1
|
Hua L, Peng Y, Yan L, Yuan P, Qiao J. Moving toward totipotency: the molecular and cellular features of totipotent and naive pluripotent stem cells. Hum Reprod Update 2025:dmaf006. [PMID: 40299455 DOI: 10.1093/humupd/dmaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/06/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Dissecting the key molecular mechanism of embryonic development provides novel insights into embryogenesis and potential intervention strategies for clinical practices. However, the ability to study the molecular mechanisms of early embryo development in humans, such as zygotic genome activation and lineage segregation, is meaningfully constrained by methodological limitations and ethical concerns. Totipotent stem cells have an extended developmental potential to differentiate into embryonic and extraembryonic tissues, providing a suitable model for studying early embryo development. Recently, a series of ground-breaking results on stem cells have identified totipotent-like cells or induced pluripotent stem cells into totipotent-like cells. OBJECTIVE AND RATIONALE This review followed the PRISMA guidelines, surveys the current works of literature on totipotent, naive, and formative pluripotent stem cells, introduces the molecular and biological characteristics of those stem cells, and gives advice for future research. SEARCH METHODS The search method employed the terms 'totipotent' OR 'naive pluripotent stem cell' OR 'formative pluripotent stem cell' for unfiltered search on PubMed, Web of Science, and Cochrane Library. Papers included were those with information on totipotent stem cells, naive pluripotent stem cells, or formative pluripotent stem cells until June 2024 and were published in the English language. Articles that have no relevance to stem cells, or totipotent, naive pluripotent, or formative pluripotent cells were excluded. OUTCOMES There were 152 records included in this review. These publications were divided into four groups according to the species of the cells included in the studies: 67 human stem cell studies, 70 mouse stem cell studies, 9 porcine stem cell studies, and 6 cynomolgus stem cell studies. Naive pluripotent stem cell models have been established in other species such as porcine and cynomolgus. Human and mouse totipotent stem cells, e.g. human 8-cell-like cells, human totipotent blastomere-like cells, and mouse 2-cell-like cells, have been successfully established and exhibit high developmental potency for both embryonic and extraembryonic contributions. However, the observed discrepancies between these cells and real embryos in terms of epigenetics and transcription suggest that further research is warranted. Our results systematically reviewed the established methods, molecular characteristics, and developmental potency of different naive, formative pluripotent, and totipotent stem cells. Furthermore, we provide a parallel comparison between animal and human models, and offer recommendations for future applications to advance early embryo research and assisted reproduction technologies. WIDER IMPLICATIONS Totipotent cell models provide a valuable resource to understand the underlying mechanisms of embryo development and forge new paths toward future treatment of infertility and regenerative medicine. However, current in vitro cell models exhibit epigenetic and transcriptional differences from in vivo embryos, and many cell models are unstable across passages, thus imperfectly recapitulating embryonic development. In this regard, standardizing and expanding current research on totipotent stem cell models are essential to enhance our capability to resemble and decipher embryogenesis.
Collapse
Affiliation(s)
- Lingyue Hua
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuyang Peng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Peng Yuan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| |
Collapse
|
2
|
Hermant C, Mourra-Díaz CM, Oomen ME, Altamirano-Pacheco L, Pal M, Nakatani T, Torres-Padilla ME. The transcription factor SRF regulates MERVL retrotransposons and gene expression during zygotic genome activation. Genes Dev 2025; 39:490-509. [PMID: 40015990 PMCID: PMC11960700 DOI: 10.1101/gad.352270.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
The regulatory circuitry of cell-specific transcriptional programs is thought to be influenced by transposable elements (TEs), whereby TEs serve as raw material for the diversification and genome-wide distribution of genetic elements that contain cis-regulatory activity. However, the transcriptional activators of TEs in relevant physiological contexts are largely unknown. Here, we undertook an evolutionary approach to identify regulators of two main families of MERVL, a major regulator of transcription during early mouse development. Using a combination of phyloregulatory, transcriptomic, and loss-of-function approaches, we demonstrate that SRF is a novel regulator of MERVL and embryonic transcription during zygotic genome activation. By resolving the phylogenetic history of two major MERVL families, we delineate the evolutionary acquisition of SRF and DUX binding sites and show that the acquisition of the SRF site precedes that of DUX. SRF contributes to embryonic transcription through the regulation of MERVLs, which in turn serve as promoters for host genes. Our work identifies new transcriptional regulators and TEs that shape the gene expression programs in early embryos and highlights the process of TE domestication via the sequential acquisition of transcription factor binding sites and coevolution with the host.
Collapse
Affiliation(s)
- Clara Hermant
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | | | - Marlies E Oomen
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Luis Altamirano-Pacheco
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany;
- Faculty of Biology, Ludwig-Maximilians Universität, D-81377 München, Germany
| |
Collapse
|
3
|
Liu L, Ha S, Cao D, Li M, Li Z. Transposition element MERVL regulates DNA demethylation through TET3 in oxidative-damaged mouse preimplantation embryos. Mol Med 2025; 31:95. [PMID: 40075261 PMCID: PMC11905524 DOI: 10.1186/s10020-025-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Transposable elements (TEs) comprise approximately half of eukaryotic genomes and significantly contribute to genome plasticity. In this study, we focused on a specific TE, MERVL, which exhibits particular expression during the 2-cell stage and commonly serves as an indicator of embryonic totipotency. However, its precise role in embryo development remains mysterious. We utilized DRUG-seq to investigate the effects of oxidative damage on genes and TEs expression. Our findings revealed that exposure to hydrogen peroxide (H2O2) could induce DNA damage, apoptosis, and incomplete DNA demethylation in embryos, which were potentially associated with MERVL expression. To further explore its function, antisense nucleotides (ASO) targeting MERVL were constructed to knockdown the expression in early embryos. Notably, this knockdown led to the occurrence of DNA damage and apoptosis as early as the 2-cell stage, consequently reducing the number of embryos that could progress to the blastocyst stage. Moreover, we discovered that MERVL exerted an influence on the reprogramming of embryonic DNA methylation. In MERVL-deficient embryos, the activity of the DNA demethylase ten-eleven translocation 3 (TET3) was suppressed, resulting in impaired demethylation when compared to normal development. This impairment might underpin the mechanism that impacts embryonic development. Collectively, our study not only verified the crucial role of MERVL in embryonic development but also probed its regulatory function in DNA methylation reprogramming, thereby laying a solid foundation for further investigations into MERVL's role.
Collapse
Affiliation(s)
- Lihong Liu
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515041, China
| | - Siyao Ha
- Institute Obsterics and Gynecology, Hospital of Obsterics and Gynecology,Fudan University, Shanghai, 200080, China
| | - Dan Cao
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515041, China
| | - MingQing Li
- Institute Obsterics and Gynecology, Hospital of Obsterics and Gynecology,Fudan University, Shanghai, 200080, China
| | - Zhiling Li
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515041, China.
| |
Collapse
|
4
|
Wu H, Cao L, Wen X, Fan J, Wang Y, Hu H, Ji S, Zhang Y, Ye C, Xie W, Zhang J, Xu H, Fu X. Lysosomal catabolic activity promotes the exit of murine totipotent 2-cell state by silencing early-embryonic retrotransposons. Dev Cell 2025; 60:512-523.e7. [PMID: 39561778 DOI: 10.1016/j.devcel.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
During mouse preimplantation development, a subset of retrotransposons/genes are transiently expressed in the totipotent 2-cell (2C) embryos. These 2C transcripts rapidly shut down their expression beyond the 2C stage of embryos, promoting the embryo to exit from the 2C stage. However, the mechanisms regulating this shutdown remain unclear. Here, we identified that lysosomal catabolism played a role in the exit of the totipotent 2C state. Our results showed that the activation of embryonic lysosomal catabolism promoted the embryo to exit from the 2C stage and suppressed 2C transcript expression. Mechanistically, our results indicated that lysosomal catabolism suppressed 2C transcripts through replenishing cellular amino-acid levels, thereby inactivating transcriptional factors TFE3/TFEB and abolishing their transcriptional activation of 2C retrotransposons, MERVL (murine endogenous retrovirus-L)/MT2_Mm. Collectively, our study identified that lysosomal activity modulated the transcriptomic landscape and development in mouse embryos and identified an unanticipated layer of transcriptional control on early-embryonic retrotransposons from lysosomal signaling.
Collapse
Affiliation(s)
- Hao Wu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Lanrui Cao
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Xinpeng Wen
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Jiawei Fan
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yuan Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Heyong Hu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Shuyan Ji
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Cunqi Ye
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jin Zhang
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Haoxing Xu
- Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xudong Fu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
5
|
Lyu Y, Kim SJ, Humphrey ES, Nayak R, Guan Y, Liang Q, Kim KH, Tan Y, Dou J, Sun H, Song X, Nagarajan P, Gerner-Mauro KN, Jin K, Liu V, Hassan RH, Johnson ML, Deliu LP, You Y, Sharma A, Pasolli HA, Lu Y, Zhang J, Mohanty V, Chen K, Yang YJ, Chen T, Ge Y. Stem cell activity-coupled suppression of endogenous retrovirus governs adult tissue regeneration. Cell 2024; 187:7414-7432.e26. [PMID: 39476839 DOI: 10.1016/j.cell.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 10/04/2024] [Indexed: 12/29/2024]
Abstract
Mammalian retrotransposons constitute 40% of the genome. During tissue regeneration, adult stem cells coordinately repress retrotransposons and activate lineage genes, but how this coordination is controlled is poorly understood. Here, we observed that dynamic expression of histone methyltransferase SETDB1 (a retrotransposon repressor) closely mirrors stem cell activities in murine skin. SETDB1 ablation leads to the reactivation of endogenous retroviruses (ERVs, a type of retrotransposon) and the assembly of viral-like particles, resulting in hair loss and stem cell exhaustion that is reversible by antiviral drugs. Mechanistically, at least two molecularly and spatially distinct pathways are responsible: antiviral defense mediated by hair follicle stem cells and progenitors and antiviral-independent response due to replication stress in transient amplifying cells. ERV reactivation is promoted by DNA demethylase ten-eleven translocation (TET)-mediated hydroxymethylation and recapitulated by ablating cell fate transcription factors. Together, we demonstrated ERV silencing is coupled with stem cell activity and essential for adult hair regeneration.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soo Jin Kim
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Ericka S Humphrey
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Richa Nayak
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingnan Liang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kun Hee Kim
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yukun Tan
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Huandong Sun
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kamryn N Gerner-Mauro
- Department of Pulmonary Medicine, UT MD Anderson Cancer Center, Houston, TX, USA; Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Kevin Jin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Wiess School of Natural Sciences, Rice University, Houston, TX, USA
| | - Virginia Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Wiess School of Natural Sciences, Rice University, Houston, TX, USA
| | - Rehman H Hassan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miranda L Johnson
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa P Deliu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun You
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA.
| |
Collapse
|
6
|
Wang L, Xu W, Zhang S, Gundberg GC, Zheng CR, Wan Z, Mustafina K, Caliendo F, Sandt H, Kamm R, Weiss R. Sensing and guiding cell-state transitions by using genetically encoded endoribonuclease-mediated microRNA sensors. Nat Biomed Eng 2024; 8:1730-1743. [PMID: 38982158 DOI: 10.1038/s41551-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2024] [Indexed: 07/11/2024]
Abstract
Precisely sensing and guiding cell-state transitions via the conditional genetic activation of appropriate differentiation factors is challenging. Here we show that desired cell-state transitions can be guided via genetically encoded sensors, whereby endogenous cell-state-specific miRNAs regulate the translation of a constitutively transcribed endoribonuclease, which, in turn, controls the translation of a gene of interest. We used this approach to monitor several cell-state transitions, to enrich specific cell types and to automatically guide the multistep differentiation of human induced pluripotent stem cells towards a haematopoietic lineage via endothelial cells as an intermediate state. Such conditional activation of gene expression is durable and resistant to epigenetic silencing and could facilitate the monitoring of cell-state transitions in physiological and pathological conditions and eventually the 'rewiring' of cell-state transitions for applications in organoid-based disease modelling, cellular therapies and regenerative medicine.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Department of Biology, Northeastern University, Boston, MA, USA.
| | - Wenlong Xu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shun Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gregory C Gundberg
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christine R Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kamila Mustafina
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabio Caliendo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hayden Sandt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Li Y, Liu Y, Yu XY, Xu Y, Pan X, Sun Y, Wang Y, Song YH, Shen Z. Membraneless organelles in health and disease: exploring the molecular basis, physiological roles and pathological implications. Signal Transduct Target Ther 2024; 9:305. [PMID: 39551864 PMCID: PMC11570651 DOI: 10.1038/s41392-024-02013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Once considered unconventional cellular structures, membraneless organelles (MLOs), cellular substructures involved in biological processes or pathways under physiological conditions, have emerged as central players in cellular dynamics and function. MLOs can be formed through liquid-liquid phase separation (LLPS), resulting in the creation of condensates. From neurodegenerative disorders, cardiovascular diseases, aging, and metabolism to cancer, the influence of MLOs on human health and disease extends widely. This review discusses the underlying mechanisms of LLPS, the biophysical properties that drive MLO formation, and their implications for cellular function. We highlight recent advances in understanding how the physicochemical environment, molecular interactions, and post-translational modifications regulate LLPS and MLO dynamics. This review offers an overview of the discovery and current understanding of MLOs and biomolecular condensate in physiological conditions and diseases. This article aims to deliver the latest insights on MLOs and LLPS by analyzing current research, highlighting their critical role in cellular organization. The discussion also covers the role of membrane-associated condensates in cell signaling, including those involving T-cell receptors, stress granules linked to lysosomes, and biomolecular condensates within the Golgi apparatus. Additionally, the potential of targeting LLPS in clinical settings is explored, highlighting promising avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, P. R. China
| | - Xi-Yong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yan Xu
- Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State key laboratory of cardiovascular disease, Beijing, 100037, P. R. China
| | - Yi Sun
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, P. R. China
| | - Yanli Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P.R. China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
8
|
Dong Q, Yang X, Wang L, Zhang Q, Zhao N, Nai S, Du X, Chen L. Lactylation of Hdac1 regulated by Ldh prevents the pluripotent-to-2C state conversion. Stem Cell Res Ther 2024; 15:415. [PMID: 39533309 PMCID: PMC11559218 DOI: 10.1186/s13287-024-04027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Cellular metabolism regulates the pluripotency of embryonic stem cells (ESCs). Yet, how metabolism regulates the transition among different pluripotent states remains elusive. It has been shown that protein lactylation, which uses lactate, a metabolic product of glycolysis, as a substrate, plays a critical role in various biological events. Here we focused on that glycolysis regulates the conversion between ESCs and 2-cell-like cells (2CLCs) through protein lactylation. METHODS RNA-seq revealed the activation of 2-cell (2C) genes by suppression of Ldh. Stable isotope labeling by amino acids in cell culture (SILAC) coupled with lactylated peptide enrichment and quantitative mass spectrometric analysis was carried out to investigate the mechanism how protein lactylation regulates the pluripotent-to-2C transition. And we focused on Hdac1. Lactylation of Hdac1 required for silencing 2C genes was proved by quantitative reverse-transcription PCR (qRT-PCR), immunofluorescence (IF), Western blot and chimeric embryos. Chromatin immunoprecipitation coupled with sequencing (ChIP-seq) and in vitro deacetylation assay confirmed lactylation of Hdac1 promoting its binding at 2C genes and enhancing its deacetylase activity, thereby facilitating the removal of H3K27ac and the silencing of 2C genes. RESULTS We found that inhibition or depletion of Ldha, the enzyme converting pyruvate to lactate, leads to the activation of 2C genes, as well as reduced global lactylation in ESCs. To investigate the mechanism how protein lactylation regulates the pluripotent-to-2C transition, quantitative lactylome analysis was performed, and 1716 lactylated proteins were identified. We then focused on Hdac1, a histone deacetylase involved in the silencing of 2C genes. Lactylation of Hdac1 promotes its binding at 2C genes and enhances its deacetylase activity, thus facilitating the removal of H3K27ac and the silencing of 2C genes. CONCLUSIONS In summary, our study reveals a mechanistic link between cellular metabolism and pluripotency regulation through protein lactylation. Our research is the first time to reveal that quantitative lactylome analysis in mouse ESCs. We found that lactylated Hdac1 promotes its binding at 2C genes and enhances its deacetylase activity, thus facilitating the removal of H3K27ac and the silencing of 2C genes.
Collapse
Affiliation(s)
- Qiman Dong
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoqiong Yang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lingling Wang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qingye Zhang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nannan Zhao
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shanshan Nai
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoling Du
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lingyi Chen
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Jia YK, Yu Y, Guan L. Advances in understanding the regulation of pluripotency fate transition in embryonic stem cells. Front Cell Dev Biol 2024; 12:1494398. [PMID: 39479513 PMCID: PMC11521825 DOI: 10.3389/fcell.2024.1494398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Embryonic stem cells (ESCs) sourced from the inner cell mass of blastocysts, are akin to this tissue in function but lack the capacity to form all extraembryonic structures. mESCs are transient cell populations that express high levels of transcripts characteristic of 2-cell (2C) embryos and are identified as "2-cell-like cells" (2CLCs). Previous studies have shown that 2CLCs can contribute to both embryonic and extraembryonic tissues upon reintroduction into early embryos. Approximately 1% of mESCs dynamically transition from pluripotent mESCs into 2CLCs. Nevertheless, the scarcity of mammalian embryos presents a significant challenge to the molecular characterization of totipotent cells. To date, Previous studies have explored various methods for reprogramming pluripotent cells into totipotent cells. While there is a good understanding of the molecular regulatory network maintaining ES pluripotency, the process by which pluripotent ESCs reprogram into totipotent cells and the associated molecular mechanisms of totipotent regulation remain poorly understood. This review synthesizes recent insights into the regulatory pathways of ESC reprogramming into 2CLC, exploring molecular mechanisms modulated by transcriptional regulators, small molecules, and epigenetic changes. The objective is to construct a theoretical framework for the field of researchers.
Collapse
Affiliation(s)
- Yong kang Jia
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Yang Yu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Guan
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Yagi M, Horng JE, Hochedlinger K. Manipulating cell fate through reprogramming: approaches and applications. Development 2024; 151:dev203090. [PMID: 39348466 PMCID: PMC11463964 DOI: 10.1242/dev.203090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024]
Abstract
Cellular plasticity progressively declines with development and differentiation, yet these processes can be experimentally reversed by reprogramming somatic cells to induced pluripotent stem cells (iPSCs) using defined transcription factors. Advances in reprogramming technology over the past 15 years have enabled researchers to study diseases with patient-specific iPSCs, gain fundamental insights into how cell identity is maintained, recapitulate early stages of embryogenesis using various embryo models, and reverse aspects of aging in cultured cells and animals. Here, we review and compare currently available reprogramming approaches, including transcription factor-based methods and small molecule-based approaches, to derive pluripotent cells characteristic of early embryos. Additionally, we discuss our current understanding of mechanisms that resist reprogramming and their role in cell identity maintenance. Finally, we review recent efforts to rejuvenate cells and tissues with reprogramming factors, as well as the application of iPSCs in deriving novel embryo models to study pre-implantation development.
Collapse
Affiliation(s)
- Masaki Yagi
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joy E. Horng
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
11
|
Wu HH, Leng S, Sergi C, Leng R. How MicroRNAs Command the Battle against Cancer. Int J Mol Sci 2024; 25:5865. [PMID: 38892054 PMCID: PMC11172831 DOI: 10.3390/ijms25115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate more than 30% of genes in humans. Recent studies have revealed that miRNAs play a crucial role in tumorigenesis. Large sets of miRNAs in human tumors are under-expressed compared to normal tissues. Furthermore, experiments have shown that interference with miRNA processing enhances tumorigenesis. Multiple studies have documented the causal role of miRNAs in cancer, and miRNA-based anticancer therapies are currently being developed. This review primarily focuses on two key points: (1) miRNAs and their role in human cancer and (2) the regulation of tumor suppressors by miRNAs. The review discusses (a) the regulation of the tumor suppressor p53 by miRNA, (b) the critical role of the miR-144/451 cluster in regulating the Itch-p63-Ago2 pathway, and (c) the regulation of PTEN by miRNAs. Future research and the perspectives of miRNA in cancer are also discussed. Understanding these pathways will open avenues for therapeutic interventions targeting miRNA regulation.
Collapse
Affiliation(s)
- Hong Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
12
|
Hamdi M, Sánchez JM, Fernandez-Fuertes B, Câmara DR, Bollwein H, Rizos D, Bauersachs S, Almiñana C. Oviductal extracellular vesicles miRNA cargo varies in response to embryos and their quality. BMC Genomics 2024; 25:520. [PMID: 38802796 PMCID: PMC11129498 DOI: 10.1186/s12864-024-10429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Increasing evidence points to an active role of oviductal extracellular vesicles (oEVs) in the early embryo-maternal dialogue. However, it remains unclear whether oEVs contribute to the recognition of the presence of embryos and their quality in the oviduct. Hence, we examined whether the molecular cargo of oEVs secreted by bovine oviduct epithelial cells (BOEC) differs depending on the presence of good (≥ 8 cells, G) or poor (< 8 cells, P) quality embryos. In addition, differences in RNA profiles between G and P embryos were analyzed in attempt to distinguish oEVs and embryonic EVs cargos. METHODS For this purpose, primary BOEC were co-cultured with in vitro produced embryos (IVP) 53 h post fertilization as follows: BOEC with G embryos (BGE); BOEC with P embryos (BPE); G embryos alone (GE); P embryos alone (PE); BOEC alone (B) and medium control (M). After 24 h of co-culture, conditioned media were collected from all groups and EVs were isolated and characterized. MicroRNA profiling of EVs and embryos was performed by small RNA-sequencing. RESULTS In EVs, 84 miRNAs were identified, with 8 differentially abundant (DA) miRNAs for BGE vs. B and 4 for BPE vs. B (P-value < 0.01). In embryos, 187 miRNAs were identified, with 12 DA miRNAs for BGE vs. BPE, 3 for G vs. P, 8 for BGE vs. GE, and 11 for BPE vs. PE (P-value < 0.01). CONCLUSIONS These results indicated that oEVs are involved in the oviductal-embryo recognition and pointed to specific miRNAs with signaling and supporting roles during early embryo development.
Collapse
Affiliation(s)
- Meriem Hamdi
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - José María Sánchez
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Beatriz Fernandez-Fuertes
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Diogo Ribeiro Câmara
- Department of Veterinary Medicine, Federal University of Alagoas, Viçosa, AL, Brazil
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - Dimitrios Rizos
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, Lindau, ZH, 8315, Switzerland.
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
14
|
Lu X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol 2024; 15:mjad052. [PMID: 37604781 PMCID: PMC10794949 DOI: 10.1093/jmcb/mjad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are important components of transposable elements that constitute ∼40% of the mouse genome. ERVs exhibit dynamic expression patterns during early embryonic development and are engaged in numerous biological processes. Therefore, ERV expression must be closely monitored in cells. Most studies have focused on the regulation of ERV expression in mouse embryonic stem cells (ESCs) and during early embryonic development. This review touches on the classification, expression, and functions of ERVs in mouse ESCs and early embryos and mainly discusses ERV modulation strategies from the perspectives of transcription, epigenetic modification, nucleosome/chromatin assembly, and post-transcriptional control.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
15
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
16
|
Guo Y, Li TD, Modzelewski AJ, Siomi H. Retrotransposon renaissance in early embryos. Trends Genet 2024; 40:39-51. [PMID: 37949723 DOI: 10.1016/j.tig.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Despite being the predominant genetic elements in mammalian genomes, retrotransposons were often dismissed as genomic parasites with ambiguous biological significance. However, recent studies reveal their functional involvement in early embryogenesis, encompassing crucial processes such as zygotic genome activation (ZGA) and cell fate decision. This review underscores the paradigm shift in our understanding of retrotransposon roles during early preimplantation development, as well as their rich functional reservoir that is exploited by the host to provide cis-regulatory elements, noncoding RNAs, and functional proteins. The rapid advancement in long-read sequencing, low input multiomics profiling, advanced in vitro systems, and precise gene editing techniques encourages further dissection of retrotransposon functions that were once obscured by the intricacies of their genomic footprints.
Collapse
Affiliation(s)
- Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Ten D Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | - Andrew J Modzelewski
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA.
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 160-8582, Japan.
| |
Collapse
|
17
|
Torre D, Fstkchyan YS, Ho JSY, Cheon Y, Patel RS, Degrace EJ, Mzoughi S, Schwarz M, Mohammed K, Seo JS, Romero-Bueno R, Demircioglu D, Hasson D, Tang W, Mahajani SU, Campisi L, Zheng S, Song WS, Wang YC, Shah H, Francoeur N, Soto J, Salfati Z, Weirauch MT, Warburton P, Beaumont K, Smith ML, Mulder L, Villalta SA, Kessenbrock K, Jang C, Lee D, De Rubeis S, Cobos I, Tam O, Hammell MG, Seldin M, Shi Y, Basu U, Sebastiano V, Byun M, Sebra R, Rosenberg BR, Benner C, Guccione E, Marazzi I. Nuclear RNA catabolism controls endogenous retroviruses, gene expression asymmetry, and dedifferentiation. Mol Cell 2023; 83:4255-4271.e9. [PMID: 37995687 PMCID: PMC10842741 DOI: 10.1016/j.molcel.2023.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.
Collapse
Affiliation(s)
- Denis Torre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yesai S Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Youngseo Cheon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emma J Degrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Slim Mzoughi
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan Schwarz
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin Mohammed
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ji-Seon Seo
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Raquel Romero-Bueno
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijing Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sameehan U Mahajani
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Won-Suk Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zelda Salfati
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Peter Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lubbertus Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, The Mindich Child Health and Development Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oliver Tam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Marcus Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Yongsheng Shi
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Uttiya Basu
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology and Regenerative Medicine and the Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minji Byun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chris Benner
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences and Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
18
|
Biondic S, Petropoulos S. Evidence for Functional Roles of MicroRNAs in Lineage Specification During Mouse and Human Preimplantation Development. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:481-494. [PMID: 38161584 PMCID: PMC10751869 DOI: 10.59249/fosi4358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proper formation of the blastocyst, including the specification of the first embryonic cellular lineages, is required to ensure healthy embryo development and can significantly impact the success of assisted reproductive technologies (ARTs). However, the regulatory role of microRNAs in early development, particularly in the context of preimplantation lineage specification, remains largely unknown. Taking a cross-species approach, this review aims to summarize the expression dynamics and functional significance of microRNAs in the differentiation and maintenance of lineage identity in both the mouse and the human. Findings are consolidated from studies conducted using in vitro embryonic stem cell models representing the epiblast, trophectoderm, and primitive endoderm lineages (modeled by naïve embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm stem cells, respectively) to provide insight on what may be occurring in the embryo. Additionally, studies directly conducted in both mouse and human embryos are discussed, emphasizing similarities to the stem cell models and the gaps in our understanding, which will hopefully lead to further investigation of these areas. By unraveling the intricate mechanisms by which microRNAs regulate the specification and maintenance of cellular lineages in the blastocyst, we can leverage this knowledge to further optimize stem cell-based models such as the blastoids, enhance embryo competence, and develop methods of non-invasive embryo selection, which can potentially increase the success rates of assisted reproductive technologies and improve the experiences of those receiving fertility treatments.
Collapse
Affiliation(s)
- Savana Biondic
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
- Division of Obstetrics and Gynecology, Department of
Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm,
Sweden
| |
Collapse
|
19
|
Gökbuget D, Lenshoek K, Boileau RM, Bayerl J, Huang H, Wiita AP, Laird DJ, Blelloch R. Transcriptional repression upon S phase entry protects genome integrity in pluripotent cells. Nat Struct Mol Biol 2023; 30:1561-1570. [PMID: 37696959 DOI: 10.1038/s41594-023-01092-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
Coincident transcription and DNA replication causes replication stress and genome instability. Rapidly dividing mouse pluripotent stem cells are highly transcriptionally active and experience elevated replication stress, yet paradoxically maintain genome integrity. Here, we study FOXD3, a transcriptional repressor enriched in pluripotent stem cells, and show that its repression of transcription upon S phase entry is critical to minimizing replication stress and preserving genome integrity. Acutely deleting Foxd3 leads to immediate replication stress, G2/M phase arrest, genome instability and p53-dependent apoptosis. FOXD3 binds near highly transcribed genes during S phase entry, and its loss increases the expression of these genes. Transient inhibition of RNA polymerase II in S phase reduces observed replication stress and cell cycle defects. Loss of FOXD3-interacting histone deacetylases induces replication stress, while transient inhibition of histone acetylation opposes it. These results show how a transcriptional repressor can play a central role in maintaining genome integrity through the transient inhibition of transcription during S phase, enabling faithful DNA replication.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kayla Lenshoek
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan M Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Bayerl
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Hector Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J Laird
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Iqbal MJ, Javed Z, Sadia H, Mehmood S, Akbar A, Zahid B, Nadeem T, Roshan S, Varoni EM, Iriti M, Gürer ES, Sharifi-Rad J, Calina D. Targeted therapy using nanocomposite delivery systems in cancer treatment: highlighting miR34a regulation for clinical applications. Cancer Cell Int 2023; 23:84. [PMID: 37149609 PMCID: PMC10164299 DOI: 10.1186/s12935-023-02929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
The clinical application of microRNAs in modern therapeutics holds great promise to uncover molecular limitations and conquer the unbeatable castle of cancer metastasis. miRNAs play a decisive role that regulating gene expression at the post-transcription level while controlling both the stability and translation capacity of mRNAs. Specifically, miR34a is a master regulator of the tumor suppressor gene, cancer progression, stemness, and drug resistance at the cell level in p53-dependent and independent signaling. With changing, trends in nanotechnology, in particular with the revolution in the field of nanomedicine, nano drug delivery systems have emerged as a prominent strategy in clinical practices coupled with miR34a delivery. Recently, it has been observed that forced miR34a expression in human cancer cell lines and model organisms limits cell proliferation and metastasis by targeting several signaling cascades, with various studies endorsing that miR34a deregulation in cancer cells modulates apoptosis and thus requires targeted nano-delivery systems for cancer treatment. In this sense, the present review aims to provide an overview of the clinical applications of miR34a regulation in targeted therapy of cancer.
Collapse
Affiliation(s)
| | - Zeeshan Javed
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Sajid Mehmood
- Department of Biochemistry, Islam Medical and Dental College, Sialkot, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan Quetta, Quetta, Pakistan
| | - Benish Zahid
- Department of Pathobiology, KBCMA, CVAS, Sub Campus University of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Tariq Nadeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sadia Roshan
- Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - Elena Maria Varoni
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania.
| |
Collapse
|
21
|
Meharwade T, Joumier L, Parisotto M, Huynh V, Lummertz da Rocha E, Malleshaiah M. Cross-activation of FGF, NODAL, and WNT pathways constrains BMP-signaling-mediated induction of the totipotent state in mouse embryonic stem cells. Cell Rep 2023; 42:112438. [PMID: 37126449 DOI: 10.1016/j.celrep.2023.112438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/11/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Embryonic stem cells (ESCs) are an attractive model to study the relationship between signaling and cell fates. Cultured mouse ESCs can exist in multiple states resembling distinct stages of early embryogenesis, such as totipotent, pluripotent, primed, and primitive endoderm. The signaling mechanisms regulating the totipotent state and coexistence of these states are poorly understood. Here we identify bone morphogenetic protein (BMP) signaling as an inducer of the totipotent state. However, we discover that BMP's role is constrained by the cross-activation of FGF, NODAL, and WNT pathways. We exploit this finding to enhance the proportion of totipotent cells by rationally inhibiting the cross-activated pathways. Single-cell mRNA sequencing reveals that induction of the totipotent state is accompanied by suppression of primed and primitive endoderm states. Furthermore, reprogrammed totipotent cells we generate in culture resemble totipotent cells of preimplantation embryo. Our findings reveal a BMP signaling mechanism regulating both the totipotent state and heterogeneity of ESCs.
Collapse
Affiliation(s)
- Thulaj Meharwade
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Loïck Joumier
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Maxime Parisotto
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Vivian Huynh
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mohan Malleshaiah
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; The Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; McGill Regenerative Medicine Network, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
22
|
Sakashita A, Kitano T, Ishizu H, Guo Y, Masuda H, Ariura M, Murano K, Siomi H. Transcription of MERVL retrotransposons is required for preimplantation embryo development. Nat Genet 2023; 55:484-495. [PMID: 36864102 PMCID: PMC10011141 DOI: 10.1038/s41588-023-01324-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 01/26/2023] [Indexed: 03/04/2023]
Abstract
Zygotic genome activation (ZGA) is a critical postfertilization step that promotes totipotency and allows different cell fates to emerge in the developing embryo. MERVL (murine endogenous retrovirus-L) is transiently upregulated at the two-cell stage during ZGA. Although MERVL expression is widely used as a marker of totipotency, the role of this retrotransposon in mouse embryogenesis remains elusive. Here, we show that full-length MERVL transcripts, but not encoded retroviral proteins, are essential for accurate regulation of the host transcriptome and chromatin state during preimplantation development. Both knockdown and CRISPRi-based repression of MERVL result in embryonic lethality due to defects in differentiation and genomic stability. Furthermore, transcriptome and epigenome analysis revealed that loss of MERVL transcripts led to retention of an accessible chromatin state at, and aberrant expression of, a subset of two-cell-specific genes. Taken together, our results suggest a model in which an endogenous retrovirus plays a key role in regulating host cell fate potential.
Collapse
Affiliation(s)
- Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Kitano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotsugu Ishizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Harumi Masuda
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Ariura
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
23
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
24
|
Reprogramming of fibroblast cells to totipotent state by DNA demethylation. Sci Rep 2023; 13:1154. [PMID: 36670207 PMCID: PMC9859804 DOI: 10.1038/s41598-023-28457-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Many attempts have been made to induce high-quality embryonic stem cells such as pluripotent stem cells and totipotent stem cells, but challenges remain to be overcome such as appropriate methods and sources. Demethylation of the genome after fertilization is an important step to initiate zygote gene activation, which can lead to the development of new embryos. Here, we tried to induce totipotent stem cells by mimicking DNA demethylation patterns of the embryo. Our data showed, after induction of DNA demethylation via chemicals or knockdown of Dnmts, cells positive for Nanog, and Cdx2 emerged. These cells could differentiate into the pluripotent and trophoblast lineage cells in-vitro. After transferring these cells to the uterus, they can implant and form embryo-like structures. Our study showed the importance of DNA demethylation roles in totipotent stem cell induction and a new and easy way to induce this cell type.
Collapse
|
25
|
Meharwade T, Joumier L, Parisotto M, Malleshaiah M. Single-cell mass cytometry analysis reveals stem cell heterogeneity. Methods 2022; 208:9-18. [DOI: 10.1016/j.ymeth.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
|
26
|
Xu H, Liang H. The regulation of totipotency transcription: Perspective from in vitro and in vivo totipotency. Front Cell Dev Biol 2022; 10:1024093. [PMID: 36393839 PMCID: PMC9643643 DOI: 10.3389/fcell.2022.1024093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/13/2022] [Indexed: 09/08/2024] Open
Abstract
Totipotency represents the highest developmental potency. By definition, totipotent stem cells are capable of giving rise to all embryonic and extraembryonic cell types. In mammalian embryos, totipotency occurs around the zygotic genome activation period, which is around the 2-cell stage in mouse embryo or the 4-to 8-cell stage in human embryo. Currently, with the development of in vitro totipotent-like models and the advances in small-scale genomic methods, an in-depth mechanistic understanding of the totipotency state and regulation was enabled. In this review, we explored and summarized the current views about totipotency from various angles, including genetic and epigenetic aspects. This will hopefully formulate a panoramic view of totipotency from the available research works until now. It can also help delineate the scaffold and formulate new hypotheses on totipotency for future research works.
Collapse
Affiliation(s)
| | - Hongqing Liang
- Division of Human Reproduction and Developmental Genetics, Women’s Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Generation of 2C-like mouse embryonic stem cells in vivo to evaluate developmental potency. STAR Protoc 2022; 3:101684. [PMID: 36208454 PMCID: PMC9562427 DOI: 10.1016/j.xpro.2022.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022] Open
Abstract
This protocol describes an optimized workflow for generating 2-cell (2C) stage-like mouse embryonic stem cells (mESCs) for microinjection into 8-cell stage mouse embryos to evaluate the developmental potency of these cells. We detail the following steps: 1) chemical suppression of glycolysis to induce a 2C-like state in mESCs, 2) flow cytometry to enrich for 2C-like cells, 3) embryo microinjection of 2C-like mESCs into 8-cell stage mouse embryos, and finally, 4) immunofluorescence staining of the chimeric blastocysts. For complete details on the use and execution of this protocol, please refer to Hu et al. (2020).
Collapse
|
28
|
Ghazimoradi MH, Khalafizadeh A, Babashah S. A critical review on induced totipotent stem cells: Types and methods. Stem Cell Res 2022; 63:102857. [PMID: 35872523 DOI: 10.1016/j.scr.2022.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Totipotent stem cells are cells with the capacity to form an entire embryo. Many attempts have been made to convert other types of cells to totipotent stem cells which we called induced totipotent stem cells. Various aspects of these cells such as transcriptional and epigenetics networks are unique. By taking advantage of these aspects, efficient methods have been provided to induce totipotent stem cells. Although this advancement is significant, many aspects of induction such as the underlying mechanism remain to be elucidated. On the other hand, embryonic stem cells usually are the source of induction which raise important questions regarding if these methods are induction or promotion of 2C intrinsic totipotent cells in ESC culture. Here, we review the latest mouse progress in underling mechanism of induction of totipotent stem cells. In addition, we follow up on the progress of Blastoids derived from totipotent stem cells.
Collapse
Affiliation(s)
- Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
29
|
Zuo F, Jiang J, Fu H, Yan K, Liefke R, Zhang J, Hong Y, Chang Z, Liu N, Wang Z, Xi Q. A TRIM66/DAX1/Dux axis suppresses the totipotent 2-cell-like state in murine embryonic stem cells. Cell Stem Cell 2022; 29:948-961.e6. [DOI: 10.1016/j.stem.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022]
|
30
|
Olbrich T, Ruiz S. Genome architecture and totipotency: An intertwined relation during early embryonic development. Bioessays 2022; 44:e2200029. [PMID: 35560026 DOI: 10.1002/bies.202200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022]
Abstract
Chromosomes are not randomly packed and positioned into the nucleus but folded in higher-order chromatin structures with defined functions. However, the genome of a fertilized embryo undergoes a dramatic epigenetic reprogramming characterized by extensive chromatin relaxation and the lack of a defined three-dimensional structure. This reprogramming is followed by a slow genome refolding that gradually strengthens the chromatin architecture during preimplantation development. Interestingly, genome refolding during early development coincides with a progressive loss of developmental potential suggesting a link between chromatin organization and cell plasticity. In agreement, loss of chromatin architecture upon depletion of the insulator transcription factor CTCF in embryonic stem cells led to the upregulation of the transcriptional program found in totipotent cells of the embryo, those with the highest developmental potential. This essay will discuss the impact of genome folding in controlling the expression of transcriptional programs involved in early development and their plastic-associated features.
Collapse
Affiliation(s)
- Teresa Olbrich
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Xie SQ, Leeke BJ, Whilding C, Wagner RT, Garcia-Llagostera F, Low Y, Chammas P, Cheung NTF, Dormann D, McManus MT, Percharde M. Nucleolar-based Dux repression is essential for embryonic two-cell stage exit. Genes Dev 2022; 36:331-347. [PMID: 35273077 PMCID: PMC8973846 DOI: 10.1101/gad.349172.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Upon fertilization, the mammalian embryo must switch from dependence on maternal transcripts to transcribing its own genome, and in mice this involves the transient up-regulation of MERVL transposons and MERVL-driven genes at the two-cell stage. The mechanisms and requirement for MERVL and two-cell (2C) gene up-regulation are poorly understood. Moreover, this MERVL-driven transcriptional program must be rapidly shut off to allow two-cell exit and developmental progression. Here, we report that robust ribosomal RNA (rRNA) synthesis and nucleolar maturation are essential for exit from the 2C state. 2C-like cells and two-cell embryos show similar immature nucleoli with altered structure and reduced rRNA output. We reveal that nucleolar disruption via blocking RNA polymerase I activity or preventing nucleolar phase separation enhances conversion to a 2C-like state in embryonic stem cells (ESCs) by detachment of the MERVL activator Dux from the nucleolar surface. In embryos, nucleolar disruption prevents proper nucleolar maturation and Dux silencing and leads to two- to four-cell arrest. Our findings reveal an intriguing link between rRNA synthesis, nucleolar maturation, and gene repression during early development.
Collapse
Affiliation(s)
- Sheila Q Xie
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Bryony J Leeke
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Chad Whilding
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Ryan T Wagner
- University of California at San Francisco, San Francisco, California 91413, USA
| | - Ferran Garcia-Llagostera
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - YiXuan Low
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Paul Chammas
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Nathan T-F Cheung
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Dirk Dormann
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Michael T McManus
- University of California at San Francisco, San Francisco, California 91413, USA
| | - Michelle Percharde
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
32
|
Shah V, Shah J. Restoring Ravaged Heart: Molecular Mechanisms and Clinical Application of miRNA in Heart Regeneration. Front Cardiovasc Med 2022; 9:835138. [PMID: 35224063 PMCID: PMC8866653 DOI: 10.3389/fcvm.2022.835138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Human heart development is a complex and tightly regulated process, conserving proliferation, and multipotency of embryonic cardiovascular progenitors. At terminal stage, progenitor cell type gets suppressed for terminal differentiation and maturation. In the human heart, most cardiomyocytes are terminally differentiated and so have limited proliferation capacity. MicroRNAs (miRNAs) are non-coding single-stranded RNA that regulate gene expression and mRNA silencing at the post-transcriptional level. These miRNAs play a crucial role in numerous biological events, including cardiac development, and cardiomyocyte proliferation. Several cardiac cells specific miRNAs have been discovered. Inhibition or overexpression of these miRNAs could induce cardiac regeneration, cardiac stem cell proliferation and cardiomyocyte proliferation. Clinical application of miRNAs extends to heart failure, wherein the cell cycle arrest of terminally differentiated cardiac cells inhibits the heart regeneration. The regenerative capacity of the myocardium can be enhanced by cardiomyocyte specific miRNAs controlling the cell cycle. In this review, we focus on cardiac-specific miRNAs involved in cardiac regeneration and cardiomyocyte proliferation, and their potential as a new clinical therapy for heart regeneration.
Collapse
|
33
|
Li W, Li X, Ma X, Xiao W, Zhang J. Mapping the m1A, m5C, m6A and m7G methylation atlas in zebrafish brain under hypoxic conditions by MeRIP-seq. BMC Genomics 2022; 23:105. [PMID: 35135476 PMCID: PMC8822802 DOI: 10.1186/s12864-022-08350-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The epigenetic modifications play important regulatory roles in tissue development, maintenance of physiological functions and pathological process. RNA methylations, including newly identified m1A, m5C, m6A and m7G, are important epigenetic modifications. However, how these modifications are distributed in the transcriptome of vertebrate brains and whether their abundance is altered under pathological conditions are still poorly understood. In this study, we chose the model animal of zebrafish to conduct a systematic study to investigate the mRNA methylation atlas in the brain. RESULTS By performing unbiased analyses of the m1A, m5C, m6A and m7G methylation of mRNA, we found that within the whole brain transcriptome, with the increase of the gene expression levels, the overall level of each of these four modifications on the related genes was also progressively increased. Further bioinformatics analysis indicated that the zebrafish brain has an abundance of m1A modifications. In the hypoxia-treated zebrafish brains, the proportion of m1A is decreased, affecting the RNA splicing and zebrafish endogenous retroviruses. CONCLUSIONS Our study presents the first comprehensive atlas of m1A, m5C, m6A and m7G in the epitranscriptome of the zebrafish brain and reveals the distribution of these modifications in mRNA under hypoxic conditions. These data provide an invaluable resource for further research on the involvement of m1A, m5C, m6A and m7G in the regulation of miRNA and repeat elements in vertebrates, and provide new thoughts to study the brain hypoxic injury on the aspect of epitranscriptome.
Collapse
Affiliation(s)
- Wei Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaoyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xunjie Ma
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
34
|
Yang M, Yu H, Yu X, Liang S, Hu Y, Luo Y, Izsvák Z, Sun C, Wang J. Chemical-induced chromatin remodeling reprograms mouse ESCs to totipotent-like stem cells. Cell Stem Cell 2022; 29:400-418.e13. [PMID: 35143761 DOI: 10.1016/j.stem.2022.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/18/2021] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
Totipotent cells have more robust developmental potency than any other cell types, giving rise to both embryonic and extraembryonic tissues. Stable totipotent cell cultures and deciphering the principles of totipotency regulation would be invaluable to understand cell plasticity and lineage segregation in early development. Our approach of remodeling the pericentromeric heterochromatin and re-establishing the totipotency-specific broad H3K4me3 domains promotes the pluri-to-totipotency transition. Our protocol establishes a closer match of mouse 2-cell (2C) embryos than any other 2C-like cells. These totipotent-like stem cells (TLSCs) are stable in culture and possess unique molecular features of the mouse 2C embryo. Functionally, TLSCs are competent for germline transmission and give rise to both embryonic and extraembryonic lineages at high frequency. Therefore, TLSCs represent a highly valuable cell type for studies of totipotency and embryology.
Collapse
Affiliation(s)
- Mingzhu Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanwen Yu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiu Yu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiqi Liang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanlang Hu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuxin Luo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany
| | - Chuanbo Sun
- Guangzhou Institute of Pediatrics, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
35
|
Komatsu M, Tsukahara H, Bai H, Takahashi M, Wakai T, Kawahara M. Cell-cycle dependent GATA2 subcellular localization in mouse 2-cell embryos. Biochem Biophys Res Commun 2021; 584:1-6. [PMID: 34741809 DOI: 10.1016/j.bbrc.2021.10.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022]
Abstract
GATA factors are essential transcription factors for embryonic development that broadly control the transcription of other genes. This study aimed to examine GATA2 protein localization in mouse embryos at the 2-cell stage, when drastic transformation in gene expression occurs for subsequent development in early embryos. We first analyzed GATA2 localization in 2-cell embryos at the interphase and mitotic phases by immunofluorescence analysis. In the interphase, GATA2 protein was localized in the nucleus, as a common transcription factor. In the mitotic phase, GATA2 protein was observed as a focally-aggregated spot around the nucleus of each blastomere. To explore the relationship between GATA2 protein localization and cell cycle progression in mouse 2-cell stage embryos, GFP-labeled GATA2 protein was overexpressed in the blastomere of 2-cell embryos. Overexpression of GFP-labeled GATA2 protein arrested cellular mitosis, focally aggregated GATA2 protein expression was not observed. This mitotic arrest by GATA2 overexpression was not accompanied with the upregulation of a 2-cell stage specific gene, murine endogenous retrovirus-L. These results suggest that GATA2 protein localization changes dynamically depending on cell cycle progression in mouse 2-cell embryos; in particular, focally aggregated localization of GATA2 in the mitotic phase requires appropriate cell cycle progression.
Collapse
Affiliation(s)
- Masaya Komatsu
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hayato Tsukahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Masashi Takahashi
- Graduate School of Global Food Resources/Global Center for Food, Land and Water Resources, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
36
|
Yeh CY, Huang WH, Chen HC, Meir YJJ. Capturing Pluripotency and Beyond. Cells 2021; 10:cells10123558. [PMID: 34944066 PMCID: PMC8700150 DOI: 10.3390/cells10123558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
During the development of a multicellular organism, the specification of different cell lineages originates in a small group of pluripotent cells, the epiblasts, formed in the preimplantation embryo. The pluripotent epiblast is protected from premature differentiation until exposure to inductive cues in strictly controlled spatially and temporally organized patterns guiding fetus formation. Epiblasts cultured in vitro are embryonic stem cells (ESCs), which recapitulate the self-renewal and lineage specification properties of their endogenous counterparts. The characteristics of totipotency, although less understood than pluripotency, are becoming clearer. Recent studies have shown that a minor ESC subpopulation exhibits expanded developmental potential beyond pluripotency, displaying a characteristic reminiscent of two-cell embryo blastomeres (2CLCs). In addition, reprogramming both mouse and human ESCs in defined media can produce expanded/extended pluripotent stem cells (EPSCs) similar to but different from 2CLCs. Further, the molecular roadmaps driving the transition of various potency states have been clarified. These recent key findings will allow us to understand eutherian mammalian development by comparing the underlying differences between potency network components during development. Using the mouse as a paradigm and recent progress in human PSCs, we review the epiblast's identity acquisition during embryogenesis and their ESC counterparts regarding their pluripotent fates and beyond.
Collapse
Affiliation(s)
- Chih-Yu Yeh
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Wei-Han Huang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Hung-Chi Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| | - Yaa-Jyuhn James Meir
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| |
Collapse
|
37
|
Yoshizawa-Sugata N, Yamazaki S, Mita-Yoshida K, Ono T, Nishito Y, Masai H. Loss of full-length DNA replication regulator Rif1 in two-cell embryos is associated with zygotic transcriptional activation. J Biol Chem 2021; 297:101367. [PMID: 34736895 PMCID: PMC8686075 DOI: 10.1016/j.jbc.2021.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
Rif1 regulates DNA replication timing and double-strand break repair, and its depletion induces transcriptional bursting of two-cell (2C) zygote-specific genes in mouse ES cells. However, how Rif1 regulates zygotic transcription is unclear. We show here that Rif1 depletion promotes the formation of a unique Zscan4 enhancer structure harboring both histone H3 lysine 27 acetylation (H3K27ac) and moderate levels of silencing chromatin mark H3K9me3. Curiously, another enhancer mark H3K4me1 is missing, whereas DNA methylation is still maintained in the structure, which spreads across gene bodies and neighboring regions within the Zscan4 gene cluster. We also found by function analyses of Rif1 domains in ES cells that ectopic expression of Rif1 lacking N-terminal domain results in upregulation of 2C transcripts. This appears to be caused by dominant negative inhibition of endogenous Rif1 protein localization at the nuclear periphery through formation of hetero-oligomers between the N-terminally truncated and endogenous forms. Strikingly, in murine 2C embryos, most of Rif1-derived polypeptides are expressed as truncated forms in soluble nuclear or cytosolic fraction and are likely nonfunctional. Toward the morula stage, the full-length form of Rif1 gradually increased. Our results suggest that the absence of the functional full-length Rif1 due to its instability or alternative splicing and potential inactivation of Rif1 through dominant inhibition by N-terminally truncated Rif1 polypeptides may be involved in 2C-specific transcription program.
Collapse
Key Words
- 2c, two-cell (embryo)
- 4-oht, 4-hydroxytamoxifen
- dox, doxycycline
- erv, endogenous retrovirus
- es, embryonic stem
- hpf, hours post fertilization
- idr, intrinsic disordered region
- ivf, in vitro fertilization
- kd, knockdown
- ko, knockout
- rt, room temperature
Collapse
Affiliation(s)
| | - Satoshi Yamazaki
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kaoru Mita-Yoshida
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomio Ono
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
38
|
Cable J, Heard E, Hirose T, Prasanth KV, Chen LL, Henninger JE, Quinodoz SA, Spector DL, Diermeier SD, Porman AM, Kumar D, Feinberg MW, Shen X, Unfried JP, Johnson R, Chen CK, Wilusz JE, Lempradl A, McGeary SE, Wahba L, Pyle AM, Hargrove AE, Simon MD, Marcia M, Przanowska RK, Chang HY, Jaffrey SR, Contreras LM, Chen Q, Shi J, Mendell JT, He L, Song E, Rinn JL, Lalwani MK, Kalem MC, Chuong EB, Maquat LE, Liu X. Noncoding RNAs: biology and applications-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:118-141. [PMID: 34791665 PMCID: PMC9808899 DOI: 10.1111/nyas.14713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023]
Abstract
The human transcriptome contains many types of noncoding RNAs, which rival the number of protein-coding species. From long noncoding RNAs (lncRNAs) that are over 200 nucleotides long to piwi-interacting RNAs (piRNAs) of only 20 nucleotides, noncoding RNAs play important roles in regulating transcription, epigenetic modifications, translation, and cell signaling. Roles for noncoding RNAs in disease mechanisms are also being uncovered, and several species have been identified as potential drug targets. On May 11-14, 2021, the Keystone eSymposium "Noncoding RNAs: Biology and Applications" brought together researchers working in RNA biology, structure, and technologies to accelerate both the understanding of RNA basic biology and the translation of those findings into clinical applications.
Collapse
Affiliation(s)
| | - Edith Heard
- European Molecular Biology Laboratory (EMBL), Heidelberg, Heidelberg, Germany
- Collège de France, Paris, France
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Sciences, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, China
| | | | - Sofia A Quinodoz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor and Genetics Program, Stony Brook University, Stony Brook, New York
| | - Sarah D Diermeier
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Allison M Porman
- Biochemistry and Molecular Genetics Department, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xiaohua Shen
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Juan Pablo Unfried
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, Universidad de Navarra (UNAV), Pamplona, Spain
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital; and Department for BioMedical Research University of Bern, Bern, Switzerland
- School of Biology and Environmental Science and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chun-Kan Chen
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Adelheid Lempradl
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, Michigan
| | - Sean E McGeary
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lamia Wahba
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Anna Marie Pyle
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
- Connecticut and Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Róża K Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Howard Hughes Medical Institute, Stanford University, Stanford, California
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Joshua T Mendell
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine; and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lin He
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Bioland Laboratory; Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-sen University; and Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou, Guangzhou, China
| | - John L Rinn
- Department of Biochemistry, BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado
| | - Mukesh Kumar Lalwani
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Scotland, United Kingdom
| | - Murat Can Kalem
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, New York
| | - Xuhang Liu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York
| |
Collapse
|
39
|
Kinisu M, Choi YJ, Cattoglio C, Liu K, Roux de Bezieux H, Valbuena R, Pum N, Dudoit S, Huang H, Xuan Z, Kim SY, He L. Klf5 establishes bi-potential cell fate by dual regulation of ICM and TE specification genes. Cell Rep 2021; 37:109982. [PMID: 34758315 PMCID: PMC8711565 DOI: 10.1016/j.celrep.2021.109982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/30/2021] [Accepted: 10/20/2021] [Indexed: 01/05/2023] Open
Abstract
Early blastomeres of mouse preimplantation embryos exhibit bi-potential cell fate, capable of generating both embryonic and extra-embryonic lineages in blastocysts. Here we identify three major two-cell-stage (2C)-specific endogenous retroviruses (ERVs) as the molecular hallmark of this bi-potential plasticity. Using the long terminal repeats (LTRs) of all three 2C-specific ERVs, we identify Krüppel-like factor 5 (Klf5) as their major upstream regulator. Klf5 is essential for bi-potential cell fate; a single Klf5-overexpressing embryonic stem cell (ESC) generates terminally differentiated embryonic and extra-embryonic lineages in chimeric embryos, and Klf5 directly induces inner cell mass (ICM) and trophectoderm (TE) specification genes. Intriguingly, Klf5 and Klf4 act redundantly during ICM specification, whereas Klf5 deficiency alone impairs TE specification. Klf5 is regulated by multiple 2C-specific transcription factors, particularly Dux, and the Dux/Klf5 axis is evolutionarily conserved. The 2C-specific transcription program converges on Klf5 to establish bi-potential cell fate, enabling a cell state with dual activation of ICM and TE genes. Using multiple 2C-specific ERV cell fate markers, Kinisu et al. identify Klf5 as a key transcription factor that confers a 2C-like developmental potential and activates ICM and TE specification genes. Klf5 and Klf4 act redundantly for ICM and TE specification in mouse preimplantation embryos.
Collapse
Affiliation(s)
- Martin Kinisu
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Yong Jin Choi
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Claudia Cattoglio
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ke Liu
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hector Roux de Bezieux
- Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raeline Valbuena
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Nicole Pum
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Haiyan Huang
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhenyu Xuan
- Department of Molecular and Cell Biology, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Sang Yong Kim
- Department of Pathology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Lin He
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA.
| |
Collapse
|
40
|
Yu H, Sun Z, Tan T, Pan H, Zhao J, Zhang L, Chen J, Lei A, Zhu Y, Chen L, Xu Y, Liu Y, Chen M, Sheng J, Xu Z, Qian P, Li C, Gao S, Daley GQ, Zhang J. rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin. Nat Commun 2021; 12:6365. [PMID: 34753899 PMCID: PMC8578659 DOI: 10.1038/s41467-021-26576-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
The nucleolus is the organelle for ribosome biogenesis and sensing various types of stress. However, its role in regulating stem cell fate remains unclear. Here, we present evidence that nucleolar stress induced by interfering rRNA biogenesis can drive the 2-cell stage embryo-like (2C-like) program and induce an expanded 2C-like cell population in mouse embryonic stem (mES) cells. Mechanistically, nucleolar integrity maintains normal liquid-liquid phase separation (LLPS) of the nucleolus and the formation of peri-nucleolar heterochromatin (PNH). Upon defects in rRNA biogenesis, the natural state of nucleolus LLPS is disrupted, causing dissociation of the NCL/TRIM28 complex from PNH and changes in epigenetic state and reorganization of the 3D structure of PNH, which leads to release of Dux, a 2C program transcription factor, from PNH to activate a 2C-like program. Correspondingly, embryos with rRNA biogenesis defect are unable to develop from 2-cell (2C) to 4-cell embryos, with delayed repression of 2C/ERV genes and a transcriptome skewed toward earlier cleavage embryo signatures. Our results highlight that rRNA-mediated nucleolar integrity and 3D structure reshaping of the PNH compartment regulates the fate transition of mES cells to 2C-like cells, and that rRNA biogenesis is a critical regulator during the 2-cell to 4-cell transition of murine pre-implantation embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Zhen Sun
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tan
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Hongru Pan
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Jing Zhao
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Ling Zhang
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anhua Lei
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yuqing Zhu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Lang Chen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yuyan Xu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yaxin Liu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, 100871, Beijing, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jin Zhang
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China.
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China.
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Modzelewski AJ, Shao W, Chen J, Lee A, Qi X, Noon M, Tjokro K, Sales G, Biton A, Anand A, Speed TP, Xuan Z, Wang T, Risso D, He L. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell 2021; 184:5541-5558.e22. [PMID: 34644528 PMCID: PMC8787082 DOI: 10.1016/j.cell.2021.09.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Retrotransposons mediate gene regulation in important developmental and pathological processes. Here, we characterized the transient retrotransposon induction during preimplantation development of eight mammals. Induced retrotransposons exhibit similar preimplantation profiles across species, conferring gene regulatory activities, particularly through long terminal repeat (LTR) retrotransposon promoters. A mouse-specific MT2B2 retrotransposon promoter generates an N-terminally truncated Cdk2ap1ΔN that peaks in preimplantation embryos and promotes proliferation. In contrast, the canonical Cdk2ap1 peaks in mid-gestation and represses cell proliferation. This MT2B2 promoter, whose deletion abolishes Cdk2ap1ΔN production, reduces cell proliferation and impairs embryo implantation, is developmentally essential. Intriguingly, Cdk2ap1ΔN is evolutionarily conserved in sequence and function yet is driven by different promoters across mammals. The distinct preimplantation Cdk2ap1ΔN expression in each mammalian species correlates with the duration of its preimplantation development. Hence, species-specific transposon promoters can yield evolutionarily conserved, alternative protein isoforms, bestowing them with new functions and species-specific expression to govern essential biological divergence.
Collapse
Affiliation(s)
- Andrew J Modzelewski
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wanqing Shao
- Department of Genetics, Edison Family Center for Genome Science and System Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqi Chen
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Angus Lee
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xin Qi
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mackenzie Noon
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kristy Tjokro
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova 35122, Italy
| | - Anne Biton
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA; Bioinformatics and Biostatistics, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris 75015, France
| | - Aparna Anand
- Department of Genetics, Edison Family Center for Genome Science and System Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Terence P Speed
- Bioinformatics Division, WEHI, Parkville, VIC 3052, Australia
| | - Zhenyu Xuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ting Wang
- Department of Genetics, Edison Family Center for Genome Science and System Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova 35122, Italy.
| | - Lin He
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
42
|
Transposable Element Dynamics and Regulation during Zygotic Genome Activation in Mammalian Embryos and Embryonic Stem Cell Model Systems. Stem Cells Int 2021; 2021:1624669. [PMID: 34691189 PMCID: PMC8536462 DOI: 10.1155/2021/1624669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic sequences capable of duplicating and reintegrating at new regions within the genome. A growing body of evidence has demonstrated that these elements play important roles in host genome evolution, despite being traditionally viewed as parasitic elements. To prevent ectopic activation of TE transposition and transcription, they are epigenetically silenced in most somatic tissues. Intriguingly, a specific class of TEs-retrotransposons-is transiently expressed at discrete phases during mammalian development and has been linked to the establishment of totipotency during zygotic genome activation (ZGA). While mechanisms controlling TE regulation in somatic tissues have been extensively studied, the significance underlying the unique transcriptional reactivation of retrotransposons during ZGA is only beginning to be uncovered. In this review, we summarize the expression dynamics of key retrotransposons during ZGA, focusing on findings from in vivo totipotent embryos and in vitro totipotent-like embryonic stem cells (ESCs). We then dissect the functions of retrotransposons and discuss how their transcriptional activities are finetuned during early stages of mammalian development.
Collapse
|
43
|
Cuthbert JM, Russell SJ, Polejaeva IA, Meng Q, White KL, Benninghoff AD. Comparing mRNA and sncRNA profiles during the maternal-to-embryonic transition in bovine IVF and scNT embryos. Biol Reprod 2021; 105:1401-1415. [PMID: 34514499 DOI: 10.1093/biolre/ioab169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Production of embryos with high developmental competence by somatic cell nuclear transfer (scNT) is far less efficient than for in vitro fertilized (IVF) embryos, likely due to an accumulation of errors in genome reprogramming that results in aberrant expression of RNA transcripts, including messenger RNAs (mRNA) and, possibly, microRNAs (miRNA). Thus, our objectives were to use RNAseq to determine the dynamics of mRNA expression in early developing scNT and IVF embryos in the context of the maternal-to-embryonic transition (MET) and to correlate apparent transcriptional dysregulation in cloned embryos with miRNA expression profiles. Comparisons between scNT and IVF embryos indicated large scale transcriptome differences, which were most evident at the 8-cell and morula stages for genes associated with biological functions critical for the MET. For two miRNAs previously identified as differentially expressed in scNT morulae, miR-34a and miR-345, negative correlations with some predicted mRNA targets were apparent, though not widespread among the majority of predicted targets. Moreover, although large-scale aberrations in expression of mRNAs were evident during the MET in cattle scNT embryos, these changes were not consistently correlated with aberrations in miRNA expression at the same developmental stage, suggesting that other mechanisms controlling gene expression may be involved.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Stewart J Russell
- CReATe Fertility Centre, 790 Bay St. #1100, Toronto, M5G 1N8, Canada
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
44
|
Zhu M, Jia L, Jia J. Inhibition of miR-96-5p May Reduce Aβ42/Aβ40 Ratio via Regulating ATP-binding cassette transporter A1. J Alzheimers Dis 2021; 83:367-377. [PMID: 34334400 DOI: 10.3233/jad-210411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Imbalance between amyloid-β (Aβ) production and clearance results in Aβ accumulation. Regulating Aβ levels is still a hot point in the research of Alzheimer's disease (AD). OBJECTIVE To identify the differential expression of ATP-binding cassette transporter A1 (ABCA1) and its upstream microRNA (miRNA) in AD models, and to explore their relationships with Aβ levels. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were performed to determine the expression of ABCA1 in 5xFAD mice, SH-SY5Y cells treated with Aβ oligomers and SH-SY5YAβPP695 cells (AD models). TargetScan was used to predict the upstream miRNAs for ABCA1. Dual-luciferase assay was conducted to identify the regulation of the miRNA on ABCA1. qRT-PCR was used to measure the expression of miRNA in AD models. Finally, enzyme-linked immunosorbent assays were performed to detect Aβ42 and Aβ40 levels. RESULTS The expression of ABCA1 was significantly downregulated in AD models at both mRNA and protein levels. Dual-luciferase assay showed that miR-96-5p could regulate the expression of ABCA1 through binding to the 3 untranslated region of ABCA1. The level of miR-96-5p was significantly elevated in AD models. The expression of ABCA1 was enhanced while Aβ42 levels and Aβ42/Aβ40 ratios were reduced in SH-SY5YAβPP695 cells after treated with miR-96-5p inhibitor. CONCLUSION The current study found that miR-96-5p is the upstream miRNA for ABCA1. Suppression of miR-96-5p in AD models could reduce Aβ42/Aβ40 ratios via upregulating the expression of ABCA1, indicating that miR-96-5p plays an important role in regulating the content of Aβ.
Collapse
Affiliation(s)
- Min Zhu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| |
Collapse
|
45
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
46
|
Hermant C, Torres-Padilla ME. TFs for TEs: the transcription factor repertoire of mammalian transposable elements. Genes Dev 2021; 35:22-39. [PMID: 33397727 PMCID: PMC7778262 DOI: 10.1101/gad.344473.120] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, Hermant and Torres-Padilla summarize and discuss the transcription factors known to be involved in the sequence-specific recognition and transcriptional activation of specific transposable element families or subfamilies. Transposable elements (TEs) are genetic elements capable of changing position within the genome. Although their mobilization can constitute a threat to genome integrity, nearly half of modern mammalian genomes are composed of remnants of TE insertions. The first critical step for a successful transposition cycle is the generation of a full-length transcript. TEs have evolved cis-regulatory elements enabling them to recruit host-encoded factors driving their own, selfish transcription. TEs are generally transcriptionally silenced in somatic cells, and the mechanisms underlying their repression have been extensively studied. However, during germline formation, preimplantation development, and tumorigenesis, specific TE families are highly expressed. Understanding the molecular players at stake in these contexts is of utmost importance to establish the mechanisms regulating TEs, as well as the importance of their transcription to the biology of the host. Here, we review the transcription factors known to be involved in the sequence-specific recognition and transcriptional activation of specific TE families or subfamilies. We discuss the diversity of TE regulatory elements within mammalian genomes and highlight the importance of TE mobilization in the dispersal of transcription factor-binding sites over the course of evolution.
Collapse
Affiliation(s)
- Clara Hermant
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany.,Faculty of Biology, Ludwig-Maximilians Universität München, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
47
|
microRNA regulation of pluripotent state transition. Essays Biochem 2021; 64:947-954. [PMID: 33034348 DOI: 10.1042/ebc20200028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023]
Abstract
microRNAs (miRNAs) play essential roles in mouse embryonic stem cells (ESCs) and early embryo development. The exact mechanism by which miRNAs regulate cell fate transition during embryo development is still not clear. Recent studies have identified and captured various pluripotent stem cells (PSCs) that share similar characteristics with cells from different stages of pre- and post-implantation embryos. These PSCs provide valuable models to understand miRNA functions in early mammalian development. In this short review, we will summarize recent work towards understanding the function and mechanism of miRNAs in regulating the transition or conversion between different pluripotent states. In addition, we will highlight unresolved questions and key future directions related to miRNAs in pluripotent state transition. Studies in these areas will further our understanding of miRNA functions in early embryo development, and may lead to practical means to control human PSCs for clinical applications in regenerative medicine.
Collapse
|
48
|
Miao P, Tang Y. Cascade Strand Displacement and Bipedal Walking Based DNA Logic System for miRNA Diagnostics. ACS CENTRAL SCIENCE 2021; 7:1036-1044. [PMID: 34235264 PMCID: PMC8228592 DOI: 10.1021/acscentsci.1c00277] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 05/05/2023]
Abstract
DNA logic gated operations empower the highly efficient analysis of multiplex nucleic acid inputs, which have attracted extensive attention. However, the integration of DNA logic gates with abundant computational functions and signal amplification for biomedical diagnosis is far from being fully achieved. Herein, we develop a bipedal DNA walker based amplified electrochemical method for miRNA detection, which is then used as the basic unit for the construction of various logic circuits, enabling the analysis of multiplex miRNAs. In the bipedal walking process, target triggered strand displacement polymerization is able to produce a large number of strands for the fabrication of three-way junction-structured bipedal walkers. The following catalytic hairpin assembly ensures the walking event and the immobilization of signal probes for output. Ultrahigh sensitivity is realized due to the integration of dual signal amplification. In addition, under logic function controls by input triggered cascade strand displacement reactions, NOT, AND, OR, NAND, NOR, XOR, and XNOR logic gates are successfully established. The as-developed DNA logic system can also be extended to multi-input modes, which holds great promise in the fields of DNA computing, multiplex analysis, and clinical diagnosis.
Collapse
Affiliation(s)
- Peng Miao
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, People’s Republic
of China
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Yuguo Tang
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, People’s Republic
of China
| |
Collapse
|
49
|
Cuthbert JM, Russell SJ, Polejaeva IA, Meng Q, White KL, Benninghoff AD. Dynamics of small non-coding RNAs in bovine scNT embryos through the maternal-to-embryonic transition. Biol Reprod 2021; 105:918-933. [PMID: 34086842 DOI: 10.1093/biolre/ioab107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The efficiency of somatic cell nuclear transfer (scNT) for production of viable offspring is relatively low as compared to in vitro fertilization (IVF), presumably due to deficiencies in epigenetic reprogramming of the donor cell genome. Such defects may also involve the population of small non-coding RNAs (sncRNAs), which are important during early embryonic development. The objective of this study was to examine dynamic changes in relative abundance of sncRNAs during the maternal-to embryonic transition (MET) in bovine embryos produced by scNT as compared to IVF by using RNA sequencing. When comparing populations of miRNA in scNT versus IVF embryos, only miR-2340, miR-345, and miR34a were differentially expressed in morulae, though many more miRNAs were differentially expressed when comparing across developmental stages. Also of interest, distinct populations of piwi-interacting like RNAs (pilRNAs) were identified in bovine embryos prior to and during embryonic genome activation (EGA) as compared bovine embryos post EGA and differentiated cells. Overall, sncRNA sequencing analysis of preimplantation embryos revealed largely similar profiles of sncRNAs for IVF and scNT embryos at the 2-cell, 8-cell, morula and blastocyst stages of development. However, these sncRNA profiles, including miRNA, piRNA and tRNA fragments, were notably distinct prior to and after completion of the MET.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Stewart J Russell
- CReATe Fertility Centre, 790 Bay St. #1100, Toronto, M5G 1N8, Canada
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
50
|
Fu B, Ma H, Liu D. Functions and Regulation of Endogenous Retrovirus Elements during Zygotic Genome Activation: Implications for Improving Somatic Cell Nuclear Transfer Efficiency. Biomolecules 2021; 11:829. [PMID: 34199637 PMCID: PMC8229993 DOI: 10.3390/biom11060829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
Endogenous retroviruses (ERVs), previously viewed as deleterious relics of ancestral retrovirus infections, are silenced in the vast majority of cells to minimize the risk of retrotransposition. Counterintuitively, bursts of ERV transcription usually occur during maternal-to-zygotic transition (MZT) in preimplantation embryos; this is regarded as a major landmark event in the zygotic genome activation (ZGA) process, indicating that ERVs play an active part in ZGA. Evolutionarily, the interaction between ERVs and hosts is mutually beneficial. The endogenization of retrovirus sequences rewires the gene regulatory network during ZGA, and ERV repression may lower germline fitness. Unfortunately, owing to various limitations of somatic cell nuclear transfer (SCNT) technology, both developmental arrest and ZGA abnormalities occur in a high percentage of cloned embryos, accompanied by ERV silencing, which may be caused by the activation failure of upstream ERV inducers. In this review, we discuss the functions and regulation of ERVs during the ZGA process and the feasibility of temporal control over ERVs in cloned embryos via exogenous double homeobox (DUX). We hypothesize that further accurate characterization of the ERV-rewired gene regulatory network during ZGA may provide a novel perspective on the development of preimplantation embryos.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|