1
|
Omole TE, Nguyen HM, Marcinow A, Oo MM, Jahan N, Ssemaganda A, Severini G, Thomas KK, Celum C, Mugo N, Mujugira A, Kublin J, Corey L, Sivro A, Lingappa JR, Gray G, McKinnon LR. Pre-Human Immunodeficiency Virus (HIV) α4β7hi CD4+ T Cells and HIV Risk Among Heterosexual Individuals in Africa. J Infect Dis 2025; 231:e770-e780. [PMID: 39720913 PMCID: PMC11998548 DOI: 10.1093/infdis/jiae638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND CD4+ T cells expressing α4β7 are optimal targets for human immunodeficiency virus (HIV) infections, with higher pre-HIV α4β7hi expression linked to increased HIV acquisition and progression in South African women. However, similar associations were not observed in men who have sex with men or people who inject drugs in the Americas, indicating need for further research. METHODS This retrospective case-control study enrolled heterosexual men and women from South Africa (HIV Vaccine Trials Network [HVTN] 503) and East Africa (Partners Preexposure Prophylaxis/Couples' Observational Study [PP/COS]), quantifying α4β7 expression on CD4+ T cells as a predictor of subsequent HIV risk using flow cytometry analyses. RESULTS Associations between α4β7hi expression and HIV acquisition varied across cohorts. In HVTN 503, women had a higher risk estimate compared to men, but this was not significant. In PP/COS, α4β7hi expression was generally protective, particularly in Ugandans. Additionally, α4β7hi expression inversely correlated with peak viral load in PP/COS but not in HVTN 503; in the latter cohort, α4β7hi expression was inversely correlated with the CD4/CD8 ratio and predicted rapid CD4+ T-cell decline, similar to what was observed previously in South Africa. CONCLUSIONS These findings suggest that α4β7hi expression on CD4+ T cells may not predict HIV acquisition and progression in all contexts, which may be due to cohort effects, modes of transmission, viral clade, or other factors.
Collapse
Affiliation(s)
- Tosin E Omole
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Huong Mai Nguyen
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Agata Marcinow
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Myo Minn Oo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Naima Jahan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Aloysious Ssemaganda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Giulia Severini
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | | | - Connie Celum
- Department of Global Health
- Departments of Medicine and Epidemiology, University of Washington, Seattle
| | - Nelly Mugo
- Department of Global Health
- Sexual Reproductive and Adolescent Child Health Research Program, Kenya Medical Research Institute, Nairobi
| | - Andrew Mujugira
- Department of Global Health
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - James Kublin
- HIV Vaccine Trials Network
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lawrence Corey
- HIV Vaccine Trials Network
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Aida Sivro
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Mucosal Immunology Laboratory, Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Jairam R Lingappa
- Department of Global Health
- Departments of Medicine and Pediatrics, University of Washington, Seattle
| | - Glenda Gray
- HIV Vaccine Trials Network
- Office of the President, South African Medical Research Council, Cape Town
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Mucosal Immunology Laboratory, Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban
- Department of Medical Microbiology and Immunology, University of Nairobi, Kenya
| |
Collapse
|
2
|
Krug SA, Singh R, Yu J, Witt WT, Pilli NR, Wilks A, Barbier M, Robinson KM, Kane MA. Quantification of All-Trans Retinoic Acid and Cytokine Levels After Fungal, Viral and Bacterial Infections in the Lung. J Cell Mol Med 2025; 29:e70391. [PMID: 40031928 PMCID: PMC11875669 DOI: 10.1111/jcmm.70391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 03/05/2025] Open
Abstract
All-trans retinoic acid (atRA) plays a critical role in tissue homeostasis as a master regulator of cellular proliferation, apoptosis and differentiation as well as in immune cell differentiation and function. An active metabolite of vitamin A, atRA has been reported to be reduced in a number of inflammatory conditions in both the lung and gut. Decreases in atRA have been reported in gastrointestinal tissue in inflammatory bowel diseases, radiation-induced gastrointestinal injury and viral infection. In the lung, atRA is reduced in inflammatory conditions including allergic asthma and radiation-induced lung injury; however, the impact of infection on lung atRA is not well defined. In this short communication, we quantified atRA and cytokine levels in the lung after fungal, viral and bacterial infections in mice and determined the correlation between atRA and cytokine levels in the lung. atRA was quantified by LC-MRM3, and seven different inflammatory cytokines were quantified by multiplexed immunoassay in mouse lung challenged with Influenza A, Aspergillus fumigatus, Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus. Combined infections were also investigated. Our results show that there is a significant decrease in atRA after infection regardless of infection type. We show an inverse correlation between the decrease in atRA and the increase in inflammatory cytokines IL-1β, IL-6, IL-10 and IL-12 in lung tissue during infection. Elucidation of the homeostatic regulation of active metabolite atRA is important to understanding disease pathology and may enable future drug development to combat the effects of inflammation and infection.
Collapse
Affiliation(s)
- Samuel A. Krug
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - Ravineel Singh
- Department of Medicine, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - William T. Witt
- Vaccine Development Center, West Virgina University Health Sciences CenterMorgantownWest VirginiaUSA
| | - Nageswara R. Pilli
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - Mariette Barbier
- Vaccine Development Center, West Virgina University Health Sciences CenterMorgantownWest VirginiaUSA
| | - Keven M. Robinson
- Department of Medicine, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| |
Collapse
|
3
|
Nguchu BA, Lu Y, Han Y, Wang Y, Liu J, Li H, Shaw P. Modulation and distribution of extracellular free water and tract deficits in rhesus macaques before and after the initiation of emtricitabine + tenofovir disoproxil fumarate + dotutegravir treatment. Front Immunol 2025; 16:1463434. [PMID: 40093003 PMCID: PMC11906442 DOI: 10.3389/fimmu.2025.1463434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Understanding the specific timing of cART initiation, its effectiveness, and failures, as well as assessing how well the current cART regimens control viral replication and rebound, enhance immune function, and repair or curb early injury in the central nervous system (CNS), is crucial to improving the livelihood of people living with HIV. Methods Here, we use an animal model to provide controlled environments to understand how the bodies of Chinese-origin rhesus monkeys, both the immune system and CNS, respond to a combination of emtricitabine (EMTBL/FTC), dolutegravir (DTG), and tenofovir disoproxil fumarate (TDF) following the induction of Simian Immunodeficiency Virus (SIV). We injected the rhesus monkeys with a dose of SIVmac239 (i.e., TCID50-a 50-fold half-tissue culture infective dose) through brachial veins and conducted seven follow-ups at baseline, day 10, day 35, day 84, day 168, day 252, and day 336 for MRI imaging and blood/CSF assays of SIV copies and immunity levels. Results and discussion Our experimental data demonstrate that the immune system is compromised as early as 7 days after infection, with a rapid rise of SIV copies in ml and a significant drop of CD4/CD8 ratio below ~1 within the first 14 days of infection. The alterations in the extracellular environments, manifesting as increased free water volume fraction (FW-VF) in MRI data and changes in the diffusivity properties of fiber tissues appearing in FW-corrected FA and FW-corrected MD, occur in parallel with an compromised immune system, suggesting that SIV enters the brain parenchyma in the early days of infection via a weakened brain defense system, causing inflammatory processes affecting the CNS. Our findings demonstrate that our current FTC+TDF+DTG regimen can enhance the immune system, suppress SIV replication, and slow damage to the intra- and extracellular environments. However, it is still ineffective in controlling viral rebound and experiences resistance in some rhesus monkeys, which may lead to further damage to the CNS. Our findings also provide the first SIVmac239-based evidence that extracellular FW-VF may be a more reliable biomarker of abnormal inflammatory processes, thus providing a better understanding of SIV disease progression than previously anticipated.
Collapse
Affiliation(s)
- Benedictor Alexander Nguchu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, & Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yu Lu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, & Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yifei Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, & Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanming Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, & Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Chan P, Li X, Li F, Emu B, Price RW, Spudich S. Longitudinal CNS and systemic T-lymphocyte and monocyte activation before and after antiretroviral therapy beginning in primary HIV infection. Front Immunol 2025; 16:1531828. [PMID: 40070827 PMCID: PMC11893981 DOI: 10.3389/fimmu.2025.1531828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Background Trafficking of immune cells to the central nervous system is hypothesized to facilitate HIV entry and immune-induced neuronal injury and is mediated by surface proteins such as chemokine receptors and α4 integrin. We longitudinally assessed immune cell activation and surface marker expression in cerebrospinal fluid (CSF) and blood and their relationship with CSF HIV RNA beginning during primary HIV infection (PHI) before and after antiretroviral therapy (ART). Methods Longitudinal paired blood and CSF were obtained in ART-naïve PHI (<12 month since infection) participants; some independently initiated ART during follow up. Multiparameter flow cytometry of fresh samples determined activation (% CD38+HLADR+) and chemokine receptor expression (% CCR5+ and CXCR3+) on CD4+ and CD8+ T cells, and subtype and α4 integrin expression (% and mean fluorescence intensity (mfi) of CD49d+) on monocytes. HIV RNA was quantified by PCR. Analyses employed Spearman correlation, within-subject correlation, and linear mixed models. Results 51 participants enrolled at a median 3.2 months post HIV transmission with 168 total visits (113 pre-ART, 55 post-ART) and a median of 6.5 months of longitudinal follow up (range 0-40). In pre-ART PHI, frequencies of activated CD4+ and CD8+ T cells were much higher in CSF than in blood, with levels similar to ART-naïve people with chronic HIV infection. Both CSF CD4+ and CD8+ T cell activation increased longitudinally prior to initiation of ART. In multivariate analysis, CSF CD4+ but not CD8+ T cell activation independently predicted CSF HIV RNA. Neither CSF monocyte subtypes or α4 expression correlated with CSF HIV RNA. Blood monocyte α4 MFI correlated with CD4+ and CD8+ T cell activation (p<0.05). Following ART initiation, blood but not CSF T cell activation declined with days on treatment (slope=-0.06, p=0.001). During ART, blood and CSF monocyte α4 MFI correlated with T cell activation (p<0.05). Conclusions In untreated early infection after PHI, immune activation increases over time, and CSF CD4+ T cell activation but not monocyte activation correlates with CSF HIV RNA. Intrathecal T cell activation does not decline during early follow up on ART. Immunomodulating therapies may be needed to prevent neuronal injury and HIV neuroinvasion during early HIV.
Collapse
Affiliation(s)
- Phillip Chan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
| | - Xiang Li
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Brinda Emu
- Department of Medicine, Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States
| | - Richard W. Price
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
5
|
Johnson SD, Pino M, Acharya A, Clain JA, Bose D, Nguyen K, Harper J, Villinger F, Paiardini M, Byrareddy SN. IL-21 and anti-α4β7 dual therapy during ART promotes immunological and microbiome responses in SIV-infected macaques. JCI Insight 2025; 10:e184491. [PMID: 39903521 PMCID: PMC11949015 DOI: 10.1172/jci.insight.184491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Despite combination antiretroviral therapy (ART), HIV causes persistent gut barrier dysfunction, immune depletion, and dysbiosis. Furthermore, ART interruption results in reservoir reactivation and rebound viremia. Both IL-21 and anti-α4β7 improve gut barrier functions, and we hypothesized that combining them would synergize as a dual therapy to improve immunological outcomes in SIV-infected rhesus macaques (RMs). We found no significant differences in CD4+ T cell reservoir size by intact proviral DNA assay. SIV rebounded in both dual-treated and control RMs following analytical therapy interruption (ATI), with time to rebound and initial rebound viremia comparable between groups; however, dual-treated RMs showed slightly better control of viral replication at the latest time points after ATI. Additionally, following ATI, dual-treated RMs showed immunological benefits, including T cell preservation and lower PD-1+ central memory T cell (TCM) frequency. Notably, PD-1+ TCMs were associated with reservoir size, which predicted viral loads (VLs) after ATI. Finally, 16S rRNA-Seq revealed better recovery from dysbiosis in treated animals, and the butyrate-producing Firmicute Roseburia predicted PD-1-expressing TCMs and VLs after ATI. PD-1+ TCMs and gut dysbiosis represent mechanisms of HIV persistence and pathogenesis, respectively. Therefore, combining IL-21 and anti-α4β7 may be an effective therapeutic strategy to improve immunological outcomes for people with HIV.
Collapse
Affiliation(s)
- Samuel D. Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Julien A. Clain
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, and
- Department of Biochemistry and Molecular Biology, UNMC, Omaha, Nebraska, USA
| |
Collapse
|
6
|
Calafat M, Suria C, Mesonero F, de Francisco R, Yagüe Caballero C, de la Peña L, Hernández-Camba A, Marcé A, Gallego B, Martín-Vicente N, Rivero M, Iborra M, Guerra I, Carrillo-Palau M, Madero L, Burgueño B, Monfort D, Torres G, Teller M, Ferrer Rosique JÁ, Vega Villaamil P, Roig C, Ponferrada-Diaz A, Betoré Glaría E, Zabana Y, Gisbert JP, Busquets D, Alcaide N, Camps B, Legido J, González-Vivo M, Bosca-Watts MM, Pérez-Martínez I, Casas Deza D, Guardiola J, Arranz Hernández L, Navarro M, Gargallo-Puyuelo CJ, Cañete F, Mañosa M, Domènech E. HIV Infection Is Associated With a Less Aggressive Phenotype of Inflammatory Bowel Disease: A Multicenter Study of the ENEIDA Registry. Am J Gastroenterol 2025; 120:431-439. [PMID: 39888687 DOI: 10.14309/ajg.0000000000002965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION The coexistence of HIV infection and inflammatory bowel disease (IBD) is uncommon. Data on the impact of HIV on IBD course and its management are scarce. The aim of this study was to describe the IBD phenotype, therapeutic requirements, and prevalence of opportunistic infections (OIs) in IBD patients with a coexistent HIV infection. METHODS Case-control, retrospective study includes all HIV-positive patients diagnosed with IBD in the Nationwide study on genetic and environmental determinants of inflammatory bowel disease registry. Patients with positive HIV serology (HIV-IBD) were compared with controls (HIV seronegative), matched 1:3 by year of IBD diagnosis, age, sex, and type of IBD. RESULTS A total of 364 patients (91 HIV-IBD and 273 IBD controls) were included. In the whole cohort, 58% had ulcerative colitis, 35% had Crohn's disease (CD), and 7% were IBD unclassified. The HIV-IBD group presented a significantly higher proportion of proctitis in ulcerative colitis and colonic location in CD but fewer extraintestinal manifestations than controls. Regarding treatments, nonbiological therapies (37.4% vs 57.9%; P = 0.001) and biologicals (26.4% vs 42.1%; P = 0.007), were used less frequently among patients in the HIV-IBD group. Conversely, patients with HIV-IBD developed more OI than controls, regardless of nonbiological therapy use. In the multivariate analysis, HIV infection (odds ratio 4.765, 95% confidence interval (CI) 2.48-9.14; P < 0.001) and having ≥1 comorbidity (OR 2.445, 95% CI 1.23-4.85; P = 0.010) were risk factors for developing OI, while CD was protective (OR 0.372, 95% CI 0.18-0.78; P = 0.009). DISCUSSION HIV infection seems to be associated with a less aggressive phenotype of IBD and a lesser use of nonbiological therapies and biologicals but entails a greater risk of developing OI.
Collapse
Affiliation(s)
- Margalida Calafat
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carles Suria
- Gastroenterology Department, Hospital Clínic Universitari de València, Universitat de València, València, Spain
| | - Francisco Mesonero
- Gastroenterology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ruth de Francisco
- Gastroenterology Department, Hospital Universitario Central de Asturias (Oviedo), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Carmen Yagüe Caballero
- Gastroenterology Department, Hospital Universitario Miguel Servet (Zaragoza) and Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Luisa de la Peña
- Gastroenterology Department, Hospital Universitari de Bellvitge (L'Hospitalet de Llobregat), Barcelona, Spain
| | | | - Ainhoa Marcé
- Gastroenterology Department, Hospital Universitari Moisès Broggi, Sant Joan Despí, Spain
| | - Beatriz Gallego
- Gastroenterology Department, Hospital Clínico Universitario «Lozano Blesa» (Zaragoza), Instituto de Investigación Sanitaria, IIS Aragón, Zaragoza, Spain
| | | | - Montserrat Rivero
- Gastroenterology Department, Hospital Universitario Marqués de Valdecilla (Santander), Instituto de Investigación Marqués de Valdecilla IDIVAL, Santander, Spain
| | - Marisa Iborra
- Gastroenterology Department, Hospital Universitari i Politècnic la Fe de València, València, Spain
| | - Iván Guerra
- Gastroenterology Department, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain
| | - Marta Carrillo-Palau
- Gastroenterology Department, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Lucía Madero
- Gastroenterology Department, Hospital General Universitario Dr Balmis de Alicante (Alicante), ISABIAL, Alicante, Spain
| | - Beatriz Burgueño
- Gastroenterology Department, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - David Monfort
- Gastroenterology Department, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Gisela Torres
- Gastroenterology Department, Hospital Universitari Arnau de Vilanova de Lleida, Lleida, Spain
| | - Marta Teller
- Gastroenterology Department, Althaia, Xarxa Assistencial Universitària de Manresa, Manresa, Spain
| | | | - Pablo Vega Villaamil
- Gastroenterology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Cristina Roig
- Gastroenterology Department, Hospital Universitari de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Elena Betoré Glaría
- Gastroenterology Department, Hospital Universitario San Jorge, Huesca, Spain
| | - Yamile Zabana
- Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Department, Hospital Universitari Mútua de Terrassa, Terrassa, Spain
| | - Javier P Gisbert
- Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Busquets
- Gastroenterology Department, Hospital Universitari Dr. Trueta de Girona, Girona, Spain
| | - Noelia Alcaide
- Gastroenterology Department, Gastroenterology Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Blau Camps
- Gastroenterology Department, Hospital de Granollers, Granollers, Spain
| | - Jesús Legido
- Gastroenterology Department, Complejo Asistencial de Segovia, Segovia, Spain
| | | | - Marta Maia Bosca-Watts
- Gastroenterology Department, Hospital Clínic Universitari de València, Universitat de València, València, Spain
| | - Isabel Pérez-Martínez
- Gastroenterology Department, Hospital Universitario Central de Asturias (Oviedo), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Diego Casas Deza
- Gastroenterology Department, Hospital Universitario Miguel Servet (Zaragoza) and Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Jordi Guardiola
- Gastroenterology Department, Hospital Universitari de Bellvitge (L'Hospitalet de Llobregat), Barcelona, Spain
| | - Laura Arranz Hernández
- Gastroenterology Department, Hospital Universitario Nuestra Señora de Candelaria, Tenerife, Spain
| | - Mercè Navarro
- Gastroenterology Department, Hospital Universitari Moisès Broggi, Sant Joan Despí, Spain
| | - Carla J Gargallo-Puyuelo
- Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Department, Hospital Clínico Universitario «Lozano Blesa» (Zaragoza), Instituto de Investigación Sanitaria, IIS Aragón, Zaragoza, Spain
| | - Fiorella Cañete
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Míriam Mañosa
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Eugeni Domènech
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Johnson SD, Pilli N, Yu J, Knight LA, Kane MA, Byrareddy SN. Dual role for microbial short-chain fatty acids in modifying SIV disease trajectory following anti-α4β7 antibody administration. Ann Med 2024; 56:2315224. [PMID: 38353210 PMCID: PMC10868432 DOI: 10.1080/07853890.2024.2315224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Human Immunodeficiency Virus (HIV)/Simian Immunodeficiency Virus (SIV) infection is associated with significant gut damage, similar to that observed in patients with inflammatory bowel disease (IBD). This pathology includes loss of epithelial integrity, microbial translocation, dysbiosis, and resultant chronic immune activation. Additionally, the levels of all-trans-retinoic acid (atRA) are dramatically attenuated. Data on the therapeutic use of anti-α4β7 antibodies has shown promise in patients with ulcerative colitis and Crohn's disease. Recent evidence has suggested that the microbiome and short-chain fatty acid (SCFA) metabolites it generates may be critical for anti-α4β7 efficacy and maintaining intestinal homeostasis. MATERIALS AND METHODS To determine whether the microbiome contributes to gut homeostasis after anti-α4β7 antibody administered to SIV-infected rhesus macaques, faecal SCFA concentrations were determined, 16S rRNA sequencing was performed, plasma viral loads were determined, plasma retinoids were measured longitudinally, and gut retinoid synthesis/response gene expression was quantified. RESULTS Our results suggest that anti-α4β7 antibody facilitates the return of retinoid metabolism to baseline levels after SIV infection. Furthermore, faecal SCFAs were shown to be associated with retinoid synthesis gene expression and rebound viral loads after therapy interruption. CONCLUSIONS Taken together, these data demonstrate the therapeutic advantages of anti-α4β7 antibody administration during HIV/SIV infection and that the efficacy of anti-α4β7 antibody may depend on microbiome composition and SCFA generation.
Collapse
Affiliation(s)
- Samuel D. Johnson
- Department of Pathology and Microbiology, University of NE Medical Center, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of MD School of Pharmacy, Baltimore, MD, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of MD School of Pharmacy, Baltimore, MD, USA
| | - Lindsey A. Knight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of MD School of Pharmacy, Baltimore, MD, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
8
|
Jimenez-Leon MR, Gasca-Capote C, Roca-Oporto C, Espinosa N, Sobrino S, Fontillon-Alberdi M, Gao C, Roseto I, Gladkov G, Rivas-Jeremias I, Neukam K, Sanchez-Hernandez JG, Rigo-Bonnin R, Cervera-Barajas AJ, Mesones R, García F, Alvarez-Rios AI, Bachiller S, Vitalle J, Perez-Gomez A, Camacho-Sojo MI, Gallego I, Brander C, McGowan I, Mothe B, Viciana P, Yu X, Lichterfeld M, Lopez-Cortes LF, Ruiz-Mateos E. Vedolizumab and ART in recent HIV-1 infection unveil the role of α4β7 in reservoir size. JCI Insight 2024; 9:e182312. [PMID: 38980725 PMCID: PMC11343594 DOI: 10.1172/jci.insight.182312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUNDWe evaluated the safety and viral rebound, after analytical treatment interruption (ATI), of vedolizumab and ART in recent HIV-1 infection. We used this model to analyze the effect of α4β7 on the HIV-1 reservoir size.METHODSParticipants started ART with monthly vedolizumab infusions, and ATI was performed at week 24. Biopsies were obtained from ileum and cecum at baseline and week 24. Vedolizumab levels, HIV-1 reservoir, flow cytometry, and cell-sorting and antibody competition experiments were assayed.RESULTSVedolizumab was safe and well tolerated. No participant achieved undetectable viremia off ART 24 weeks after ATI. Only a modest effect on the time to achieve more than 1,000 HIV-1 RNA copies/mL and the proportion of participants off ART was observed, being higher in the vedolizumab group compared with historical controls. Just before ATI, α4β7 expression was associated with HIV-1 DNA and RNA in peripheral blood and with PD1 and TIGIT levels. Importantly, a complete blocking of α4β7 was observed on peripheral CD4+ T cells but not in gut (ileum and cecum), where α4β7 blockade and vedolizumab levels were inversely associated with HIV-1 DNA.CONCLUSIONOur findings support α4β7 as an important determinant in HIV-1 reservoir size, suggesting the complete α4β7 blockade in tissue as a promising tool for HIV-cure combination strategies.TRIAL REGISTRATIONClinicalTrials.gov NCT03577782.FUNDINGThis work was supported by the Instituto de Salud Carlos III (Fondo Europeo de Desarrollo Regional, "a way to make Europe," research contracts FI17/00186 and FI19/00083 and research projects PI18/01532, PI19/01127, PI22/01796), Conserjería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía (research projects P20/00906), the Red Temática de Investigación Cooperativa en SIDA (RD16/0025/0020), and the Spanish National Research Council.
Collapse
Affiliation(s)
- Maria Reyes Jimenez-Leon
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Carmen Gasca-Capote
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Cristina Roca-Oporto
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Nuria Espinosa
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | | | | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Gregory Gladkov
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Inmaculada Rivas-Jeremias
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Karin Neukam
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | | - Raul Rigo-Bonnin
- Department of Clinical Laboratory, Hospital Universitari de Bellvitge, Instituto de Investigación Biomédica de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | | | - Rosario Mesones
- Clinical Trials Units, Virgen del Rocío University Hospital, Seville, Spain
| | - Federico García
- Departament of Microbiology, San Cecilio University Hospital, Instituto de Investigación Ibs, Granada, Ciber de Enfermedades Infecciosas, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Granada, Spain
| | | | - Sara Bachiller
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Joana Vitalle
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Alberto Perez-Gomez
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - María Inés Camacho-Sojo
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Isabel Gallego
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | | | | - Beatriz Mothe
- Infectious Diseases Department and IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Spain
| | - Pompeyo Viciana
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Xu Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Luis F. Lopez-Cortes
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| |
Collapse
|
9
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
10
|
Burke Schinkel SC, Barros PO, Berthoud T, Byrareddy SN, McGuinty M, Cameron DW, Angel JB. Comparative analysis of human gut- and blood-derived mononuclear cells: contrasts in function and phenotype. Front Immunol 2024; 15:1336480. [PMID: 38444848 PMCID: PMC10912472 DOI: 10.3389/fimmu.2024.1336480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Alterations in the gut immune system have been implicated in various diseases.The challenge of obtaining gut tissues from healthy individuals, commonly performed via surgical explants, has limited the number of studies describing the phenotype and function of gut-derived immune cells in health. Methods Here, by means of recto-sigmoid colon biopsies obtained during routine care (colon cancer screening in healthy adults), the phenotype and function of immune cells present in the gut were described and compared to those found in blood. Results The proportion of CD4+, CD8+, MAIT, γδ+ T, and NK cells phenotype, expression of integrins, and ability to produce cytokine in response to stimulation with PMA and ionomycin. T cells in the gut were found to predominantly have a memory phenotype as compared to T cells in blood where a naïve phenotype predominates. Recto-sigmoid mononuclear cells also had higher PD-1 and Ki67 expression. Furthermore, integrin expression and cytokine production varied by cell type and location in blood vs. gut. Discussion These findings demonstrate the differences in functionality of these cells when compared to their blood counterparts and validate previous studies on phenotype within gut-derived immune cells in humans (where cells have been obtained through surgical means). This study suggests that recto-sigmoid biopsies collected during colonoscopy can be a reliable yet more accessible sampling method for follow up of alterations of gut derived immune cells in clinical settings.
Collapse
Affiliation(s)
| | - Priscila O Barros
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Tamara Berthoud
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michaeline McGuinty
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - D William Cameron
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan B Angel
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
12
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
13
|
Otte F, Zhang Y, Spagnuolo J, Thielen A, Däumer M, Wiethe C, Stoeckle M, Kusejko K, Klein F, Metzner KJ, Klimkait T, the Swiss HIV Cohort Study AbelaI.Aebi-PoppK.AnagnostopoulosA.BattegayM.BernasconiE.BraunD.L.BucherH.C.CalmyA.CavassiniM.CiuffiA.DollenmaierG.EggerM.ElziL.FehrJ.FellayJ.FurrerH.FuxC.A.GünthardH.F.HachfeldA.HaerryD.HasseB.HirschH.H.HoffmannM.HösliI.HuberM.Jackson-PerryD.KahlertC.R.KaiserL.KeiserO.KlimkaitT.KouyosR.D.KovariH.KusejkoK.LabhardtN.LeuzingerK.Martinez de TejadaB.MarzoliniC.MetznerK.J.MüllerN.NemethJ.NiccaD.NotterJ.PaioniP.PantaleoG.PerreauM.RauchA.Salazar-VizcayaL.SchmidP.SpeckR.StöckleM.TarrP.TrkolaA.WandelerG.WeisserM.YerlyS.. Revealing viral and cellular dynamics of HIV-1 at the single-cell level during early treatment periods. CELL REPORTS METHODS 2023; 3:100485. [PMID: 37426753 PMCID: PMC10326345 DOI: 10.1016/j.crmeth.2023.100485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 07/11/2023]
Abstract
While combination therapy completely suppresses HIV-1 replication in blood, functional virus persists in CD4+ T cell subsets in non-peripheral compartments that are not easily accessible. To fill this gap, we investigated tissue-homing properties of cells that transiently appear in the circulating blood. Through cell separation and in vitro stimulation, the HIV-1 "Gag and Envelope reactivation co-detection assay" (GERDA) enables sensitive detection of Gag+/Env+ protein-expressing cells down to about one cell per million using flow cytometry. By associating GERDA with proviral DNA and polyA-RNA transcripts, we corroborate the presence and functionality of HIV-1 in critical body compartments utilizing t-distributed stochastic neighbor embedding (tSNE) and density-based spatial clustering of applications with noise (DBSCAN) clustering with low viral activity in circulating cells early after diagnosis. We demonstrate transcriptional HIV-1 reactivation at any time, potentially giving rise to intact, infectious particles. With single-cell level resolution, GERDA attributes virus production to lymph-node-homing cells with central memory T cells (TCMs) as main players, critical for HIV-1 reservoir eradication.
Collapse
Affiliation(s)
- Fabian Otte
- Molecular Virology, Department Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Yuepeng Zhang
- Molecular Virology, Department Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Julian Spagnuolo
- Experimental Immunology, Department Biomedicine, University of Basel, 4056 Basel, Switzerland
| | | | | | | | - Marcel Stoeckle
- Infectiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and Institute of Medical Virology, University of Zurich, 8091 Zurich, Switzerland
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and Institute of Medical Virology, University of Zurich, 8091 Zurich, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department Biomedicine, University of Basel, 4009 Basel, Switzerland
| | | |
Collapse
|
14
|
Gillespie SL, Chinen J, Paul ME. Human Immunodeficiency Virus Infection and Acquired Immunodeficiency Syndrome. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
Kim I, Srinivasula S, DeGrange P, Long B, Jang H, Carrasquillo JA, Lane HC, Di Mascio M. Quantitative PET imaging of the CD4 pool in nonhuman primates. Eur J Nucl Med Mol Imaging 2022; 50:14-26. [PMID: 36028577 PMCID: PMC9668939 DOI: 10.1007/s00259-022-05940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE Previous SPECT and PET semi-quantitative in vivo imaging studies in monkeys have demonstrated specific uptake of radiolabeled rhesus recombinant anti-CD4 monoclonal antibody fragment CD4R1-F(ab΄)2 in the spleen and clusters of lymph nodes (LNs) but yielded conflicting results of imaging the gut CD4 + T-cell pool. Here, using PET dynamic imaging with kinetic analysis, we performed a fully quantitative CD4 imaging in rhesus macaques. METHODS The biodistributions of [89Zr]Zr-CD4R1-F(ab΄)2 and/or of [89Zr]Zr-ibalizumab were performed with static PET scans up to 144 h (6 days) post-injection in 18 rhesus macaques with peripheral blood CD4 + T cells/μl ranging from ~ 20 to 2400. Fully quantitative analysis with a 4-h dynamic scan, arterial sampling, metabolite evaluation, and model fitting was performed in three immunocompetent monkeys to estimate the binding potential of CD4 receptors in the LNs, spleen, and gut. RESULTS The biodistributions of [89Zr]Zr-CD4R1-F(ab΄)2 and [89Zr]Zr-ibalizumab were similar in lymphoid tissues with a clear delineation of the CD4 pool in the LNs and spleen and a significant difference in lymphoid tissue uptake between immunocompetent and immunocompromised macaques. Consistent with our previous SPECT imaging of [99mTc]Tc-CD4R1-F(ab΄)2, the [89Zr]Zr-CD4R1-F(ab΄)2 and [89Zr]Zr-Ibalizumab uptakes in the gut were low and not different between uninfected and SIV-infected CD4-depleted monkeys. Ex vivo studies of large and small intestines confirmed the in vivo images. CONCLUSION The majority of specific binding to CD4 + tissue was localized to LNs and spleen with minimal uptake in the gut. Binding potential derived from fully quantitative studies revealed that the contribution of the gut is lower than the spleen's contribution to the total body CD4 pool.
Collapse
Affiliation(s)
- Insook Kim
- AIDS Imaging Research Section, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sharat Srinivasula
- AIDS Imaging Research Section, Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Paula DeGrange
- AIDS Imaging Research Section, Integrated Research Facility, NIAID, NIH, Frederick, MD, 21702, USA
| | - Brad Long
- AIDS Imaging Research Section, Integrated Research Facility, NIAID, NIH, Frederick, MD, 21702, USA
| | - Hyukjin Jang
- AIDS Imaging Research Section, Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Radiology Department, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| | - H Clifford Lane
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Michele Di Mascio
- AIDS Imaging Research Section, Division of Clinical Research, NIAID, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Host Molecule Incorporation into HIV Virions, Potential Influences in HIV Pathogenesis. Viruses 2022; 14:v14112523. [PMID: 36423132 PMCID: PMC9694329 DOI: 10.3390/v14112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
During the last phase of HIV viral production, nascent HIV virions acquire a fraction of the cellular lipid membrane to create the external lipid envelope, a process by which cellular proteins present on the surface of the infected cell can be incorporated along with Env trimers. Interestingly, several studies indicated that these incorporated host molecules could conserve their biological activity and consequently contribute to HIV pathogenesis either by enhancing the infectivity of HIV virions, their tissue tropism or by affecting immune cell functions. The following review will describe the main approaches used to characterize membrane bound host molecule incorporation into HIV virions, the proposed mechanisms involved, and the role of a non-exhaustive list of incorporated molecules.
Collapse
|
17
|
Johnson SD, Knight LA, Kumar N, Olwenyi OA, Thurman M, Mehra S, Mohan M, Byrareddy SN. Early treatment with anti-α 4β 7 antibody facilitates increased gut macrophage maturity in SIV-infected rhesus macaques. Front Immunol 2022; 13:1001727. [PMID: 36389795 PMCID: PMC9664000 DOI: 10.3389/fimmu.2022.1001727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Despite advances in combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to experience gastrointestinal dysfunction. Infusions of anti-α4β7 monoclonal antibodies (mAbs) have been proposed to increase virologic control during simian immunodeficiency virus (SIV) infection in macaques with mixed results. Recent evidences suggested that therapeutic efficacy of vedolizumab (a humanized anti-α4β7 mAb), during inflammatory bowel diseases depends on microbiome composition, myeloid cell differentiation, and macrophage phenotype. We tested this hypothesis in SIV-infected, anti-α4β7 mAb-treated macaques and provide flow cytometric and microscopic evidence that anti-α4β7 administered to SIV-infected macaques increases the maturity of macrophage phenotypes typically lost in the small intestines during SIV disease progression. Further, this increase in mature macrophage phenotype was associated with tissue viral loads. These phenotypes were also associated with dysbiosis markers in the gut previously identified as predictors of HIV replication and immune activation in PLWH. These findings provide a novel model of anti-α4β7 efficacy offering new avenues for targeting pathogenic mucosal immune response during HIV/SIV infection.
Collapse
Affiliation(s)
- Samuel D. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lindsey A. Knight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Omalla A. Olwenyi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
18
|
Zhang T, Guo S, Li F, Lan X, Jia Y, Zhang J, Huang Y, Liang XJ. Image-guided/improved diseases management: From immune-strategies and beyond. Adv Drug Deliv Rev 2022; 188:114446. [PMID: 35820600 DOI: 10.1016/j.addr.2022.114446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Timely and accurate assessment and diagnosis are extremely important and beneficial for all diseases, especially for some of the major human disease, such as cancers, cardiovascular diseases, infectious diseases, and neurodegenerative diseases. Limited by the variable disease microenvironment, early imperceptible symptoms, complex immune system interactions, and delayed clinical phenotypes, disease diagnosis and treatment are difficult in most cases. Molecular imaging (MI) techniques can track therapeutic drugs and disease sites in vivo and in vitro in a non-invasive, real-time and visible strategies. Comprehensive visual imaging and quantitative analysis based on different levels can help to clarify the disease process, pathogenesis, drug pharmacokinetics, and further evaluate the therapeutic effects. This review summarizes the application of different MI techniques in the diagnosis and treatment of these major human diseases. It is hoped to shed a light on the development of related technologies and fields.
Collapse
Affiliation(s)
- Tian Zhang
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Guo
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China
| | - Fangzhou Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yaru Jia
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Yuanyu Huang
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China; College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China; University of Chinese Academy of Sciences. Beijing 100049, China.
| |
Collapse
|
19
|
Cafaro A, Ensoli B. HIV-1 therapeutic vaccines in clinical development to intensify or replace antiretroviral therapy: the promising results of the Tat vaccine. Expert Rev Vaccines 2022; 21:1243-1253. [PMID: 35695268 DOI: 10.1080/14760584.2022.2089119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Upon the introduction of the combination antiretroviral therapy (cART), HIV infection has become a chronic disease. However, cART is unable to eradicate the virus and fails to restore the CD4 counts in about 30% of the treated individuals. Furthermore, treatment is life-long, and it does not protect from morbidities typically observed in the elderly. Therapeutic vaccines represent the most cost-effective intervention to intensify or replace cART. AREAS COVERED Here, we briefly discuss the obstacles to the development and evaluation of the efficacy of therapeutic vaccines and review recent approaches evaluated in clinical trials. EXPERT OPINION Although vaccines were generally safe and immunogenic, evidence of efficacy was negligible or marginal in most trials. A notable exception is the therapeutic Tat vaccine approach showing promising results of cART intensification, with CD4 T-cell increase and proviral load reduction beyond those afforded by cART alone. Rationale and evidence in support of choosing Tat as the vaccine target are thoroughly discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
20
|
Sidell N, Kane MA. Actions of Retinoic Acid in the Pathophysiology of HIV Infection. Nutrients 2022; 14:nu14081611. [PMID: 35458172 PMCID: PMC9029687 DOI: 10.3390/nu14081611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023] Open
Abstract
The vitamin A metabolite all-trans retinoic acid (RA) plays a key role in tissue homeostasis and mucosal immunity. RA is produced by gut-associated dendritic cells, which are among the first cells encountered by HIV. Acute HIV infection results in rapid reduction of RA levels and dysregulation of immune cell populations whose identities and function are largely controlled by RA. Here, we discuss the potential link between the roles played by RA in shaping intestinal immune responses and the manifestations and pathogenesis of HIV-associated enteropathy and similar conditions observed in SIV-infected non-human primate models. We also present data demonstrating the ability of RA to enhance the activation of replication-competent viral reservoirs from subjects on suppressive anti-retroviral therapy. The data suggest that retinoid supplementation may be a useful adjuvant for countering the pathologic condition of the gastro-intestinal tract associated with HIV infection and as part of a strategy for reactivating viral reservoirs as a means of depleting latent viral infection.
Collapse
Affiliation(s)
- Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (N.S.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Correspondence: (N.S.); (M.A.K.)
| |
Collapse
|
21
|
Mijiti Z, Song JW, Jiao YM, Gao L, Ma HM, Guo XY, Zhang Q, Guo YT, Ding JB, Zhang SB, Wang FS. α4β7 high CD4 + T cells are prone to be infected by HIV-1 and associated with HIV-1 disease progression. HIV Med 2022; 23 Suppl 1:106-114. [PMID: 35293101 DOI: 10.1111/hiv.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION To investigate the characteristics of β7high CD4+ T cells during HIV-1 infection and the relationship between β7high CD4+ T cells and HIV-1 disease progress. METHODS This study enrolled 124 HIV-1-infected patients, including 80 treatment naïve patients (TNs), 41 patients who underwent antiretroviral therapy (ARTs), and three long-term no progression patients (LTNPs). Nineteen matched healthy subjects were included as controls (HCs). The characteristics and frequency of β7high CD4+ T cells were analyzed using flow cytometry. An in vitro culture experiment was used to study HIV-1 infection of β7high CD4+ T cells. Real-time polymerase chain reaction was performed to quantify HIV-1 DNA and CA-RNA levels. RESULTS The frequency of β7high CD4+ T in the peripheral blood was significantly decreased and negatively correlated with disease progression during chronic HIV-1 infection. A large proportion of β7high CD4+ T cells showed Th17 phenotype. Furthermore, β7high CD4+ T cells were preferentially infected by HIV-1 in vitro and in vivo. There were no significant differences of HIV-1 DNA, and CA-RNA levels between β7high CD4+ T and β7low CD4+ T subsets in HIV-1 infected individuals after antiviral treatment. CONCLUSION The β7high CD4+ T cells were negatively correlated with disease progression during chronic HIV-1 infection. β7high CD4+ T cells are susceptible to infection with HIV-1 and HIV-1 latent cells.
Collapse
Affiliation(s)
- Zilaiguli Mijiti
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jin-Wen Song
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lin Gao
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Hai-Mei Ma
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Xiao-Yan Guo
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Qing Zhang
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yun-Tian Guo
- Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jian-Bing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shi-Bin Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fu-Sheng Wang
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China.,Department of Infectious Diseases, the Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
22
|
Jiao YM, Xu Z, Wang FS. Snapshot of clinical problems among people living with HIV in China. HIV Med 2022; 23 Suppl 1:4-5. [PMID: 35293107 DOI: 10.1111/hiv.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/26/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zhe Xu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
23
|
Card CM, Abrenica B, McKinnon LR, Ball TB, Su RC. Endothelial Cells Promote Productive HIV Infection of Resting CD4 + T Cells by an Integrin-Mediated Cell Adhesion-Dependent Mechanism. AIDS Res Hum Retroviruses 2022; 38:111-126. [PMID: 34465136 PMCID: PMC8861939 DOI: 10.1089/aid.2021.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Resting CD4+ T cells are primary targets of early HIV infection events in vivo, but do not readily support HIV replication in vitro. This barrier to infection can be overcome by exposing resting CD4+ T cells to endothelial cells (ECs). ECs line blood vessels and direct T cell trafficking into inflamed tissues. Cell trafficking pathways have been shown to have overlapping roles in facilitating HIV replication, but their relevance to EC-mediated enhancement of HIV susceptibility in resting CD4+ T cells has not previously been examined. We characterized the phenotype of primary human resting CD4+ T cells that became productively infected with HIV when cocultured with primary human blood and lymphatic ECs. The infected CD4+ T cells were primarily central memory cells enriched for high expression of the integrins LFA-1 and VLA-4. ICAM-1 and VCAM-1, the cognate ligands for LFA-1 and VLA-4, respectively, were expressed by the ECs in the coculture. Blocking LFA-1 and VLA-4 on resting CD4+ T cells inhibited infection by 65.4%–96.9%, indicating that engagement of these integrins facilitates EC-mediated enhancement of productive HIV infection in resting CD4+ T cells. The demonstration that ECs influence cellular HIV susceptibility of resting memory CD4+ T cells through cell trafficking pathways engaged during the transmigration of T cells into tissues highlights the physiological relevance of these findings for HIV acquisition and opportunities for intervention.
Collapse
Affiliation(s)
- Catherine M. Card
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Bernard Abrenica
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Lyle R. McKinnon
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Center for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
24
|
Traenkle B, Kaiser PD, Pezzana S, Richardson J, Gramlich M, Wagner TR, Seyfried D, Weldle M, Holz S, Parfyonova Y, Nueske S, Scholz AM, Zeck A, Jakobi M, Schneiderhan-Marra N, Schaller M, Maurer A, Gouttefangeas C, Kneilling M, Pichler BJ, Sonanini D, Rothbauer U. Single-Domain Antibodies for Targeting, Detection, and In Vivo Imaging of Human CD4 + Cells. Front Immunol 2021; 12:799910. [PMID: 34956237 PMCID: PMC8696186 DOI: 10.3389/fimmu.2021.799910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
The advancement of new immunotherapies necessitates appropriate probes to monitor the presence and distribution of distinct immune cell populations. Considering the key role of CD4+ cells in regulating immunological processes, we generated novel single-domain antibodies [nanobodies (Nbs)] that specifically recognize human CD4. After in-depth analysis of their binding properties, recognized epitopes, and effects on T-cell proliferation, activation, and cytokine release, we selected CD4-specific Nbs that did not interfere with crucial T-cell processes in vitro and converted them into immune tracers for noninvasive molecular imaging. By optical imaging, we demonstrated the ability of a high-affinity CD4-Nb to specifically visualize CD4+ cells in vivo using a xenograft model. Furthermore, quantitative high-resolution immune positron emission tomography (immunoPET)/MR of a human CD4 knock-in mouse model showed rapid accumulation of 64Cu-radiolabeled CD4-Nb1 in CD4+ T cell-rich tissues. We propose that the CD4-Nbs presented here could serve as versatile probes for stratifying patients and monitoring individual immune responses during personalized immunotherapy in both cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Bjoern Traenkle
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Stefania Pezzana
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Jennifer Richardson
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Marius Gramlich
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Teresa R Wagner
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Pharmaceutical Biotechnology, University of Tübingen, Tübingen, Germany
| | - Dominik Seyfried
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Melissa Weldle
- Pharmaceutical Biotechnology, University of Tübingen, Tübingen, Germany
| | - Stefanie Holz
- Pharmaceutical Biotechnology, University of Tübingen, Tübingen, Germany
| | - Yana Parfyonova
- Pharmaceutical Biotechnology, University of Tübingen, Tübingen, Germany
| | - Stefan Nueske
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Oberschleissheim, Germany
| | - Armin M Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Oberschleissheim, Germany
| | - Anne Zeck
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Martin Schaller
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany.,Department of Dermatology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany.,Department of Medical Oncology and Pneumology, University of Tübingen, Tübingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Pharmaceutical Biotechnology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Yu J, Huang W, Liu T, Defnet AE, Zalesak-Kravec S, Farese AM, MacVittie TJ, Kane MA. Effect of Radiation on the Essential Nutrient Homeostasis and Signaling of Retinoids in a Non-human Primate Model with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:406-418. [PMID: 34546221 PMCID: PMC8549574 DOI: 10.1097/hp.0000000000001477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ABSTRACT High-dose radiation exposure results in hematopoietic (H) and gastrointestinal (GI) acute radiation syndromes (ARS) followed by delayed effects of acute radiation exposure (DEARE), which include damage to lung, heart, and GI. Whereas DEARE includes inflammation and fibrosis in multiple tissues, the molecular mechanisms contributing to inflammation and to the development of fibrosis remain incompletely understood. Reports that radiation dysregulates retinoids and proteins within the retinoid pathway indicate that radiation disrupts essential nutrient homeostasis. An active metabolite of vitamin A, retinoic acid (RA), is a master regulator of cell proliferation, differentiation, and apoptosis roles in inflammatory signaling and the development of fibrosis. As facets of inflammation and fibrosis are regulated by RA, we surveyed radiation-induced changes in retinoids as well as proteins related to and targets of the retinoid pathway in the non-human primate after high dose radiation with minimal bone marrow sparing (12 Gy PBI/BM2.5). Retinoic acid was decreased in plasma as well as in lung, heart, and jejunum over time, indicating a global disruption of RA homeostasis after IR. A number of proteins associated with fibrosis and with RA were significantly altered after radiation. Together these data indicate that a local deficiency of endogenous RA presents a permissive environment for fibrotic transformation.
Collapse
Affiliation(s)
- Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Stephanie Zalesak-Kravec
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| |
Collapse
|
26
|
Interests of the Non-Human Primate Models for HIV Cure Research. Vaccines (Basel) 2021; 9:vaccines9090958. [PMID: 34579195 PMCID: PMC8472852 DOI: 10.3390/vaccines9090958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Non-human primate (NHP) models are important for vaccine development and also contribute to HIV cure research. Although none of the animal models are perfect, NHPs enable the exploration of important questions about tissue viral reservoirs and the development of intervention strategies. In this review, we describe recent advances in the use of these models for HIV cure research and highlight the progress that has been made as well as limitations using these models. The main NHP models used are (i) the macaque, in which simian immunodeficiency virus (SIVmac) infection displays similar replication profiles as to HIV in humans, and (ii) the macaque infected by a recombinant virus (SHIV) consisting of SIVmac expressing the HIV envelope gene serving for studies analyzing the impact of anti-HIV Env broadly neutralizing antibodies. Lessons for HIV cure that can be learned from studying the natural host of SIV are also presented here. An overview of the most promising and less well explored HIV cure strategies tested in NHP models will be given.
Collapse
|
27
|
Frank I, Cigoli M, Arif MS, Fahlberg MD, Maldonado S, Calenda G, Pegu A, Yang ES, Rawi R, Chuang GY, Geng H, Liu C, Zhou T, Kwong PD, Arthos J, Cicala C, Grasperge BF, Blanchard JL, Gettie A, Fennessey CM, Keele BF, Vaccari M, Hope TJ, Fauci AS, Mascola JR, Martinelli E. Blocking α 4β 7 integrin delays viral rebound in SHIV SF162P3-infected macaques treated with anti-HIV broadly neutralizing antibodies. Sci Transl Med 2021; 13:eabf7201. [PMID: 34408080 PMCID: PMC8977869 DOI: 10.1126/scitranslmed.abf7201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) may favor development of antiviral immunity by engaging the immune system during immunotherapy. Targeting integrin α4β7 with an anti-α4β7 monoclonal antibody (Rh-α4β7) affects immune responses in SIV/SHIV-infected macaques. To explore the therapeutic potential of combining bNAbs with α4β7 integrin blockade, SHIVSF162P3-infected, viremic rhesus macaques were treated with bNAbs only (VRC07-523LS and PGT128 anti-HIV antibodies) or a combination of bNAbs and Rh-α4β7 or were left untreated as a control. Treatment with bNAbs alone decreased viremia below 200 copies/ml in all macaques, but seven of eight macaques (87.5%) in the bNAbs-only group rebounded within a median of 3 weeks (95% CI: 2 to 9). In contrast, three of six macaques treated with a combination of Rh-α4β7 and bNAbs (50%) maintained a viremia below 200 copies/ml until the end of the follow-up period; viremia in the other three macaques rebounded within a median of 6 weeks (95% CI: 5 to 11). Thus, there was a modest delay in viral rebound in the macaques treated with the combination antibody therapy compared to bNAbs alone. Our study suggests that α4β7 integrin blockade may prolong virologic control by bNAbs in SHIVSF162P3-infected macaques.
Collapse
Affiliation(s)
- Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Mariasole Cigoli
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Muhammad S Arif
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marissa D Fahlberg
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | | | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brooke F Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - James L Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monica Vaccari
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, USA.
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
28
|
Distinct chemokines selectively induce HIV-1 gp120-integrin α4β7 binding via triggering conformer-specific activation of α4β7. Signal Transduct Target Ther 2021; 6:265. [PMID: 34267180 PMCID: PMC8282615 DOI: 10.1038/s41392-021-00582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/14/2021] [Indexed: 11/08/2022] Open
|
29
|
CG dinucleotide removal in bioluminescent and fluorescent reporters improves HIV-1 replication and reporter gene expression for dual imaging in humanized mice. J Virol 2021; 95:e0044921. [PMID: 34232063 PMCID: PMC8428378 DOI: 10.1128/jvi.00449-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Visualizing the transmission and dissemination of human immunodeficiency virus type 1 (HIV-1) in real time in humanized mouse models is a robust tool to investigate viral replication during treatments and in tissue reservoirs. However, the stability and expression of HIV-1 reporter genes are obstacles for long-term serial imaging in vivo. Two replication-competent CCR5-tropic HIV-1 reporter constructs were created that encode either nanoluciferase (nLuc) or a near-infrared fluorescent protein (iRFP) upstream of nef. HIV-1 reporter virus replication and reporter gene expression was measured in cell culture and in humanized mice. While reporter gene expression in vivo correlated initially with plasma viremia, expression decreased after 4 to 5 weeks despite high plasma viremia. The reporter genes were codon optimized to remove cytosine/guanine (CG) dinucleotides, and new CO-nLuc and CO-iRFP viruses were reconstructed. Removal of CG dinucleotides in HIV-1 reporter viruses improved replication in vitro and reporter expression in vivo and ex vivo. Both codon-optimized reporter viruses could be visualized during coinfection and in vivo reporter gene expression during treatment failure preceded detection of plasma viremia. While the dynamic range of CO-iRFP HIV-1 was lower than that of CO-nLuc HIV-1, both viruses could have utility in studying and visualizing HIV-1 infection in humanized mice. IMPORTANCE Animal models are important for studying HIV-1 pathogenesis and treatments. We developed two viruses each encoding a reporter gene that can be expressed in cells after infection. This study shows that HIV-1 infection can be visualized by noninvasive, whole-body imaging in mice with human immune cells over time by reporter expression. We improved reporter expression to reflect HIV-1 replication and showed that two viral variants can be tracked over time in the same animal and can predict failure of antiretroviral therapy to suppress virus.
Collapse
|
30
|
Ziani W, Shao J, Fang A, Connolly PJ, Wang X, Veazey RS, Xu H. Mucosal integrin α4β7 blockade fails to reduce the seeding and size of viral reservoirs in SIV-infected rhesus macaques. FASEB J 2021; 35:e21282. [PMID: 33484474 PMCID: PMC7839271 DOI: 10.1096/fj.202002235r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cellular viral reservoirs are rapidly established in tissues upon HIV‐1/SIV infection, which persist throughout viral infection, even under long‐term antiretroviral therapy (ART). Specific integrins are involved in the homing of cells to gut‐associated lymphoid tissues (GALT) and inflamed tissues, which may promote the seeding and dissemination of HIV‐1/SIV to these tissue sites. In this study, we investigated the efficacy of prophylactic integrin blockade (α4β7 antibody or α4β7/α4β1 dual antagonist TR‐14035) on viral infection, as well as dissemination and seeding of viral reservoirs in systemic and lymphoid compartments post‐SIV inoculation. The results showed that blockade of α4β7/α4β1 did not decrease viral infection, replication, or reduce viral reservoir size in tissues of rhesus macaques after SIV infection, as indicated by equivalent levels of plasma viremia and cell‐associated SIV RNA/DNA to controls. Surprisingly, TR‐14035 administration in acute SIV infection resulted in consistently higher viremia and more rapid disease progression. These findings suggest that integrin blockade alone fails to effectively control viral infection, replication, dissemination, and reservoir establishment in HIV‐1/SIV infection. The use of integrin blockade for prevention or/and therapeutic strategies requires further investigation.
Collapse
Affiliation(s)
- Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Angela Fang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Patrick J Connolly
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| |
Collapse
|
31
|
Kucharzik T, Ellul P, Greuter T, Rahier JF, Verstockt B, Abreu C, Albuquerque A, Allocca M, Esteve M, Farraye FA, Gordon H, Karmiris K, Kopylov U, Kirchgesner J, MacMahon E, Magro F, Maaser C, de Ridder L, Taxonera C, Toruner M, Tremblay L, Scharl M, Viget N, Zabana Y, Vavricka S. ECCO Guidelines on the Prevention, Diagnosis, and Management of Infections in Inflammatory Bowel Disease. J Crohns Colitis 2021; 15:879-913. [PMID: 33730753 DOI: 10.1093/ecco-jcc/jjab052] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- T Kucharzik
- Department of Gastroenterology, Klinikum Lüneburg, University of Hamburg, Lüneburg, Germany
| | - P Ellul
- Department of Medicine, Division of Gastroenterology, Mater Dei Hospital, Msida, Malta
| | - T Greuter
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland, and Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois CHUV, University Hospital Lausanne, Lausanne, Switzerland
| | - J F Rahier
- Department of Gastroenterology and Hepatology, CHU UCL Namur, Yvoir, Belgium
| | - B Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium, and Department of Chronic Diseases, Metabolism and Ageing, TARGID-IBD, KU Leuven, Leuven, Belgium
| | - C Abreu
- Infectious Diseases Service, Centro Hospitalar Universitário São João, Porto, Portugal
- Instituto de Inovação e Investigação em Saúde [I3s], Faculty of Medicine, Department of Medicine, University of Porto, Portugal
| | - A Albuquerque
- Gastroenterology Department, St James University Hospital, Leeds, UK
| | - M Allocca
- Humanitas Clinical and Research Center - IRCCS -, Rozzano [Mi], Italy
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - M Esteve
- Hospital Universitari Mútua Terrassa, Digestive Diseases Department, Terrassa, Catalonia, and Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas CIBERehd, Madrid, Spain
| | - F A Farraye
- Inflammatory Bowel Disease Center, Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - H Gordon
- Department of Gastroenterology, Barts Health NHS Trust, Royal London Hospital, London, UK
| | - K Karmiris
- Department of Gastroenterology, Venizeleio General Hospital, Heraklion, Greece
| | - U Kopylov
- Department of Gastroenterology, Sheba Medical Center, Ramat Gan, Israel, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - J Kirchgesner
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, Department of Gastroenterology, Paris, France
| | - E MacMahon
- Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - F Magro
- Gastroenterology Department, Centro Hospitalar São João, Porto, Portugal
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Portugal
| | - C Maaser
- Outpatient Department of Gastroenterology, Department of Geriatrics, Klinikum Lüneburg, University of Hamburg, Lüneburg, Germany
| | - L de Ridder
- Department of Paediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C Taxonera
- IBD Unit, Department of Gastroenterology, Hospital Clínico San Carlos and Instituto de Investigación del Hospital Clínico San Carlos [IdISSC], Madrid, Spain
| | - M Toruner
- Ankara University School of Medicine, Department of Gastroenterology, Ankara, Turkey
| | - L Tremblay
- Centre Hospitalier de l'Université de Montréal [CHUM] Pharmacy Department and Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - M Scharl
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland
| | - N Viget
- Department of Infectious Diseases, Tourcoing Hospital, Tourcoing, France
| | - Y Zabana
- Hospital Universitari Mútua Terrassa, Digestive Diseases Department, Terrassa, Catalonia, and Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas CIBERehd, Madrid, Spain
| | - S Vavricka
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland
| |
Collapse
|
32
|
Mechanistic basis of post-treatment control of SIV after anti-α4β7 antibody therapy. PLoS Comput Biol 2021; 17:e1009031. [PMID: 34106916 PMCID: PMC8189501 DOI: 10.1371/journal.pcbi.1009031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Treating macaques with an anti-α4β7 antibody under the umbrella of combination antiretroviral therapy (cART) during early SIV infection can lead to viral remission, with viral loads maintained at < 50 SIV RNA copies/ml after removal of all treatment in a subset of animals. Depletion of CD8+ lymphocytes in controllers resulted in transient recrudescence of viremia, suggesting that the combination of cART and anti-α4β7 antibody treatment led to a state where ongoing immune responses kept the virus undetectable in the absence of treatment. A previous mathematical model of HIV infection and cART incorporates immune effector cell responses and exhibits the property of two different viral load set-points. While the lower set-point could correspond to the attainment of long-term viral remission, attaining the higher set-point may be the result of viral rebound. Here we expand that model to include possible mechanisms of action of an anti-α4β7 antibody operating in these treated animals. We show that the model can fit the longitudinal viral load data from both IgG control and anti-α4β7 antibody treated macaques, suggesting explanations for the viral control associated with cART and an anti-α4β7 antibody treatment. This effective perturbation to the virus-host interaction can also explain observations in other nonhuman primate experiments in which cART and immunotherapy have led to post-treatment control or resetting of the viral load set-point. Interestingly, because the viral kinetics in the various treated animals differed—some animals exhibited large fluctuations in viral load after cART cessation—the model suggests that anti-α4β7 treatment could act by different primary mechanisms in different animals and still lead to post-treatment viral control. This outcome is nonetheless in accordance with a model with two stable viral load set-points, in which therapy can perturb the system from one set-point to a lower one through different biological mechanisms. Some macaques treated with an anti-α4β7 monoclonal antibody along with antiretroviral therapy during the early stages of simian immunodeficiency virus infection had their viral load become undetectable (below 50 SIV RNA copies/ml) after all treatment was stopped, whereas animals not given the antibody all had their viral loads rebound to high levels. Using a mathematical model, we examined four potential ways in which the antibody could have altered the balance between viral growth and immune control to maintain an undetectable viral load. We show that a shift to controlled infection can occur through multiple biologically reasonable mechanisms of action of the anti-α4β7 antibody.
Collapse
|
33
|
Systematic integrated analyses of methylomic and transcriptomic impacts of early combined botanicals on estrogen receptor-negative mammary cancer. Sci Rep 2021; 11:9481. [PMID: 33947955 PMCID: PMC8096837 DOI: 10.1038/s41598-021-89131-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Dietary botanicals such as the cruciferous vegetable broccoli sprouts (BSp) as well as green tea polyphenols (GTPs) have shown exciting potential in preventing or delaying breast cancer (BC). However, little is known about their impact on epigenomic aberrations that are centrally involved in the initiation and progression of estrogen receptor-negative [ER(−)] BC. We have investigated the efficacy of combined BSp and GTPs diets on mammary tumor inhibition in transgenic Her2/neu mice that were administered the diets from prepubescence until adulthood. Herein, we present an integrated DNA methylome and transcriptome analyses for defining the early-life epigenetic impacts of combined BSp and GTPs on mammary tumors and our results indicate that a combinatorial administration of BSp and GTPs have a stronger impact at both transcriptome and methylome levels in comparison to BSp or GTPs administered alone. We also demonstrated a streamlined approach by performing an extensive preprocessing, quality assessment and downstream analyses on the genomic dataset. Our identification of differentially methylated regions in response to dietary botanicals administered during early-life will allow us to identify key genes and facilitate implementation of the subsequent downstream functional analyses on a genomic scale and various epigenetic modifications that are crucial in preventing ER(−) mammary cancer. Furthermore, our realtime PCR results were also found to be consistent with our genome-wide analysis results. These results could be exploited as a comprehensive resource for understanding understudied genes and their associated epigenetic modifications in response to these dietary botanicals.
Collapse
|
34
|
Kasarpalkar NJ, Bhowmick S, Patel V, Savardekar L, Agrawal S, Shastri J, Bhor VM. Frequency of Effector Memory Cells Expressing Integrin α 4β 7 Is Associated With TGF-β1 Levels in Therapy Naïve HIV Infected Women With Low CD4 + T Cell Count. Front Immunol 2021; 12:651122. [PMID: 33828560 PMCID: PMC8019712 DOI: 10.3389/fimmu.2021.651122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 12/28/2022] Open
Abstract
Integrin α4β7 expressing CD4+ T cells are preferred targets for HIV infection and are thought to be predictors of disease progression. Concurrent analysis of integrin α4β7 expressing innate and adaptive immune cells was carried out in antiretroviral (ART) therapy naïve HIV infected women in order to determine its contribution to HIV induced immune dysfunction. Our results demonstrate a HIV infection associated decrease in the frequency of integrin α4β7 expressing endocervical T cells along with an increase in the frequency of integrin α4β7 expressing peripheral monocytes and central memory CD4+ T cells, which are considered to be viral reservoirs. We report for the first time an increase in levels of soluble MAdCAM-1 (sMAdCAM-1) in HIV infected individuals as well as an increased frequency and count of integrin β7Hi CD8+ memory T cells. Correlation analysis indicates that the frequency of effector memory CD8+ T cells expressing integrin α4β7 is associated with levels of both sMAdCAM-1 and TGF-β1. The results of this study also suggest HIV induced alterations in T cell homeostasis to be on account of disparate actions of sMAdCAM-1 and TGF-β1 on integrin α4β7 expressing T cells. The immune correlates identified in this study warrant further investigation to determine their utility in monitoring disease progression.
Collapse
Affiliation(s)
- Nandini J Kasarpalkar
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, India
| | - Shilpa Bhowmick
- Department of Biochemistry and Virology, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, India
| | - Vainav Patel
- Department of Biochemistry and Virology, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, India
| | - Lalita Savardekar
- Woman's Health Clinic and Bone Health Clinic, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, India
| | - Sachee Agrawal
- Department of Microbiology, Topiwala National Medical College and Bai Yamunabai Laxman Nair Hospital, Mumbai, India
| | - Jayanthi Shastri
- Department of Microbiology, Topiwala National Medical College and Bai Yamunabai Laxman Nair Hospital, Mumbai, India
| | - Vikrant M Bhor
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
35
|
Balena F, Bavaro DF, Volpe A, Lagioia A, Angarano G, Monno L, Saracino A. Influence of HIV-1 V2 sequence variability on bacterial translocation in antiretroviral naïve HIV-1 infected patients. J Med Virol 2020; 92:3271-3278. [PMID: 32609386 DOI: 10.1002/jmv.26246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022]
Abstract
HIV-1 V2 domain binds α4β7, which assists lymphocyte homing to gut-associated lymphoid tissue. This triggers bacterial translocation, thus contributing to immune activation. We investigated whether variability of V2 179-181 binding site could influence plasma levels of lipopolysaccharide (LPS) and soluble cluster of differentiation 14 (sCD14), markers of microbial translocation/immune activation. HIV gp120 sequences from antiretroviral naïve patients were analyzed for V2 tripeptide composition, length, net charge, and potential N-linked-glycosylation sites. LPS and sCD14 plasma levels were quantified. Clinical/immuno-virologic data were retrieved. Overall, 174 subjects were enrolled, 8% with acute infection, 71% harboring a subtype B. LDV179-181 was detected in 41% and LDI in 27%. No difference was observed between levels of LPS or sCD14 according to different mimotopes or according to other sequence characteristics. By multivariable analysis, only acute infection was significantly associated with higher sCD14 levels. In conclusion, no association was observed between V2 tripeptide composition and extent of bacterial translocation/immune activation.
Collapse
Affiliation(s)
- Flavia Balena
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Davide F Bavaro
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Anna Volpe
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Antonella Lagioia
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Gioacchino Angarano
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Laura Monno
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| |
Collapse
|
36
|
Burnie J, Tang VA, Welsh JA, Persaud AT, Thaya L, Jones JC, Guzzo C. Flow Virometry Quantification of Host Proteins on the Surface of HIV-1 Pseudovirus Particles. Viruses 2020; 12:v12111296. [PMID: 33198254 PMCID: PMC7697180 DOI: 10.3390/v12111296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 glycoprotein spike (gp120) is typically the first viral antigen that cells encounter before initiating immune responses, and is often the sole target in vaccine designs. Thus, characterizing the presence of cellular antigens on the surfaces of HIV particles may help identify new antiviral targets or impact targeting of gp120. Despite the importance of characterizing proteins on the virion surface, current techniques available for this purpose do not support high-throughput analysis of viruses, and typically only offer a semi-quantitative assessment of virus-associated proteins. Traditional bulk techniques often assess averages of viral preparations, which may mask subtle but important differences in viral subsets. On the other hand, microscopy techniques, which provide detail on individual virions, are difficult to use in a high-throughput manner and have low levels of sensitivity for antigen detection. Flow cytometry is a technique that traditionally has been used for rapid, high-sensitivity characterization of single cells, with limited use in detecting viruses, since the small size of viral particles hinders their detection. Herein, we report the detection and surface antigen characterization of HIV-1 pseudovirus particles by light scattering and fluorescence with flow cytometry, termed flow virometry for its specific application to viruses. We quantified three cellular proteins (integrin α4β7, CD14, and CD162/PSGL-1) in the viral envelope by directly staining virion-containing cell supernatants without the requirement of additional processing steps to distinguish virus particles or specific virus purification techniques. We also show that two antigens can be simultaneously detected on the surface of individual HIV virions, probing for the tetraspanin marker, CD81, in addition to α4β7, CD14, and CD162/PSGL-1. This study demonstrates new advances in calibrated flow virometry as a tool to provide sensitive, high-throughput characterization of the viral envelope in a more efficient, quantitative manner than previously reported techniques.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Vera A. Tang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Flow Cytometry and Virometry Core Facility, Ottawa, ON K1H 8M5, Canada;
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.A.W.); (J.C.J.)
| | - Arvin T. Persaud
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
| | - Laxshaginee Thaya
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.A.W.); (J.C.J.)
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
- Correspondence: ; Tel.: +1-(416)-287-7436
| |
Collapse
|
37
|
Martin AR, Patel EU, Kirby C, Astemborski J, Kirk GD, Mehta SH, Marshall K, Janes H, Clayton A, Corey L, Hammer SM, Sobieszczyk ME, Arthos J, Cicala C, Redd AD, Quinn TC. The association of α4β7 expression with HIV acquisition and disease progression in people who inject drugs and men who have sex with men: Case control studies. EBioMedicine 2020; 62:103102. [PMID: 33166790 PMCID: PMC7658649 DOI: 10.1016/j.ebiom.2020.103102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND α4β7 is a gut-homing integrin heterodimer that can act as a non-essential binding molecule for HIV. A previous study in heterosexual African women found that individuals with higher proportions of α4β7 expressing CD4+ T cells were more likely to become infected with HIV, as well as present with faster disease progression. It is unknown if this phenomenon is also observed in men who have sex with men (MSM) or people who inject drugs (PWID). METHODS MSM and transgender women who seroconverted as part of the HVTN 505 HIV vaccine trial and PWID who seroconverted during the ALIVE cohort study were selected as cases and matched to HIV-uninfected controls from the same studies (1:1 and 1:3, respectively). Pre-seroconversion PBMC samples from cases and controls in both studies were examined by flow cytometry to measure levels of α4β7 expression on CD4+ T cells. Multivariable conditional logistic regression was used to compare α4β7 expression levels between cases and controls. A Kaplan-Meier curve was used to examine the association of α4β7 expression pre-seroconversion with HIV disease progression. FINDINGS In MSM and transgender women (n = 103 cases, 103 controls), there was no statistically significant difference in the levels of α4β7 expression on CD4+ T cells between cases and controls (adjusted odds ratio [adjOR] =1.10, 95% confidence interval [CI]=0.94,1.29; p = 0.246). Interestingly, in PWID (n = 49 cases, 143 controls), cases had significantly lower levels of α4β7 expression compared to their matched controls (adjOR = 0.80, 95% CI = 0.68, 0.93; p = 0.004). Among HIV-positive PWID (n = 47), there was no significant association in HIV disease progression in individuals above or below the median level of α4β7 expression (log-rank p = 0.84). INTERPRETATION In contrast to findings in heterosexual women, higher α4β7 expression does not predict HIV acquisition or disease progression in PWID or MSM. FUNDING This study was supported in part by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health. The study was also supported by extramural grants from NIAID T32AI102623 (E.U.P.), and UM1AI069470.
Collapse
Affiliation(s)
- Alyssa R Martin
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eshan U Patel
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Charles Kirby
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jacquie Astemborski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Shruti H Mehta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kyle Marshall
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ashley Clayton
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Scott M Hammer
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | | | - James Arthos
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Cicala
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew D Redd
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Thomas C Quinn
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
38
|
Sebastian S, Gonzalez HA, Peyrin-Biroulet L. Safety of Drugs During Previous and Current Coronavirus Pandemics: Lessons for Inflammatory Bowel Disease. J Crohns Colitis 2020; 14:1632-1643. [PMID: 32520312 PMCID: PMC7314090 DOI: 10.1093/ecco-jcc/jjaa120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 12/15/2022]
Abstract
The coronavirus 2019 [COVID-19] pandemic has posed challenges in the routine care of patients with inflammatory bowel disease [IBD]. One of the key challenges is quantification of the risks of immunosuppressive and biological therapies in IBD patients during the pandemic. The similarities and differences between previous coronavirus outbreaks and the pathobiology of the infections can give useful information in understanding the risks, and perhaps potential beneficial aspects of drugs used in IBD. Although clinical, immunological and pharmacological data from the experience with previous coronavirus outbreaks cannot be automatically translated to predict the safety of IBD therapies during the COVID-19 pandemic, the signals so far from these outbreaks on IBD patients who are on immunomodulators and biologics are reassuring to patients and clinicians alike.
Collapse
Affiliation(s)
- S Sebastian
- IBD Unit, Hull University Teaching Hospitals NHS Trust, Hull, UK
- Hull York Medical School, Hull, UK
| | - H A Gonzalez
- IBD Unit, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - L Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, Vandoeuvre-Les-Nancy, France
- Inserm U1256 NGERE, Lorraine University, Vandoeuvre-Les-Nancy, France
| |
Collapse
|
39
|
Henrich TJ, Jones T, Beckford-Vera D, Price PM, VanBrocklin HF. Total-Body PET Imaging in Infectious Diseases. PET Clin 2020; 16:89-97. [PMID: 33160926 DOI: 10.1016/j.cpet.2020.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Total-body PET enables high-sensitivity imaging with dramatically improved signal-to-noise ratio. These enhanced performance characteristics allow for decreased PET scanning times acquiring data "total-body wide" and can be leveraged to decrease the amount of radiotracer required, thereby permitting more frequent imaging or longer imaging periods during radiotracer decay. Novel approaches to PET imaging of infectious diseases are emerging, including those that directly visualize pathogens in vivo and characterize concomitant immune responses and inflammation. Efforts to develop these imaging approaches are hampered by challenges of traditional imaging platforms, which may be overcome by novel total-body PET strategies.
Collapse
Affiliation(s)
- Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue, Building 3, Room 525A, San Francisco, CA 94110, USA.
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Denis Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
40
|
Huang W, Yu J, Liu T, Defnet AE, Zalesak S, Farese AM, MacVittie TJ, Kane MA. Proteomics of Non-human Primate Plasma after Partial-body Radiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2020; 119:621-632. [PMID: 32947488 PMCID: PMC7541796 DOI: 10.1097/hp.0000000000001350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
High-dose radiation exposure results in organ-specific sequelae that occurs in a time- and dose-dependent manner. The partial body irradiation with minimal bone marrow sparing model was developed to mimic intentional or accidental radiation exposures in humans where bone marrow sparing is likely and permits the concurrent analysis of coincident short- and long-term damage to organ systems. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the plasma proteome of non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing with 6 MV LINAC-derived photons at 0.80 Gy min over a time period of 3 wk. The plasma proteome was analyzed by liquid chromatography-tandem mass spectrometry. A number of trends were identified in the proteomic data including pronounced protein changes as well as protein changes that were consistently upregulated or downregulated at all time points and dose levels interrogated. Pathway and gene ontology analysis were performed; bioinformatic analysis revealed significant pathway and biological process perturbations post high-dose irradiation and shed light on underlying mechanisms of radiation damage. Additionally, proteins were identified that had the greatest potential to serve as biomarkers for radiation exposure.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Stephanie Zalesak
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
- Correspondence: Maureen A. Kane, University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room N731, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
41
|
Huang W, Yu J, Liu T, Tudor G, Defnet AE, Zalesak S, Kumar P, Booth C, Farese AM, MacVittie TJ, Kane MA. Proteomic Evaluation of the Natural History of the Acute Radiation Syndrome of the Gastrointestinal Tract in a Non-human Primate Model of Partial-body Irradiation with Minimal Bone Marrow Sparing Includes Dysregulation of the Retinoid Pathway. HEALTH PHYSICS 2020; 119:604-620. [PMID: 32947489 PMCID: PMC7541663 DOI: 10.1097/hp.0000000000001351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Exposure to ionizing radiation results in injuries of the hematopoietic, gastrointestinal, and respiratory systems, which are the leading causes responsible for morbidity and mortality. Gastrointestinal injury occurs as an acute radiation syndrome. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the proteome of jejunum from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Jejunum was analyzed by liquid chromatography-tandem mass spectrometry, and pathway and gene ontology analysis were performed. A total of 3,245 unique proteins were quantified out of more than 3,700 proteins identified in this study. Also a total of 289 proteins of the quantified proteins showed significant and consistent responses across at least three time points post-irradiation, of which 263 proteins showed strong upregulations while 26 proteins showed downregulations. Bioinformatic analysis suggests significant pathway and upstream regulator perturbations post-high dose irradiation and shed light on underlying mechanisms of radiation damage. Canonical pathways altered by radiation included GP6 signaling pathway, acute phase response signaling, LXR/RXR activation, and intrinsic prothrombin activation pathway. Additionally, we observed dysregulation of proteins of the retinoid pathway and retinoic acid, an active metabolite of vitamin A, as quantified by liquid chromatography-tandem mass spectrometry. Correlation of changes in protein abundance with a well-characterized histological endpoint, corrected crypt number, was used to evaluate biomarker potential. These data further define the natural history of the gastrointestinal acute radiation syndrome in a non-human primate model of partial body irradiation with minimal bone marrow sparing.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | | | - Amy E Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Stephanie Zalesak
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Praveen Kumar
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | | | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
- Correspondence: Maureen A. Kane, University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room N731, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
42
|
McCune JM, Turner EH, Jiang A, Doehle BP. Bringing Gene Therapies for HIV Disease to Resource-Limited Parts of the World. Hum Gene Ther 2020; 32:21-30. [PMID: 32998595 PMCID: PMC10112459 DOI: 10.1089/hum.2020.252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Joseph M McCune
- HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Emily H Turner
- HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Adam Jiang
- HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Brian P Doehle
- HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
43
|
McGuinty M, Angel JB, Cooper CL, Cowan J, MacPherson PA, Kumar A, Murthy S, Sy R, Dennehy M, Tremblay N, Byrareddy SN, Cameron DW. Vedolizumab treatment across antiretroviral treatment interruption in chronic HIV infection: the HAVARTI protocol for a pilot dose-ranging clinical trial to assess safety, tolerance, immunological and virological activity. BMJ Open 2020; 10:e041359. [PMID: 33033101 PMCID: PMC7545629 DOI: 10.1136/bmjopen-2020-041359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Continuous antiretroviral therapy (ART) suppresses HIV plasma viral load (pVL) to very low levels, which allows for some immune recovery. Discontinuation of ART leads to pVL rebound from reservoirs of persistence and latency, and progressive immunodeficiency. One promising but controversial strategy targeting CD4+ T lymphocytes with a monoclonal antibody (mAb) against α4β7 integrin has shown promise through sustained virological remission of pVL (SVR) in SIV239-infected rhesus macaques. We propose to assess the safety and tolerability of vedolizumab, a licensed humanised mAb against human α4β7 integrin, in healthy HIV-infected adults on ART. This study will also assess, by analytical treatment interruption (ATI), whether vedolizumab treatment can induce SVR beyond ART and vedolizumab treatment. METHODS AND ANALYSIS The HIV-ART-vedolizumab-ATI (HAVARTI) trial is a single-arm, dose-ranging pilot trial in healthy HIV-positive adult volunteers receiving ART. Twelve consenting persons will be enrolled in sequential groups of 4 to each serial dosing vedolizumab regimen (300 mg, 150 mg, 75 mg). The primary outcomes are: (1) to assess the safety and tolerability of seven serial infusions of vedolizumab at each of three doses; (2) to identify the immunovirological measures, including pVL and T-cell kinetics, that characterise HIV/ART cases before, during, after vedolizumab treatment and ATI; and (3) to seek SVR of pVL after ATI. Secondary outcomes will include immune reconstitution and pVL suppression as well as immune reconstitution and long-term safety following re-initiation of ART in the absence of SVR. ETHICS AND DISSEMINATION The study protocol was approved by the Ottawa Health Science Network-REB and by the Health Canada Therapeutic Products Directorate. A Data Safety Monitor will review safety information at regular intervals. The final manuscript will be submitted to an open access journal within a year of study completion. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT03147859; https://clinicaltrials.gov/ct2/show/NCT03147859.
Collapse
Affiliation(s)
- Michaeline McGuinty
- Medicine, Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - Jonathan B Angel
- Medicine, Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Curtis L Cooper
- Medicine, Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Juthaporn Cowan
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Ottawa Hospital, Ottawa, Ontario, Canada
| | - Paul A MacPherson
- Medicine, Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Pathology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Sanjay Murthy
- Medicine, Division of Gastroenterology, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - Richmond Sy
- Medicine, Division of Gastroenterology, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | | | - Nancy Tremblay
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - D William Cameron
- Medicine, Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
44
|
van Dorp CH, Conway JM, Barouch DH, Whitney JB, Perelson AS. Models of SIV rebound after treatment interruption that involve multiple reactivation events. PLoS Comput Biol 2020; 16:e1008241. [PMID: 33001979 PMCID: PMC7529301 DOI: 10.1371/journal.pcbi.1008241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
In order to assess the efficacy of novel HIV-1 treatments leading to a functional cure, the time to viral rebound is frequently used as a surrogate endpoint. The longer the time to viral rebound, the more efficacious the therapy. In support of such an approach, mathematical models serve as a connection between the size of the latent reservoir and the time to HIV-1 rebound after treatment interruption. The simplest of such models assumes that a single successful latent cell reactivation event leads to observable viremia after a period of exponential viral growth. Here we consider a generalization developed by Pinkevych et al. and Hill et al. of this simple model in which multiple reactivation events can occur, each contributing to the exponential growth of the viral load. We formalize and improve the previous derivation of the dynamics predicted by this model, and use the model to estimate relevant biological parameters from SIV rebound data. We confirm a previously described effect of very early antiretroviral therapy (ART) initiation on the rate of recrudescence and the viral load growth rate after treatment interruption. We find that every day ART initiation is delayed results in a 39% increase in the recrudescence rate (95% credible interval: [18%, 62%]), and a 11% decrease of the viral growth rate (95% credible interval: [4%, 20%]). We show that when viral rebound occurs early relative to the viral load doubling time, a model with multiple successful reactivation events fits the data better than a model with only a single successful reactivation event.
Collapse
Affiliation(s)
- Christiaan H. van Dorp
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - James B. Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
45
|
HIV-1 acquisition in a man with ulcerative colitis on anti-α4β7 mAb vedolizumab treatment. AIDS 2020; 34:1689-1692. [PMID: 32769767 DOI: 10.1097/qad.0000000000002619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Martin AR, Sivro A, Packman ZR, Patel EU, Goes LR, McKinnon LR, Astemborski J, Kirk GD, Mehta SH, Cicala C, Arthos J, Redd AD, Quinn TC. Racial differences in α4β7 expression on CD4+ T cells of HIV-negative men and women who inject drugs. PLoS One 2020; 15:e0238234. [PMID: 32841266 PMCID: PMC7447027 DOI: 10.1371/journal.pone.0238234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION We performed a cross-sectional study of HIV-uninfected men and women who inject drugs from the ALIVE cohort to examine if black men and women who inject drugs have higher levels of CD4+ T cells expressing the integrin heterodimer α4β7 compared to white men and women. MATERIALS AND METHODS Flow cytometry was used to examine expression of α4β7 and other markers associated with different functional CD4+ T cell subsets in both men and women who inject drugs. RESULTS Higher levels of α4β7, CCR5, and CCR6 were observed on CD4+ T cells from black participants compared with white participants. In a multivariable model, α4β7 expression differed by race, but not sex, age, or other factors. DISCUSSION Black men and women express higher percentages of α4β7 expressing CD4+ T cells, which may play a role in HIV disease.
Collapse
Affiliation(s)
- Alyssa R. Martin
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Zoe R. Packman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Eshan U. Patel
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Livia R. Goes
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Lyle R. McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Jacquie Astemborski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Gregory D. Kirk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Shruti H. Mehta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Claudia Cicala
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - James Arthos
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Andrew D. Redd
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Thomas C. Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
47
|
Gorny MK. Search for antiviral functions of potentially protective antibodies against V2 region of HIV-1. Hum Vaccin Immunother 2020; 16:2033-2041. [PMID: 32701369 PMCID: PMC7553674 DOI: 10.1080/21645515.2020.1787070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the only successful RV144 vaccine trial to date, high levels of antibodies (Abs) against the V2 region of the virus envelope protein gp120 correlated with reduced HIV-1 infection. The protective role of V2 Abs has not yet been determined, and the antiviral function of V2 Abs that mediate protection against HIV-1 in humans or SHIV infection in rhesus macaques remains unclear. V2 Abs do not neutralize resistant tier 2 viruses; their Fc-mediated activities are modest and similar to those of another anti-envelope Abs, and inhibition of the gp120–α4β7 integrin interaction is ineffective in both animals and clinical trials. Moreover, in protection experiments in monkeys, levels of V1V2 vaccine-induced V2 Abs do not correlate with plasma viral load. Together, these observations suggest that V2 Abs may not control SHIV infection in rhesus macaques and that V2 Abs may instead be a surrogate marker of other protective immune responses.
Collapse
Affiliation(s)
- Miroslaw K Gorny
- Department of Pathology, New York University Grossman School of Medicine , New York, NY, USA
| |
Collapse
|
48
|
Pino M, Uppada SB, Pandey K, King C, Nguyen K, Shim I, Rogers K, Villinger F, Paiardini M, Byrareddy SN. Safety and Immunological Evaluation of Interleukin-21 Plus Anti-α4β7 mAb Combination Therapy in Rhesus Macaques. Front Immunol 2020; 11:1275. [PMID: 32765488 PMCID: PMC7379916 DOI: 10.3389/fimmu.2020.01275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections compromise gut immunological barriers, inducing high levels of inflammation and a severe depletion of intestinal CD4+ T cells. Expression of α4β7 integrin promotes homing of activated T cells to intestinal sites where they become preferentially infected; blockade of α4β7 with an anti-α4β7 monoclonal antibody (mAb) prior to infection has been reported to reduce gut SIV viremia in rhesus macaques (RMs). Interleukin-21 (IL-21) administration in antiretroviral therapy-treated, SIV-infected RMs reduces gut inflammation and improves gut integrity. We therefore hypothesized that the combination of IL-21 and anti-α4β7 mAb therapies could synergize to reduce inflammation and HIV persistence. We co-administered two intravenous doses of rhesus anti-α4β7 mAb (50 mg/kg) combined with seven weekly subcutaneous infusions of IL-21-IgFc (100 μg/kg) in four healthy, SIV-uninfected RMs to evaluate the safety and immunological profiles of this intervention in blood and gut. Co-administration of IL-21 and anti-α4β7 mAb showed no toxicity at the given dosages as assessed by multiple hematological and chemical parameters and did not alter the bioavailability of the therapeutics or result in the generation of antibodies against the anti-α4β7 mAb or IL-21-IgFc. Upon treatment, the frequency of CD4 memory T cells expressing β7 increased in blood and decreased in gut, consistent with an inhibition of activated CD4 T-cell homing to the gut. Furthermore, the frequency of T cells expressing proliferation and immune activation markers decreased in blood and, more profoundly, in gut. The combined IL-21 plus anti-α4β7 mAb therapy is well-tolerated in SIV-uninfected RMs and reduces the gut homing of α4β7+ CD4 T cells as well as the levels of gut immune activation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Biological Availability
- Biomarkers
- Drug Therapy, Combination
- Humans
- Immunity/drug effects
- Immunoglobulin Fc Fragments/immunology
- Integrins/antagonists & inhibitors
- Interleukins/administration & dosage
- Interleukins/adverse effects
- Interleukins/pharmacokinetics
- Interleukins/pharmacology
- Isoantibodies/blood
- Isoantibodies/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Macaca mulatta
Collapse
Affiliation(s)
- Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Srijayaprakash Babu Uppada
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Colin King
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Inbo Shim
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
49
|
Rubin DT, Abreu MT, Rai V, Siegel CA. Management of Patients With Crohn's Disease and Ulcerative Colitis During the Coronavirus Disease-2019 Pandemic: Results of an International Meeting. Gastroenterology 2020; 159:6-13.e6. [PMID: 32272113 PMCID: PMC7194599 DOI: 10.1053/j.gastro.2020.04.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Maria T Abreu
- University of Miami Miller School of Medicine, Division of Gastroenterology, Department of Medicine, Miami, Florida
| | - Victoria Rai
- University of Chicago Medicine, Inflammatory Bowel Disease Center, Chicago, Illinois
| | - Corey A Siegel
- Dartmouth-Hitchcock Medical Center, Section of Gastroenterology and Hepatology, Lebanon, New Hampshire
| | | |
Collapse
|
50
|
Abstract
The current coronavirus pandemic is an ongoing global health crisis due to COVID-19, caused by severe acute respiratory syndrome coronavirus 2. Although COVID-19 leads to little or mild flu-like symptoms in the majority of affected patients, the disease may cause severe, frequently lethal complications such as progressive pneumonia, acute respiratory distress syndrome and organ failure driven by hyperinflammation and a cytokine storm syndrome. This situation causes various major challenges for gastroenterology. In the context of IBD, several key questions arise. For instance, it is an important question to understand whether patients with IBD (eg, due to intestinal ACE2 expression) might be particularly susceptible to COVID-19 and the cytokine release syndrome associated with lung injury and fatal outcomes. Another highly relevant question is how to deal with immunosuppression and immunomodulation during the current pandemic in patients with IBD and whether immunosuppression affects the progress of COVID-19. Here, the current understanding of the pathophysiology of COVID-19 is reviewed with special reference to immune cell activation. Moreover, the potential implications of these new insights for immunomodulation and biological therapy in IBD are discussed.
Collapse
Affiliation(s)
- Markus F Neurath
- First Department of Medicine and Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91052, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|