1
|
Li R, Chen J, Zhang WX, Teng W. The beginning of iron corrosion - high-resolution visualization with 3D electron tomography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175774. [PMID: 39187076 DOI: 10.1016/j.scitotenv.2024.175774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Understanding the genesis and early-phase reactions of iron corrosion is essential for the early detection, mitigation and prevention of metal degradation. In this work, high-resolution 3D tomography of metallic iron oxidation was acquired using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In particular, dendritic capillaries (<0.5 nm) were observed during the initial oxidation of fresh nanoscale zero-valent iron due to the differential oxygen diffusion and iron atoms migration. This observation led to the proposal of a nanoscale "pothole" model for early-phase corrosion, wherein hollowing out of the metal nanoparticle and formation of nanovoids beneath the iron/oxide interface through Kirkendall effect. Coalescence of the nanocapillaries results in the ultimate collapse of metal structure and/or functional failure. Using nanoscale zero-valent iron as a research model, this work provides unprecedented insights into the nano- and atomic-scale mechanisms of iron oxidation, paving the way for advanced detection and prevention strategies for iron corrosion.
Collapse
Affiliation(s)
- Ruofan Li
- State Key Laboratory for of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiayu Chen
- State Key Laboratory for of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei-Xian Zhang
- State Key Laboratory for of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Teng
- State Key Laboratory for of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Xu HM, Gu C, Wang G, Nan P, Zhang JD, Shi L, Han SK, Ge B, Wang YG, Li J, Yu SH. Kirkendall Effect-Driven Reversible Chemical Transformation for Reconfigurable Nanocrystals. J Am Chem Soc 2024; 146:30372-30379. [PMID: 39450879 DOI: 10.1021/jacs.4c10252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The potential universality of chemical transformation principles makes it a powerful tool for nanocrystal (NC) synthesis. An example is the nanoscale Kirkendall effect, which serves as a guideline for the construction of hollow structures with different properties compared to their solid counterparts. However, even this general process is still limited in material scope, structural complexity, and, in particular, transformations beyond the conventional solid-to-hollow process. We demonstrate in this work an extension of the Kirkendall effect that drives reversible structural and phase transformations between metastable metal chalcogenides (MCs) and metal phosphides (MPs). Starting from Ni3S4/Cu1.94S NCs as the initial frameworks, ligand-regulated sequential extractions and diffusion of host/guest (S2-/P3-) anions between Ni3S4/Cu1.94S and Ni2P/Cu3P phases enable solid-to-hollow-to-solid structural motif evolution while retaining the overall morphology of the NC. An in-depth mechanistic study reveals that the transformation between metastable MCs and MPs occurs through a combination of ligand-dependent kinetic control and anion mixing-induced thermodynamic control. This strategy provides a robust platform for creating a library of reconfigurable NCs with tunable compositions, structures, and interfaces.
Collapse
Affiliation(s)
- Hou-Ming Xu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Gu
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Gang Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengfei Nan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jian-Ding Zhang
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lei Shi
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Kui Han
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Binghui Ge
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yang-Gang Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shu-Hong Yu
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Institute of Innovative Materials (I2M), Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Spielman-Sun E, Boye K, Dwivedi D, Engel M, Thompson A, Kumar N, Noël V. A Critical Look at Colloid Generation, Stability, and Transport in Redox-Dynamic Environments: Challenges and Perspectives. ACS EARTH & SPACE CHEMISTRY 2024; 8:630-653. [PMID: 38654896 PMCID: PMC11033945 DOI: 10.1021/acsearthspacechem.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 04/26/2024]
Abstract
Colloid generation, stability, and transport are important processes that can significantly influence the fate and transport of nutrients and contaminants in environmental systems. Here, we critically review the existing literature on colloids in redox-dynamic environments and summarize the current state of knowledge regarding the mechanisms of colloid generation and the chemical controls over colloidal behavior in such environments. We also identify critical gaps, such as the lack of universally accepted cross-discipline definition and modeling infrastructure that hamper an in-depth understanding of colloid generation, behavior, and transport potential. We propose to go beyond a size-based operational definition of colloids and consider the functional differences between colloids and dissolved species. We argue that to predict colloidal transport in redox-dynamic environments, more empirical data are needed to parametrize and validate models. We propose that colloids are critical components of element budgets in redox-dynamic systems and must urgently be considered in field as well as lab experiments and reactive transport models. We intend to bring further clarity and openness in reporting colloidal measurements and fate to improve consistency. Additionally, we suggest a methodological toolbox for examining impacts of redox dynamics on colloids in field and lab experiments.
Collapse
Affiliation(s)
- Eleanor Spielman-Sun
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kristin Boye
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dipankar Dwivedi
- Earth
and Environmental Sciences Area, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Maya Engel
- Department
of Soil and Water Sciences, Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aaron Thompson
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
| | - Naresh Kumar
- Soil
Chemistry, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Vincent Noël
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
4
|
He YF, Yang SY, Lv WL, Qian C, Wu G, Zhao X, Liu XW. Deep-Learning Driven, High-Precision Plasmonic Scattering Interferometry for Single-Particle Identification. ACS NANO 2024; 18:9704-9712. [PMID: 38512797 DOI: 10.1021/acsnano.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Label-free probing of the material composition of (bio)nano-objects directly in solution at the single-particle level is crucial in various fields, including colloid analysis and medical diagnostics. However, it remains challenging to decipher the constituents of heterogeneous mixtures of nano-objects with high sensitivity and resolution. Here, we present deep-learning plasmonic scattering interferometric microscopy, which is capable of identifying the composition of nanoparticles automatically with high throughput at the single-particle level. By employing deep learning to decode the quantitative relationship between the interferometric scattering patterns of nanoparticles and their intrinsic material properties, this technique is capable of high-throughput, label-free identification of diverse nanoparticle types. We demonstrate its versatility in analyzing dynamic surface chemical reactions on single nanoparticles, revealing its potential as a universal platform for nanoparticle imaging and reaction analysis. This technique not only streamlines the process of nanoparticle characterization, but also proposes a methodology for a deeper understanding of nanoscale dynamics, holding great potential for addressing extensive fundamental questions in nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Yi-Fan He
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Yu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Li Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Gang Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaona Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xian-Wei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Wang T, Ma X, Chen F, An H, Chen K, Gao J. Construction of Hollow Ultrasmall Co 3O 4 Nanoparticles Immobilized in BN for CO 2 Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38324784 DOI: 10.1021/acs.langmuir.3c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Rational design and fabrication of metal-organic framework-derived metal oxide (MO) materials featuring a hollow structure and active support can significantly enhance their catalytic activity for specific reactions. Herein, a series of Co3O4 nanoparticles (NPs) immobilized in boron nitride (denoted as Co3O4@BN) with highly open and precisely controllable structures were constructed by an in situ self-assembly method combined with a controlled annealing process. The obtained Co3O4@BN not only possesses a hollow structure but also shows highly dispersed Co3O4 NPs and high loadings of up to 34.3 wt %. Owing to the ultrafine particle size and high dispersity, the optimized Co3O4@BN exhibits high catalytic activity for the cycloaddition of CO2 to epoxides under mild conditions (i.e., 100 °C and CO2 balloon), resulting in at least 4.5 times higher yields (99%) of styrene carbonate than that of Co3O4 synthesized by the pristine ZIF-67. This strategy sheds light on the rational design of hollow MO materials for various advanced applications.
Collapse
Affiliation(s)
- Tingting Wang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaomin Ma
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengfeng Chen
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang 323000, China
| | - Hong An
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kai Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junkuo Gao
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
6
|
Pan L, Peng H, Lee B, Zhao J, Shen X, Yan X, Hua Y, Kim J, Kim D, Lin M, Zhang S, Li X, Yi X, Yao F, Qin Z, Du J, Chi Y, Nam JM, Hyeon T, Liu J. Cascade Catalytic Nanoparticles Selectively Alkalize Cancerous Lysosomes to Suppress Cancer Progression and Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305394. [PMID: 37643367 DOI: 10.1002/adma.202305394] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Lysosomes are critical in modulating the progression and metastasis for various cancers. There is currently an unmet need for lysosomal alkalizers that can selectively and safely alter the pH and inhibit the function of cancer lysosomes. Here an effective, selective, and safe lysosomal alkalizer is reported that can inhibit autophagy and suppress tumors in mice. The lysosomal alkalizer consists of an iron oxide core that generates hydroxyl radicals (•OH) in the presence of excessive H+ and hydrogen peroxide inside cancer lysosomes and cerium oxide satellites that capture and convert •OH into hydroxide ions. Alkalized lysosomes, which display impaired enzyme activity and autophagy, lead to cancer cell apoptosis. It is shown that the alkalizer effectively inhibits both local and systemic tumor growth and metastasis in mice. This work demonstrates that the intrinsic properties of nanoparticles can be harnessed to build effective lysosomal alkalizers that are both selective and safe.
Collapse
Affiliation(s)
- Limin Pan
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haibao Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Bowon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiaxu Zhao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiulian Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ximei Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yipeng Hua
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jeonghyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Mouhong Lin
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shengjian Zhang
- Department of Radiology, Cancer Hospital/Institute and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaohui Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xueying Yi
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feibai Yao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yudan Chi
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jianan Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Kang Z, Zhang J, Guo X, Mao Y, Yang Z, Kankala RK, Zhao P, Chen AZ. Observing the Evolution of Metal Oxides in Liquids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304781. [PMID: 37635095 DOI: 10.1002/smll.202304781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Indexed: 08/29/2023]
Abstract
Metal oxides with diverse compositions and structures have garnered considerable interest from researchers in various reactions, which benefits from transmission electron microscopy (TEM) in determining their morphologies, phase, structural and chemical information. Recent breakthroughs have made liquid-phase TEM a promising imaging platform for tracking the dynamic structure, morphology, and composition evolution of metal oxides in solution under work conditions. Herein, this review introduces the recent advances in liquid cells, especially closed liquid cell chips. Subsequently, the recent progress including particle growth, phase transformation, self-assembly, core-shell nanostructure growth, and chemical etching are introduced. With the late technical advances in TEM and liquid cells, liquid-phase TEM is used to characterize many fundamental processes of metal oxides for CO2 reduction and water-splitting reactions. Finally, the outlook and challenges in this research field are discussed. It is believed this compilation inspires and stimulates more efforts in developing and utilizing in situ liquid-phase TEM for metal oxides at the atomic scale for different applications.
Collapse
Affiliation(s)
- Zewen Kang
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Junyu Zhang
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Xiaohua Guo
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Yangfan Mao
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Zhimin Yang
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Peng Zhao
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| |
Collapse
|
8
|
Han SY, Kim N, Yun G, Lee H, Choi IS. Tandem-biocatalysis reactors constructed by topological evolution of CaCO 3 particles into hollow metal hydroxide spheres. Nat Commun 2023; 14:6828. [PMID: 37884545 PMCID: PMC10603116 DOI: 10.1038/s41467-023-42649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Despite remarkable advances in the design and synthesis of hollow inorganic spheres (HISs), the harsh synthetic conditions have precluded the applications of HISs to biochemical and biological fields. Herein we report a biocompatible strategy for synthesizing metal hydroxide HISs (MH-HISs) by simply mixing CaCO3 particles with metal ions in water. The ion-exchange reaction between Ca2+ and metal ions leads to the structural and chemical evolution from solid CaCO3 particles to hollow MH-HISs via core-shell and yolk-shell structures, while enabling the encapsulation of enzymes to the shells without loss of catalytic activities. The biocompatible protocol makes multienzymatic cascade reactions achievable, with great recyclability due to mechanical durability of MH-HISs.
Collapse
Affiliation(s)
- Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Gyeongwon Yun
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Hojae Lee
- Department of Chemistry, Hallym University, Chuncheon, 24252, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
9
|
Li Y, Liu Q, Wu S, Geng L, Popovic J, Li Y, Chen Z, Wang H, Wang Y, Dai T, Yang Y, Sun H, Lu Y, Zhang L, Tang Y, Xiao R, Li H, Chen L, Maier J, Huang J, Hu YS. Unraveling the Reaction Mystery of Li and Na with Dry Air. J Am Chem Soc 2023; 145:10576-10583. [PMID: 37130260 DOI: 10.1021/jacs.2c13589] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Li and Na metals with high energy density are promising in application in rechargeable batteries but suffer from degradation in the ambient atmosphere. The phenomenon that in terms of kinetics, Li is stable but Na is unstable in dry air has not been fully understood. Here, we use in situ environmental transmission electron microscopy combined with theoretical simulations and reveal that the different stabilities in dry air for Li and Na are reflected by the formation of compact Li2O layers on Li metal, while porous and rough Na2O/Na2O2 layers on Na metal are a consequence of the different thermodynamic and kinetics in O2. It is shown that a preformed carbonate layer can change the kinetics of Na toward an anticorrosive behavior. Our study provides a deeper understanding of the often-overlooked chemical reactions with environmental gases and enhances the electrochemical performance of Li and Na by controlling interfacial stability.
Collapse
Affiliation(s)
- Yuqi Li
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiunan Liu
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Siyuan Wu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Geng
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jelena Popovic
- Physical Chemistry of Solids, Max Planck Institute for Solid State Research, Heisenbergstr. 1, Stuttgart 70569, Germany
| | - Yu Li
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China
| | - Zhao Chen
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Wang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuqi Wang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Dai
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Yang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiming Sun
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Yaxiang Lu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Yongfu Tang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Ruijuan Xiao
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China
| | - Hong Li
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China
| | - Liquan Chen
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Joachim Maier
- Physical Chemistry of Solids, Max Planck Institute for Solid State Research, Heisenbergstr. 1, Stuttgart 70569, Germany
| | - Jianyu Huang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yong-Sheng Hu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China
| |
Collapse
|
10
|
Shen B, Huang L, Shen J, Hu X, Zhong P, Zheng CY, Wolverton C, Mirkin CA. Morphology Engineering in Multicomponent Hollow Metal Chalcogenide Nanoparticles. ACS NANO 2023; 17:4642-4649. [PMID: 36800560 DOI: 10.1021/acsnano.2c10667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hollow metal chalcogenide nanoparticles are widely applicable in environmental and energy-related processes. Herein, we synthesized such particles with large compositional and morphological diversity by combining scanning probe block copolymer lithography with a Kirkendall effect-based sulfidation process. We explored the influence of temperature-dependent diffusion kinetics, elemental composition and miscibility, and phase boundaries on the resulting particle morphologies. Specifically, CoNi alloys form single-shell sulfides for the synthetic conditions explored because Co and Ni exhibit similar diffusion rates, while CuNi alloys form sulfides with various types of morphologies (yolk-shell, double-shell, and single-shell) because Cu and Ni have different diffusion rates. In contrast, Co-Cu heterodimers form hollow heterostructured sulfides with varying void numbers and locations depending on synthesis temperature and phase boundary. At higher temperatures, the increased miscibility of CoS2 and CuS makes it energetically favorable for the heterostructure to adopt a single alloy shell morphology, which is rationalized using density functional theory-based calculations.
Collapse
Affiliation(s)
| | | | | | | | - Peichen Zhong
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | | | | | | |
Collapse
|
11
|
Zheng P, Zhang L, Zhang X, Ma Y, Jiang Y, Li H. Parallel-Self-Assembling Stack, Center-Capture Effect, and Reactivity-Enhancing Effect of N-Layer ( N = 1, 2, 3) Cyclo[18]carbon. ACS NANO 2022; 16:21345-21355. [PMID: 36378142 DOI: 10.1021/acsnano.2c09611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cyclo[18]carbon (C18) is an captivating allotrope of carbon synthesized recently, which has drawn the attention among scientists. There are still few studies on the dynamic behaviors of C18. To gain knowledge in this area, we systematically explored the stacking behaviors and the oxidation kinetics of C18, as well the electronic transport behaviors of C18 oxides, by density functional theory and nonequilibrium Green's function calculations combined with reactive force field molecular dynamics simulations. The parallel-self-assembling behaviors were observed in the stack of two- or three-layer C18. During the oxidation process of C18, we found an evident center-capture effect in which the hollow rings would preferentially attract an O2 molecule into their centers. Moreover, the adsorption of O2 on the O2-doped rings was dramatically enhanced by the O2 at the center of the ring, showing the reactivity-enhancing effect. The excellent electron transport property of central-O2-doped C18 among 13 types of C18 oxides demonstrates the potential of C18 oxides as promising molecular devices for various applications. This study reveals the dynamic behaviors of C18 and provides theoretical guidance for use of C18 and C18 oxides in molecular devices.
Collapse
Affiliation(s)
- Peiru Zheng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan250061, China
| | - Lishu Zhang
- Modeling and Simulation Lab, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore117542, Singapore
| | - Xingfan Zhang
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, United Kingdom
| | - Yingjie Ma
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan250061, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan250061, China
| |
Collapse
|
12
|
Fiedler C, Kleinhanns T, Garcia M, Lee S, Calcabrini M, Ibáñez M. Solution-Processed Inorganic Thermoelectric Materials: Opportunities and Challenges. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8471-8489. [PMID: 36248227 PMCID: PMC9558429 DOI: 10.1021/acs.chemmater.2c01967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Indexed: 05/25/2023]
Abstract
Thermoelectric technology requires synthesizing complex materials where not only the crystal structure but also other structural features such as defects, grain size and orientation, and interfaces must be controlled. To date, conventional solid-state techniques are unable to provide this level of control. Herein, we present a synthetic approach in which dense inorganic thermoelectric materials are produced by the consolidation of well-defined nanoparticle powders. The idea is that controlling the characteristics of the powder allows the chemical transformations that take place during consolidation to be guided, ultimately yielding inorganic solids with targeted features. Different from conventional methods, syntheses in solution can produce particles with unprecedented control over their size, shape, crystal structure, composition, and surface chemistry. However, to date, most works have focused only on the low-cost benefits of this strategy. In this perspective, we first cover the opportunities that solution processing of the powder offers, emphasizing the potential structural features that can be controlled by precisely engineering the inorganic core of the particle, the surface, and the organization of the particles before consolidation. We then discuss the challenges of this synthetic approach and more practical matters related to solution processing. Finally, we suggest some good practices for adequate knowledge transfer and improving reproducibility among different laboratories.
Collapse
Affiliation(s)
- Christine Fiedler
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tobias Kleinhanns
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Maria Garcia
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Seungho Lee
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Mariano Calcabrini
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Maria Ibáñez
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
13
|
Wang Y, Zhao L, Cui A, Wang X, He Q, Yang S. Sculpting Electrochemically Growing or Grown Microarchitectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203628. [PMID: 36135803 DOI: 10.1002/smll.202203628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Microarchitectures with complex interior structures are important for many applications. However, engineering complex interior structures within microarchitectures are challenging. This article reports the introduction of electrochemical sculpting processes to carve the microarchitectures during or after their electrochemical growing process to design the interior structure of the microarchitectures. The electrochemical growing and sculpting process tangle together under the constant voltage electrodeposition mode with their strength depending on the ion concentration gradient and the voltage value. The unique thawing process of the frozen electrolyte is used to create the desired sharp ion concentration gradient, and has the potential to control the strength of the sculpting and the growing processes. How to completely decouple the growing and the sculpting process is further studied to gain more accurate control over the interior structures of the microarchitectures. It is revealed that the sculpting process can be exclusively applied onto the electrochemically grown microarchitectures simply by reversing the electric field without triggering any growing processes. Microarchitectures with complex interior structures, including micropyramids with a single cavity exclusively at the outward or every apex to multi-walled hollow pyramids with designable wall numbers and inter-wall distances are prepared as examples.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Medical Oncology, The first affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liyan Zhao
- Department of Medical Oncology, The first affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Aoran Cui
- Department of Medical Oncology, The first affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Xiaojiang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shikuan Yang
- Department of Medical Oncology, The first affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
14
|
Liu X, Zhang X, Khakhulin D, Su P, Wulff M, Baudelet F, Weng TC, Kong Q, Sun Y. Deciphering Photochemical Reaction Pathways of Aqueous Tetrachloroauric Acid by X-ray Transient Absorption Spectroscopy. J Phys Chem Lett 2022; 13:8921-8927. [PMID: 36130195 DOI: 10.1021/acs.jpclett.2c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photolysis reaction pathways of [Au(III)Cl4]- in aqueous solution have been investigated by time-resolved X-ray absorption spectroscopy. Ultraviolet excitation directly breaks the Au-Cl bond in [Au(III)Cl4]- to form [Au(II)Cl3]- that becomes highly reactive within 79 ps. Disproportionation of [Au(II)Cl3]- generates [Au(I)Cl2]-, which is stable for ≤10 μs. In contrast, intense near-infrared lasers photolyze water to generate hydrated electrons, which then reduce [Au(III)Cl4]- to [Au(II)Cl3]- at 5 ns. Hydrated electrons further induce a chain reaction from [Au(II)Cl3]- to [Au(0)Cl]- by successively removing one Cl-. The zero-valency Au anions quickly polymerize and condense to form Au nanoparticles, which become the dominating product after 400 s. Our results reveal that the condensation of zero-valency Au starts with dimerization of gold clusters coordinated with chloride ions rather than direct condensation of pristine Au atoms.
Collapse
Affiliation(s)
- Xuan Liu
- Synchrotron Soleil, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60349, United States
| | | | - Peiyuan Su
- Synchrotron Soleil, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Michael Wulff
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | | | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingyu Kong
- Synchrotron Soleil, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
15
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
16
|
Nilsson S, Nielsen MR, Fritzsche J, Langhammer C, Kadkhodazadeh S. Competing oxidation mechanisms in Cu nanoparticles and their plasmonic signatures. NANOSCALE 2022; 14:8332-8341. [PMID: 35616189 DOI: 10.1039/d2nr01054b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical reactions involving nanoparticles often follow complex processes. In this respect, real-time probing of single nanoparticles under reactive conditions is crucial for uncovering the mechanisms driving the reaction pathway. Here, we have captured in situ the oxidation of single Cu nanoparticles to unravel a sequential competitive activation of different mechanisms at temperatures 50-200 °C. Using environmental scanning transmission electron microscopy, we monitor the evolution of oxide formation with sub-nanometre spatial resolution, and show how the prevalence of oxide island nucleation, Cabrera-Mott, Valensi-Carter and Kirkendall mechanisms under different conditions determines the morphology of the particles. Moreover, using in situ electron energy-loss spectroscopy, we probe the localised surface plasmons of individual particles during oxidation, and with the aid of finite-difference time-domain electrodynamic simulations investigate the signature of each mechanism in their plasmonic response. Our results shed light on the rich and intricate processes involved in the oxidation of nanoparticles, and provide in-depth insight into how these processes govern their morphology and optical response, beneficial for applications in catalysis, sensing, nanomedicine and plasmonics.
Collapse
Affiliation(s)
- Sara Nilsson
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Monia R Nielsen
- DTU Nanolab, Technical University of Denmark, Fysikvej, 2800 Kgs Lyngby, Denmark.
| | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Shima Kadkhodazadeh
- DTU Nanolab, Technical University of Denmark, Fysikvej, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
17
|
Wu G, Zhou X, Lv WL, Qian C, Liu XW. Real-Time Plasmonic Imaging of the Compositional Evolution of Single Nanoparticles in Electrochemical Reactions. NANO LETTERS 2022; 22:4383-4391. [PMID: 35549482 DOI: 10.1021/acs.nanolett.2c00831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real-time probing of the compositional evolution of single nanoparticles during an electrochemical reaction is crucial for understanding the structure-performance relationship and rationally designing nanomaterials for desirable applications; however, it is consistently challenging to achieve high-throughput real-time tracking. Here, we present an optical imaging method, termed plasmonic scattering interferometry microscopy (PSIM), which is capable of imaging the compositional evolution of single nanoparticles during an aqueous electrochemical reaction in real time. By quantifying the plasmonic scattering interferometric pattern of nanoparticles, we establish the relationship between the pattern and composition of single nanoparticles. Using PSIM, we have successfully probed the compositional transformation dynamics of multiple individual nanoparticles during electrochemical reactions. PSIM could be used as a universal platform for exploring the compositional evolution of nanomaterials at the single-nanoparticle level and offers great potentials for addressing the extensive fundamental questions in nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Gang Wu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoli Zhou
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Li Lv
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Kang JJ, Sachse C, Ko CH, Schroer MA, Vela SD, Molodenskiy D, Kohlbrecher J, Bushuev NV, Gumerov RA, Potemkin II, Jordan R, Papadakis CM. Rigid-to-Flexible Transition in a Molecular Brush in a Good Solvent at a Semidilute Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5226-5236. [PMID: 35166545 DOI: 10.1021/acs.langmuir.1c02589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The structures of a molecular brush in a good solvent are investigated using synchrotron small-angle X-ray scattering in a wide range of concentrations. The brush under study, PiPOx239-g-PnPrOx14, features a relatively long poly(2-isopropenyl-2-oxazoline) (PiPOx) backbone and short poly(2-n-propyl-2-oxazoline) (PnPrOx) side chains. As a solvent, ethanol is used. By model fitting, the overall size and the persistence length as well as the interaction length and interaction strength are determined. At this, the interplay between form and structure factor is taken into account. The conformation of the molecular brush is traced upon increasing the solution concentration, and a rigid-to-flexible transition is found near the overlap concentration. Finally, the results of computer simulations of the molecular brush solutions confirm the experimental results.
Collapse
Affiliation(s)
- Jia-Jhen Kang
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Clemens Sachse
- Professur für Makromolekulare Chemie, Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Chia-Hsin Ko
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Martin A Schroer
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Dmitry Molodenskiy
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Forschungsstr. 111, 5232 Villigen PSI, Switzerland
| | - Nikita V Bushuev
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Rainer Jordan
- Professur für Makromolekulare Chemie, Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Christine M Papadakis
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
19
|
Zhang YS, Chu BS, Yu HL, Li K, Wang WH, Yang W. Molecular dynamics simulations of the initial oxidation process on ferritic Fe-Cr alloy surfaces. RSC Adv 2022; 12:9501-9511. [PMID: 35424942 PMCID: PMC8985143 DOI: 10.1039/d1ra09329k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidation processes of metallic interconnects are crucial to the operation of solid oxide fuel cells (SOFCs), and ferritic Fe–Cr alloy is one of the most important metallic interconnect materials. Based on the ReaxFF reactive potential, the interaction of O2 molecules with three types of surfaces (100, 110, 111) of ferritic Fe–Cr alloy has been studied by classical molecular dynamics at constant O2 concentrations and temperatures. The initial oxidation process is systematically studied according to the analysis of O2 absorption rate, charge variations, charge distributions, mean squared distributions, and oxidation rate. The results reveal that it is easier and faster for the Cr atoms to lose electrons than for the Fe atoms during the oxidation process. The obtained oxidation rate of Cr atoms is larger and the formation of Cr2O3 takes precedence over that of FeO. And the thickness of oxidation layers of different surfaces could be determined quantitatively. We also find that the high O2 concentration accelerates the oxidation process and obviously increases the thickness of oxidation layers, while the temperature has a weaker effect on the oxidation process than the O2 concentration. Moreover, the (110) surface presents the best oxidation resistance compared to the other two surfaces. And the (110) surface is efficient in preventing Fe atoms from being oxidized. Here we explore the initial oxidation process of Fe–Cr alloy and the corresponding results could provide theoretical guides to the related experiments and applications as metallic interconnects. Based on the ReaxFF reactive potential, the interaction of O2 molecules with three types of surfaces (100, 110, 111) of ferritic Fe–Cr alloy has been studied by classical molecular dynamics at constant O2 concentrations and temperatures.![]()
Collapse
Affiliation(s)
- Yuan-Shuo Zhang
- Shanxi Key Laboratory of Metal Forming Theory and Technology, School of Material Science and Engineering, Taiyuan University of Science and Technology Taiyuan 030024 Shanxi P. R. China
| | - Bao-Shuai Chu
- Shanxi Key Laboratory of Metal Forming Theory and Technology, School of Material Science and Engineering, Taiyuan University of Science and Technology Taiyuan 030024 Shanxi P. R. China .,Technology Center, Taiyuan Iron & Steel (Group) Co. Taiyuan 030003 Shanxi P. R. China
| | - Hong-Li Yu
- Shanxi Key Laboratory of Metal Forming Theory and Technology, School of Material Science and Engineering, Taiyuan University of Science and Technology Taiyuan 030024 Shanxi P. R. China
| | - Kun Li
- Shanxi Key Laboratory of Metal Forming Theory and Technology, School of Material Science and Engineering, Taiyuan University of Science and Technology Taiyuan 030024 Shanxi P. R. China
| | - Wei-Hua Wang
- Department of Electronic Science and Engineering, Key Laboratory of Photo-Electronic Thin Film Device and Technology of Tianjin, Nankai University Tianjin 300350 P. R. China
| | - Wen Yang
- Shanxi Key Laboratory of Metal Forming Theory and Technology, School of Material Science and Engineering, Taiyuan University of Science and Technology Taiyuan 030024 Shanxi P. R. China
| |
Collapse
|
20
|
LaGrow AP, Famiani S, Sergides A, Lari L, Lloyd DC, Takahashi M, Maenosono S, Boyes ED, Gai PL, Thanh NTK. Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles. MATERIALS 2022; 15:ma15041557. [PMID: 35208096 PMCID: PMC8877599 DOI: 10.3390/ma15041557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
The oxidation of solution-synthesized iron (Fe) and iron carbide (Fe2C) nanoparticles was studied in an environmental scanning transmission electron microscope (ESTEM) at elevated temperatures under oxygen gas. The nanoparticles studied had a native oxide shell present, that formed after synthesis, an ~3 nm iron oxide (FexOy) shell for the Fe nanoparticles and ~2 nm for the Fe2C nanoparticles, with small void areas seen in several places between the core and shell for the Fe and an ~0.8 nm space between the core and shell for the Fe2C. The iron nanoparticles oxidized asymmetrically, with voids on the borders between the Fe core and FexOy shell increasing in size until the void coalesced, and finally the Fe core disappeared. In comparison, the oxidation of the Fe2C progressed symmetrically, with the core shrinking in the center and the outer oxide shell growing until the iron carbide had fully disappeared. Small bridges of iron oxide formed during oxidation, indicating that the Fe transitioned to the oxide shell surface across the channels, while leaving the carbon behind in the hollow core. The carbon in the carbide is hypothesized to suppress the formation of larger crystallites of iron oxide during oxidation, and alter the diffusion rates of the Fe and O during the reaction, which explains the lower sensitivity to oxidation of the Fe2C nanoparticles.
Collapse
Affiliation(s)
- Alec P. LaGrow
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Correspondence: (A.P.L.); (N.T.K.T.)
| | - Simone Famiani
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK; (S.F.); (A.S.)
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, London W1S 4BS, UK
| | - Andreas Sergides
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK; (S.F.); (A.S.)
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, London W1S 4BS, UK
| | - Leonardo Lari
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - David C. Lloyd
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - Mari Takahashi
- School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Kanazawa 923-1292, Japan; (M.T.); (S.M.)
| | - Shinya Maenosono
- School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Kanazawa 923-1292, Japan; (M.T.); (S.M.)
| | - Edward D. Boyes
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - Pratibha L. Gai
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK; (S.F.); (A.S.)
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, London W1S 4BS, UK
- Correspondence: (A.P.L.); (N.T.K.T.)
| |
Collapse
|
21
|
Tanaka H, Ohno S, Miki K, Tanaka M. Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:172-181. [PMID: 35186651 PMCID: PMC8822459 DOI: 10.3762/bjnano.13.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Thermal oxidation of Si(113) in a monolayer regime was investigated using high-temperature scanning tunneling microscopy (STM). Dynamic processes during thermal oxidation were examined in three oxidation modes - oxidation, etching, and transition modes - in the third of which both oxidation and etching occur. A precise temperature-pressure growth mode diagram was obtained via careful measurements for Si(113), and the results were compared with those for Si(111) in the present work and Si(001) in the literature. Initial oxidation processes were identified based on high-resolution STM images.
Collapse
Affiliation(s)
- Hiroya Tanaka
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Shinya Ohno
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazushi Miki
- Department of Electrical Materials and Engineering, University of Hyogo, Shoya 2167, Himeji, Hyogo 671-2280, Japan
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Masatoshi Tanaka
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
22
|
|
23
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
24
|
Li J, Guan X, Zhang WX. Architectural Genesis of Metal(loid)s with Iron Nanoparticle in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12801-12808. [PMID: 34523344 DOI: 10.1021/acs.est.1c02458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reactions of core-shell iron nanoparticles with metal(loid)s in water can form an array of nanostructures such as Ag-seed/dendrite, As-subshell, U-yolk, Co-hollowshell, and Cs-spot. Nonetheless, there is a lack of profound understanding in the genesis of these amazing geometries. Herein, we propose a concept to unravel the interdiffusion between the core-shell iron nanoparticle and metal(loid)s, where several key interactions including the Kirkendall effect, metal(loid) character effect, and reaction condition effect are involved in determining the structure of the final solid reaction products. Particularly, the architectural growths of metal(loid)s with iron nanoparticles in water can be manipulated mutually or singly by the following factors: standard redox potential difference, magnetic property, electrical charge and conductivity, as well as the iron (hydr)oxide shell structure under different solution chemistry and operation conditions. This contribution provides a theoretical basis to rationalize the architectural genesis of various metal(loid)s with iron nanoparticles, which will benefit the real practice for synthesizing functional iron-based nanoparticles and recovering the rare/precious metal(loid)s by iron nanoparticles from water.
Collapse
Affiliation(s)
- Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Xiaohong Guan
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Wei-Xian Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
25
|
Luo JM, Sun TQ, Sun YG, Lv RW, Cao AM, Wan LJ. A General Synthesis Strategy for Hollow Metal Oxide Microspheres Enabled by Gel-Assisted Precipitation. Angew Chem Int Ed Engl 2021; 60:21377-21383. [PMID: 34409712 DOI: 10.1002/anie.202106481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Indexed: 11/08/2022]
Abstract
Hollow metal oxide microspheres (HMMs) have drawn enormous attention in different research fields. Reliable and scalable synthetic protocols applicable for a large variety of metal oxides are in emergent demand. Here we demonstrated that polymer hydrogel, such as the resorcinol formaldehyde (RF) one, existed as an efficient synthetic platform to build HMMs. Specifically, the RF gel forms stacked RF microspheres enlaced with its aqueous phase, where the following evaporation of the highly dispersed water leads to a gel-assisted precipitation (GAP) of the dissolved metal precursor onto the embedded polymeric solids suited for the creation of HMMs. By taking advantage of the structural features of hydrogel, this synthesis design avoids the delicate control on the usually necessitated coating process and provides a simple and effective synthetic process versatile for functional HMMs, particularly Nb2 O5 as a high-performance electrode material in Li-ion intercalation pseudocapacitor.
Collapse
Affiliation(s)
- Jin-Min Luo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049, Beijing, P. R. China
| | - Tian-Qi Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190, Beijing, P. R. China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, No.2 Linggong Road, 116024, Dalian City, Liaoning Province, P. R. China
| | - Yong-Gang Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190, Beijing, P. R. China.,School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, No.1 Hope Avenue Road, 224051, Yancheng City, Jiangsu Province, P. R. China
| | - Rong-Wen Lv
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No.2 Linggong Road, 116024, Dalian City, Liaoning Province, P. R. China
| | - An-Min Cao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049, Beijing, P. R. China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049, Beijing, P. R. China
| |
Collapse
|
26
|
Luo J, Sun T, Sun Y, Lv R, Cao A, Wan L. A General Synthesis Strategy for Hollow Metal Oxide Microspheres Enabled by Gel‐Assisted Precipitation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin‐Min Luo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) No.2 Zhongguancun North First Street 100190 Beijing P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road 100049 Beijing P. R. China
| | - Tian‐Qi Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) No.2 Zhongguancun North First Street 100190 Beijing P. R. China
- State Key Laboratory of Fine Chemicals Dalian University of Technology No.2 Linggong Road 116024 Dalian City Liaoning Province P. R. China
| | - Yong‐Gang Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) No.2 Zhongguancun North First Street 100190 Beijing P. R. China
- School of Chemistry & Chemical Engineering Yancheng Institute of Technology No.1 Hope Avenue Road 224051 Yancheng City Jiangsu Province P. R. China
| | - Rong‐Wen Lv
- State Key Laboratory of Fine Chemicals Dalian University of Technology No.2 Linggong Road 116024 Dalian City Liaoning Province P. R. China
| | - An‐Min Cao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) No.2 Zhongguancun North First Street 100190 Beijing P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road 100049 Beijing P. R. China
| | - Li‐Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) No.2 Zhongguancun North First Street 100190 Beijing P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road 100049 Beijing P. R. China
| |
Collapse
|
27
|
Schroer MA, Hu PS, Tomasovicova N, Batkova M, Zakutanska K, Wu PY, Kopcansky P. Dependence of the Nanoscale Composite Morphology of Fe 3O 4 Nanoparticle-Infused Lysozyme Amyloid Fibrils on Timing of Infusion: A Combined SAXS and AFM Study. Molecules 2021; 26:4864. [PMID: 34443453 PMCID: PMC8399528 DOI: 10.3390/molecules26164864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the formation process and the spatial distribution of nanoparticle (NP) clusters on amyloid fibrils is an essential step for the development of NP-based methods to inhibit aggregation of amyloidal proteins or reverse the assembling trend of the proto-fibrillary complexes that prompts pathogenesis of neuro degeneration. For this, a detailed structural determination of the diverse hybrid assemblies that are forming is needed, which can be achieved by advanced X-ray scattering techniques. Using a combined solution small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) approach, this study investigates the intrinsic trends of the interaction between lysozyme amyloid fibrils (LAFs) and Fe3O4 NPs before and after fibrillization at nanometer resolution. AFM images reveal that the number of NP clusters interacting with the lysozyme fibers does not increase significantly with NP volume concentration, suggesting a saturation in NP aggregation on the fibrillary surface. The data indicate that the number of non-adsorbed Fe3O4 NPs is highly dependent on the timing of NP infusion within the synthesis process. SAXS data yield access to the spatial distribution, aggregation manner and density of NP clusters on the fibrillary surfaces. Employing modern data analysis approaches, the shape and internal structural morphology of the so formed nanocomposites are revealed. The combined experimental approach suggests that while Fe3O4 NPs infusion does not prevent the fibril-formation, the variation of NP concentration and size at different stages of the fibrillization process can impose a pronounced impact on the superficial and internal structural morphologies of these nanocomposites. These findings may be applicable in devising advanced therapeutic treatments for neurodegenerative diseases and designing novel bio-inorganic magnetic devices. Our results further demonstrate that modern X-ray methods give access to the structure of-and insight into the formation process of-biological-inorganic hybrid structures in solution.
Collapse
Affiliation(s)
- Martin A. Schroer
- European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Po-Sheng Hu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City 71150, Taiwan;
- College of Photonics, National Chiao Tung University, Tainan City 71150, Taiwan
| | - Natalia Tomasovicova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia; (N.T.); (M.B.); (K.Z.); (P.K.)
| | - Marianna Batkova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia; (N.T.); (M.B.); (K.Z.); (P.K.)
| | - Katarina Zakutanska
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia; (N.T.); (M.B.); (K.Z.); (P.K.)
| | - Po-Yi Wu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City 71150, Taiwan;
- College of Photonics, National Chiao Tung University, Tainan City 71150, Taiwan
| | - Peter Kopcansky
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia; (N.T.); (M.B.); (K.Z.); (P.K.)
| |
Collapse
|
28
|
Wu S, An Q, Sun Y. Simulated annealing fitting: a global optimization method for quantitatively analyzing growth kinetics of colloidal Ag nanoparticles. NANOSCALE HORIZONS 2021; 6:568-573. [PMID: 33997878 DOI: 10.1039/d1nh00152c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The involvement of heterogeneous solid/liquid reactions in growing colloidal nanoparticles makes it challenging to quantitatively understand the fundamental steps that determine nanoparticles' growth kinetics. A global optimization protocol relying on simulated annealing fitting and the LSW growth model is developed to analyze the evolution data of colloidal silver nanoparticles synthesized from a microwave-assisted polyol reduction reaction. Fitting all data points of the entire growth process determines with high fidelity the diffusion coefficient of precursor species and the heterogeneous reduction reaction rate parameters on growing silver nanoparticles, which represent the principal functions to determine the growth kinetics of colloidal nanoparticles. The availability of quantitative results is critical to understanding the fundamentals of heterogeneous solid/liquid reactions, such as identifying reactive species and reaction activation energy barriers.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, USA.
| | | | | |
Collapse
|
29
|
Vicente R, Neckel IT, Sankaranarayanan SKS, Solla-Gullon J, Fernández PS. Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis. ACS NANO 2021; 15:6129-6146. [PMID: 33793205 PMCID: PMC8155327 DOI: 10.1021/acsnano.1c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Electrocatalysis is at the heart of a broad range of physicochemical applications that play an important role in the present and future of a sustainable economy. Among the myriad of different electrocatalysts used in this field, nanomaterials are of ubiquitous importance. An increased surface area/volume ratio compared to bulk makes nanoscale catalysts the preferred choice to perform electrocatalytic reactions. Bragg coherent diffraction imaging (BCDI) was introduced in 2006 and since has been applied to obtain 3D images of crystalline nanomaterials. BCDI provides information about the displacement field, which is directly related to strain. Lattice strain in the catalysts impacts their electronic configuration and, consequently, their binding energy with reaction intermediates. Even though there have been significant improvements since its birth, the fact that the experiments can only be performed at synchrotron facilities and its relatively low resolution to date (∼10 nm spatial resolution) have prevented the popularization of this technique. Herein, we will briefly describe the fundamentals of the technique, including the electrocatalysis relevant information that we can extract from it. Subsequently, we review some of the computational experiments that complement the BCDI data for enhanced information extraction and improved understanding of the underlying nanoscale electrocatalytic processes. We next highlight success stories of BCDI applied to different electrochemical systems and in heterogeneous catalysis to show how the technique can contribute to future studies in electrocatalysis. Finally, we outline current challenges in spatiotemporal resolution limits of BCDI and provide our perspectives on recent developments in synchrotron facilities as well as the role of machine learning and artificial intelligence in addressing them.
Collapse
Affiliation(s)
- Rafael
A. Vicente
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| | - Itamar T. Neckel
- Brazilian
Synchrotron Light Laboratory, Brazilian
Center for Research in Energy and Materials, 13083-970, Campinas, São Paulo, Brazil
| | - Subramanian K.
R. S. Sankaranarayanan
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Argonne, Illinois 60439, United
States
| | - José Solla-Gullon
- Institute
of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Pablo S. Fernández
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| |
Collapse
|
30
|
Chen J, Jiang F, Yin Y. Manipulation of Interfacial Diffusion for Controlling Nanoscale Transformation. Acc Chem Res 2021; 54:1168-1177. [PMID: 33440942 DOI: 10.1021/acs.accounts.0c00743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The unprecedented development of inorganic nanostructure synthesis has paved the way toward their broad applications in areas such as food science, agroforestry, energy conversion, and biomedicine. The precise manipulation of the nucleation and subsequent growth has been recognized as the central guiding principle for controlling the size and morphology of the nanostructures. However, conventional colloid syntheses based on direct precipitation reactions still have limitations in their versatility and extendibility. The crystal structure of a material determines the limited number of possible morphologies that its nanostructures can adopt. Further, as nucleation and growth kinetics are sensitive to not only the nature of the precipitation reactions but also ligands and ripening effect, rigorous control of reaction conditions must be established for every specific synthesis. In addition, multiple experimental parameters are entangled with each other, thereby requiring rigorous control of all reaction conditions. As a result, it is usually challenging to extend a synthetic recipe from one material to another. As an alternative method, the direct transformation of existing nanostructures into target ones has become an effective and robust approach capable of creating various complex nanostructures that are otherwise challenging to obtain using conventional methods. To this end, an in-depth understanding of nanoscale transformation toward the synthesis of inorganic nanostructures with diverse properties and applications is highly desirable.In this Account, we aim to reveal the critical effect of the interfacial diffusion on controlled nanoscale transformation. We first discuss how the interdiffusion rates determine the morphology and properties of bimetallic nanostructures. While equal interdiffusion rates lead to perfect mixing and generate fully alloyed nanostructures, interdiffusion at unequal rates creates vacancies in the fast diffusion side, which may cause dramatic morphological transformation to the nanostructures. Then, we introduce interfacial reactions, including the Kirkendall cavitation process, elimination reaction, and solid-state reaction, to promote the unbalanced interdiffusion and generalize nanoscale transformations in materials of various compositions, morphologies, and crystal structures. Finally, we discuss the use of capping ligands to inhibit the diffusion of atoms on one side of the interface in order to enable selective etching or transformation of the nanostructures. By modifying the nanostructured surface with specific capping ligands, the diffusion of surface atoms is restricted. When nanoparticles undergo chemical reactions (such as etching or heating), the outward diffusion of substances dominates, thereby successfully achieving chemical and morphological transformations. We believe that controlled interfacial diffusion can effectively manipulate nanoscale transformations, thus providing new strategies for the custom synthesis of multifunctional nanomaterials for various specific applications.
Collapse
Affiliation(s)
- Jinxing Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Feng Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
31
|
Aral G, Islam MM. Atomic-scale investigation of the effect of surface carbon coatings on the oxidation and mechanical properties of iron nanowires. NEW J CHEM 2021. [DOI: 10.1039/d1nj05108c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The understanding of the complex atomistic-scale mechanisms of the oxidation process of carbon (C) coated iron nanowires (Fe NW) and also the resulting modulation of mechanical properties is a highly challenging task.
Collapse
Affiliation(s)
- Gurcan Aral
- Department of Physics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
| |
Collapse
|
32
|
Yang Q, Wu Q, Liu Y, Luo S, Wu X, Zhao X, Zou H, Long B, Chen W, Liao Y, Li L, Shen PK, Duan L, Quan Z. Novel Bi-Doped Amorphous SnO x Nanoshells for Efficient Electrochemical CO 2 Reduction into Formate at Low Overpotentials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002822. [PMID: 32705724 DOI: 10.1002/adma.202002822] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Engineering novel Sn-based bimetallic materials could provide intriguing catalytic properties to boost the electrochemical CO2 reduction. Herein, the first synthesis of homogeneous Sn1- x Bix alloy nanoparticles (x up to 0.20) with native Bi-doped amorphous SnOx shells for efficient CO2 reduction is reported. The Bi-SnOx nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (-0.67 to -0.92 V vs RHE) with low overpotentials, outperforming current tin oxide catalysts. The state-of-the-art Bi-SnOx nanoshells derived from Sn0.80 Bi0.20 alloy nanoparticles exhibit a great partial current density of 74.6 mA cm-2 and high Faradaic efficiency of 95.8%. The detailed electrocatalytic analyses and corresponding density functional theory calculations simultaneously reveal that the incorporation of Bi atoms into Sn species facilitates formate production by suppressing the formation of H2 and CO.
Collapse
Affiliation(s)
- Qi Yang
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Qilong Wu
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Yang Liu
- Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Shuiping Luo
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaotong Wu
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xixia Zhao
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Haiyuan Zou
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Baihua Long
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Wen Chen
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Yujia Liao
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Lanxi Li
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Pei Kang Shen
- Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Lele Duan
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Zewei Quan
- Department of Chemistry, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
33
|
Zheng P, Zhang X, Duan Y, Yan M, Chapman R, Jiang Y, Li H. Oxidation of graphene with variable defects: alternately symmetrical escape and self-restructuring of carbon rings. NANOSCALE 2020; 12:10140-10148. [PMID: 32352100 DOI: 10.1039/c9nr10613h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Variable defects such as vacancies and grain boundaries are unavoidable in the synthesis of graphene, but play a central role in the activation of oxidation. Here, we apply reactive molecular dynamics simulations to reveal the underpinning mechanisms of oxidation in graphene with or without defects at the atomic scale. There exist four oxidation modes generating CO2 or CO in different stages, beginning from a single-atom vacancy, and proceeding until the ordered structure broken down into carbon oxide chains. The oxidation process of the graphene sheets experiences four typical stages, in which alternately symmetrical escape phenomenon is observed. Importantly, disordered rings can self-restructure during the oxidation of grain boundaries. Of all defects, the oxidation of vacancy has the lowest energy barrier and is therefore the easiest point of nucleation. This study demonstrates the crucial role of defects in determining the oxidation kinetics, and provides theoretical guidance for the oxidation prevention of graphene and the production of functionalized graphene.
Collapse
Affiliation(s)
- Peiru Zheng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rosandi Y, Luu HT, Urbassek HM, Gunkelmann N. Molecular dynamics simulations of the mechanical behavior of alumina coated aluminum nanowires under tension and compression. RSC Adv 2020; 10:14353-14359. [PMID: 35498495 PMCID: PMC9051949 DOI: 10.1039/d0ra01206h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/27/2020] [Indexed: 11/30/2022] Open
Abstract
For materials with high oxygen affinity, oxide layers will significantly change the material properties. This is of particular importance for aluminum nanowires which have many applications because of their ultrahigh strengths. Recent studies show that thin amorphous oxide shell layers on aluminum surfaces significantly change the responses of the material. However, the relations between the thickness of the oxidized layer, the strain rate and the mechanical response of nanowires to compression and tension have not been investigated intensively. In this study, we use a ReaxFF potential to analyze the influences of oxide shell layers on the material responses of the nanowires under uniaxial tension and compression at different strain rates. The Al–O interface leads to an increased defect nucleation rate at the oxide interface preventing localized deformation. During tension, we observe a reorganization of the structure of the oxide layer leading to bond healing and preventing fracture. While ductility is increasing with coating thickness during tension, the thickness of the coating is less decisive during compression. Alumina coatings increase the ductility of aluminum nanowires by reorganization of the Al–O layer and stabilization of bonds.![]()
Collapse
Affiliation(s)
- Yudi Rosandi
- Department of Geophysics, The Nanotechnology and Graphene Research Center (PRINTG), Universitas Padjadjaran Jatinangor Sumedang 45363 Indonesia
| | - Hoang-Thien Luu
- Clausthal University of Technology, Institute of Applied Mechanics Adolph-Roemer Str. 2A Clausthal Zellerfeld 38678 Germany
| | - Herbert M Urbassek
- Physics Department and Research Center OPTIMAS, University of Kaiserslautern Erwin-Schrödinger-Straβe 67663 Kaiserslautern Germany
| | - Nina Gunkelmann
- Clausthal University of Technology, Institute of Applied Mechanics Adolph-Roemer Str. 2A Clausthal Zellerfeld 38678 Germany
| |
Collapse
|
35
|
Peng C, Yu M, Zheng J. In Situ Ligand-Directed Growth of Gold Nanoparticles in Biological Tissues. NANO LETTERS 2020; 20:1378-1382. [PMID: 31880943 PMCID: PMC8667869 DOI: 10.1021/acs.nanolett.9b04911] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fundamental understandings and precise control of nanoparticle growth in the complex biological environment are crucial to broadening their potential applications in tissue imaging. Herein, we report that glutathione (GSH), a widely used capping ligand for precise control of the size of gold nanoparticle (AuNP) down to single-atom level in test tubes, can also be used to direct the selective growth of the AuNPs in the mitochondria of renal tubule cells as well as hippocampus cells in the tissues. Precise control of this growth process can lead to the formation of both ultrasmall AuNPs with near-infrared luminescence and large plasmonic AuNPs. The observed selective growth of the AuNPs is likely due to unique GSH storage function of the mitochondria. Using a different ligand, β-glucose thiol, we also found that the brush border of the intestine for glucose absorption became the major site for the growth of luminescent AuNPs. These findings suggest that selective growth of AuNPs in the biological tissues can indeed be directed with specific ligands, opening up a new avenue to tissue labeling and future development of artificial bionano hybrid systems.
Collapse
Affiliation(s)
- Chuanqi Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
36
|
Barcaro G, Monti S. Modeling generation and growth of iron oxide nanoparticles from representative precursors through ReaxFF molecular dynamics. NANOSCALE 2020; 12:3103-3111. [PMID: 31965131 DOI: 10.1039/c9nr09381h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Detailed dynamical characterization of the mechanisms responsible for the formation and growth of iron oxide nanoparticles remains a significant challenge not only for experimental techniques but also for theoretical methodologies due to the nanoparticle size, long simulation times, and complexity of the environments. In this work, we have designed a fast computational protocol based on atomistic reactive molecular dynamics, which is capable of simulating the whole synthetic and proliferation process of the nanoparticles (greater than 10 nm) in a homogeneous medium from organometallic precursors. We have defined appropriate growth accelerating strategies based on the observed reactions, which consisted of the formation of Fe-O-Fe bridges, linking separate precursors, and Fe˙ and FeO˙ radicals. This reduced drastically the computational time allowing the simulation of NPs made of thousands of atoms (full nanometric range). We have identified the most probable reaction environments and summarized them under two distinct conditions: reductive and oxidative. The first one leads to the formation of nanoparticles with FeO stoichiometry typical of wustite, whereas the second one stabilizes stoichiometries between Fe3O4 (magnetite), and Fe2O3 (maghemite). In the latter case, the obtained NPs adopted, from the very early stages of the growth process, a cubic crystalline structure, typical of the oxidized FeOx bulk phases. The excellent agreement of our results with the experimental data demonstrates that the proposed protocol can provide a powerful predictive tool to describe structural features developed by the metal oxide nanoparticles and establish clear structure-property relationships.
Collapse
Affiliation(s)
- Giovanni Barcaro
- CNR-IPCF, Institute of Chemical and Physical Processes, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, via G. Moruzzi 1, I-56124 Pisa, Italy.
| |
Collapse
|
37
|
Ha M, Kim JH, You M, Li Q, Fan C, Nam JM. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem Rev 2019; 119:12208-12278. [PMID: 31794202 DOI: 10.1021/acs.chemrev.9b00234] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jae-Ho Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Myunghwa You
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
38
|
Zhang J, Tian Q, Li Q, Henderson MJ, Tuo X, Yan M, Almásy L. Small-angle scattering model analysis of cage-like uranyl peroxide nanoparticles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Strach M, Mantella V, Pankhurst JR, Iyengar P, Loiudice A, Das S, Corminboeuf C, van Beek W, Buonsanti R. Insights into Reaction Intermediates to Predict Synthetic Pathways for Shape-Controlled Metal Nanocrystals. J Am Chem Soc 2019; 141:16312-16322. [PMID: 31542922 DOI: 10.1021/jacs.9b06267] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding nucleation phenomena is crucial across all branches of physical and natural sciences. Colloidal nanocrystals are among the most versatile and tunable synthetic nanomaterials. While huge steps have been made in their synthetic development, synthesis by design is still impeded by the lack of knowledge of reaction mechanisms. Here, we report on the investigation of the reaction intermediates in high temperature syntheses of copper nanocrystals by a variety of techniques, including X-ray absorption at a synchrotron source using a customized in situ cell. We reveal unique insights into the chemical nature of the reaction intermediates and into their role in determining the final shape of the metal nanocrystals. Overall, this study highlights the importance of understanding the chemistry behind nucleation as a key parameter to predict synthetic pathways for shape-controlled nanocrystals.
Collapse
Affiliation(s)
- Michal Strach
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| | - Valeria Mantella
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| | - James R Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| | - Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| | - Shubhajit Das
- Laboratory for Computational Molecular Design (LCMD), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design (LCMD), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Wouter van Beek
- The Swiss-Norwegian Beamline (SNBL)-ESRF CS40220 , 38043 Grenoble Cedex 9, France
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| |
Collapse
|
40
|
Castro N, Bouet C, Ithurria S, Lequeux N, Constantin D, Levitz P, Pontoni D, Abécassis B. Insights into the Formation Mechanism of CdSe Nanoplatelets Using in Situ X-ray Scattering. NANO LETTERS 2019; 19:6466-6474. [PMID: 31373504 DOI: 10.1021/acs.nanolett.9b02687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional ultrathin CdSe nanoplatelets have attracted a large interest due to their optical properties but their formation mechanism is not well understood. Several different mechanisms have been proposed: confined growth in a surfactant mesophase acting as a template, anisotropic ripening of small seeds into 2D nanoplatelets, or continuous anisotropic growth of a limited number of nuclei. However, quantitative in situ data that could validate or disprove these formation scenarios are lacking. We use synchrotron-based small-angle and wide-angle X-ray scattering to probe the formation mechanism of CdSe nanoplatelets synthesized using a heating-up method. We prove the absence of a molecular mesophase in the reactive medium at the onset of nanoplatelet formation ruling out a templating effect. We also show that our data are inconsistent with the anisotropic ripening of small seeds whereas the evolution of the SAXS patterns during the reaction is consistent with the continuous lateral growth of nanoplatelets fed by reactive monomers. Finally, we show that when the final temperature of the synthesis is lowered, nanoplatelets with larger lateral dimensions form. We reveal that they bend in solution during their growth to yield nanoscrolls.
Collapse
Affiliation(s)
- Nicolo Castro
- Laboratoire de Physique des Solides , CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex , France
| | - Cécile Bouet
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University , Sorbonne Université, CNRS , 10 rue Vauquelin 75005 , Paris , France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University , Sorbonne Université, CNRS , 10 rue Vauquelin 75005 , Paris , France
| | - Nicolas Lequeux
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University , Sorbonne Université, CNRS , 10 rue Vauquelin 75005 , Paris , France
| | - Doru Constantin
- Laboratoire de Physique des Solides , CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex , France
| | - Pierre Levitz
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX , Sorbonne Université, CNRS , F-75005 Paris , France
| | - Diego Pontoni
- Partnership for Soft Condensed Matter (PSCM), ESRF - The European Synchrotron , 71 Avenue des Martyrs , 38043 Grenoble , France
| | - Benjamin Abécassis
- Laboratoire de Physique des Solides , CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex , France
- Laboratoire de Chimie , CNRS, École Normale Supérieure de Lyon , 46 allée d'Italie , 69364 Lyon , France
| |
Collapse
|
41
|
Feng J, Yin Y. Self-Templating Approaches to Hollow Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802349. [PMID: 30155924 DOI: 10.1002/adma.201802349] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Indexed: 06/08/2023]
Abstract
This current research progress on the fabrication of hollow nanostructures by using self-templating methods is reviewed. After a brief introduction to the unique properties and applications of hollow nanostructures and the three general fabrication routes, the discussions are focused on the five main self-templating strategies, including galvanic replacement, the Kirkendall effect, Ostwald ripening, dissolution-regrowth, and the surface-protected hollowing process. Some newly developed synthetic routes are selected and discussed in detail. In conclusion, a summary and the perspectives on the directions that might lead the future development of this exciting field are presented.
Collapse
Affiliation(s)
- Ji Feng
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
42
|
Wang Z, Yu R. Hollow Micro/Nanostructured Ceria-Based Materials: Synthetic Strategies and Versatile Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800592. [PMID: 30276863 DOI: 10.1002/adma.201800592] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Hollow micro/nanostructured CeO2 -based materials (HMNCMs) have triggered intensive attention as a result of their unique structural traits, which arise from their hollowness and the fascinating physicochemical properties of CeO2 . This attention has led to widespread applications with improved performance. Herein, a comprehensive overview of methodologies applied for the synthesis of various hollow structures, such as hollow spheres, nanotubes, nanoboxes, and multishelled hollow spheres, is provided. The synthetic strategies toward CeO2 hollow structures are classified into three major categories: 1) well-established template-assisted (hard-, soft-, and in situ template) methods; 2) newly emerging self-template approaches, including selective etching, Ostwald ripening, the Kirkendall effect, galvanic replacement, etc.; 3) bottom-up self-organized formation synthesis (namely, oriented attachment and self-deformation). Their underlying mechanisms are concisely described and discussed in detail, the differences and similarities of which are compared transversely and longitudinally. Niche applications of HMNCMs in a wide range of fields including catalysis, energy conversion and storage, sensors, absorbents, photoluminescence, and biomedicines are reviewed. Finally, an outlook of future opportunities and challenges in the synthesis and application of CeO2 -based hollow structures is also presented.
Collapse
Affiliation(s)
- Zumin Wang
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Ranbo Yu
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
43
|
Fenton JL, Fagan AM, Schaak RE. General Solution‐Phase Synthesis of Nanoscale Transition Metal Tellurides Using Metal Nanoparticle Reagents. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julie L. Fenton
- Department of Chemistry and Materials Research Institute The Pennsylvania State University 16802 University Park PA USA
| | - Abigail M. Fagan
- Department of Chemistry and Materials Research Institute The Pennsylvania State University 16802 University Park PA USA
| | - Raymond E. Schaak
- Department of Chemistry and Materials Research Institute The Pennsylvania State University 16802 University Park PA USA
| |
Collapse
|
44
|
Schlicker L, Popescu R, Bekheet MF, Doran A, Gerthsen D, Gurlo A. Real-time direct transmission electron microscopy imaging of phase and morphology transformation from solid indium oxide hydroxide to hollow corundum-type indium oxide nanocrystallites. NANOSCALE 2019; 11:12242-12249. [PMID: 31206118 DOI: 10.1039/c9nr02115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A time-resolved series of high-resolution transmission electron microscopy (HRTEM) images are used to monitor phase and morphology transformation of rod-like and spherical particles with the initial orthorhombic InOOH phase in situ under continuous illumination with high-energy electrons in a transmission electron microscope. For both particle types, the electron-beam irradiation induces a fast InOOH to rh-In2O3 decomposition accompanied by the formation of voids within the particle/rod center. After illumination time intervals of about 1-2 min (i.e. electron dose 6.3-12.6 × 107 e nm-2) for particles and 8 min (4.3 × 108 e nm-2) for rods, respectively, several small empty cavities become visible in the particle/rod center. The cavities coalesce and form a large hollow space/canal after further illumination. Time-resolved in situ HRTEM unambiguously shows that the formation of internal voids in both nanoparticle types is a consequence of the structural InOOH-to-rh-In2O3 phase transition that starts at the surface of the corresponding particle. The as-formed oxide phase encapsulates the untransformed hydroxylated phase. Its decomposition does not follow the Kirkendall mechanism; the matter transferred outwards is removed in the form of water, leading to void formation inside without an increase of the particle size.
Collapse
Affiliation(s)
- Lukas Schlicker
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, D-10623 Berlin, Germany.
| | - Radian Popescu
- Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, D-76131 Karlsruhe, Germany
| | - Maged F Bekheet
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, D-10623 Berlin, Germany.
| | - Andrew Doran
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Dagmar Gerthsen
- Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, D-76131 Karlsruhe, Germany
| | - Aleksander Gurlo
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, D-10623 Berlin, Germany.
| |
Collapse
|
45
|
Montoro Bustos AR, Pettibone JM, Murphy KE. Characterization of Nanoparticles: Advances. NANOPARTICLE DESIGN AND CHARACTERIZATION FOR CATALYTIC APPLICATIONS IN SUSTAINABLE CHEMISTRY 2019. [DOI: 10.1039/9781788016292-00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Over the past two decades, the unique properties of engineered nanoparticles (NPs) have placed them at the centre of revolutionary advancements in many sectors of science, technology and commerce. Multi-technique and multi-disciplinary analytical approaches are required to identify, quantify, and characterize the chemical composition, size and size distribution, surface properties and the number and concentration of NPs. In this chapter, an overview of the recent advances in the characterization of NPs will be presented.
Collapse
Affiliation(s)
- A. R. Montoro Bustos
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - J. M. Pettibone
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - K. E. Murphy
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| |
Collapse
|
46
|
Liu M, Huang R, Li C, Che M, Su R, Li S, Yu J, Qi W, He Z. Continuous rapid dechlorination of p-chlorophenol by Fe-Pd nanoparticles promoted by procyanidin. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Wang Y, Peng X, Abelson A, Xiao P, Qian C, Yu L, Ophus C, Ercius P, Wang LW, Law M, Zheng H. Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions. SCIENCE ADVANCES 2019; 5:eaaw5623. [PMID: 31187062 PMCID: PMC6555630 DOI: 10.1126/sciadv.aaw5623] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/26/2019] [Indexed: 05/12/2023]
Abstract
The behavior of individual nanocrystals during superlattice phase transitions can profoundly affect the structural perfection and electronic properties of the resulting superlattices. However, details of nanocrystal morphological changes during superlattice phase transitions are largely unknown due to the lack of direct observation. Here, we report the dynamic deformability of PbSe semiconductor nanocrystals during superlattice phase transitions that are driven by ligand displacement. Real-time high-resolution imaging with liquid-phase transmission electron microscopy reveals that following ligand removal, the individual PbSe nanocrystals experience drastic directional shape deformation when the spacing between nanocrystals reaches 2 to 4 nm. The deformation can be completely recovered when two nanocrystals move apart or it can be retained when they attach. The large deformation, which is responsible for the structural defects in the epitaxially fused nanocrystal superlattice, may arise from internanocrystal dipole-dipole interactions.
Collapse
Affiliation(s)
- Yu Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xinxing Peng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Alex Abelson
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Penghao Xiao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Caroline Qian
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lei Yu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lin-Wang Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matt Law
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
48
|
Koch R, Li G, Pandey S, Phillpot S, Wang H, Misture ST. Thermally induced transformations of Au@Cu2O core–shell nanoparticles into Au–Cu nanoparticles from temperature-programmed in situ powder X-ray diffraction. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719004497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Temperature-programmed in situ X-ray diffraction with whole-powder-pattern modeling is used to investigate the reaction of Au@Cu2O core–shell nanoparticles to form nanocrystalline bimetallic Cu
x
Au1−x
alloys (x = 0, 0.25, 0.5, 0.75, 1.0) in a reducing atmosphere. The mechanisms of the reactions are key to informed design of tailored non-equilibrium nanostructures for catalytic and plasmonic materials. The Au@Cu2O reaction is initiated by reduction of the Cu2O cuprite shell to form nanocrystalline metallic Cu at about 413 K. Alloying begins immediately upon formation of metallic Cu at 413 K, with the nucleation of an Au-rich alloy phase which reaches the nominal Cu content of the overall system stoichiometry by 493 K. All bimetallic alloys form a transient ordered Cu3Au intermetallic compound at intermediate temperatures, with the onset of ordering and subsequent disordering varying by composition. No evidence for an ordered Au3Cu intermetallic is found for any composition. Significant crystal growth in the bimetallic phase is apparent at higher temperatures, with the onset temperature increasing with Cu concentration and initial Cu-shell thickness. The reduction of the cuprite phase is slowed by the presence of the core–shell interface, and crystal growth in the Cu shell is completely suppressed within the alloy systems.
Collapse
|
49
|
Wu S, Li M, Sun Y. In Situ Synchrotron X-ray Characterization Shining Light on the Nucleation and Growth Kinetics of Colloidal Nanoparticles. Angew Chem Int Ed Engl 2019; 58:8987-8995. [PMID: 30830994 DOI: 10.1002/anie.201900690] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 11/08/2022]
Abstract
Rational synthesis of colloidal nanoparticles with desirable properties relies on precise control over the nucleation and growth kinetics, which is still not well understood. The recent development of in situ high energy synchrotron X-ray techniques offers an excellent opportunity to quantitatively monitor the growth trajectories of colloidal nanoparticles in real time under real reaction conditions. The time-resolved, quantitative data of the growing colloidal nanoparticles are unique to reveal the mechanism of nanoparticle formation and determine the corresponding intrinsic kinetic parameters. This review discusses the kinetics of major steps of forming colloidal nanoparticles and the capability of in situ synchrotron X-ray techniques in studying the corresponding kinetics.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - Mingrui Li
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
50
|
Wu S, Li M, Sun Y. In Situ Synchrotron X‐ray Characterization Shining Light on the Nucleation and Growth Kinetics of Colloidal Nanoparticles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Siyu Wu
- Department of Chemistry Temple University 1901 North 13th Street Philadelphia PA 19122 USA
| | - Mingrui Li
- Department of Chemistry Temple University 1901 North 13th Street Philadelphia PA 19122 USA
| | - Yugang Sun
- Department of Chemistry Temple University 1901 North 13th Street Philadelphia PA 19122 USA
| |
Collapse
|