1
|
Guasch-Ferré M, Wittenbecher C, Palmnäs M, Ben-Yacov O, Blaak EE, Dahm CC, Fall T, Heitmann BL, Licht TR, Löf M, Loos R, Patel CJ, Quarta C, Redman LM, Segal E, Segata N, Snyder M, Sun Q, Tobias DK, Hu FB, Franks PW, Landberg R, Sargent JL, Merino J. Precision nutrition for cardiometabolic diseases. Nat Med 2025; 31:1444-1453. [PMID: 40307513 DOI: 10.1038/s41591-025-03669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025]
Abstract
Precision nutrition is a vibrant and rapidly evolving field of scientific research and innovation with the potential to deliver health, societal and economic benefits by improving healthcare delivery and policies. Advances in deep phenotyping technologies, digital tools and artificial intelligence have made possible early proof-of-concept research that expands the understanding of within- and between-person variability in responses to diet. These studies illustrate the promise of precision nutrition to complement the traditional 'one size fits all' dietary guidelines, which, while considering broad life-stage and disease-specific nutritional requirements, often lack the granularity to account fully for individual variations in nutritional needs and dietary responses. Despite these developments, however, considerable challenges remain before precision nutrition can be implemented on a broader scale. This Review examines the current state of precision nutrition research, with a focus on its application to reducing the incidence and burden of cardiometabolic diseases. We critically examine the evidence base, explore the potential benefits and discuss the challenges and opportunities ahead.
Collapse
Affiliation(s)
- Marta Guasch-Ferré
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Clemens Wittenbecher
- Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Marie Palmnäs
- Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Orly Ben-Yacov
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ellen E Blaak
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
- NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Christina C Dahm
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Berit L Heitmann
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, The Capital Region, Denmark
- Section for General Medicine, The Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- The Boden Initiative, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marie Löf
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ruth Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | | | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deirdre K Tobias
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul W Franks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Rikard Landberg
- Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Jennifer L Sargent
- School of Public Health, Imperial College, London, UK
- BabelFisk, Helsingborg, Sweden
| | - Jordi Merino
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA, USA.
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Li C, Cai D, Yuan W, Cai R, Qiu X, Qin Y, Feng Y, Zhu Q, Liu Y, Chen Y, Yuan X, Jiang W, Hou N. The canonical Wnt/β-catenin signaling pathway upregulates carbonic anhydrase 2 via transcription factor 7-like 2 to promote cardiomyopathy in type 2 diabetic mice. Life Sci 2025; 368:123506. [PMID: 40010634 DOI: 10.1016/j.lfs.2025.123506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Excessive activation of the canonical Wnt/β-catenin pathway contributes to the development of diabetic cardiomyopathy (DCM). Transcription factor 7-like 2 (TCF7L2) is the main β-catenin partner of the TCF family in adult human hearts. Carbonic anhydrase 2 (CA2) is implicated in various hypertrophic cardiomyopathy. In this study, we aimed to investigate the role of the Wnt/β-catenin/TCF7L2 signaling and CA2 in the development of DCM. Streptozotocin (STZ)/high-fat diet (HFD)-induced diabetic mice and high glucose-stimulated neonatal rat cardiomyocytes (NRCMs) were used as in-vivo and in-vitro models of Type 2 diabetes (T2DM), respectively. Histopathological changes in the mouse myocardium were assessed with hematoxylin-eosin (HE) or Masson's trichrome staining. Cardiac function was evaluated with echocardiography. TCF7L2, β-catenin, and CA2 expression was determined with RT-qPCR, western blotting, and immunohistochemistry. Immunoprecipitation (IP) was used to evaluate the formation of the β-catenin/TCF7L2 bipartite. The regulatory relationship between the β-catenin/TCF7L2 bipartite and CA2 was investigated with chromatin immunoprecipitation (ChIP) and a luciferase reporter assay. Compared with the control mice, the T2DM mice exhibited increased myocardial β-catenin and TCF7L2 expression that was concentrated in the nucleus. Treatment of diabetic mice with the β-catenin/TCF7L2 bipartite inhibitor iCRT14 prevented myocardial remodeling and improved cardiac dysfunction. iCRT14 also prevented high glucose-induced hypertrophy in NRCMs, while the β-catenin stabilizer SKL2001 worsened hypertrophy. IP experiments confirmed the formation of the β-catenin/TCF7L2 bipartite in the control and T2DM mouse cardiomyocytes. Moreover, based on the results of RNA-sequencing analysis, CA2 was upregulated in T2DM cardiomyocytes in vitro and in vivo. TCF7L2 overexpression upregulated CA2, while iCRT14 treatment or TCF7L2 knockdown downregulated CA2. CA2 knockdown ameliorated NRCM hypertrophy induced by high glucose and SKL2001. The ChIP experiments revealed an increased interaction between β-catenin/TCF7L2 and the transcription initiation region of CA2 in the heart tissue of T2DM mice. The luciferase reporter assay confirmed that CA2 is directly regulated by the β-catenin/TCF7L2 bipartite. The results indicate that the canonical Wnt/β-catenin pathway upregulates CA2 via TCF7L2 to promote DCM. This research sheds new light on the pathogenesis of DCM and presents new potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Conglin Li
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China; Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China
| | - Daofeng Cai
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Rui Cai
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xiaoxia Qiu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuan Qin
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yaofeng Feng
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China; KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qiulian Zhu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yun Liu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yilin Chen
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xun Yuan
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Wenyue Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China.
| | - Ning Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
3
|
Li H, Zhuang P, Liu X, Li Y, Ao Y, Tian Y, Jia W, Zhang Y, Jiao J. Marine N-3 Fatty Acids Mitigate Hyperglycemia in Prediabetes by Improving Muscular Glucose Transporter 4 Translocation and Glucose Homeostasis. RESEARCH (WASHINGTON, D.C.) 2025; 8:0683. [PMID: 40302785 PMCID: PMC12038161 DOI: 10.34133/research.0683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been proposed to benefit cardiometabolic health. However, the relationship between the intake of DHA and EPA and type 2 diabetes (T2D) risk remains equivocal, and the effects of DHA and EPA on skeletal muscle, the primary organ for glucose metabolism, merit further investigation. Here, we show that habitual fish oil supplementation was associated with a 9% lower T2D risk and significantly interacted with variants at GLUT4 in a prospective cohort of 48,358 people with prediabetes. Muscular metabolome analysis in the animal study revealed that DHA and EPA altered branched-chain amino acids, creatine, and glucose oxidation-related metabolites, concurrently with elevated muscular glycogen synthase and pyruvate dehydrogenase contents that promoted glucose disposal. Further myotube investigation revealed that DHA and EPA promoted muscular GLUT4 translocation by elevating Rab GTPases and target-SNARE expression. Together, DHA and EPA supplementation provides a promising approach for T2D prevention through targeting muscular glucose homeostasis, including enhancing GLUT4 translocation, glycogen synthesis, and aerobic glycolysis.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Endocrinology, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Reources and High-value Utilization, College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Xiaohui Liu
- Department of Endocrinology, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- Department of Nutrition, School of Public Health,
Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yin Li
- Department of Nutrition, School of Public Health,
Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yang Ao
- Department of Nutrition, School of Public Health,
Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yimei Tian
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Reources and High-value Utilization, College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Reources and High-value Utilization, College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Reources and High-value Utilization, College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- Department of Nutrition, School of Public Health,
Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
4
|
Ruan Z, Liu J, Zhao J. Causal associations between gut microbiota and type 2 diabetes mellitus subtypes: a mendelian randomization analysis. BMC Endocr Disord 2025; 25:79. [PMID: 40122799 PMCID: PMC11931760 DOI: 10.1186/s12902-025-01863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
PURPOSE To investigate the causal relationships between gut microbiota and novel adult-onset type 2 diabetes mellitus(T2DM) subtypes. METHODS We conducted Mendelian randomization (MR) analyses using genome-wide association data from European populations. Initial MR analyses examined associations between gut microbiota and four T2DM subtypes, followed by validation analyses using type 1 diabetes mellitus(T1DM) and T2DM GWAS data. We also performed bidirectional MR analyses and tested for heterogeneity and pleiotropy across all analyses. RESULTS Our MR analyses revealed distinctive associations between gut microbiota and T2DM subtypes: six bacterial taxa with severe insulin-deficient diabetes (SIDD), four with severe insulin-resistant diabetes (SIRD), eight with mild obesity-related diabetes (MOD), and eight with mild age-related diabetes (MARD). These associations were distinct from T1DM findings. Six bacterial taxa were validated in T2DM analyses, with four showing directionally consistent effects: Class Clostridia (OR = 0.57, P = 0.045) and Order Clostridiales (OR = 0.57, P = 0.045) were associated with reduced MOD risk, while species Catus (OR = 1.80, P = 0.007) was associated with increased MOD risk, and genus Holdemania (OR = 2.51, P = 0.004) was associated with increased SIRD risk. No significant heterogeneity or pleiotropy was observed across analyses. CONCLUSIONS Our MR analyses reveal novel causal relationships between gut microbiota and adult-onset T2DM subtypes, though further validation studies are warranted.
Collapse
Affiliation(s)
- Zhichao Ruan
- Department of Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiangteng Liu
- Department of Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinxi Zhao
- Department of Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Durvasula A, Price AL. Distinct explanations underlie gene-environment interactions in the UK Biobank. Am J Hum Genet 2025; 112:644-658. [PMID: 39965571 PMCID: PMC11947178 DOI: 10.1016/j.ajhg.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and environmental (E) variable. First, we detect locus-specific GxE interaction by testing for genetic correlation (rg) < 1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRSs) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP heritability across E bins. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average n = 325,000) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with rg significantly <1 (false discovery rate < 5%); 28 trait-E pairs with significant PRSxE and significant SNP heritability differences across E bins; and 15 trait-E pairs with significant PRSxE but no SNP heritability differences across E bins. Across the three scenarios, eight of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of these scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait variance.
Collapse
Affiliation(s)
- Arun Durvasula
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Genetics, Harvard Medical School, Cambridge, MA, USA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alkes L Price
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
6
|
Taşkoparan Ş, Altınay C, Barbaros Özer H. Recent updates of probiotic dairy-based beverages. Food Funct 2025; 16:1656-1669. [PMID: 39962909 DOI: 10.1039/d4fo06322h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
There is a rapid paradigm shift in the food consumption habits of consumers globally. The interest in healthier, safer, minimally processed and nature-identical foods is the driving force of this paradigm shift. Although the roots of this consumer trend go back further, especially the Covid-19 pandemic has contributed to the acceleration of this process. The effects of probiotics on human health have been known for many years. The commercial success of some probiotic microorganism strains, supported by clinical studies, is also evident. Probiotic microorganisms can be found in commercial products in a wide range of forms including powder, tablets or incorporated into liquid or solid food matrices. Milk and dairy products are suitable vehicles for the delivery of probiotics into the human body. Apart from well-established dairy-based probiotic foods including yogurt and yogurt-type beverages, in recent years some dairy products supplemented or enhanced with postbiotics and paraprobiotics are gaining popularity. The incorporation of next-generation probiotics in probiotic beverage formulations has also attracted the attention of researchers. The current state-of-the art for the utilization of next-generation probiotics, postbiotics and paraprobiotics in dairy-based probiotic beverages is the main focus of this review. Conventional milk-, whey- and buttermilk-based probiotic beverages are also covered.
Collapse
Affiliation(s)
- Şevval Taşkoparan
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| | - Canan Altınay
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| | - H Barbaros Özer
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| |
Collapse
|
7
|
Borkhataria CH, Sharma S, Vaja P, Tank C, Mori D, Patel K, Kyada A. Quality management, ethical considerations, and emerging challenges in genomics and biobanking: A comprehensive review. Clin Chim Acta 2025; 569:120161. [PMID: 39864572 DOI: 10.1016/j.cca.2025.120161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The integration of genomics into personalized medicine has the potential to transform healthcare by customizing treatments according to individual genetic profiles. This paper examines the diverse applications of genomics, including the identification of disease susceptibility, improvement of diagnostic methods, optimization of drug therapies, and monitoring of treatment responses. It also explores the expanding global market for genetic testing and the increasing implementation of whole-genome sequencing in clinical practice, with a focus on pilot programs that are advancing comprehensive genomic analysis. Despite challenges such as high costs, data interpretation complexities, and ethical concerns, significant efforts are being made to address these issues. Additionally, the creation of biobanks as vital resources for preserving high-quality biosamples and supporting research highlights the critical need for infrastructure development in genomics. By fostering interdisciplinary collaboration and establishing robust ethical and regulatory frameworks, personalized medicine can ensure equitable access to tailored therapies and enhance health outcomes for everyone. This abstract provides an overview of the transformative potential of genomics and personalized medicine in ushering in a new era of precision healthcare.
Collapse
Affiliation(s)
| | - Shweta Sharma
- B K Mody Government Pharmacy College Rajkot Gujarat India
| | - Payal Vaja
- School of Pharmacy, Dr. Subhash University Junagadh Gujarat India
| | | | - Dhaval Mori
- B K Mody Government Pharmacy College Rajkot Gujarat India
| | | | - Ashishkumar Kyada
- Department of Pharmaceutical Sciences, Marwadi University Rajkot Gujarat India
| |
Collapse
|
8
|
van Allen KA, Gang N, Hoyeck MP, Perera I, Zhang D, Atlas E, Lynn FC, Bruin JE. Characterizing the effects of Dechlorane Plus on β-cells: a comparative study across models and species. Islets 2024; 16:2361996. [PMID: 38833523 PMCID: PMC11152096 DOI: 10.1080/19382014.2024.2361996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Epidemiological studies consistently link environmental toxicant exposure with increased Type 2 diabetes risk. Our study investigated the diabetogenic effects of a widely used flame retardant, Dechlorane Plus (DP), on pancreatic β-cells using rodent and human model systems. We first examined pancreas tissues from male mice exposed daily to oral gavage of either vehicle (corn oil) or DP (10, 100, or 1000 μg/kg per day) and fed chow or high fat diet for 28-days in vivo. DP exposure did not affect islet size or endocrine cell composition in either diet group. Next, we assessed the effect of 48-hour exposure to vehicle (DMSO) or DP (1, 10, or 100 nM) in vitro using immortalized rat β-cells (INS-1 832/3), primary mouse and human islets, and human stem-cell derived islet-like cells (SC-islets). In INS-1 832/3 cells, DP did not impact glucose-stimulated insulin secretion (GSIS) but significantly decreased intracellular insulin content. DP had no effect on GSIS in mouse islets or SC-islets but had variable effects on GSIS in human islets depending on the donor. DP alone did not affect insulin content in mouse islets, human islets, or SC-islets, but mouse islets co-exposed to DP and glucolipotoxic (GLT) stress conditions (28.7 mM glucose + 0.5 mM palmitate) had reduced insulin content compared to control conditions. Co-exposure of mouse islets to DP + GLT amplified the upregulation of Slc30a8 compared to GLT alone. Our study highlights the importance and challenges of using different in vitro models for studying chemical toxicity.
Collapse
Affiliation(s)
- Kyle A. van Allen
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Noa Gang
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Myriam P. Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Dahai Zhang
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francis C. Lynn
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Park SJ, Kim YN, Oh BK, Kang J. Risk factors for metabolic syndrome in the premetabolic state assessed using hierarchical clustering study in a health screening group. Sci Rep 2024; 14:31169. [PMID: 39732771 DOI: 10.1038/s41598-024-82513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Early detection of a premetabolic status that is at risk for metabolic syndrome (MetS) but not meeting the criteria is crucial. This study examined 27,623 participants aged 20-50 (mean: 40.7) years who underwent initial health screening at Kangbuk Samsung Hospital (2011-2019), focusing on individuals with one or two MetS components. Hierarchical agglomerative clustering was used to form MetS risk clusters based on initial and follow-up data, including age, resting heart rate (rHR), serum uric acid (UA), C-reactive protein (CRP), gamma-glutamyl transpeptidase, and ferritin levels, and nonalcoholic fatty liver disease (NAFLD), periodontal disease, and Helicobacter pylori infection duration. Kaplan-Meier and generalized additive models were used to present the restricted mean survival time (RMST) and identify onset contributors. Clusters with NAFLD and elevated UA levels had the highest MetS risk, whereas those with uniformly low biomarker levels revealed the lowest risk. During follow-up, a cluster initially comprising 60.2% moderate-risk patients exhibited high biomarker levels and had the worst MetS prognosis (RMST: 211 days). UA, CRP levels, and rHR contributed to the incidence of MetS in the fitted model. Machine learning can predict the premetabolic state at MetS risk in a population-based cohort.
Collapse
Affiliation(s)
- Se-Jun Park
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yu Na Kim
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Byeong Kil Oh
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeonggyu Kang
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
| |
Collapse
|
10
|
Franks PW, Sargent JL. Diabetes and obesity: leveraging heterogeneity for precision medicine. Eur Heart J 2024; 45:5146-5155. [PMID: 39523563 DOI: 10.1093/eurheartj/ehae746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/06/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The increasing prevalence of diabetes, obesity, and their cardiometabolic sequelae present major global health challenges and highlight shortfalls of current approaches to the prevention and treatment of these conditions. Representing the largest global burden of morbidity and mortality, the pathobiological processes underlying cardiometabolic diseases are in principle preventable and, even when disease is manifest, sometimes reversable. Nevertheless, with current clinical and public health strategies, goals of widespread prevention and remission remain largely aspirational. Application of precision medicine approaches that reduce errors and improve accuracy in medical and health recommendations has potential to accelerate progress towards these goals. Precision medicine must also maintain safety and ideally be cost-effective, as well as being compatible with an individual's preferences, capabilities, and needs. Initial progress in precision medicine was made in the context of rare diseases, with much focus on pharmacogenetic studies, owing to the cause of these diseases often being attributable to highly penetrant single gene mutations. By contrast, most obesity and type 2 diabetes are heterogeneous in aetiology and clinical presentation, underpinned by complex interactions between genetic and non-genetic factors. The heterogeneity of these conditions can be leveraged for development of approaches for precision therapies. Adequate characterization of the heterogeneity in cardiometabolic disease necessitates diversity of and synthesis across data types and research methods, ideally culminating in precision trials and real-world application of precision medicine approaches. This State-of-the-Art Review provides an overview of the current state of the science of precision medicine, as well as outlining a roadmap for study designs that maximise opportunities and address challenges to clinical implementation of precision medicine approaches in obesity and diabetes.
Collapse
Affiliation(s)
- Paul W Franks
- Department of Clinical Sciences, Lund University, Helsingborg Hospital, Charlotte Yhlens gata 10, 251 87 Helsingborg, Sweden
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer L Sargent
- School of Public Health, Imperial College London, White City Campus, 80-92 Wood Lane, London, W12 0BZ, United Kingdom
- BabelFisk, Hälsovägen 9, Helsingborg, 252 21 Sweden
| |
Collapse
|
11
|
Liu Y, Liu T, Zhu Z, Xie L, Bai D, Liu T, Gu W, Li W, Shu Y, Zhang J. An advanced hydrogel dressing system with progressive delivery and layer-to-layer response for diabetic wound healing. Acta Biomater 2024:S1742-7061(24)00638-X. [PMID: 39486779 DOI: 10.1016/j.actbio.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Wound healing in diabetic patients presents a significant challenge due to delayed inflammatory responses, which obstruct subsequent healing stages. In response, we have developed a progressive, layer-by-layer responsive hydrogel, specifically designed to meet the dynamic requirements of diabetic wounds throughout different healing phases. This hydrogel initiates with a glucose-responsive layer formed by boronate ester bonds between 4-arm-poly (ethylene glycol) succinimidyl glutarate (4arm-PEG-SG) and 3-aminophenylboronic acid. This configuration ensures precise control over the physicochemical properties, facilitating accurate drug release during the healing process. Furthermore, we have incorporated an active pharmaceutical ingredient ionic liquid (API) composed of diclofenac and L-carnitine. This combination effectively tackles the solubility and stability issues commonly associated with anti-inflammatory drugs. To further refine drug release, we integrated matrix metalloproteinase-9 (MMP-9)-sensitive gelatin microcapsules, ensuring a controlled release and preventing the abrupt, uneven drug distribution often seen in other systems. Our hydrogel's rheological properties closely resemble human skin, offering a more harmonious approach to diabetic wound healing. Overall, this progressive layer-by-layer responsive wound management system, which is a safe, efficient, and intelligent approach, holds significant potential for the clinical treatment of diabetic wounds. STATEMENT OF SIGNIFICANCE: The two main problems of diabetic wounds are the long-term infiltration of inflammation and the delayed repair process. In this experiment, a glucose-responsive hierarchical drug delivery system was designed to intelligently adjust gel properties to meet the needs of inflammation and repair stage of wound healing, accelerate the transformation of inflammation and repair stage, and accelerate the process of repair stage. In addition, in order to achieve accurate drug release in anti-inflammatory layer hydrogels and avoid sudden drug release due to poor solubility of anti-inflammatory small molecule drugs, we constructed a ionic liquid of active pharmaceutical ingredients (API-ILs) using diclofenac and L-carnitine as raw materials. It was wrapped in MMP-9 enzyme active gelatin microcapsule to construct a double-reaction anti-inflammatory layer gel to achieve accurate drug release. These findings highlight the potential of our system in treating diabetic wounds, providing a significant advance in wound treatment.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, PR China; Changzhou Zhitai Shengchuang Technology Co., Ltd., Changzhou 213000, PR China
| | - Tianqi Liu
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Changzhou Zhitai Shengchuang Technology Co., Ltd., Changzhou 213000, PR China.
| | - Zhenye Zhu
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Lin Xie
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - De Bai
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Tonglin Liu
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Wenting Gu
- Changzhou Zhitai Shengchuang Technology Co., Ltd., Changzhou 213000, PR China
| | - Wei Li
- Changzhou Zhitai Shengchuang Technology Co., Ltd., Changzhou 213000, PR China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Changzhou Zhitai Shengchuang Technology Co., Ltd., Changzhou 213000, PR China; Shenzhen Shinehigh Innovation Technology Co., Ltd., Shenzhen 518055, PR China.
| |
Collapse
|
12
|
Ghnaim A, Midlej K, Zohud O, Karram S, Schaefer A, Houri-Haddad Y, Lone IM, Iraqi FA. Host Genetics Background Affects Intestinal Cancer Development Associated with High-Fat Diet-Induced Obesity and Type 2 Diabetes. Cells 2024; 13:1805. [PMID: 39513912 PMCID: PMC11545189 DOI: 10.3390/cells13211805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Obesity and type 2 diabetes (T2D) promote inflammation, increasing the risk of colorectal cancer (CRC). High-fat diet (HFD)-induced obesity is key to these diseases through biological mechanisms. This study examined the impact of genetic background on the multimorbidity of intestinal cancer, T2D, and inflammation due to HFD-induced obesity. METHODS A cohort of 357 Collaborative Cross (CC) mice from 15 lines was fed either a control chow diet (CHD) or HFD for 12 weeks. Body weight was tracked biweekly, and blood glucose was assessed at weeks 6 and 12 via intraperitoneal glucose tolerance tests (IPGTT). At the study's endpoint, intestinal polyps were counted, and cytokine profiles were analyzed to evaluate the inflammatory response. RESULTS HFD significantly increased blood glucose levels and body weight, with males showing higher susceptibility to T2D and obesity. Genetic variation across CC lines influenced glucose metabolism, body weight, and polyp development. Mice on HFD developed more intestinal polyps, with males showing higher counts than females. Cytokine analysis revealed diet-induced variations in pro-inflammatory markers like IL-6, IL-17A, and TNF-α, differing by genetic background and sex. CONCLUSIONS Host genetics plays a crucial role in susceptibility to HFD-induced obesity, T2D, CRC, and inflammation. Genetic differences across CC lines contributed to variability in disease outcomes, providing insight into the genetic underpinnings of multimorbidity. This study supports gene-mapping efforts to develop personalized prevention and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Aya Ghnaim
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.G.); (K.M.); (O.Z.); (I.M.L.)
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.G.); (K.M.); (O.Z.); (I.M.L.)
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.G.); (K.M.); (O.Z.); (I.M.L.)
| | - Sama Karram
- Department of Prosthodontics, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem 9112102, Israel; (S.K.); (Y.H.-H.)
| | - Arne Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité-University Medicine, 14197 Berlin, Germany;
| | - Yael Houri-Haddad
- Department of Prosthodontics, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem 9112102, Israel; (S.K.); (Y.H.-H.)
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.G.); (K.M.); (O.Z.); (I.M.L.)
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.G.); (K.M.); (O.Z.); (I.M.L.)
| |
Collapse
|
13
|
Li FXZ, Xu F, Li CC, Lei LM, Shan SK, Zheng MH, Lin X, Guo B, Tang KX, Duan JY, Wu YY, Cao YC, Liu JJ, Yuan LQ. Cold Exposure Alleviates T2DM Through Plasma-Derived Extracellular Vesicles. Int J Nanomedicine 2024; 19:10077-10095. [PMID: 39371478 PMCID: PMC11456273 DOI: 10.2147/ijn.s441847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/14/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Anecdotal reports have praised the benefits of cold exposure, exemplified by activities like winter swimming and cold water immersion. Cold exposure has garnered acclaim for its potential to confer benefits and potentially alleviate diabetes. We posited that systemic cold temperature (CT, 4-8°C) likely influences the organism's blood components through ambient temperature, prompting our investigation into the effects of chronic cold exposure on type 2 diabetic (T2DM) mice and our initial exploration of how cold exposure mitigates the incidence of T2DM. Methods The effects of CT (4-8°C) or room temperature (RT, 22-25°C) on T2DM mice were investigated. Mice blood and organ specimens were collected for fully automated biochemical testing, ELISA, HE staining, immunohistochemistry, and immunofluorescence. Glucose uptake was assessed using flow cytometry with 2-NBDG. Changes in potential signaling pathways such as protein kinase B (AKT), phosphorylated AKT (p-AKT), insulin receptor substrates 1 (IRS1), and phosphorylated IRS1 (p-IRS1) were evaluated by Western blot. Results CT or CT mice plasma-derived extracellular vesicles (CT-EVs) remarkably reduced blood glucose levels and improved insulin sensitivity in T2DM mice. This treatment enhanced glucose metabolism, systemic insulin sensitivity, and insulin secretion function while promoting glycogen accumulation in the liver and muscle. Additionally, CT-EVs treatment protected against the streptozocin (STZ)-induced destruction of islets in T2DM mice by inhibiting β-cell apoptosis. CT-EVs also shielded islets from destruction and increased the expression of p-IRS1 and p-AKT in adipocytes and hepatocytes. In vitro experiments further confirmed its pro-insulin sensitivity effect. Conclusion Our data indicate that cold exposure may have a potentially beneficial effect on the development of T2DM, mainly through the anti-diabetic effect of plasma-derived EVs released during cold stimulation. This phenomenon could significantly contribute to understanding the lower prevalence of diabetes in colder regions.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Jun-Jie Liu
- Department of Periodontal Division, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| |
Collapse
|
14
|
Jiang Y, Xun Y, Zhang Z. Central regulation of feeding and body weight by ciliary GPR75. J Clin Invest 2024; 134:e182121. [PMID: 39137039 PMCID: PMC11444156 DOI: 10.1172/jci182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Variants of the G protein-coupled receptor 75 (GPR75) are associated with a lower BMI in large-scale human exome-sequencing studies. However, how GPR75 regulates body weight remains poorly understood. Using random germline mutagenesis in mice, we identified a missense allele (Thinner) of Gpr75 that resulted in a lean phenotype and verified the decreased body weight and fat weight in Gpr75-knockout (Gpr75-/-) mice. Gpr75-/- mice displayed reduced food intake under high-fat diet (HFD) feeding, and pair-feeding normalized their body weight. The endogenous GPR75 protein was exclusively expressed in the brains of 3xFlag-tagged Gpr75-knockin (3xFlag-Gpr75) mice, with consistent expression across different brain regions. GPR75 interacted with Gαq to activate various signaling pathways after HFD feeding. Additionally, GPR75 was localized in the primary cilia of hypothalamic cells, whereas the Thinner mutation (L144P) and human GPR75 variants in individuals with a lower BMI failed to localize in the cilia. Loss of GPR75 selectively inhibited weight gain in HFD-fed mice but failed to suppress the development of obesity in leptin ob-mutant (Lepob-mutant) mice and adenylate cyclase 3-mutant (Adcy3-mutant) mice on a chow diet. Our data reveal that GPR75 is a ciliary protein expressed in the brain and plays an important role in regulating food intake.
Collapse
Affiliation(s)
- Yiao Jiang
- Center for the Genetics of Host Defense and
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu Xun
- Center for the Genetics of Host Defense and
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhao Zhang
- Center for the Genetics of Host Defense and
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Chen J, Li YT, Niu Z, He Z, Xie YJ, Hernandez J, Huang W, Wang HHX. Investigating the causal association of generalized and abdominal obesity with microvascular complications in patients with type 2 diabetes: A community-based prospective study. Diabetes Obes Metab 2024; 26:2796-2810. [PMID: 38695216 DOI: 10.1111/dom.15598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 06/05/2024]
Abstract
AIM The paradoxical protective association between overweight/obesity and diabetic microvascular complications (DMC), a phenomenon well-known as the obesity paradox, has been considered a non-causal association based on methodological influences. We aimed to investigate the association of generalized and abdominal obesity, as measured by body mass index (BMI) and waist circumference (WC), respectively, with DMC in patients with type 2 diabetes (T2D), using a causal inference approach. MATERIALS AND METHODS We enrolled 1436 patients with clinically diagnosed T2D but not DMC at baseline in a community-based prospective cohort in China between 2017 and 2019 and followed them annually until 2022 with new-onset DMC recorded. Marginal structural Cox models with inverse probability weighting were constructed to determine the causal association. Subgroup analyses were performed to identify potential effect modifiers. RESULTS We observed 360 incident DMC cases, including 109 cases of diabetic nephropathy (DN) and 277 cases of diabetic retinopathy (DR) during four follow-up visits. Multivariable-adjusted hazard ratios (95% confidence intervals) for overall DMC, DN and DR were 1.037 (1.005-1.071), 1.117 (1.062-1.175) and 1.018 (0.980-1.059) for 1 kg/m2 increase in BMI, and 1.005 (0.994-1.017), 1.034 (1.018-1.051) and 1.000 (0.987-1.014) for 1 cm increase in WC, respectively. Similar patterns were observed across the BMI and WC categories, while the positive association appeared to be more pronounced in women. CONCLUSIONS Generalized but not abdominal obesity was associated with an increased risk for the overall DMC, whereas both obesities were causally related to DN, albeit not DR, in T2D. Routine weight management should not be neglected in diabetes care, particularly in women.
Collapse
Affiliation(s)
- Jiaheng Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yu Ting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zimin Niu
- School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhanpeng He
- Liwan Central Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Yao Jie Xie
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Jose Hernandez
- Faculty of Medicine and Health, EDU, Digital Education Holdings Ltd., Kalkara, Malta
- Green Templeton College, University of Oxford, Oxford, UK
| | - Wenyong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Harry H X Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Usher Institute, Deanery of Molecular, Genetic & Population Health Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Improta-Caria AC, Ferrari F, Gomes JLP, Villalta PB, Soci ÚPR, Stein R, Oliveira EM. Dysregulated microRNAs in type 2 diabetes and breast cancer: Potential associated molecular mechanisms. World J Diabetes 2024; 15:1187-1198. [PMID: 38983808 PMCID: PMC11229979 DOI: 10.4239/wjd.v15.i6.1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Type 2 diabetes (T2D) is a multifaceted and heterogeneous syndrome associated with complications such as hypertension, coronary artery disease, and notably, breast cancer (BC). The connection between T2D and BC is established through processes that involve insulin resistance, inflammation and other factors. Despite this comprehension the specific cellular and molecular mechanisms linking T2D to BC, especially through microRNAs (miRNAs), remain elusive. miRNAs are regulators of gene expression at the post-transcriptional level and have the function of regulating target genes by modulating various signaling pathways and biological processes. However, the signaling pathways and biological processes regulated by miRNAs that are associated with T2D and BC have not yet been elucidated. This review aims to identify dysregulated miRNAs in both T2D and BC, exploring potential signaling pathways and biological processes that collectively contribute to the development of BC.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Filipe Ferrari
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - João Lucas Penteado Gomes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Paloma Brasilio Villalta
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas-UNICAMP, Campinas 13484-350, Brazil
| | - Úrsula Paula Renó Soci
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Ricardo Stein
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - Edilamar M Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
- Departments of Internal Medicine, Molecular Pharmacology and Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, United States
| |
Collapse
|
17
|
Shafe MO, Gumede NM, Nyakudya TT, Chivandi E. Lycopene: A Potent Antioxidant with Multiple Health Benefits. J Nutr Metab 2024; 2024:6252426. [PMID: 38883868 PMCID: PMC11179732 DOI: 10.1155/2024/6252426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Lycopene is a naturally occurring carotenoid predominantly found in tomatoes and tomato-based products. Like other phytochemicals, it exhibits health beneficial biological activities that can be exploited when it is used as a dietary supplement. In vitro and in vivo, lycopene has been demonstrated to mitigate oxidative stress-induced metabolic dysfunctions and diseases including inflammation, obesity, and diabetes mellitus. Lycopene has been shown to alleviate metabolic diseases that affect the bone, eye, kidney, liver, lungs, heart, and nervous system. This review presents the state of the art regarding lycopene's health benefits and its potential applications in health system delivery. Furthermore, lycopene's protective effects against toxins, safety in its use, and possible toxicity are explored.
Collapse
Affiliation(s)
- Mercy Omoye Shafe
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine and Allied Health Sciences, Bingham University, P.M.B. 005, New Karu, Nasarawa 961002, Nigeria
| | - Nontobeko Myllet Gumede
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Trevor Tapiwa Nyakudya
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
18
|
Ruan Z, Zhao J. Differential ischemic stroke risk linked to novel subtypes of type 2 diabetes: insights from a Mendelian randomization analysis. Endocrine 2024; 84:980-988. [PMID: 38691263 DOI: 10.1007/s12020-024-03842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE This study employs a two-sample Mendelian randomization (MR) approach to investigate the variation in ischemic stroke risk across novel subtypes of adult-onset type 2 diabetes. METHODS Leveraging pooled genome-wide association study (GWAS) data from the Swedish ANDIS cohort, we explored the association of four newly identified type 2 diabetes subtypes-severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes (MARD)-with ischemic stroke risk. The outcome data for ischemic stroke and its three subtypes (large artery, cardioembolic, and small vessel stroke) were sourced from the MEGASTROKE Consortium. Our analysis applied multiple MR methods, focusing on the inverse-variance weighted (IVW) technique, complemented by thorough sensitivity analyses to examine heterogeneity and potential horizontal pleiotropy. RESULTS Our findings reveal a significant causal relationship between the SIDD subtype and small vessel stroke (OR = 1.06, 95% CI: 1.01-1.11, p = 0.025), while no causal associations were observed for SIRD with any stroke subtype. MOD was causally linked to small vessel stroke (OR = 1.07, 95% CI: 1.02-1.12, p = 0.004) and large artery stroke (OR = 1.07, 95% CI: 1.01-1.13, p = 0.015). Similarly, MARD showed a causal relationship with small vessel stroke (OR = 1.09, 95% CI: 1.03-1.16, p = 0.006) and overall ischemic stroke risk (OR = 1.04, 95% CI: 1.01-1.08, p = 0.010). CONCLUSIONS Our study highlights distinct causal links between specific type 2 diabetes subtypes and ischemic stroke risks, emphasizing the importance of subtype-specific prevention and treatment strategies.
Collapse
Affiliation(s)
- Zhichao Ruan
- Department of Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinxi Zhao
- Department of Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
19
|
Adhikary K, Sarkar R, Maity S, Banerjee I, Chatterjee P, Bhattacharya K, Ahuja D, Sinha NK, Maiti R. The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review. J Basic Clin Physiol Pharmacol 2024; 35:153-168. [PMID: 38748886 DOI: 10.1515/jbcpp-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Type 2 diabetes mellitus is a long-lasting endocrine disorder characterized by persistent hyperglycaemia, which is often triggered by an entire or relative inadequacy of insulin production or insulin resistance. As a result of resistance to insulin (IR) and an overall lack of insulin in the body, type 2 diabetes mellitus (T2DM) is a metabolic illness that is characterized by hyperglycaemia. Notably, the occurrence of vascular complications of diabetes and the advancement of IR in T2DM are accompanied by dysbiosis of the gut microbiota. Due to the difficulties in managing the disease and the dangers of multiple accompanying complications, diabetes is a chronic, progressive immune-mediated condition that plays a significant clinical and health burden on patients. The frequency and incidence of diabetes among young people have been rising worldwide. The relationship between the gut microbiota composition and the physio-pathological characteristics of T2DM proposes a novel way to monitor the condition and enhance the effectiveness of therapies. Our knowledge of the microbiota of the gut and how it affects health and illness has changed over the last 20 years. Species of the genus Eubacterium, which make up a significant portion of the core animal gut microbiome, are some of the recently discovered 'generation' of possibly helpful bacteria. In this article, we have focused on pathogenesis and therapeutic approaches towards T2DM, with a special reference to gut bacteria from ancient times to the present day.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Sriparna Maity
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Ipsita Banerjee
- Department of Nutrition, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Nirmalya Kumar Sinha
- Department of Nutrition and Department of NSS, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore, West Bengal, India
| | - Rajkumar Maiti
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| |
Collapse
|
20
|
Durvasula A, Price AL. Distinct explanations underlie gene-environment interactions in the UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.22.23295969. [PMID: 37790574 PMCID: PMC10543037 DOI: 10.1101/2023.09.22.23295969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized, but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and E variable. First, we detect locus-specific GxE interaction by testing for genetic correlation r g < 1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRS) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP-heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP-heritability across E bins. Simulations show that these approaches achieve high sensitivity and specificity in distinguishing these three GxE scenarios. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average N = 325 K ) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with r g significantly < 1 (FDR<5%) (average r g = 0.95 ); for example, white blood cell count had r g = 0.95 (s.e. 0.01) between smokers and non-smokers. Second, we identified 28 trait-E pairs with significant PRSxE and significant SNP-heritability differences across E bins; for example, BMI had a significant PRSxE for physical activity (P=4.6e-5) with 5% larger SNP-heritability in the largest versus smallest quintiles of physical activity (P=7e-4). Third, we identified 15 trait-E pairs with significant PRSxE with no SNP-heritability differences across E bins; for example, waist-hip ratio adjusted for BMI had a significant PRSxE effect for time spent watching television (P=5e-3) with no SNP-heritability differences. Across the three scenarios, 8 of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of the three scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait and disease variance.
Collapse
Affiliation(s)
- Arun Durvasula
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Genetics, Harvard Medical School, Cambridge, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alkes L Price
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Cao L, Wen Y, Fan K, Wang Q, Zhang Y, Li Z, Wang N, Zhang X. Association of birth weight with type 2 diabetes mellitus and the mediating role of fatty acids traits: a two-step mendelian randomization study. Lipids Health Dis 2024; 23:97. [PMID: 38566047 PMCID: PMC10986016 DOI: 10.1186/s12944-024-02087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Observational studies have suggested an association between birth weight and type 2 diabetes mellitus, but the causality between them has not been established. We aimed to obtain the causal relationship between birth weight with T2DM and quantify the mediating effects of potential modifiable risk factors. METHODS Two-step, two-sample Mendelian randomization (MR) techniques were applied using SNPs as genetic instruments for exposure and mediators. Summary data from genome-wide association studies (GWAS) for birth weight, T2DM, and a series of fatty acids traits and their ratios were leveraged. The inverse variance weighted (IVW) method was the main analysis approach. In addition, the heterogeneity test, horizontal pleiotropy test, Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test, and leave-one-out analysis were carried out to assess the robustness. RESULTS The IVW method showed that lower birth weight raised the risk of T2DM (β: -1.113, 95% CI: -1.573 ∼ -0.652). Two-step MR identified 4 of 17 candidate mediators partially mediating the effect of lower birth weight on T2DM, including ratio of polyunsaturated fatty acids to monounsaturated fatty acids (proportion mediated: 7.9%), ratio of polyunsaturated fatty acids to total fatty acids (7.2%), ratio of omega-6 fatty acids to total fatty acids (8.1%) and ratio of linoleic acid to total fatty acids ratio (6.0%). CONCLUSIONS Our findings supported a potentially causal effect of birth weight against T2DM with considerable mediation by modifiable risk factors. Interventions that target these factors have the potential to reduce the burden of T2DM attributable to low birth weight.
Collapse
Affiliation(s)
- Limin Cao
- Shanxi Children's Hospital (Shanxi Maternal and Child Health Hospital), Xinmin North Street No.13, Taiyuan, Shanxi, China
| | - Yahui Wen
- Shanxi Children's Hospital (Shanxi Maternal and Child Health Hospital), Xinmin North Street No.13, Taiyuan, Shanxi, China
| | - Keyi Fan
- Shanxi Medical University, Taiyuan, China
| | - Qiwei Wang
- Shanxi Medical University, Taiyuan, China
| | | | - Zhenglong Li
- Shanxi Children's Hospital (Shanxi Maternal and Child Health Hospital), Xinmin North Street No.13, Taiyuan, Shanxi, China
| | - Nan Wang
- Shanxi Medical University, Taiyuan, China
| | - Xinhua Zhang
- Shanxi Children's Hospital (Shanxi Maternal and Child Health Hospital), Xinmin North Street No.13, Taiyuan, Shanxi, China.
| |
Collapse
|
22
|
Nomoto A, Suzuki Y, Morito K, Nagasawa K, Takayama K. Suppressive Effects of Neuromedin U Receptor 2-Selective Peptide Agonists on Appetite and Prolactin Secretion in Mice. ACS Med Chem Lett 2024; 15:376-380. [PMID: 38505846 PMCID: PMC10945547 DOI: 10.1021/acsmedchemlett.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Neuromedin U receptor 2 (NMUR2), which is expressed in the central nervous system (CNS) including the hypothalamus, has been noted as a therapeutic target against obesity. We previously reported that intranasal administration of CPN-219, a NMUR2-selective hexapeptide agonist, suppresses body weight gain in mice; however, there is no detailed information regarding its CNS effects. Recently, in addition to appetite suppression, stress responses and regulation of prolactin (PRL) secretion have also attracted attention. NMUR2 expressed in the hypothalamic tuberoinfundibular dopaminergic neurons has emerged as an alternative target for treating hyperprolactinemia. Here, CPN-219 decreased food intake up to 24 h after administration at a dose of 200 nmol, resulting in body weight gain suppression, although grooming and anxiety-like behaviors were transiently induced. Interestingly, the restraint stress-induced increase in plasma PRL levels was significantly suppressed at a lower dose of 20 nmol, indicating the potential for drug development as an anti-PRL agent of NMUR2-selective agonists.
Collapse
Affiliation(s)
- Asuka Nomoto
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Yui Suzuki
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Katsuya Morito
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Kazuki Nagasawa
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Kentaro Takayama
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| |
Collapse
|
23
|
Reddy KR, Freeman AM. Lifestyle Medicine: An Antidote to Cardiovascular Diseases. Am J Lifestyle Med 2024; 18:216-232. [PMID: 38559785 PMCID: PMC10979734 DOI: 10.1177/15598276221130684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Despite numerous advances in basic understanding of cardiovascular disease pathophysiology, pharmacology, therapeutic procedures, and systems improvement, there hasn't been much decline in heart disease related mortality in the US since 2010. Hypertension and diet induced risk continue to be the leading causes of cardiovascular morbidity. Even with the excessive mortality associated with the COVID-19 pandemic, in 2020, heart disease remained the leading cause of death. Given the degree of disease burden, morbidity, and mortality, there is an urgent need to redirect medical professionals' focus towards prevention through simple and cost effective lifestyle strategies. However, current practice paradigm and financial compensation systems are mainly centered disease management and not health promotion. For example, the financial value placed on 3-10 min smoking cessation counseling (.24RVUs) is 47-fold lower than an elective PCI (11.21 RVUs). The medical community seems to be enamored with the latest and greatest technology, new devices, and surgical procedures. What if the greatest technology of all was simply the way we live every day? Perhaps when this notion is known by enough, we will switch to this lifestyle medicine technology to prevent disease in the first place.
Collapse
Affiliation(s)
- Koushik R. Reddy
- Division of Cardiology, Department of Medicine, James A. Haley VA Medical Center and University of South Florida, Tampa, FL, USA (KRR); and Division of Cardiology, Department of Medicine, National Jewish Health, Denver, CO, USA (AMF)
| | - Andrew M. Freeman
- Division of Cardiology, Department of Medicine, James A. Haley VA Medical Center and University of South Florida, Tampa, FL, USA (KRR); and Division of Cardiology, Department of Medicine, National Jewish Health, Denver, CO, USA (AMF)
| |
Collapse
|
24
|
Mao J, Wang X, Chen H, Zhao Z, Liu D, Zhang Y, Nie X. The Contribution of Microorganisms to the Quality and Flavor Formation of Chinese Traditional Fermented Meat and Fish Products. Foods 2024; 13:608. [PMID: 38397585 PMCID: PMC10888149 DOI: 10.3390/foods13040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Guizhou sour meat and sour fish, Chaoshan fish sauce, Sichuan sausage and bacon, Cantonese sausage, Jinhua ham, and Xinjiang air-dried beef are eight representatives of Chinese traditional fermented meat and fish products (FMFPs), which are favored by Chinese consumers due to their high nutritional value and quality. The quality of the spontaneously fermented Chinese traditional FMFP is closely correlated with microorganisms. Moreover, the dominant microorganisms are significantly different due to regional differences. The effects of microorganisms on the texture, color, flavor, nutrition, functional properties, and safety of Chinese traditional FMFPs have not been not fully described. Additionally, metabolic pathways for flavor formation of Chinese traditional FMFPs have not well been summarized. This article describes the seven characteristic Chinese traditional FMFPs and correlated dominant microorganisms in different regions of China. The effects of microorganisms on the texture, color, and flavor of Chinese traditional FMFPs are discussed. Furthermore, the metabolic pathways of microbial regulation of flavor formation in Chinese traditional FMFPs are proposed. This work provides a theoretical basis for improvement of Chinese traditional FMFPs by inoculating functional microorganisms isolated from Chinese traditional fermented foods.
Collapse
Affiliation(s)
- Jingjing Mao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyi Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Hongfan Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
25
|
Chen J, Li YT, Niu Z, He Z, Xie YJ, Hernandez J, Huang W, Wang HHX. Association of Visceral Obesity Indices With Incident Diabetic Retinopathy in Patients With Diabetes: Prospective Cohort Study. JMIR Public Health Surveill 2024; 10:e48120. [PMID: 38319705 PMCID: PMC10879974 DOI: 10.2196/48120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/31/2023] [Accepted: 12/16/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Visceral adipose tissue plays an active role in the pathogenesis of type 2 diabetes and vascular dysfunction. The lipid accumulation product (LAP), visceral adiposity index (VAI), and Chinese VAI (CVAI) have been proposed as simple and validated surrogate indices for measuring visceral adipose tissue. However, the evidence from prospective studies on the associations between these novel indices of visceral obesity and diabetic retinopathy (DR) remains scant. OBJECTIVE This study aimed to investigate the longitudinal associations of LAP, VAI, and CVAI with incident DR in Chinese patients with diabetes. METHODS This was a prospective cohort study conducted in Guangzhou in southern China. We collected baseline data between November 2017 and July 2020, while on-site follow-up visits were conducted annually until January 2022. The study participants consisted of 1403 patients with a clinical diagnosis of diabetes, referred from primary care, who were free of DR at baseline. The LAP, VAI, and CVAI levels were calculated by sex-specific equations based on anthropometric and biochemical parameters. DR was assessed using 7-field color stereoscopic fundus photographs and graded according to the modified Airlie House Classification scheme. Time-dependent Cox proportional hazard models were constructed to estimate the hazard ratios with 95% CIs. Restricted cubic spline curves were fitted to examine the dose-response relationship between the 3 indices of visceral obesity and new-onset DR. Subgroup analyses were performed to investigate the potential effect modifiers. RESULTS The mean age of study participants was 64.5 (SD 7.6) years, and over half (816/1403, 58.2%) were female. During a median follow-up of 2.13 years, 406 DR events were observed. A 1-SD increment in LAP, VAI, or CVAI was consistently associated with increased risk for new-onset DR, with a multivariable‑adjusted hazard ratio of 1.24 (95% CI 1.09-1.41; P=.001), 1.22 (95% CI 1.09-1.36; P<.001), and 1.48 (95% CI 1.19-1.85; P=.001), respectively. Similar patterns were observed across tertiles in LAP (P for trend=.001), VAI (P for trend<.001), and CVAI (P for trend=.009). Patients in the highest tertile of LAP, VAI, and CVAI had an 84%, 86%, and 82% higher hazard of DR, respectively, compared to those in the lowest tertile. A nonlinear dose-response relationship with incident DR was noted for LAP and VAI (both P for nonlinearity<.05), but not for CVAI (P for nonlinearity=.51). We did not detect the presence of effect modification by age, sex, duration of diabetes, BMI, or comorbidity (all P for interaction>.10). CONCLUSIONS Visceral obesity, as measured by LAP, VAI, or CVAI, is independently associated with increased risk for new-onset DR in Chinese patients with diabetes. Our findings may suggest the necessity of incorporating regular monitoring of visceral obesity indices into routine clinical practice to enhance population-based prevention for DR.
Collapse
Affiliation(s)
- Jiaheng Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yu Ting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zimin Niu
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhanpeng He
- Liwan Central Hospital of Guangzhou, Guangzhou, China
| | - Yao Jie Xie
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, China (Hong Kong)
| | - Jose Hernandez
- Faculty of Medicine and Health, EDU, Digital Education Holdings Ltd, Kalkara, Malta
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Wenyong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Harry H X Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, China (Hong Kong)
- Usher Institute, Deanery of Molecular, Genetic & Population Health Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Ahmad MS, Minaee N, Serrano-Contreras JI, Kaluarachchi M, Shen EYL, Boulange C, Ahmad S, Phetcharaburanin J, Holmes E, Wist J, Albaloshi AH, Alaama T, Damanhouri ZA, Lodge S. Exploring the Interactions between Obesity and Diabetes: Implications for Understanding Metabolic Dysregulation in a Saudi Arabian Adult Population. J Proteome Res 2024; 23:809-821. [PMID: 38230637 PMCID: PMC10846529 DOI: 10.1021/acs.jproteome.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
The rising prevalence of obesity in Saudi Arabia is a major contributor to the nation's high levels of cardiometabolic diseases such as type 2 diabetes. To assess the impact of obesity on the diabetic metabolic phenotype presented in young Saudi Arabian adults, participants (n = 289, aged 18-40 years) were recruited and stratified into four groups: healthy weight (BMI 18.5-24.99 kg/m2) with (n = 57) and without diabetes (n = 58) or overweight/obese (BMI > 24.99 kg/m2) with (n = 102) and without diabetes (n = 72). Distinct plasma metabolic phenotypes associated with high BMI and diabetes were identified using nuclear magnetic resonance spectroscopy and ultraperformance liquid chromatography mass spectrometry. Increased plasma glucose and dysregulated lipoproteins were characteristics of obesity in individuals with and without diabetes, but the obesity-associated lipoprotein phenotype was partially masked in individuals with diabetes. Although there was little difference between diabetics and nondiabetics in the global plasma LDL cholesterol and phospholipid concentration, the distribution of lipoprotein particles was altered in diabetics with a shift toward denser and more atherogenic LDL5 and LDL6 particles, which was amplified in the presence of obesity. Further investigation is warranted in larger Middle Eastern populations to explore the dysregulation of metabolism driven by interactions between obesity and diabetes in young adults.
Collapse
Affiliation(s)
- Muhammad Saeed Ahmad
- Department
of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K.
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Novia Minaee
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | | | - Manuja Kaluarachchi
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Eric Yi-Liang Shen
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
- Department
of Radiation Oncology, Chang Gung Memorial
Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Claire Boulange
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Sultan Ahmad
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jutarop Phetcharaburanin
- Department
of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Elaine Holmes
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Julien Wist
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
| | - Ahmed Hakem Albaloshi
- King
Abdulaziz Hospital and Endocrine and Diabetic Center, Jeddah 23436, Saudi Arabia
| | - Tareef Alaama
- Department
of Medicine, Faculty of Medicine, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Zoheir Abdullah Damanhouri
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Pharmacology, Faculty of Medicine, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samantha Lodge
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
27
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
28
|
Atefi M, Heidari Z, Shojaei M, Askari G, Kesharwani P, Bagherniya M, Sahebkar A. Does Quinoa ( Chenopodium quinoa) Consumption Improve Blood Glucose, Body Weight and Body Mass Index? A Systematic Review and Dose-Response Meta-Analysis of Clinical Trials. Curr Med Chem 2024; 31:502-513. [PMID: 36847233 DOI: 10.2174/0929867330666230227151852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023]
Abstract
BACKGROUND Quinoa (Chenopodium quinoa) has a structure similar to whole grains and contains phytochemicals and dietary fiber. Hence, it is considered a food substance with a high nutritional value. OBJECTIVE The purpose of the present study was to assess the efficacy of quinoa in reducing fasting blood glucose (FBG), body weight (BW), and body mass index (BMI) in a meta-analysis of randomized clinical trials. METHODS A comprehensive search in ISI Web of Science, Scopus, and PubMed databases as well as Google Scholar, was conducted up to November 2022 to identify reports of randomized clinical trials that investigated the effect of quinoa on FBG, BW, and BMI. RESULTS Seven trials comprising 258 adults with mean ages of 31 to 64 years were included in this review. Studies used 15 to 50 grams of quinoa/per day as an intervention, and the intervention was between 28 to 180 days. In a dose-response analysis of FBG, there was significant evidence of a nonlinear association between intervention and FBG based on the quadratic model (P-value for nonlinearity = 0.027); hence, the slope of the curve increased when quinoa intake was nearly 25 g/- day. In comparison between quinoa seed supplementation and placebo, our findings showed that quinoa seed supplementation did not have a significant effect on BMI (MD: -0.25; 95% CI: -0.98, 0.47; I2=0%, P = 0.998) and BW (MD: -0.54; 95% CI: -3.05, 1.97; I2=0%, P = 0.99), when compared with placebo. Evidence of publication bias was not found among the included studies. CONCLUSION The present analysis revealed the beneficial effects of quinoa on the blood glucose level. Further studies on quinoa are needed to confirm these results.
Collapse
Affiliation(s)
- Masoumeh Atefi
- Department of Food and Drug, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohamad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Yang R, Lin J, Yang H, Dunk MM, Wang J, Xu W, Wang Y. A low-inflammatory diet is associated with a lower incidence of diabetes: role of diabetes-related genetic risk. BMC Med 2023; 21:483. [PMID: 38049803 PMCID: PMC10696657 DOI: 10.1186/s12916-023-03190-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Whether a low-inflammatory diet relates to type 2 diabetes risk remains unclear. We examined the association between a low-inflammatory diet and risk of type 2 diabetes among normoglycemic and prediabetic participants. We also explored whether a low-inflammatory diet modifies genetic risk for type 2 diabetes. METHODS Among 142,271 diabetes-free UK Biobank participants (aged 39-72 years), 126,203 were normoglycemic and 16,068 were prediabetic at baseline. Participants were followed for up to 15 years to detect incident type 2 diabetes. At baseline, dietary intake was assessed with a 24-h dietary record. An inflammatory diet index (IDI) was generated based on high-sensitivity C-reactive protein levels and was a weighted sum of 34 food groups (16 anti-inflammatory and 18 pro-inflammatory). Participants were grouped into tertiles corresponding to inflammatory level (low, moderate, and high) based on IDI scores. Prediabetes at baseline was defined as HbA1c 5.7-6.4% in diabetes-free participants. Incident type 2 diabetes and age of onset were ascertained according to the earliest recorded date of type 2 diabetes in the Primary Care and Hospital inpatient data. A diabetes-related genetic risk score (GRS) was calculated using 424 single-nucleotide polymorphisms. Data were analyzed using Cox regression and Laplace regression. RESULTS During follow-up (median 8.40 years, interquartile range 6.89 to 11.02 years), 3348 (2.4%) participants in the normoglycemia group and 2496 (15.5%) in the prediabetes group developed type 2 diabetes. Type 2 diabetes risk was lower in normoglycemic (hazard ratio [HR] = 0.71, 95% confidence interval [CI] 0.65, 0.78) and prediabetic (HR = 0.81, 95% CI 0.73, 0.89) participants with low IDI scores compared to those with high IDI scores. A low-inflammatory diet may prolong type 2 diabetes onset by 2.20 (95% CI 1.67, 2.72) years among participants with normoglycemia and 1.11 (95% CI 0.59, 1.63) years among participants with prediabetes. In joint effect analyses, normoglycemic or prediabetes participants with low genetic predisposition to type 2 diabetes and low IDI scores had a significant 74% (HR = 0.26, 95% CI 0.21, 0.32) or 51% (HR = 0.49, 95% CI 0.40, 0.59) reduction in type 2 diabetes risk compared to those with high genetic risk plus high IDI scores. There were significant additive and multiplicative interactions between IDI and GRS in relation to type 2 diabetes risk in the normoglycemia group. CONCLUSIONS A low-inflammatory diet is associated with a decreased risk of type 2 diabetes and may delay type 2 diabetes onset among participants with normal blood glucose or prediabetes. A low-inflammatory diet might significantly mitigate the risk of genetic factors on type 2 diabetes development.
Collapse
Affiliation(s)
- Rongrong Yang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Lin
- School of Public Health, Tianjin Medical University, Heping District, Qixiangtai Road 22, Tianjin, 300070, China
| | - Hongxi Yang
- School of Public Health, Tianjin Medical University, Heping District, Qixiangtai Road 22, Tianjin, 300070, China
| | - Michelle M Dunk
- Aging Research Center, Department of Neurobiology, Health Care Sciences and Society Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jiao Wang
- School of Public Health, Tianjin Medical University, Heping District, Qixiangtai Road 22, Tianjin, 300070, China
| | - Weili Xu
- School of Public Health, Tianjin Medical University, Heping District, Qixiangtai Road 22, Tianjin, 300070, China
- Aging Research Center, Department of Neurobiology, Health Care Sciences and Society Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Yaogang Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- School of Public Health, Tianjin Medical University, Heping District, Qixiangtai Road 22, Tianjin, 300070, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
30
|
Xu C, Huang J, Gao Y, Zhao W, Shen Y, Luo F, Yu G, Zhu F, Ni Y. OBMeta: a comprehensive web server to analyze and validate gut microbial features and biomarkers for obesity-associated metabolic diseases. BIOINFORMATICS (OXFORD, ENGLAND) 2023; 39:btad715. [PMID: 38078817 PMCID: PMC10963062 DOI: 10.1093/bioinformatics/btad715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/01/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
MOTIVATION Gut dysbiosis is closely associated with obesity and related metabolic diseases including type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). The gut microbial features and biomarkers have been increasingly investigated in many studies, which require further validation due to the limited sample size and various confounding factors that may affect microbial compositions in a single study. So far, it lacks a comprehensive bioinformatics pipeline providing automated statistical analysis and integrating multiple independent studies for cross-validation simultaneously. RESULTS OBMeta aims to streamline the standard metagenomics data analysis from diversity analysis, comparative analysis, and functional analysis to co-abundance network analysis. In addition, a curated database has been established with a total of 90 public research projects, covering three different phenotypes (Obesity, T2D, and NAFLD) and more than five different intervention strategies (exercise, diet, probiotics, medication, and surgery). With OBMeta, users can not only analyze their research projects but also search and match public datasets for cross-validation. Moreover, OBMeta provides cross-phenotype and cross-intervention-based advanced validation that maximally supports preliminary findings from an individual study. To summarize, OBMeta is a comprehensive web server to analyze and validate gut microbial features and biomarkers for obesity-associated metabolic diseases. AVAILABILITY AND IMPLEMENTATION OBMeta is freely available at: http://obmeta.met-bioinformatics.cn/.
Collapse
Affiliation(s)
- Cuifang Xu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhengjiang 310052, China
| | - Jiating Huang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhengjiang 310052, China
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, Zhengjiang 310058, China
| | - Yongqiang Gao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhengjiang 310052, China
| | - Weixing Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhengjiang 310052, China
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, Zhengjiang 310058, China
| | - Yiqi Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhengjiang 310058, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Gang Yu
- Department of Data and Information, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhengjiang 310052, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhengjiang 310058, China
| | - Yan Ni
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhengjiang 310052, China
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, Zhengjiang 310058, China
| |
Collapse
|
31
|
Li G, Xu X, Yang L, Cai Y, Sun Y, Guo J, Lin Y, Hu Y, Chen M, Li H, Wu S. Exploring the association between circRNA expression and pediatric obesity based on a case-control study and related bioinformatics analysis. BMC Pediatr 2023; 23:561. [PMID: 37957626 PMCID: PMC10642011 DOI: 10.1186/s12887-023-04261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/21/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE Our present study utilized case-control research to explore the relationship between specific circRNAs and pediatric obesity through a literature review and bioinformatics and to predict their possible biological functions, providing ideas for epigenetic mechanism studies of pediatric obesity. METHODS CircRNAs related to pediatric obesity were preliminarily screened by a literature review and qRT-PCR. CircRNA expression in children with obesity (n = 75) and control individuals (n = 75) was confirmed with qRT-PCR in a case-control study. This was followed by bioinformatics analyses, such as GO analysis, KEGG pathway analysis, and ceRNA network construction. Multivariate logistic regression was utilized to analyze the effects of circRNAs on obesity. A receiver operating characteristic (ROC) curve was also drawn to explore the clinical application value of circRNAs in pediatric obesity. RESULTS Has_circ_0046367 and hsa_circ_0000284 were separately validated to be statistically downregulated and upregulated, respectively, in the peripheral blood mononuclear cells of children with obesity and revealed as independent indicators of increased CHD risk [hsa_circ_0046367 (OR = 0.681, 95% CI: 0.480 ~ 0.967) and hsa_circ_0000284 (OR = 1.218, 95% CI: 1.041 ~ 1.424)]. The area under the ROC curve in the combined analysis of hsa_circ_0046367 and hsa_circ_0000284 was 0.706 (95% CI: 0.623 ~ 0.789). Enrichment analyses revealed that these circRNAs were actively involved in neural plasticity mechanisms, cell secretion and signal regulation. CONCLUSION The present research revealed that low expression of hsa_circ_0046367 and high expression of hsa_circ_0000284 are risk factors for pediatric obesity and that neural plasticity mechanisms are closely related to obesity.
Collapse
Affiliation(s)
- Guobo Li
- Department of Child Healthcare Centre, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Xingyan Xu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Le Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Yingying Cai
- Department of Developmental and Behavioral Pediatrics, Fujian Children's Hospital, Fujian, 350014, China
| | - Yi Sun
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Jianhui Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Yawen Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Yuduan Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Mingjun Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China.
| | - Siying Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China.
| |
Collapse
|
32
|
Franks PW, Cefalu WT, Dennis J, Florez JC, Mathieu C, Morton RW, Ridderstråle M, Sillesen HH, Stehouwer CDA. Precision medicine for cardiometabolic disease: a framework for clinical translation. Lancet Diabetes Endocrinol 2023; 11:822-835. [PMID: 37804856 DOI: 10.1016/s2213-8587(23)00165-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic disease is a major threat to global health. Precision medicine has great potential to help to reduce the burden of this common and complex disease cluster, and to enhance contemporary evidence-based medicine. Its key pillars are diagnostics; prediction (of the primary disease); prevention (of the primary disease); prognosis (prediction of complications of the primary disease); treatment (of the primary disease or its complications); and monitoring (of risk exposure, treatment response, and disease progression or remission). To contextualise precision medicine in both research and clinical settings, and to encourage the successful translation of discovery science into clinical practice, in this Series paper we outline a model (the EPPOS model) that builds on contemporary evidence-based approaches; includes precision medicine that improves disease-related predictions by stratifying a cohort into subgroups of similar characteristics, or using participants' characteristics to model treatment outcomes directly; includes personalised medicine with the use of a person's data to objectively gauge the efficacy, safety, and tolerability of therapeutics; and subjectively tailors medical decisions to the individual's preferences, circumstances, and capabilities. Precision medicine requires a well functioning system comprised of multiple stakeholders, including health-care recipients, health-care providers, scientists, health economists, funders, innovators of medicines and technologies, regulators, and policy makers. Powerful computing infrastructures supporting appropriate analysis of large-scale, well curated, and accessible health databases that contain high-quality, multidimensional, time-series data will be required; so too will prospective cohort studies in diverse populations designed to generate novel hypotheses, and clinical trials designed to test them. Here, we carefully consider these topics and describe a framework for the integration of precision medicine in cardiometabolic disease.
Collapse
Affiliation(s)
- Paul W Franks
- Department of Translational Medicine, Medical Science, Novo Nordisk Foundation, Hellerup, Denmark; Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Harvard T H Chan School of Public Health, Boston, MA, USA.
| | - William T Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John Dennis
- Institute of Biomedical and Clinical Science, Royal Devon and Exeter Hospital, University of Exeter, Exeter, UK
| | - Jose C Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Robert W Morton
- Department of Translational Medicine, Medical Science, Novo Nordisk Foundation, Hellerup, Denmark
| | | | - Henrik H Sillesen
- Department of Clinical Medicine, Medical Science, Novo Nordisk Foundation, Hellerup, Denmark
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands; Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
33
|
Canto-Cetina T, Silva-Nicanor D, Coral-Vázquez RM, Cano-Martínez LJ, Canto P. RS3480 Polymorphism of FNDC5/Irisin Is Associated with Type 2 Diabetes Mellitus in Maya-Mestizo Women. Metab Syndr Relat Disord 2023; 21:503-508. [PMID: 37566466 DOI: 10.1089/met.2023.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Objective: To investigate the possible association between rs3480 and rs16835198 of the fibronectin type III domain containing 5 (FNDC5)/Irisin and their haplotypes with the presence of type 2 diabetes mellitus (T2DM) in Maya-Mestizo women. Methods: We studied 547 postmenopausal women of Maya-Mestizo origin. The diagnosis of T2DM was based on the criteria of the American Diabetes Association. DNA was obtained from blood leukocytes. rs3480 and rs16835198 of FNDC5/Irisin were studied using real-time polymerase chain reaction allelic discrimination. Deviations from Hardy-Weinberg equilibrium and alleles differences, as well as genotype frequencies between groups, were assessed by χ2 tests. Using logistic regression analysis, the odds ratio and 95% confidence intervals were calculated to estimate the association between both polymorphisms of FNDC5/Irisin and the presence of T2DM. Pairwise linkage disequilibrium between polymorphisms was calculated by direct correlation r2, and haplotype analysis was conducted. Results: We found that the G-allele of rs3480, as well as under a dominant model, this polymorphism was significantly associated with T2DM (P = 0.028 and P = 0.003, respectively). Besides, one haplotype was associated with T2DM (P = 0.035). Conclusions: Our results suggest that the FNDC5/Irisin rs3480, and one haplotype formed by rs3480 and rs16835198 were associated with the risk of presenting T2DM in Maya-Mestizo women.
Collapse
Affiliation(s)
- Thelma Canto-Cetina
- Laboratorio de Biología de la Reproducción, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Mérida, México
| | - Diana Silva-Nicanor
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre," Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Luis Javier Cano-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre," Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de Ciudad de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán," Ciudad de México, México
| |
Collapse
|
34
|
Wan X, Liu X, Zhang L, Zhuang P, Jiao J, Zhang Y. Potato consumption, polygenic scores, and incident type 2 diabetes: An observational study. Food Res Int 2023; 170:112936. [PMID: 37316042 DOI: 10.1016/j.foodres.2023.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/21/2023] [Accepted: 05/01/2023] [Indexed: 06/16/2023]
Abstract
Whether the consumption of different processed potatoes is detrimental to type 2 diabetes (T2D) is highly debated. This study aimed to assess the relations between potato consumption and the risk of T2D and whether the relationship was modified by the genetic predisposition to T2D. We included 174,665 participants from the UK Biobank at baseline. Potato consumption was evaluated using the 24-hour dietary questionnaire. The genetic risk score (GRS) was calculated based on 424 variants associated with T2D. After adjustment for demographic, lifestyle, and dietary factors, the consumption of total potatoes was significantly and positively associated with T2D risk [hazard ratio (HR) comparing two or more servings/day with non-consumers was 1.28 (95% CI: 1.13-1.45)]. HRs (95% CIs) of T2D for each 1-SD increment in boiled/baked potatoes, mashed potatoes, and fried potatoes were 1.02 (0.99-1.05), 1.05 (1.02-1.08), and 1.05 (1.02-1.09), respectively. There were no significant interactions between the consumption of total or different processed potatoes and overall GRS on T2D risk. Theoretically, replacing one serving/day of total potatoes with the same amount of non-starchy vegetables was related to a 12% (95% CI: 0.84-0.91) lower T2D risk. These results showed the positive associations of the consumption of total potatoes, mashed potatoes or fried potatoes and genetic risk with higher incident T2D. An unhealthy potato-based diet is associated with higher diabetes risk regardless of genetic risk.
Collapse
Affiliation(s)
- Xuzhi Wan
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lange Zhang
- Department of Nutrition, School of Public Health, Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Guan W, Qi W. Ginsenoside Rh2: A shining and potential natural product in the treatment of human nonmalignant and malignant diseases in the near future. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154938. [PMID: 37406390 DOI: 10.1016/j.phymed.2023.154938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Ginseng is well-known as one of the most valuable and commonly used Chinese medicines not only in ancient China but also worldwide including East, Russia, Southeast Asia, North America and some Western European countries. Ginsenosides, as one of the main high active components of Ginseng, have various pharmacological activities, such as anti-inflammatory, antianaphylaxis, anti-depression, and anticancer activities. Ginsenoside Rh2 (Rh2), one of the major bioactive ginsenosides in Panax ginseng, also exhibits versatile pharmacological activities, such as increasing non-specific resistance and specific immune response, improving cardiac function and fibrosis, anti-inflammatory effects and antitumor effects, which may serve as an excellent medicinal potential. PURPOSE As one of hundreds of ginsenosides being identified from ginseng, Rh2 exerts a markedly pharmacological effect on various diseases without severe toxicity, it has attracted many researchers 'attention. Although Rh2 plays important roles in some animal models and cell lines to simulate human diseases, its underlying molecular mechanisms have yet to be determined. During the past ten years, nearly 450 studies on Rh2 in the treatment of complex disease have been reported, however, up to now, no comprehensive reviews about the roles of Rh2 in animal models and cellular lines of human nonmalignant and malignant diseases have been conducted. METHOD We searched articles on ginsenoside-related diseases from December 2010 to February 2023 in peer-reviewed and nonclinical databases, which include Web of Science, Scopus, PubMed, China national knowledge internet and Medline, and using the following keywords: Ginsenoside Rh2, Human diseases, Cancer, Mechanisms, Chinese herbal medicine, Natural products and Signaling pathway. RESULTS Therefore, in this review, we make a comprehensive summary on the roles of Rh2 and support the potential mechanisms of Rh2 according to the disease classification, including nonmalignant disease such as ulcerative colitis, neuropathic pain, Asthma, myocardial injury, depression and malignant disease such as breast cancer, colorectal cancer, hepatocellular carcinoma and gastric cancer. Finally, the combination therapy of Rh2 and other medications in human diseases are summarized, apart from that, there are other problems such as the bioavailability of oral administration Rh2 to be overcome in following research. CONCLUSION These findings provide strong evidence that Ginsenoside Rh2 plays important roles in the treatment of nonmalignant and malignant diseases.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; School of Medicine, Nantong University, Nantong, China
| | - Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China.
| |
Collapse
|
36
|
Liang B, Chen SW, Li YY, Zhang SX, Zhang Y. Comprehensive analysis of endoplasmic reticulum stress-related mechanisms in type 2 diabetes mellitus. World J Diabetes 2023; 14:820-845. [PMID: 37383594 PMCID: PMC10294059 DOI: 10.4239/wjd.v14.i6.820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 04/04/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is closely related to a wide range of cellular functions and is a key component to maintain and restore metabolic health. Type 2 diabetes mellitus (T2DM) is a serious threat to human health, but the ER stress (ERS)-related mechanisms in T2DM have not been fully elucidated.
AIM To identify potential ERS-related mechanisms and crucial biomarkers in T2DM.
METHODS We conducted gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) in myoblast and myotube form GSE166502, and obtained the differentially expressed genes (DEGs). After intersecting with ERS-related genes, we obtained ERS-related DEGs. Finally, functional analyses, immune infiltration, and several networks were established.
RESULTS Through GSEA and GSVA, we identified several metabolic and immune-related pathways. We obtained 227 ERS-related DEGs and constructed several important networks that help to understand the mechanisms and treatment of T2DM. Finally, memory CD4+ T cells accounted for the largest proportion of immune cells.
CONCLUSION This study revealed ERS-related mechanisms in T2DM, which might contribute to new ideas and insights into the mechanisms and treatment of T2DM.
Collapse
Affiliation(s)
- Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Shu-Wen Chen
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| | - Yuan-Yuan Li
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| | - Shun-Xiao Zhang
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| | - Yan Zhang
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| |
Collapse
|
37
|
Pierantozzi E, Raucci L, Buonocore S, Rubino EM, Ding Q, Laurino A, Fiore F, Soldaini M, Chen J, Rossi D, Vangheluwe P, Chen H, Sorrentino V. Skeletal muscle overexpression of sAnk1.5 in transgenic mice does not predispose to type 2 diabetes. Sci Rep 2023; 13:8195. [PMID: 37210436 PMCID: PMC10199891 DOI: 10.1038/s41598-023-35393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Genome-wide association studies (GWAS) and cis-expression quantitative trait locus (cis-eQTL) analyses indicated an association of the rs508419 single nucleotide polymorphism (SNP) with type 2 diabetes (T2D). rs508419 is localized in the muscle-specific internal promoter (P2) of the ANK1 gene, which drives the expression of the sAnk1.5 isoform. Functional studies showed that the rs508419 C/C variant results in increased transcriptional activity of the P2 promoter, leading to higher levels of sAnk1.5 mRNA and protein in skeletal muscle biopsies of individuals carrying the C/C genotype. To investigate whether sAnk1.5 overexpression in skeletal muscle might predispose to T2D development, we generated transgenic mice (TgsAnk1.5/+) in which the sAnk1.5 coding sequence was selectively overexpressed in skeletal muscle tissue. TgsAnk1.5/+ mice expressed up to 50% as much sAnk1.5 protein as wild-type (WT) muscles, mirroring the difference reported between individuals with the C/C or T/T genotype at rs508419. However, fasting glucose levels, glucose tolerance, insulin levels and insulin response in TgsAnk1.5/+ mice did not differ from those of age-matched WT mice monitored over a 12-month period. Even when fed a high-fat diet, TgsAnk1.5/+ mice only presented increased caloric intake, but glucose disposal, insulin tolerance and weight gain were comparable to those of WT mice fed a similar diet. Altogether, these data indicate that sAnk1.5 overexpression in skeletal muscle does not predispose mice to T2D susceptibility.
Collapse
Affiliation(s)
- E Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - L Raucci
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - S Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - E M Rubino
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - Q Ding
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - A Laurino
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - F Fiore
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - M Soldaini
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - J Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000, Leuven, Belgium
| | - D Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - P Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000, Leuven, Belgium
| | - H Chen
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - V Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy.
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy.
| |
Collapse
|
38
|
Weninger SN, Ding A, Browne EN, Frost ML, Schiro G, Laubitz D, Duca FA. Longitudinal Characterization of the Gut Microbiota in the Diabetic ZDSD Rat Model and Therapeutic Potential of Oligofructose. Metabolites 2023; 13:660. [PMID: 37233701 PMCID: PMC10220957 DOI: 10.3390/metabo13050660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The complex development of type 2 diabetes (T2D) creates challenges for studying the progression and treatment of the disease in animal models. A newly developed rat model of diabetes, the Zucker Diabetic Sprague Dawley (ZDSD) rat, closely parallels the progression of T2D in humans. Here, we examine the progression of T2D and associated changes in the gut microbiota in male ZDSD rats and test whether the model can be used to examine the efficacy of potential therapeutics such as prebiotics, specifically oligofructose, that target the gut microbiota. Bodyweight, adiposity, and fed/fasting blood glucose and insulin were recorded over the course of the study. Glucose and insulin tolerance tests were performed, and feces collected at 8, 16, and 24 weeks of age for short-chain fatty acids and microbiota analysis using 16s rRNA gene sequencing. At the end of 24 weeks of age, half of the rats were supplemented with 10% oligofructose and tests were repeated. We observed a transition from healthy/nondiabetic to prediabetic and overtly diabetic states, via worsened insulin and glucose tolerance and significant increases in fed/fasted glucose, followed by a significant decrease in circulating insulin. Acetate and propionate levels were significantly increased in the overt diabetic state compared to healthy and prediabetic. Microbiota analysis demonstrated alterations in the gut microbiota with shifts in alpha and beta diversity as well as alterations in specific bacterial genera in healthy compared to prediabetic and diabetic states. Oligofructose treatment improved glucose tolerance and shifted the cecal microbiota of the ZDSD rats during late-stage diabetes. These findings underscore the translational potential of ZDSD rats as a model of T2D and highlight potential gut bacteria that could impact the development of the disease or serve as a biomarker for T2D. Additionally, oligofructose treatment was able to moderately improve glucose homeostasis.
Collapse
Affiliation(s)
- Savanna N. Weninger
- Department of Physiological Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Angela Ding
- Department of Physiological Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Elizabeth N. Browne
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Morgan L. Frost
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Gabriele Schiro
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | - Daniel Laubitz
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | - Frank A. Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
39
|
Ahrodia T, Kandiyal B, Das B. Microbiota and epigenetics: Health impact. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:93-117. [PMID: 37225326 DOI: 10.1016/bs.pmbts.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epigenetic changes associated with disease development and progressions are of increasing importance because of their potential diagnostic and therapeutic applications. Several epigenetic changes associated with chronic metabolic disorders have been studied in various diseases. Epigenetic changes are mostly modulated by environmental factors, including the human microbiota living in different parts of our bodies. The microbial structural components and the microbially derived metabolites directly interact with host cells, thereby maintaining homeostasis. Microbiome dysbiosis, on the other hand, is known to produce elevated levels of disease-linked metabolites, which may directly affect a host metabolic pathway or induce epigenetic changes that can lead to disease development. Despite their important role in host physiology and signal transduction, there has been little research into the mechanics and pathways associated with epigenetic modifications. This chapter focuses on the relationship between microbes and their epigenetic effects in diseased pathology, as well as on the regulation and metabolism of the dietary options available to the microbes. Furthermore, this chapter also provides a prospective link between these two important phenomena, termed "Microbiome and Epigenetics."
Collapse
Affiliation(s)
- Taruna Ahrodia
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Bharti Kandiyal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
40
|
Yang J, Feng P, Ling Z, Khan A, Wang X, Chen Y, Ali G, Fang Y, Salama ES, Wang X, Liu P, Li X. Nickel exposure induces gut microbiome disorder and serum uric acid elevation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121349. [PMID: 36870597 DOI: 10.1016/j.envpol.2023.121349] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Serum uric acid elevation has been found in long-term nickel (Ni) exposure occupational workers, but the mechanism is unclear. In this study, the relationship between Ni exposure and uric acid elevation was explored in a cohort of 109 participants composed of a Ni-exposed workers group and a control group. The results showed that Ni concentration (5.70 ± 3.21 μg/L) and uric acid level (355.95 ± 67.87 μmol/L) in the serum were increased in the exposure group with a significant positive correlation (r = 0.413, p < 0.0001). The composition of gut microbiota and metabolome revealed that the abundance of uric acid-lowering bacteria, such as Lactobacillus, Lachnospiraceae_Unclassfied and Blautia were reduced while pathogenic bacteria including Parabacteriadies and Escherichia-Shigella were enriched in Ni group, accompanied by impaired intestinal degradation of purines and upregulated biosynthesis of primary bile acids. Consistent with human results, the mice experiments showed that Ni treatment significantly promotes uric acid elevation and systemic inflammation. Lactobacillus and Blautia in gut microbiota were reduced and inflammation-related taxa Alistipes and Mycoplasma were enriched in the Ni treatment. In addition, LC-MS/MS metabolomic analysis indicated that purine nucleosides were accumulated in mice feces, which increased purine absorption and uric acid elevation in the serum. In summary, this study provides evidence that UA elevation was correlated with heavy metals exposure and highlighted the role of gut microbiota in intestinal purine catabolism and in the pathogenesis of heavy metal-induced hyperuricemia.
Collapse
Affiliation(s)
- Jinfeng Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Pengya Feng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Department of Children Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhenmin Ling
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Aman Khan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Xing Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Yanli Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Gohar Ali
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Ximei Wang
- Jinchang Jujia Dairy Co., Ltd, Jinchang, Gansu Province, PR China
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
41
|
Franks PW. Socioeconomic Disparities Across the Spectrum of Genetic Burden in Type 2 Diabetes and Obesity Risk. Diabetes Care 2023; 46:916-917. [PMID: 37185692 PMCID: PMC10154645 DOI: 10.2337/dci22-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Paul W Franks
- 1Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmo, Sweden
- 2Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- 3Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
42
|
Kong L, Ye C, Wang Y, Zheng J, Zhao Z, Li M, Xu Y, Lu J, Chen Y, Xu M, Wang W, Ning G, Bi Y, Wang T. Causal effect of lower birthweight on non-alcoholic fatty liver disease and mediating roles of insulin resistance and metabolites. Liver Int 2023; 43:829-839. [PMID: 36719063 DOI: 10.1111/liv.15532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/29/2022] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS The causal association of lower birthweight with non-alcoholic fatty liver disease (NAFLD) and the mediating pathways remain unclear. We aimed to investigate the causal, independent association of lower birthweight with NAFLD and identify potential metabolic mediators and their mediation effects in this association. METHODS We performed two-step, two-sample Mendelian randomization (MR) using genome-wide association study (GWAS) summary statistics for birthweight from the Early Growth Genetics Consortium of 298 142 Europeans, NAFLD from a GWAS meta-analysis of 8434 NAFLD cases and 770 180 controls of Europeans, and 25 candidate mediators from corresponding reliable GWASs. RESULTS Genetically determined each 1-SD lower birthweight was associated with a 45% (95% CI: 1.25-1.69) increased risk of NAFLD, and this causal association persisted after adjusting for childhood obesity or adult adiposity traits in multivariable MR. Two-step MR identified 6 of 25 candidate mediators partially mediate the effect of lower birthweight on NAFLD, including fasting insulin (proportion mediated: 22.05%), leucine (17.29%), isoleucine (13.55%), valine (11.37%), alanine (10.01%) and monounsaturated fatty acids (MUFA; 7.23%). Bidirectional MR suggested a unidirectional effect of insulin resistance on isoleucine, leucine and valine and a unidirectional effect of alanine on insulin resistance. CONCLUSIONS This MR study elucidated the causal impact of lower birthweight on subsequent risk of NAFLD, independently of later-life adiposity and identified mediators including insulin resistance, branched-chain amino acids, alanine and MUFA in this association pathway. Our findings shed light on the pathogenesis of NAFLD and imply additional targets for prevention and intervention of NAFLD attributed to low birthweight.
Collapse
Affiliation(s)
- Lijie Kong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaojie Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiying Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Polysaccharide extract from Rosa laevigata fruit attenuates inflammatory obesity by targeting redox balance and gut interface in high-fat diet-fed rats. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Abo-Shady AM, Gheda SF, Ismail GA, Cotas J, Pereira L, Abdel-Karim OH. Antioxidant and Antidiabetic Activity of Algae. Life (Basel) 2023; 13:460. [PMID: 36836817 PMCID: PMC9964347 DOI: 10.3390/life13020460] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Currently, algae arouse a growing interest in the pharmaceutical and cosmetic area due to the fact that they have a great diversity of bioactive compounds with the potential for pharmacological and nutraceutical applications. Due to lifestyle modifications brought on by rapid urbanization, diabetes mellitus, a metabolic illness, is the third largest cause of death globally. The hunt for an efficient natural-based antidiabetic therapy is crucial to battling diabetes and the associated consequences due to the unfavorable side effects of currently available antidiabetic medications. Finding the possible advantages of algae for the control of diabetes is crucial for the creation of natural drugs. Many of algae's metabolic processes produce bioactive secondary metabolites, which give algae their diverse chemical and biological features. Numerous studies have demonstrated the antioxidant and antidiabetic benefits of algae, mostly by blocking carbohydrate hydrolyzing enzyme activity, such as α-amylase and α-glucosidase. Additionally, bioactive components from algae can lessen diabetic symptoms in vivo. Therefore, the current review concentrates on the role of various secondary bioactive substances found naturally in algae and their potential as antioxidants and antidiabetic materials, as well as the urgent need to apply these substances in the pharmaceutical industry.
Collapse
Affiliation(s)
| | - Saly Farouk Gheda
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Gehan Ahmed Ismail
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - João Cotas
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Omnia Hamdy Abdel-Karim
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
45
|
Jung HR, Oh Y, Jang D, Shin S, Lee SJ, Kim J, Lee SE, Oh J, Jang G, Kwon O, Lee Y, Lee HY, Cho SY. Gut bacteria-derived 3-phenylpropionylglycine mitigates adipocyte differentiation of 3T3-L1 cells by inhibiting adiponectin-PPAR pathway. Genes Genomics 2023; 45:71-81. [PMID: 36434390 DOI: 10.1007/s13258-022-01332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gut microbiota provide numerous types of metabolites that humans cannot produce and have a huge influence on the host metabolism. Accordingly, gut bacteria-derived metabolites can be employed as a resource to develop anti-obesity and metabolism-modulating drugs. OBJECTIVE This study aimed to examine the anti-adipogenic effect of 3-phenylpropionylglycine (PPG), which is a glycine conjugate of bacteria-derived 3-phenylpropionic acid (PPA). METHODS The effect of PPG on preadipocyte-to-adipocyte differentiation was evaluated in 3T3-L1 differentiation models and the degree of the differentiation was estimated by Oil red O staining. The molecular mechanisms of the PPG effect were investigated with transcriptome analyses using RNA-sequencing and quantitative real-time PCR. RESULTS PPG suppressed lipid droplet accumulation during the adipogenic differentiation of 3T3-L1 cells, which is attributed to down-regulation of lipogenic genes such as acetyl CoA carboxylase 1 (Acc1) and fatty acid synthase (Fasn). However, other chemicals with chemical structures similar to PPG, including cinnamoylglycine and hippuric acid, had little effect on the lipid accumulation of 3T3-L1 cells. In transcriptomic analysis, PPG suppressed the expression of adipogenesis and metabolism-related gene sets, which is highly associated with downregulation of the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Protein-protein association network analysis suggested adiponectin as a hub gene in the network of genes that were differentially expressed genes in response to PPG treatment. CONCLUSION PPG inhibits preadipocyte-to-adipocyte differentiation by suppressing the adiponectin-PPAR pathway. These data provide a potential candidate from bacteria-derived metabolites with anti-adipogenic effects.
Collapse
Affiliation(s)
- Hae Rim Jung
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yumi Oh
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dongjun Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seungjae Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Soo-Jin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jiwon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang Eun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Giyong Jang
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Obin Kwon
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yeonmi Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
| | - Hui-Young Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Sung-Yup Cho
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
46
|
Li C. Understanding interactions among diet, host and gut microbiota for personalized nutrition. Life Sci 2022; 312:121265. [PMID: 36473543 DOI: 10.1016/j.lfs.2022.121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Human responses to the same diets may vary to a large extent, depending on the complex diet-host-microbiota interactions. Recent scientific advance has indicated that this diet-host-microbiota interaction could be quantified to develop strategies for improving individual health (personalized nutrition). Compared to the host related factors (which are difficult to manipulate), the gut microbiome is more readily modulated by dietary exposures and has important roles in affecting human health via the synthesis of various bioactive compounds and participating in the digestion and absorption process of macro- and micronutrients. Therefore, gut microbiota alterations induced by diets could possibly be utilized to improve human health in a targeted manner. However, limitations in the processing and analysis of 'big-data' concerning human microbiome still restrict the translational capacity of diet-host-microbiota interactions into tools to improve personalized human health. In the current review, recent advances in terms of understanding the specific diet-host-microbiota interactions were summarized, aiming to help the development of strategies for personalized nutrition.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
47
|
Jima DD, Skaar DA, Planchart A, Motsinger-Reif A, Cevik SE, Park SS, Cowley M, Wright F, House J, Liu A, Jirtle RL, Hoyo C. Genomic map of candidate human imprint control regions: the imprintome. Epigenetics 2022; 17:1920-1943. [PMID: 35786392 PMCID: PMC9665137 DOI: 10.1080/15592294.2022.2091815] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/12/2023] Open
Abstract
Imprinted genes - critical for growth, metabolism, and neuronal function - are expressed from one parental allele. Parent-of-origin-dependent CpG methylation regulates this expression at imprint control regions (ICRs). Since ICRs are established before tissue specification, these methylation marks are similar across cell types. Thus, they are attractive for investigating the developmental origins of adult diseases using accessible tissues, but remain unknown. We determined genome-wide candidate ICRs in humans by performing whole-genome bisulphite sequencing (WGBS) of DNA derived from the three germ layers and from gametes. We identified 1,488 hemi-methylated candidate ICRs, including 19 of 25 previously characterized ICRs (https://humanicr.org/). Gamete methylation approached 0% or 100% in 332 ICRs (178 paternally and 154 maternally methylated), supporting parent-of-origin-specific methylation, and 65% were in well-described CTCF-binding or DNaseI hypersensitive regions. This draft of the human imprintome will allow for the systematic determination of the role of early-acquired imprinting dysregulation in the pathogenesis of human diseases and developmental and behavioural disorders.
Collapse
Affiliation(s)
- Dereje D. Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - David A. Skaar
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Antonio Planchart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sebnem E. Cevik
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Sarah S. Park
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
- Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael Cowley
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Fred Wright
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - John House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Andy Liu
- Department of Neurology, Duke University, School of Medicine, Durham, NC, USA
| | - Randy L. Jirtle
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
48
|
Zhong W, Wang H, Yang Y, Zhang Y, Lai H, Cheng Y, Yu H, Feng N, Huang R, Liu S, Yang S, Hao T, Zhang B, Ying H, Zhang F, Guo F, Zhai Q. High-protein diet prevents fat mass increase after dieting by counteracting Lactobacillus-enhanced lipid absorption. Nat Metab 2022; 4:1713-1731. [PMID: 36456724 DOI: 10.1038/s42255-022-00687-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/14/2022] [Indexed: 12/05/2022]
Abstract
Dietary restriction is widely used to reduce fat mass and lose weight in individuals with or without obesity; however, weight regain after dieting is still a big challenge, and the underlying mechanisms remain largely elusive. Here we show that refeeding after various types of dieting induces quick fat accumulation in mice and enhanced intestinal lipid absorption contributes to post-dieting fat mass increase. Moreover, refeeding after short-term dietary restriction is accompanied by an increase in intestinal Lactobacillus and its metabolites, which contributes to enhanced intestinal lipid absorption and post-dieting fat mass increase; however, refeeding a high-protein diet after short-term dietary restriction attenuates intestinal lipid absorption and represses fat accumulation by preventing Lactobacillus growth. Our results provide insight into the mechanisms underlying fat mass increase after dieting. We also propose that targeting intestinal Lactobacillus to inhibit intestinal lipid absorption via high-protein diet or antibiotics is likely an effective strategy to prevent obesity after dieting.
Collapse
Affiliation(s)
- Wuling Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yale Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yali Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hejin Lai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yalan Cheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huimin Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifan Guo
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
49
|
Ye C, Kong L, Wang Y, Lin H, Wang S, Zhao Z, Li M, Xu Y, Lu J, Chen Y, Xu M, Wang W, Ning G, Bi Y, Wang T. Causal associations between age at diagnosis of diabetes and cardiovascular outcomes: a Mendelian randomization study. J Clin Endocrinol Metab 2022; 108:1202-1214. [PMID: 36373429 DOI: 10.1210/clinem/dgac658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
CONTEXT Whether diabetes diagnosed at different age groups is causally associated with cardiovascular diseases (CVDs) is unknown. OBJECTIVE We conducted two-sample Mendelian randomization analyses to investigate the causal associations of diabetes by age at diagnosis with five type-specific CVDs and 11 cardiometabolic traits. METHODS We selected 208 single nucleotide polymorphisms (SNPs) for diabetes and 3, 21, 57, and 14 SNPs for diabetes diagnosed at <50, 50-60, 60-70, and >70 years, respectively, based on the GWAS (24,986 cases/187,130 controls) in the UK Biobank, and extracted genetic associations with stroke, myocardial infarction, heart failure, atrial fibrillation, and CVD mortality, as well as blood pressures, adiposity measurements, and lipids and apolipoproteins from corresponding European-descent GWASs. The inverse-variance weighted method was used as main analysis with several sensitivity analyses. RESULTS Diabetes diagnosed at all four age groups was causally associated with increased risks of stroke (5%-8%) and myocardial infarction (8%-10%), higher systolic blood pressure (0.56-0.94 mmHg) and waist-to-hip ratio (0.003-0.004), and lower body mass index (0.31-0.42 kg/m2), waist circumference (0.68-0.99 cm), and hip circumference (0.57-0.80 cm). Diabetes diagnosed at specific age groups was causally associated with increased risks of heart failure (4%) and CVD mortality (8%), higher diastolic blood pressure (0.20 mmHg) and triglycerides (0.06 SD), and lower high-density lipoprotein cholesterol (0.02 mmol/L). The effect sizes of genetically determined diabetes on CVD subtypes and cardiometabolic traits were comparable and the corresponding 95% confidence intervals largely overlapped across the four age groups. CONCLUSION Our findings provide novel evidence that genetically determined diabetes subgroups by age at diagnosis have similar causal effects on CVD and cardiometabolic risks.
Collapse
Affiliation(s)
- Chaojie Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijie Kong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiying Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Sun X, Dey P, Bruno RS, Zhu J. EGCG and catechin relative to green tea extract differentially modulate the gut microbial metabolome and liver metabolome to prevent obesity in mice fed a high-fat diet. J Nutr Biochem 2022; 109:109094. [PMID: 35777589 PMCID: PMC10332503 DOI: 10.1016/j.jnutbio.2022.109094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
Green tea extract (GTE) alleviates obesity, in part, by modulating gut microbial composition and metabolism. However, direct evidence regarding the catechin-specific bioactivities that are responsible for these benefits remain unclear. The present study therefore investigated dietary supplementation of GTE, epigallocatechin gallate (EGCG), or (+)-catechin (CAT) in male C57BL6/J mice that were fed a high-fat (HF) diet to establish the independent contributions of EGCG and CAT relative to GTE to restore microbial and host metabolism. We hypothesized that EGCG would regulate the gut microbial metabolome and host liver metabolome more similar to GTE than CAT to explain their previously observed differential effects on cardiometabolic health. To test this, we assessed metabolic and phenolic shifts in liver and fecal samples during dietary HF-induced obesity. Ten fecal metabolites and ten liver metabolites (VIP > 2) primarily contributed to the differences in the metabolome among different interventions. In fecal samples, nine metabolic pathways (e.g., tricarboxcylic acid cycle and tyrosine metabolism) were differentially altered between the GTE and CAT interventions, whereas three pathways differed between GTE and EGCG interventions, suggesting differential benefits of GTE and its distinctive bioactive components on gut microbial metabolism. Likewise, hepatic glycolysis / gluconeogenesis metabolic pathways were significantly altered between GTE and EGCG interventions, while only hepatic tyrosine metabolism was altered between CAT and GTE interventions. Thus, our findings support that purified catechins relative to GTE uniquely contribute to regulating host and microbial metabolic pathways such as central energy metabolism to protect against metabolic dysfunction leading to obesity.
Collapse
Affiliation(s)
- Xiaowei Sun
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Priyankar Dey
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Department of Biotechnology, Thapar Institute of Engineering & Technology, Punjab, India
| | - Richard S Bruno
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA.
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|