying cells, does not inhibit MNV infection. Rather, TMEM30a maintains a lipid ordered state that impacts membrane fluidity that is necessary for the low affinity, high avidity binding of MNV to cells. Our data provides a new role for lipid asymmetry in promoting non-enveloped virus infection in vitro and norovirus persistence in vivo.
Collapse
Affiliation(s)
- Brittany M. Stewart
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linley R. Pierce
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mikayla C. Olson
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert C. Orchard
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Pimenta YC, Bonfim FFDO, Figueiredo CEDS, Pedroso BLDA, Silva MF, Olivares AIO, Delgado IF, Leite JPG, de Moraes MTB. Polymorphisms in the ACE I/D ( rs4646994) and ACE2 G8790A ( rs2285666) in Young Children Living in the Amazon Region and SARS-CoV-2 Infection. Trop Med Infect Dis 2024; 9:270. [PMID: 39591276 PMCID: PMC11598624 DOI: 10.3390/tropicalmed9110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
COVID-19 infection caused by SARS-CoV-2 continues to cause significant mortality and morbidity. ACE2 is a key regulator of the renin-angiotensin-aldosterone system (RAAS). Differences in COVID-19 severity are thought to be due to the imbalance of RAAS/ACE mutations. This retrospective study evaluated the detection and genetic susceptibility to SARS-CoV-2 infection in 202 children ≤3 years of age living in the Amazon region in 2021. The angiotensin-converting enzyme ACE I/D (rs4646994) and ACE2 G8790A (rs2285666) polymorphisms were detected by SYBR GREEN real-time PCR and PCR-RFLP/Alul digestion, respectively. SARS-CoV-2 detection was performed by RT-qPCR in feces and saliva samples collected simultaneously from the same children presenting acute gastroenteritis (AGE) or acute respiratory infection (ARI). The frequency of SARS-CoV-2 detected by qRT-PCR in children was low (5.9%, 12/202), although higher in the group of children with AGE (8.9%, 9/101) than with ARI (2.9%, 3/101). Susceptibility to SARS-CoV-2 infection was not verified due to the low frequency. Homozygous II (rs4646994) children were the majority (87.1%, 176/202). Boys with genotype A (rs2285666) were more susceptible to ARI and pneumonia symptoms than AGE (OR = 3.8, 95% CI 1.4-10.3, p 0.007). Boys with genotype G (rs4646994) or the combination II + G were more susceptible to acquiring AGE. Surveillance, along with understanding their causes, is crucial to controlling ARI and COVID-19 in children living in low-income countries.
Collapse
Affiliation(s)
- Yan Cardoso Pimenta
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Sanitary Surveillance, National Institute for Quality Control in Health, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Flávia Freitas de Oliveira Bonfim
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
| | - Carlos Eduardo da Silva Figueiredo
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- National Institute of Women, Children and Adolescents’ Health Fernandes Figueira, Oswald °Cruz Foundation (Fiocruz), Avenida Rui Barbosa, 716-Flamengo, Rio de Janeiro 22250-020, RJ, Brazil
| | - Bruno Loreto de Aragão Pedroso
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
| | - Mauro França Silva
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- Technological Coordination, Tetraviral Vaccine, Immunobiological Technology Institute (Biomanguinhos), Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Alberto Ignacio Olivares Olivares
- Secretaria Estadual de Saúde de Roraima, SESAU/RR, Rua Madrid, 180-Aeroporto, Boa Vista 69310-043, RR, Brazil;
- Medicine & Health School, State University of Roraima, Rua Presidente Juscelino Kubitscheck, 300, Canarinho, Boa Vista 69360-000, RR, Brazil
| | - Isabella Fernandes Delgado
- Post-Graduate Program in Sanitary Surveillance, National Institute for Quality Control in Health, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
16
|
Srinivas MA, Pierce LR, Olson MC, Roberston SJ, Sturdevant GL, Best SM, Orchard RC. Trim7 does not have a role in the restriction of murine norovirus infection in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618898. [PMID: 39464121 PMCID: PMC11507913 DOI: 10.1101/2024.10.17.618898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Trim7 is an E3 ubiquitin ligase that was recently identified as a central regulator of host-viral interactions with both pro-viral and anti-viral activity in cell culture. As an inhibitor, Trim7 overexpression ubiquitinates viral proteins by recognizing C-terminal glutamines that are hallmarks of 3C-like protease cleavage events. Here we sought to determine the physiological impact of Trim7 in resolving murine norovirus (MNV) infection of mice as MNV is potently inhibited by Trim7 in vitro. Utilizing two independently derived Trim7 deficient mouse lines we found no changes in the viral burden or tissue distribution of MNV in both an acute and persistent model of infection. Additionally, no changes in cytokine responses were observed after acute MNV infection of Trim7-deficient mice. Furthermore, removal of potentially confounding innate immune responses such as STING and STAT1 did not reveal any role for Trim7 in regulating MNV replication. Taken together, our data fails to find a physiological role for Trim7 in regulating MNV infection outcomes in mice and serves as a caution for defining Trim7 as a broad acting antiviral.
Collapse
Affiliation(s)
| | - Linley R. Pierce
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mikayla C. Olson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shelly J. Roberston
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Gail L. Sturdevant
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Sonja M. Best
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Zhao C, Ding Y, Huang Y, Wang C, Guo B, Zhang T. Quercetin Attenuates MRGPRX2-Mediated Mast Cell Degranulation via the MyD88/IKK/NF-κB and PI3K/AKT/ Rac1/Cdc42 Pathway. J Inflamm Res 2024; 17:7099-7110. [PMID: 39398230 PMCID: PMC11468308 DOI: 10.2147/jir.s480644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background CMRF35-like molecule-1 (CLM-1) is a receptor of the CD300 family that inhibits MRGPRX2-mediated mast cell degranulation. Understanding the role and mechanism of CLM-1 agonist has significant implications for the treatment of allergic disease. Quercetin is a natural small molecule compound derived from plants and vegetables that has been shown to prevent histamine release by immune cells. Objective This study aims to examine the inhibitory effects of quercetin on MRGPRX2-mediated mast cell degranulation via CLM-1. Results We found that C48/80 stimulation resulted in significantly increased release of β-hexosaminidase, histamine and Ca2+ in CLM-1-knockdown LAD2 cells than in NC-LAD2 cells. Surface plasmon resonance (SPR) and molecular docking analyses revealed high-affinity binding between quercetin and CLM-1 (K D = 2.962×10-5 mol/L) mediated by the formation of hydrogen bonds. In addition, quercetin can selectively bind to CLM-1 on mast cells, leading to SHP-1 phosphorylation and subsequent inhibition of downstream MyD88/IKK/NF-κB signaling. Furthermore, activation of CLM-1 modulated the surface expression of MRGPRX2 by inhibiting F-actin, leading to internalization of the MRGPRX2 receptor via the PI3K/AKT/ Rac1/Cdc42 pathway. Conclusion Quercetin is a promising treatment for allergic diseases by acting as a CLM-1 agonist that inhibits MRGPRX2-mediated mast cell degranulation.
Collapse
Affiliation(s)
- Chenrui Zhao
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University, Xi’an, 710054, People’s Republic of China
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Yuanyuan Ding
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Yihan Huang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Chao Wang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Bin Guo
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University, Xi’an, 710054, People’s Republic of China
| | - Tao Zhang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| |
Collapse
|
18
|
Tsukamoto B, Kurebayashi Y, Takahashi T, Abe Y, Ota R, Wakabayashi Y, Nishiie A, Minami A, Suzuki T, Takeuchi H. VP1 of human and murine noroviruses recognizes glycolipid sulfatide via the P domain. J Biochem 2024; 176:299-312. [PMID: 39012025 DOI: 10.1093/jb/mvae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024] Open
Abstract
Noroviruses are a prevalent cause of human viral gastroenteritis, yet the precise mechanisms underlying their infection cycle, particularly their interactions with and entry into cells, remain poorly understood. Human norovirus (HuNoV) primarily targets human small intestinal epithelial cells, within which 3-O-sulfogalactosylceramide (sulfatide) ranks among the most abundant glycosphingolipids (GSLs). While sulfatide involvement in the binding and infection mechanism of several viruses has been documented, its interaction with noroviruses remains underexplored. This study investigated whether noroviruses interact with sulfatide. We found that the recombinant viral capsid protein VP1 of HuNoV (genogroups I and II) and murine norovirus (genogroup V) exhibited robust binding to sulfatide compared with other tested GSLs using enzyme-linked immunosorbent assay, thin-layer chromatography binding assay and real-time quantitative reverse transcription polymerase chain reaction binding assay. VP1 also bound 3-O-sulfated lactosylceramide, which shares the 3-O-sulfated galactose moiety with sulfatide. However, both VP1 and its P domain, identified as the sulfatide-binding domain, exhibited limited binding to structural analogues of sulfatide and other sulfated compounds. These findings suggest a specific recognition of the 3-O-sulfated galactose moiety. Notably, we found that sulfatide is a novel binding target for norovirus particles. Overall, our findings reveal a previously unknown norovirus-sulfatide interaction, proposing sulfatide as a potential candidate for norovirus infection receptors.
Collapse
Affiliation(s)
- Bunta Tsukamoto
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yusuke Abe
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryohei Ota
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshiki Wakabayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Anju Nishiie
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
19
|
Nyblade C, Yuan L. Virus Shedding and Diarrhea: A Review of Human Norovirus Genogroup II Infection in Gnotobiotic Pigs. Viruses 2024; 16:1432. [PMID: 39339908 PMCID: PMC11437449 DOI: 10.3390/v16091432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
For nearly twenty years, gnotobiotic (Gn) pigs have been used as a model of human norovirus (HuNoV) infection and disease. Unique in their ability to develop diarrhea and shed virus post oral challenge, Gn pigs have since been used to evaluate the infectivity of several genogroup II HuNoV strains. Nearly all major pandemic GII.4 variants have been tested in Gn pigs, with varying rates of infectivity. Some induce an asymptomatic state despite being shed in large quantities in stool, and others induce high incidence of both diarrhea and virus shedding. Non-GII.4 strains, including GII.12 and GII.6, have also been evaluated in Gn pigs. Again, rates of diarrhea and virus shedding tend to vary between studies. Several factors may influence these findings, including age, dosage, biological host factors, or bacterial presence. The impact of these factors is nuanced and requires further evaluation to elucidate the exact mechanisms behind increases or decreases in infection rates. Regardless, the value of Gn pig models in HuNoV research cannot be understated, and the model will surely continue to contribute to the field in years to come.
Collapse
Affiliation(s)
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA;
| |
Collapse
|
20
|
Chen J, Fang M, Li Y, Ding H, Zhang X, Jiang X, Zhang J, Zhang C, Lu Z, Luo M. Cell surface protein-protein interaction profiling for biological network analysis and novel target discovery. LIFE MEDICINE 2024; 3:lnae031. [PMID: 39872863 PMCID: PMC11749001 DOI: 10.1093/lifemedi/lnae031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 01/30/2025]
Abstract
The secretome is composed of cell surface membrane proteins and extracellular secreted proteins that are synthesized via secretory machinery, accounting for approximately one-third of human protein-encoding genes and playing central roles in cellular communication with the external environment. Secretome protein-protein interactions (SPPIs) mediate cell proliferation, apoptosis, and differentiation, as well as stimulus- or cell-specific responses that regulate a diverse range of biological processes. Aberrant SPPIs are associated with diseases including cancer, immune disorders, and illness caused by infectious pathogens. Identifying the receptor/ligand for a secretome protein or pathogen can be a challenging task, and many SPPIs remain obscure, with a large number of orphan receptors and ligands, as well as viruses with unknown host receptors, populating the SPPI network. In addition, proteins with known receptors/ligands may also interact with alternative uncharacterized partners and exert context-dependent effects. In the past few decades, multiple varied approaches have been developed to identify SPPIs, and these methods have broad applications in both basic and translational research. Here, we review and discuss the technologies for SPPI profiling and the application of these technologies in identifying novel targets for immunotherapy and anti-infectious agents.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Maoxin Fang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuwei Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Haodong Ding
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyu Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoyi Jiang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jinlan Zhang
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhigang Lu
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min Luo
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Yamamoto S, Ogasawara N, Sudo-Yokoyama Y, Sato S, Takata N, Yokota N, Nakano T, Hayashi K, Takasawa A, Endo M, Hinatsu M, Yoshida K, Sato T, Takahashi S, Takano K, Kojima T, Hiraki J, Yokota SI. Bacillaceae serine proteases and Streptomyces epsilon-poly-L-lysine synergistically inactivate Caliciviridae by inhibiting RNA genome release. Sci Rep 2024; 14:15181. [PMID: 38956295 PMCID: PMC11219925 DOI: 10.1038/s41598-024-65963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.
Collapse
Affiliation(s)
- Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Noriko Ogasawara
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
| | - Yuka Sudo-Yokoyama
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Sachiko Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Nana Yokota
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Tomomi Nakano
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Kyoko Hayashi
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Akira Takasawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Mayumi Endo
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masako Hinatsu
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Keitaro Yoshida
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Jun Hiraki
- Yokohama R&D Center, JNC Corporation, Yokohama, 236-8605, Japan
| | - Shin-Ich Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| |
Collapse
|
22
|
Omatola CA, Mshelbwala PP, Okolo MLO, Onoja AB, Abraham JO, Adaji DM, Samson SO, Okeme TO, Aminu RF, Akor ME, Ayeni G, Muhammed D, Akoh PQ, Ibrahim DS, Edegbo E, Yusuf L, Ocean HO, Akpala SN, Musa OA, Adamu AM. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances-A Comprehensive Review. Vaccines (Basel) 2024; 12:590. [PMID: 38932319 PMCID: PMC11209302 DOI: 10.3390/vaccines12060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Noroviruses constitute a significant aetiology of sporadic and epidemic gastroenteritis in human hosts worldwide, especially among young children, the elderly, and immunocompromised patients. The low infectious dose of the virus, protracted shedding in faeces, and the ability to persist in the environment promote viral transmission in different socioeconomic settings. Considering the substantial disease burden across healthcare and community settings and the difficulty in controlling the disease, we review aspects related to current knowledge about norovirus biology, mechanisms driving the evolutionary trends, epidemiology and molecular diversity, pathogenic mechanism, and immunity to viral infection. Additionally, we discuss the reservoir hosts, intra-inter host dynamics, and potential eco-evolutionary significance. Finally, we review norovirus vaccines in the development pipeline and further discuss the various host and pathogen factors that may complicate vaccine development.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | | | - Anyebe Bernard Onoja
- Department of Virology, University College Hospital, Ibadan 211101, Oyo State, Nigeria
| | - Joseph Oyiguh Abraham
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - David Moses Adaji
- Department of Biotechnology Science and Engineering, University of Alabama, Huntsville, AL 35899, USA
| | - Sunday Ocholi Samson
- Department of Molecular Biology, Biotechnology, and Biochemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| | - Therisa Ojomideju Okeme
- Department of Biological Sciences, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Ruth Foluke Aminu
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Monday Eneojo Akor
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba 272102, Kogi State, Nigeria
| | - Danjuma Muhammed
- Epidemiology and Public Health Unit, Department of Biology, Universiti Putra, Seri Kembangan 43300, Malaysia
| | - Phoebe Queen Akoh
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Emmanuel Edegbo
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Lamidi Yusuf
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Sumaila Ndah Akpala
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
- Department of Biotechnology, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Oiza Aishat Musa
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Andrew Musa Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, QLD, Australia
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville 4811, QLD, Australia
- Centre for Tropical Biosecurity, James Cook University, Townsville 4811, QLD, Australia
| |
Collapse
|
23
|
Budicini MR, Rodriguez-Irizarry VJ, Maples RW, Pfeiffer JK. Murine norovirus mutants adapted to replicate in human cells reveal a post-entry restriction. J Virol 2024; 98:e0004724. [PMID: 38651898 PMCID: PMC11092334 DOI: 10.1128/jvi.00047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. Although viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when the entry was bypassed, suggesting that the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in murine BV2 cells and infected mice, with reduced viral titers. These results suggest a fitness tradeoff, where increased fitness in a non-native host cell reduces fitness in a natural host environment. Overall, this work suggests that MNV tropism is determined by the presence of not only the viral receptor but also post-entry factors. IMPORTANCE Viruses infect specific species and cell types, which is dictated by the expression of host factors required for viral entry as well as downstream replication steps. Murine norovirus (MNV) infects mouse cells, but not human cells. However, human cells expressing the murine CD300lf receptor support MNV replication, suggesting that receptor expression is a major determinant of MNV tropism. To determine whether other factors influence MNV tropism, we selected for variants with enhanced replication in human cells. We identified mutations that enhance MNV replication in human cells and demonstrated that these mutations enhance infection at a post-entry replication step. Therefore, MNV infection of human cells is restricted at both entry and post-entry stages. These results shed new light on factors that influence viral tropism and host range.
Collapse
Affiliation(s)
- Melissa R. Budicini
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Robert W. Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
Aggarwal S, Walker FC, Weagley JS, McCune BT, Wu X, Schriefer LA, Makimaa H, Lawrence D, Sridhar P, Baldridge MT. Interferons and tuft cell numbers are bottlenecks for persistent murine norovirus infection. PLoS Pathog 2024; 20:e1011961. [PMID: 38701091 PMCID: PMC11095769 DOI: 10.1371/journal.ppat.1011961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
Noroviruses (NoVs) are a leading cause of viral gastroenteritis. Despite global clinical relevance, our understanding of how host factors, such as antiviral cytokines interferons (IFNs), modulate NoV population dynamics is limited. Murine NoV (MNoV) is a tractable in vivo model for the study of host regulation of NoV. A persistent strain of MNoV, CR6, establishes a reservoir in intestinal tuft cells for chronic viral shedding in stool. However, the influence of host innate immunity and permissive cell numbers on viral population dynamics is an open question. We generated a pool of 20 different barcoded viruses (CR6BC) by inserting 6-nucleotide barcodes at the 3' position of the NS4 gene and used this pool as our viral inoculum for in vivo infections of different mouse lines. We found that over the course of persistent CR6 infection, shed virus was predominantly colon-derived, and viral barcode richness decreased over time irrespective of host immune status, suggesting that persistent infection involves a series of reinfection events. In mice lacking the IFN-λ receptor, intestinal barcode richness was enhanced, correlating with increased viral intestinal replication. IL-4 treatment, which increases tuft cell numbers, also increased barcode richness, indicating the abundance of permissive tuft cells to be a bottleneck during CR6 infection. In mice lacking type I IFN signaling (Ifnar1-/-) or all IFN signaling (Stat1-/-), barcode diversity at extraintestinal sites was dramatically increased, implicating different IFNs as critical bottlenecks at specific tissue sites. Of interest, extraintestinal barcodes were overlapping but distinct from intestinal barcodes, indicating that disseminated virus represents a distinct viral population than that replicating in the intestine. Barcoded viruses are a valuable tool to explore the influence of host factors on viral diversity in the context of establishment and maintenance of infection as well as dissemination and have provided important insights into how NoV infection proceeds in immunocompetent and immunocompromised hosts.
Collapse
Affiliation(s)
- Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Forrest C. Walker
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James S. Weagley
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Broc T. McCune
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Xiaofen Wu
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heyde Makimaa
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dylan Lawrence
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Pratyush Sridhar
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
25
|
Hayashi T, Kobayashi S, Hirano J, Murakami K. Human norovirus cultivation systems and their use in antiviral research. J Virol 2024; 98:e0166323. [PMID: 38470106 PMCID: PMC11019851 DOI: 10.1128/jvi.01663-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Human norovirus (HuNoV) is a major cause of acute gastroenteritis and foodborne diseases, affecting all age groups. Despite its clinical needs, no approved antiviral therapies are available. Since the discovery of HuNoV in 1972, studies on anti-norovirals, mechanism of HuNoV infection, viral inactivation, etc., have been hampered by the lack of a robust laboratory-based cultivation system for HuNoV. A recent breakthrough in the development of HuNoV cultivation systems has opened opportunities for researchers to investigate HuNoV biology in the context of de novo HuNoV infections. A tissue stem cell-derived human intestinal organoid/enteroid (HIO) culture system is one of those that supports HuNoV replication reproducibly and, to our knowledge, is most widely distributed to laboratories worldwide to study HuNoV and develop therapeutic strategies. This review summarizes recently developed HuNoV cultivation systems, including HIO, and their use in antiviral studies.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sakura Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junki Hirano
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
26
|
Cheng D, Zhu J, Liu G, Gack MU, MacDuff DA. HOIL1 mediates MDA5 activation through ubiquitination of LGP2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587772. [PMID: 38617308 PMCID: PMC11014604 DOI: 10.1101/2024.04.02.587772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The RIG-I-like receptors (RLRs), RIG-I and MDA5, are innate sensors of RNA virus infections that are critical for mounting a robust antiviral immune response. We have shown previously that HOIL1, a component of the Linear Ubiquitin Chain Assembly Complex (LUBAC), is essential for interferon (IFN) induction in response to viruses sensed by MDA5, but not for viruses sensed by RIG-I. LUBAC contains two unusual E3 ubiquitin ligases, HOIL1 and HOIP. HOIP generates methionine-1-linked polyubiquitin chains, whereas HOIL1 has recently been shown to conjugate ubiquitin onto serine and threonine residues. Here, we examined the differential requirement for HOIL1 and HOIP E3 ligase activities in RLR-mediated IFN induction. We determined that HOIL1 E3 ligase activity was critical for MDA5-dependent IFN induction, while HOIP E3 ligase activity played only a modest role in promoting IFN induction. HOIL1 E3 ligase promoted MDA5 oligomerization, its translocation to mitochondrial-associated membranes, and the formation of MAVS aggregates. We identified that HOIL1 can interact with and facilitate the ubiquitination of LGP2, a positive regulator of MDA5 oligomerization. In summary, our work identifies LGP2 ubiquitination by HOIL1 in facilitating the activation of MDA5 and the induction of a robust IFN response.
Collapse
Affiliation(s)
- Deion Cheng
- . Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Junji Zhu
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - GuanQun Liu
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - Michaela U. Gack
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - Donna A. MacDuff
- . Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
27
|
Strine MS, Fagerberg E, Darcy PW, Barrón GM, Filler RB, Alfajaro MM, D'Angelo-Gavrish N, Wang F, Graziano VR, Menasché BL, Damo M, Wang YT, Howitt MR, Lee S, Joshi NS, Mucida D, Wilen CB. Intestinal tuft cell immune privilege enables norovirus persistence. Sci Immunol 2024; 9:eadi7038. [PMID: 38517952 PMCID: PMC11555782 DOI: 10.1126/sciimmunol.adi7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
The persistent murine norovirus strain MNVCR6 is a model for human norovirus and enteric viral persistence. MNVCR6 causes chronic infection by directly infecting intestinal tuft cells, rare chemosensory epithelial cells. Although MNVCR6 induces functional MNV-specific CD8+ T cells, these lymphocytes fail to clear infection. To examine how tuft cells promote immune escape, we interrogated tuft cell interactions with CD8+ T cells by adoptively transferring JEDI (just EGFP death inducing) CD8+ T cells into Gfi1b-GFP tuft cell reporter mice. Unexpectedly, some intestinal tuft cells partially resisted JEDI CD8+ T cell-mediated killing-unlike Lgr5+ intestinal stem cells and extraintestinal tuft cells-despite seemingly normal antigen presentation. When targeting intestinal tuft cells, JEDI CD8+ T cells predominantly adopted a T resident memory phenotype with decreased effector and cytotoxic capacity, enabling tuft cell survival. JEDI CD8+ T cells neither cleared nor prevented MNVCR6 infection in the colon, the site of viral persistence, despite targeting a virus-independent antigen. Ultimately, we show that intestinal tuft cells are relatively resistant to CD8+ T cells independent of norovirus infection, representing an immune-privileged niche that can be leveraged by enteric microbes.
Collapse
Affiliation(s)
- Madison S Strine
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Patrick W Darcy
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY, USA
| | - Gabriel M Barrón
- Program in Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Fang Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Vincent R Graziano
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Bridget L Menasché
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Martina Damo
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ya-Ting Wang
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Tsinghua University School of Medicine, Beijing, China
| | - Michael R Howitt
- Program in Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
28
|
Wasielewski VV, Itani TM, Zakharova YA, Semenov AV. Current trends and new approaches for human norovirus replication in cell culture: a literature review. Arch Virol 2024; 169:71. [PMID: 38459228 DOI: 10.1007/s00705-024-05999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/21/2024] [Indexed: 03/10/2024]
Abstract
Human norovirus (HuNoV) is one of the world's leading causes of acute gastroenteritis. At present, effective reproduction of the virus in cell cultures remains a challenge for virologists, as there is a lack of a permissive cell line that allows the entire viral life cycle to be reproduced. This is a barrier to the study of the HuNoV life cycle, its tropism, and virus-host interactions. It is also a major hurdle for the development of viral detection platforms, and ultimately for the development of therapeutics. The lack of an inexpensive, technically simple, and easily implemented cultivation method also negatively affects our ability to evaluate the efficacy of a variety of control measures (disinfectants, food processes) for human norovirus. In the process of monitoring this pathogen, it is necessary to detect infectious viral particles in water, food, and other environmental samples. Therefore, improvement of in vitro replication of HuNoV is still needed. In this review, we discuss current trends and new approaches to HuNoV replication in cell culture. We highlight ways in which previous research on HuNoV and other noroviruses has guided and influenced the development of new HuNoV culture systems and discuss the improvement of in vitro replication of HuNoV.
Collapse
Affiliation(s)
- Valentin V Wasielewski
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation
| | - Tarek M Itani
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation.
| | - Yuliya A Zakharova
- Institute of Disinfectology of the F.F. Erisman Federal Scientific Centre of Hygiene Rospotrebnadzor, Mosсow, Russian Federation
| | - Aleksandr V Semenov
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation
- Ural Federal University named after the First President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation
| |
Collapse
|
29
|
Budicini MR, Rodriguez-Irizarry VJ, Maples RW, Pfeiffer JK. Murine norovirus mutants adapted to replicate in human cells reveal a post-entry restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575274. [PMID: 38260699 PMCID: PMC10802625 DOI: 10.1101/2024.01.11.575274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select for mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. While viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when entry was bypassed, suggesting the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in mouse BV2 cells. Although the mutant viruses had increased fitness in HeLa cells, they did not have increased fitness in mice. Overall, this work suggests that MNV tropism is not only determined by the presence of the viral receptor but also post-entry factors.
Collapse
Affiliation(s)
- Melissa R. Budicini
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Robert W. Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
30
|
Mills JT, Minogue SC, Snowden JS, Arden WKC, Rowlands DJ, Stonehouse NJ, Wobus CE, Herod MR. Amino acid substitutions in norovirus VP1 dictate host dissemination via variations in cellular attachment. J Virol 2023; 97:e0171923. [PMID: 38032199 PMCID: PMC10734460 DOI: 10.1128/jvi.01719-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE All viruses initiate infection by utilizing receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important for the development of novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilized the murine norovirus model system to show that variation in a single amino acid of the major capsid protein alone can affect viral infectivity through improved attachment to suspension cells. Modulating plasma membrane mobility reduced infectivity, suggesting an importance of membrane mobility for receptor recruitment and/or receptor conformation. Furthermore, different substitutions at this site altered viral tissue distribution in a murine model, illustrating how in-host capsid evolution could influence viral infectivity and/or immune evasion.
Collapse
Affiliation(s)
- Jake T. Mills
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Susanna C. Minogue
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S. Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Wynter K. C. Arden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David J. Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Morgan R. Herod
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
31
|
McAllaster MR, Bhushan J, Balce DR, Orvedahl A, Park A, Hwang S, Sullender ME, Sibley LD, Virgin HW. Autophagy gene-dependent intracellular immunity triggered by interferon-γ. mBio 2023; 14:e0233223. [PMID: 37905813 PMCID: PMC10746157 DOI: 10.1128/mbio.02332-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Interferon-γ (IFNγ) is a critical mediator of cell-intrinsic immunity to intracellular pathogens. Understanding the complex cellular mechanisms supporting robust interferon-γ-induced host defenses could aid in developing new therapeutics to treat infections. Here, we examined the impact of autophagy genes in the interferon-γ-induced host response. We demonstrate that genes within the autophagy pathway including Wipi2, Atg9, and Gate-16, as well as ubiquitin ligase complex genes Cul3 and Klhl9 are required for IFNγ-induced inhibition of murine norovirus (norovirus hereinafter) replication in mouse cells. WIPI2 and GATE-16 were also required for IFNγ-mediated restriction of parasite growth within the Toxoplasma gondii parasitophorous vacuole in human cells. Furthermore, we found that perturbation of UFMylation pathway components led to more robust IFNγ-induced inhibition of norovirus via regulation of endoplasmic reticulum (ER) stress. Enhancing or inhibiting these dynamic cellular components could serve as a strategy to control intracellular pathogens and maintain an effective immune response.
Collapse
Affiliation(s)
- Michael R. McAllaster
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Vir Biotechnology, San Francisco, California, USA
| | - Jaya Bhushan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dale R. Balce
- Vir Biotechnology, San Francisco, California, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anthony Orvedahl
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arnold Park
- Vir Biotechnology, San Francisco, California, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Meagan E. Sullender
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Herbert W. Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
32
|
Thomas S, Samuel SV, Hoch A, Syphurs C, Diray-Arce J. The Implication of Sphingolipids in Viral Infections. Int J Mol Sci 2023; 24:17303. [PMID: 38139132 PMCID: PMC10743733 DOI: 10.3390/ijms242417303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sphingolipids are involved in cell signaling and metabolic pathways, and their metabolites play a critical role in host defense against intracellular pathogens. Here, we review the known mechanisms of sphingolipids in viral infections and discuss the potential implication of the study of sphingolipid metabolism in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Stephen Varghese Samuel
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore 632004, India
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Caitlin Syphurs
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
33
|
Bernard-Raichon L, Cadwell K. Immunomodulation by Enteric Viruses. Annu Rev Virol 2023; 10:477-502. [PMID: 37380186 DOI: 10.1146/annurev-virology-111821-112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Enteric viruses display intricate adaptations to the host mucosal immune system to successfully reproduce in the gastrointestinal tract and cause maladies ranging from gastroenteritis to life-threatening disease upon extraintestinal dissemination. However, many viral infections are asymptomatic, and their presence in the gut is associated with an altered immune landscape that can be beneficial or adverse in certain contexts. Genetic variation in the host and environmental factors including the bacterial microbiota influence how the immune system responds to infections in a remarkably viral strain-specific manner. This immune response, in turn, determines whether a given virus establishes acute versus chronic infection, which may have long-lasting consequences such as susceptibility to inflammatory disease. In this review, we summarize our current understanding of the mechanisms involved in the interaction between enteric viruses and the immune system that underlie the impact of these ubiquitous infectious agents on our health.
Collapse
Affiliation(s)
- Lucie Bernard-Raichon
- Cell Biology Department, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine; Department of Systems Pharmacology and Translational Therapeutics; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
34
|
Ingle H, Makimaa H, Aggarwal S, Deng H, Foster L, Li Y, Kennedy EA, Peterson ST, Wilen CB, Lee S, Suthar MS, Baldridge MT. IFN-λ derived from nonsusceptible enterocytes acts on tuft cells to limit persistent norovirus. SCIENCE ADVANCES 2023; 9:eadi2562. [PMID: 37703370 PMCID: PMC10499323 DOI: 10.1126/sciadv.adi2562] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Norovirus is a leading cause of epidemic viral gastroenteritis, with no currently approved vaccines or antivirals. Murine norovirus (MNoV) is a well-characterized model of norovirus pathogenesis in vivo, and persistent strains exhibit lifelong intestinal infection. Interferon-λ (IFN-λ) is a potent antiviral that rapidly cures MNoV. We previously demonstrated that IFN-λ signaling in intestinal epithelial cells (IECs) controls persistent MNoV, and here demonstrate that IFN-λ acts on tuft cells, the exclusive site of MNoV persistence, to limit infection. While interrogating the source of IFN-λ to regulate MNoV, we confirmed that MDA5-MAVS signaling, required for IFN-λ induction to MNoV in vitro, controls persistent MNoV in vivo. We demonstrate that MAVS in IECs and not immune cells controls MNoV. MAVS in nonsusceptible enterocytes, but not in tuft cells, restricts MNoV, implicating noninfected cells as the IFN-λ source. Our findings indicate that host sensing of MNoV is distinct from cellular tropism, suggesting intercellular communication between IECs for antiviral signaling induction in uninfected bystander cells.
Collapse
Affiliation(s)
- Harshad Ingle
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heyde Makimaa
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongju Deng
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lynne Foster
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth A. Kennedy
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stefan T. Peterson
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig B. Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Sanghyun Lee
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
35
|
Bai GH, Tsai MC, Lin SC, Hsu YH, Chen SY. Unraveling the interplay between norovirus infection, gut microbiota, and novel antiviral approaches: a comprehensive review. Front Microbiol 2023; 14:1212582. [PMID: 37485533 PMCID: PMC10359435 DOI: 10.3389/fmicb.2023.1212582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Norovirus infection is a leading cause of acute gastroenteritis worldwide and can also cause harmful chronic infections in individuals with weakened immune systems. The role of the gut microbiota in the interactions between the host and noroviruses has been extensively studied. While most past studies were conducted in vitro or focused on murine noroviruses, recent research has expanded to human noroviruses using in vivo or ex vivo human intestinal enteroids culture studies. The gut microbiota has been observed to have both promoting and inhibiting effects on human noroviruses. Understanding the interaction between noroviruses and the gut microbiota or probiotics is crucial for studying the pathogenesis of norovirus infection and its potential implications, including probiotics and vaccines for infection control. Recently, several clinical trials of probiotics and norovirus vaccines have also been published. Therefore, in this review, we discuss the current understanding and recent updates on the interactions between noroviruses and gut microbiota, including the impact of norovirus on the microbiota profile, pro-viral and antiviral effects of microbiota on norovirus infection, the use of probiotics for treating norovirus infections, and human norovirus vaccine development.
Collapse
Affiliation(s)
- Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Division of Allergy, Asthma and Immunology, Shuang Ho Hospital, New Taipei, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, New Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
36
|
Wobus CE, Peiper AM, McSweeney AM, Young VL, Chaika M, Lane MS, Lingemann M, Deerain JM, Strine MS, Alfajaro MM, Helm EW, Karst SM, Mackenzie JM, Taube S, Ward VK, Wilen CB. Murine Norovirus: Additional Protocols for Basic and Antiviral Studies. Curr Protoc 2023; 3:e828. [PMID: 37478303 PMCID: PMC10375541 DOI: 10.1002/cpz1.828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Murine norovirus (MNV) is a positive-sense, plus-stranded RNA virus in the Caliciviridae family. Viruses in this family replicate in the intestine and are transmitted by the fecal-oral route. MNV is related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Given the technical challenges in studying human norovirus, MNV is often used to study mechanisms in norovirus biology since it combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Adding to our previous protocol collection, here we describe additional techniques that have since been developed to study MNV biology. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Indirect method for measuring cell cytotoxicity and antiviral activity Basic Protocol 2: Measuring murine norovirus genome titers by RT-qPCR Support Protocol 1: Preparation of standard Basic Protocol 3: Generation of recombinant murine norovirus with minimal passaging Basic Protocol 4: Generation of recombinant murine norovirus via circular polymerase extension reaction (CPER) Basic Protocol 5: Expression of norovirus NS1-2 in insect cell suspension cultures using a recombinant baculovirus Support Protocol 2: Isotope labelling of norovirus NS1-2 in insect cells Support Protocol 3: Purification of the norovirus NS1-2 protein Support Protocol 4: Expression of norovirus NS1-2 in mammalian cells by transduction with a recombinant baculovirus Basic Protocol 6: Infection of enteroids in transwell inserts with murine norovirus Support Protocol 5: Preparation of conditioned medium for enteroids culture Support Protocol 6: Isolation of crypts for enteroids generation Support Protocol 7: Enteroid culture passaging and maintenance Basic Protocol 7: Quantification of murine norovirus-induced diarrhea using neonatal mouse infections Alternate Protocol 1: Intragastric inoculation of neonatal mice Alternate Protocol 2: Scoring colon contents.
Collapse
Affiliation(s)
- Christiane E. Wobus
- Department of Microbiology and Immunology, University of
Michigan, 1150 West Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Amy M. Peiper
- Department of Molecular Genetics & Microbiology,
College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Alice M. McSweeney
- Department of Microbiology & Immunology, School of
Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New
Zealand
| | - Vivienne L. Young
- Department of Microbiology & Immunology, School of
Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New
Zealand
| | - Maryna Chaika
- Institute of Virology and Cell Biology, University of
Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany, tel.
+49-451-3101-4020
| | - Miranda Sophie Lane
- Institute of Virology and Cell Biology, University of
Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany, tel.
+49-451-3101-4020
| | - Marit Lingemann
- Institute of Virology and Cell Biology, University of
Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany, tel.
+49-451-3101-4020
| | - Joshua M. Deerain
- Department of Microbiology and Immunology, University of
Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne,
VIC, Australia 3010
| | - Madison S. Strine
- Departments of Immunobiology and Laboratory Medicine, Yale
University School of Medicine, Clinic Building 407A. 330 Cedar Street New Haven, CT,
USA
| | - Mia M. Alfajaro
- Departments of Immunobiology and Laboratory Medicine, Yale
University School of Medicine, Clinic Building 407A. 330 Cedar Street New Haven, CT,
USA
| | - Emily W. Helm
- Department of Molecular Genetics & Microbiology,
College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Stephanie M. Karst
- Department of Molecular Genetics & Microbiology,
College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, University of
Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne,
VIC, Australia 3010
| | - Stefan Taube
- Institute of Virology and Cell Biology, University of
Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany, tel.
+49-451-3101-4020
| | - Vernon K. Ward
- Department of Microbiology & Immunology, School of
Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New
Zealand
| | - Craig B. Wilen
- Departments of Immunobiology and Laboratory Medicine, Yale
University School of Medicine, Clinic Building 407A. 330 Cedar Street New Haven, CT,
USA
| |
Collapse
|
37
|
Feng Y, Pogan R, Thiede L, Müller-Guhl J, Uetrecht C, Roos WH. Fucose Binding Cancels out Mechanical Differences between Distinct Human Noroviruses. Viruses 2023; 15:1482. [PMID: 37515170 PMCID: PMC10383637 DOI: 10.3390/v15071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The majority of nonbacterial gastroenteritis in humans and livestock is caused by noroviruses. Like most RNA viruses, frequent mutations result in various norovirus variants. The strain-dependent binding profiles of noroviruses to fucose are supposed to facilitate norovirus infection. It remains unclear, however, what the molecular mechanism behind strain-dependent functioning is. In this study, by applying atomic force microscopy (AFM) nanoindentation technology, we studied norovirus-like particles (noroVLPs) of three distinct human norovirus variants. We found differences in viral mechanical properties even between the norovirus variants from the same genogroup. The noroVLPs were then subjected to fucose treatment. Surprisingly, after fucose treatment, the previously found considerable differences in viral mechanical properties among these variants were diminished. We attribute a dynamic switch of the norovirus P domain upon fucose binding to the reduced differences in viral mechanical properties across the tested norovirus variants. These findings shed light on the mechanisms used by norovirus capsids to adapt to environmental changes and, possibly, increase cell infection. Hereby, a new step towards connecting viral mechanical properties to viral prevalence is taken.
Collapse
Affiliation(s)
- Yuzhen Feng
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747AG Groningen, The Netherlands
| | - Ronja Pogan
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Faculty V: School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| | - Lars Thiede
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Faculty V: School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| | - Jürgen Müller-Guhl
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Partner Site Hamburg-Lübeck-Borstel-Riems, Bernhard Nocht Institute for Tropical Medicine and German Center for Infection Research (DZIF), 20359 Hamburg, Germany
| | - Charlotte Uetrecht
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Faculty V: School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
38
|
Kennedy EA, Aggarwal S, Dhar A, Karst SM, Wilen CB, Baldridge MT. Age-associated features of norovirus infection analysed in mice. Nat Microbiol 2023; 8:1095-1107. [PMID: 37188813 PMCID: PMC10484054 DOI: 10.1038/s41564-023-01383-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
Norovirus (NoV) is the leading global cause of viral gastroenteritis. Young children bear the highest burden of disease and play a key role in viral transmission throughout the population. However, which host factors contribute to age-associated variability in NoV severity and shedding are not well-defined. The murine NoV (MNoV) strain CR6 causes persistent infection in adult mice and targets intestinal tuft cells. Here we find that natural transmission of CR6 from infected dams occurred only in juvenile mice. Direct oral CR6 inoculation of wild-type neonatal mice led to accumulation of viral RNA in the ileum and prolonged shedding in the stool that was replication-independent. This viral exposure induced both innate and adaptive immune responses including interferon-stimulated gene expression and MNoV-specific antibody responses. Interestingly, viral uptake depended on passive ileal absorption of luminal virus, a process blocked by cortisone acetate administration, which prevented ileal viral RNA accumulation. Neonates lacking interferon signalling in haematopoietic cells were susceptible to productive infection, viral dissemination and lethality, which depended on the canonical MNoV receptor CD300LF. Together, our findings reveal developmentally associated aspects of persistent MNoV infection, including distinct tissue and cellular tropism, mechanisms of interferon regulation and severity of infection in the absence of interferon signalling. These emphasize the importance of defining viral pathogenesis phenotypes across the developmental spectrum and highlight passive viral uptake as an important contributor to enteric infections in early life.
Collapse
Affiliation(s)
- Elizabeth A Kennedy
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Arko Dhar
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Stephanie M Karst
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Craig B Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
39
|
Peiper AM, Helm EW, Nguyen Q, Phillips M, Williams CG, Shah D, Tatum S, Iyer N, Grodzki M, Eurell LB, Nasir A, Baldridge MT, Karst SM. Infection of neonatal mice with the murine norovirus strain WU23 is a robust model to study norovirus pathogenesis. Lab Anim (NY) 2023; 52:119-129. [PMID: 37142696 PMCID: PMC10234811 DOI: 10.1038/s41684-023-01166-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
Noroviruses are the leading cause of severe childhood diarrhea and foodborne disease worldwide. While they are a major cause of disease in all age groups, infections in the very young can be quite severe, with annual estimates of 50,000-200,000 fatalities in children under 5 years old. In spite of the remarkable disease burden associated with norovirus infections, very little is known about the pathogenic mechanisms underlying norovirus diarrhea, principally because of the lack of tractable small animal models. The development of the murine norovirus (MNV) model nearly two decades ago has facilitated progress in understanding host-norovirus interactions and norovirus strain variability. However, MNV strains tested thus far either do not cause intestinal disease or were isolated from extraintestinal tissue, raising concerns about translatability of research findings to human norovirus disease. Consequently, the field lacks a strong model of norovirus gastroenteritis. Here we provide a comprehensive characterization of a new small animal model system for the norovirus field that overcomes prior weaknesses. Specifically, we demonstrate that the WU23 MNV strain isolated from a mouse naturally presenting with diarrhea causes a transient reduction in weight gain and acute self-resolving diarrhea in neonatal mice of several inbred mouse lines. Moreover, our findings reveal that norovirus-induced diarrhea is associated with infection of subepithelial cells in the small intestine and systemic spread. Finally, type I interferons (IFNs) are critical to protect hosts from norovirus-induced intestinal disease whereas type III IFNs exacerbate diarrhea. This latter finding is consistent with other emerging data implicating type III IFNs in the exacerbation of some viral diseases. This new model system should enable a detailed investigation of norovirus disease mechanisms.
Collapse
Affiliation(s)
- Amy M Peiper
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Emily W Helm
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Quyen Nguyen
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Matthew Phillips
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Caroline G Williams
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dhairya Shah
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah Tatum
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Neha Iyer
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marco Grodzki
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Laura B Eurell
- Office of Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aqsa Nasir
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie M Karst
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
40
|
Ohlson MB, Eitson JL, Wells AI, Kumar A, Jang S, Ni C, Xing C, Buszczak M, Schoggins JW. Genome-Scale CRISPR Screening Reveals Host Factors Required for Ribosome Formation and Viral Replication. mBio 2023; 14:e0012723. [PMID: 36809113 PMCID: PMC10128003 DOI: 10.1128/mbio.00127-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Viruses are known to co-opt host machinery for translation initiation, but less is known about which host factors are required for the formation of ribosomes used to synthesize viral proteins. Using a loss-of-function CRISPR screen, we show that synthesis of a flavivirus-encoded fluorescent reporter depends on multiple host factors, including several 60S ribosome biogenesis proteins. Viral phenotyping revealed that two of these factors, SBDS, a known ribosome biogenesis factor, and the relatively uncharacterized protein SPATA5, were broadly required for replication of flaviviruses, coronaviruses, alphaviruses, paramyxoviruses, an enterovirus, and a poxvirus. Mechanistic studies revealed that loss of SPATA5 caused defects in rRNA processing and ribosome assembly, suggesting that this human protein may be a functional ortholog of yeast Drg1. These studies implicate specific ribosome biogenesis proteins as viral host dependency factors that are required for synthesis of virally encoded protein and accordingly, optimal viral replication. IMPORTANCE Viruses are well known for their ability to co-opt host ribosomes to synthesize viral proteins. The specific factors involved in translation of viral RNAs are not fully described. In this study, we implemented a unique genome-scale CRISPR screen to identify previously uncharacterized host factors that are important for the synthesis of virally encoded protein. We found that multiple genes involved in 60S ribosome biogenesis were required for viral RNA translation. Loss of these factors severely impaired viral replication. Mechanistic studies on the AAA ATPase SPATA5 indicate that this host factor is required for a late step in ribosome formation. These findings reveal insight into the identity and function of specific ribosome biogenesis proteins that are critical for viral infections.
Collapse
Affiliation(s)
- Maikke B. Ohlson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jennifer L. Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexandra I. Wells
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
41
|
Wang G, Zhang D, Orchard RC, Hancks DC, Reese TA. Norovirus MLKL-like protein initiates cell death to induce viral egress. Nature 2023; 616:152-158. [PMID: 36991121 PMCID: PMC10348409 DOI: 10.1038/s41586-023-05851-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/15/2023] [Indexed: 03/30/2023]
Abstract
Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but there is no known mechanism that causes norovirus infection-triggered cell death and lysis1-3. Here we identify a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase NS3 contains an N-terminal four-helix bundle domain homologous to the membrane-disruption domain of the pseudokinase mixed lineage kinase domain-like (MLKL). NS3 has a mitochondrial localization signal and thus induces cell death by targeting mitochondria. Full-length NS3 and an N-terminal fragment of the protein bound the mitochondrial membrane lipid cardiolipin, permeabilized the mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NS3 were essential for cell death, viral egress from cells and viral replication in mice. These findings suggest that noroviruses have acquired a host MLKL-like pore-forming domain to facilitate viral egress by inducing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Di Zhang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
42
|
Jahun AS, Sorgeloos F, Chaudhry Y, Arthur SE, Hosmillo M, Georgana I, Izuagbe R, Goodfellow IG. Leaked genomic and mitochondrial DNA contribute to the host response to noroviruses in a STING-dependent manner. Cell Rep 2023; 42:112179. [PMID: 36943868 DOI: 10.1016/j.celrep.2023.112179] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 10/11/2022] [Accepted: 02/12/2023] [Indexed: 03/23/2023] Open
Abstract
The cGAS-STING pathway is central to the interferon response against DNA viruses. However, recent studies are increasingly demonstrating its role in the restriction of some RNA viruses. Here, we show that the cGAS-STING pathway also contributes to the interferon response against noroviruses, currently the commonest causes of infectious gastroenteritis worldwide. We show a significant reduction in interferon-β induction and a corresponding increase in viral replication in norovirus-infected cells after deletion of STING, cGAS, or IFI16. Further, we find that immunostimulatory host genome-derived DNA and mitochondrial DNA accumulate in the cytosol of norovirus-infected cells. Lastly, overexpression of the viral NS4 protein is sufficient to drive the accumulation of cytosolic DNA. Together, our data find a role for cGAS, IFI16, and STING in the restriction of noroviruses and show the utility of host genomic DNA as a damage-associated molecular pattern in cells infected with an RNA virus.
Collapse
Affiliation(s)
- Aminu S Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK.
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK; Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Sabastine E Arthur
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Iliana Georgana
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Rhys Izuagbe
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
43
|
Wang G, Zhang D, Orchard R, Hancks DC, Reese TA. Norovirus MLKL-like pore forming protein initiates programed cell death for viral egress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533118. [PMID: 36993770 PMCID: PMC10055165 DOI: 10.1101/2023.03.17.533118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but a mechanism of norovirus-infection triggered cell death and lysis are unknown. Here we have identified a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase contains a N-terminal four helix bundle domain homologous to the pore forming domain of the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL). Norovirus NTPase acquired a mitochondrial localization signal, thereby inducing cell death by targeting mitochondria. NTPase full length (NTPase-FL) and N-terminal fragment (NTPase-NT) bound mitochondrial membrane lipid cardiolipin, permeabilized mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NTPase were essential for cell death, virus egress from cells and virus replication in mice. These findings suggest that noroviruses stole a MLKL-like pore forming domain and co-opted it to facilitate viral egress by inducing mitochondrial dysfunction.
Collapse
|
44
|
Bas J, Jay P, Gerbe F. Intestinal tuft cells: Sentinels, what else? Semin Cell Dev Biol 2023:S1084-9521(23)00040-X. [PMID: 36889997 DOI: 10.1016/j.semcdb.2023.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
The intestinal epithelium plays crucial roles in maintaining gut homeostasis. A key function consists in constituting a physical and chemical barrier between self and non-self-compartments, and, based on its crosstalk with the luminal environment, in controlling activation of the host immune system. Tuft cells are a unique epithelial cell lineage, the function of which remained a mystery even 50 years after their initial discovery. The first function of intestinal tuft cells was recently described, with a central role in initiating type 2 immune responses following infection with helminth parasites. Since then, tuft cells have emerged as sentinel cells recognizing a variety of luminal cues, mediating the host-microorganisms crosstalk with additional pathogens, including viruses and bacteria. Although it can be anticipated that more functions will be discovered for tuft cells in the future, recent discoveries already propelled them at the forefront of gut mucosal homeostasis regulation, with important potential impact in gut physiopathology. This review focuses on intestinal tuft cells, from their initial description to the current understanding of their functions, and their potential impact in diseases.
Collapse
Affiliation(s)
- Julie Bas
- Institute of Functional Genomics, Montpellier University, CNRS, Inserm, Montpellier, France
| | - Philippe Jay
- Institute of Functional Genomics, Montpellier University, CNRS, Inserm, Montpellier, France.
| | - François Gerbe
- Institute of Functional Genomics, Montpellier University, CNRS, Inserm, Montpellier, France.
| |
Collapse
|
45
|
Wei J, Patil A, Collings CK, Alfajaro MM, Liang Y, Cai WL, Strine MS, Filler RB, DeWeirdt PC, Hanna RE, Menasche BL, Ökten A, Peña-Hernández MA, Klein J, McNamara A, Rosales R, McGovern BL, Luis Rodriguez M, García-Sastre A, White KM, Qin Y, Doench JG, Yan Q, Iwasaki A, Zwaka TP, Qi J, Kadoch C, Wilen CB. Pharmacological disruption of mSWI/SNF complex activity restricts SARS-CoV-2 infection. Nat Genet 2023; 55:471-483. [PMID: 36894709 PMCID: PMC10011139 DOI: 10.1038/s41588-023-01307-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023]
Abstract
Identification of host determinants of coronavirus infection informs mechanisms of viral pathogenesis and can provide new drug targets. Here we demonstrate that mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) chromatin remodeling complexes, specifically canonical BRG1/BRM-associated factor (cBAF) complexes, promote severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and represent host-directed therapeutic targets. The catalytic activity of SMARCA4 is required for mSWI/SNF-driven chromatin accessibility at the ACE2 locus, ACE2 expression and virus susceptibility. The transcription factors HNF1A/B interact with and recruit mSWI/SNF complexes to ACE2 enhancers, which contain high HNF1A motif density. Notably, small-molecule mSWI/SNF ATPase inhibitors or degraders abrogate angiotensin-converting enzyme 2 (ACE2) expression and confer resistance to SARS-CoV-2 variants and a remdesivir-resistant virus in three cell lines and three primary human cell types, including airway epithelial cells, by up to 5 logs. These data highlight the role of mSWI/SNF complex activities in conferring SARS-CoV-2 susceptibility and identify a potential class of broad-acting antivirals to combat emerging coronaviruses and drug-resistant variants.
Collapse
Affiliation(s)
- Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ajinkya Patil
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Clayton K Collings
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yu Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wesley L Cai
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Madison S Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Peter C DeWeirdt
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruth E Hanna
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bridget L Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Arya Ökten
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Mario A Peña-Hernández
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew McNamara
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Luis Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiren Qin
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thomas P Zwaka
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
46
|
Gradauskaite V, Inglebert M, Doench J, Scherer M, Dettwiler M, Wyss M, Shrestha N, Rottenberg S, Plattet P. LRP6 Is a Functional Receptor for Attenuated Canine Distemper Virus. mBio 2023; 14:e0311422. [PMID: 36645301 PMCID: PMC9973313 DOI: 10.1128/mbio.03114-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 01/17/2023] Open
Abstract
Wild-type canine distemper virus (CDV) is an important pathogen of dogs as well as wildlife that can infect immune and epithelial cells through two known receptors: the signaling lymphocytic activation molecule (SLAM) and nectin-4, respectively. Conversely, the ferret and egg-adapted CDV-Onderstepoort strain (CDV-OP) is employed as an effective vaccine for dogs. CDV-OP also exhibits promising oncolytic properties, such as its abilities to infect and kill multiple cancer cells in vitro. Interestingly, several cancer cells do not express SLAM or nectin-4, suggesting the presence of a yet unknown entry factor for CDV-OP. By conducting a genome-wide CRISPR/Cas9 knockout (KO) screen in CDV-OP-susceptible canine mammary carcinoma P114 cells, which neither express SLAM nor nectin-4, we identified low-density lipoprotein receptor-related protein 6 (LRP6) as a host factor that promotes CDV-OP infectivity. Whereas the genetic ablation of LRP6 rendered cells resistant to infection, ectopic expression in resistant LRP6KO cells restored susceptibility. Furthermore, multiple functional studies revealed that (i) the overexpression of LRP6 leads to increased cell-cell fusion, (ii) a soluble construct of the viral receptor-binding protein (solHOP) interacts with a soluble form of LRP6 (solLRP6), (iii) an H-OP point mutant that prevents interaction with solLRP6 abrogates cell entry in multiple cell lines once transferred into recombinant viral particles, and (iv) vesicular stomatitis virus (VSV) pseudotyped with CDV-OP envelope glycoproteins loses its infectivity in LRP6KO cells. Collectively, our study identified LRP6 as the long sought-after cell entry receptor of CDV-OP in multiple cell lines, which set the molecular bases to refine our understanding of viral-cell adaptation and to further investigate its oncolytic properties. IMPORTANCE Oncolytic viruses (OV) have gathered increasing interest in recent years as an alternative option to treat cancers. The Onderstepoort strain of canine distemper virus (CDV-OP), an enveloped RNA virus belonging to the genus Morbillivirus, is employed as a safe and efficient vaccine for dogs against distemper disease. Importantly, although CDV-OP can infect and kill multiple cancer cell lines, the basic mechanisms of entry remain to be elucidated, as most of those transformed cells do not express natural receptors (i.e., SLAM and nectin-4). In this study, using a genome-wide CRISPR/Cas9 knockout screen, we describe the discovery of LRP6 as a novel functional entry receptor for CDV-OP in various cancer cell lines and thereby uncover a basic mechanism of cell culture adaptation. Since LRP6 is upregulated in various cancer types, our data provide important insights in order to further investigate the oncolytic properties of CDV-OP.
Collapse
Affiliation(s)
- Vaiva Gradauskaite
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marine Inglebert
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - John Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Melanie Scherer
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Martina Dettwiler
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marianne Wyss
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Neeta Shrestha
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| | - Philippe Plattet
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Madamarandawala P, Rajapakse S, Gunasena B, Madegedara D, Magana-Arachchi D. A host blood transcriptional signature differentiates multi-drug/rifampin-resistant tuberculosis (MDR/RR-TB) from drug susceptible tuberculosis: a pilot study. Mol Biol Rep 2023; 50:3935-3943. [PMID: 36749527 DOI: 10.1007/s11033-023-08307-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis is one of the top thirteen causes of death worldwide. The major challenge to control TB is the emergence of drug-resistant tuberculosis (DR-TB); specifically, multi-drug resistant TB which are resistant to the most potent drugs; rifampin and isoniazid. Owing to the inconsistencies of the current diagnostic methods, a single test cannot identify the whole spectrum of DR-TB associated mutations. Recently, host blood transcriptomics has gained attention as a promising technique that develops disease-specific RNA signatures/biomarkers. However, studies on host transcriptomics infected with DR-TB is limited. Herein, we intended to identify genes/pathways that are differentially expressed in multi-drug/rifampin resistant TB (MDR/RR-TB) in contrast to drug susceptible TB. METHOD AND RESULTS We conducted blood RNA sequencing of 10 pulmonary TB patients (4; drug susceptible and 6; DR-TB) and 55 genes that were differentially expressed in MDR/RR-TB from drug-susceptible/mono-resistant TB were identified. CD300LD, MYL9, VAMP5, CARD17, CLEC2B, GBP6, BATF2, ETV7, IFI27 and FCGR1CP were found to be upregulated in MDR/RR-TB in all comparisons, among which CLEC2B and CD300LD were not previously linked to TB. In comparison pathway analysis, interferon alpha/gamma response was upregulated while Wnt/beta catenin signaling, lysosome, microtubule nucleation and notch signaling were downregulated. CONCLUSION Up/down-regulation of immunity related genes/pathways speculate the collective effect of hosts' attempt to fight against continuously multiplying DR-TB bacteria and the bacterial factors to fight against the host defense. The identified genes/pathways could act as MDR/RR-TB biomarkers, hence, further research on their clinical use should be encouraged.
Collapse
Affiliation(s)
- Pavithra Madamarandawala
- Molecular Microbiology & Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy, 20000, Sri Lanka
| | - Sanath Rajapakse
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Bandu Gunasena
- National Hospital for Respiratory Diseases, Welisara, 11010, Sri Lanka
| | - Dushantha Madegedara
- Respiratory Diseases Treatment Unit, General Teaching Hospital, Kandy, 20000, Sri Lanka
| | - Dhammika Magana-Arachchi
- Molecular Microbiology & Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy, 20000, Sri Lanka.
| |
Collapse
|
48
|
Kotas ME, O'Leary CE, Locksley RM. Tuft Cells: Context- and Tissue-Specific Programming for a Conserved Cell Lineage. ANNUAL REVIEW OF PATHOLOGY 2023; 18:311-335. [PMID: 36351364 PMCID: PMC10443898 DOI: 10.1146/annurev-pathol-042320-112212] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tuft cells are found in tissues with distinct stem cell compartments, tissue architecture, and luminal exposures but converge on a shared transcriptional program, including expression of taste transduction signaling pathways. Here, we summarize seminal and recent findings on tuft cells, focusing on major categories of function-instigation of type 2 cytokine responses, orchestration of antimicrobial responses, and emerging roles in tissue repair-and describe tuft cell-derived molecules used to affect these functional programs. We review what is known about the development of tuft cells from epithelial progenitors under homeostatic conditions and during disease. Finally, we discuss evidence that immature, or nascent, tuft cells with potential for diverse functions are driven toward dominant effector programs by tissue- or perturbation-specific contextual cues, which may result in heterogeneous mature tuft cell phenotypes both within and between tissues.
Collapse
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Claire E O'Leary
- Department of Medicine, University of California, San Francisco, California, USA
- Current affiliation: Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| |
Collapse
|
49
|
Sato S. [In vitro propagation system for human norovirus]. Uirusu 2023; 73:9-16. [PMID: 39343533 DOI: 10.2222/jsv.73.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Human norovirus (HuNoV) is an infectious virus that accounts for more than half of all cases of infectious gastroenteritis, but its mechanism of infection and multiplication within the host are largely unknown. Accordingly, there are no available vaccines or specific therapeutic agents applicable to HuNoV infection. The primary reason for this is the absence of an established in vitro culture and growth system for HuNoV. Therefore, virological analysis of HuNoV has been conducted using murine norovirus, which is most closely related to HuNoV and can be cultured in some cell-lines. Recently, several laboratories have reported successful in vitro cultivation of HuNoV using human intestinal epithelial cells, raising expectations for further advancements in HuNoV research. In this paper, we present recent findings regarding the in vitro propagation system of HuNoV. .
Collapse
Affiliation(s)
- Shintaro Sato
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University
- Department of Virology, Research Institute for Microbial Diseases, Osaka University
| |
Collapse
|
50
|
Winder N, Gohar S, Muthana M. Norovirus: An Overview of Virology and Preventative Measures. Viruses 2022; 14:v14122811. [PMID: 36560815 PMCID: PMC9781483 DOI: 10.3390/v14122811] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Norovirus (NoV) is an enteric non-enveloped virus which is the leading cause of gastroenteritis across all age groups. It is responsible for around 200,000 deaths annually and outbreaks are common in small communities such as educational and care facilities. 40% of all NoV outbreaks occur in long-term and acute-care facilities, forming the majority of outbreaks. Nosocomial settings set ideal environments for ease of transmission, especially due to the presence of immunocompromised groups. It is estimated to cost global economies around £48 billion a year, making it a global issue. NoV is transmitted via the faecal-oral route and infection with it results in asymptomatic cases or gastrointestinal disease. It has high mutational rates and this allows for new variants to emerge and be more resistant. The classification system available divides NoV into 10 genogroups and 49 genotypes based on whole amino acid sequencing of VP1 capsid protein and partial sequencing of RdRp, respectively. The most predominant genotypes which cause gastroenteritis in humans include GI.1 and GII.4, where GII.4 is responsible for more extreme clinical implications such as hospitalisation. In addition, GII.4 has been responsible for 6 pandemic strains, the last of which is the GII.4 Sydney (2012) variant. In recent years, the successful cultivation of HuNoV was reported in stem cell-derived human intestinal enteroids (HIEs), which promises to assist in giving a deeper understanding of its underlying mechanisms of infection and the development of more personalized control measures. There are no specific control measures against NoV, therefore common practices are used against it such as hand washing. No vaccine is available, but the HIL-214 candidate passed clinical phase 2b and shows promise.
Collapse
|