1
|
Minty M, Germain A, Sun J, Kaglan G, Servant F, Lelouvier B, Misselis E, Neagoe RM, Rossella M, Cardellini M, Burcelin R, Federici M, Fernandez-Real JM, Blasco-Baque V. Identifying the location-dependent adipose tissue bacterial DNA signatures in obese patients that predict body weight loss. Gut Microbes 2025; 17:2439105. [PMID: 39714075 DOI: 10.1080/19490976.2024.2439105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
Recent sets of evidence have described profiles of 16S rDNA sequences in host tissues, notably in fat pads that are significantly overrepresented and can serve as signatures of metabolic disease. However, these recent and original observations need to be further detailed and functionally defined. Here, using state-of-the-art targeted DNA sequencing and discriminant predictive approaches, we describe, from the longitudinal FLORINASH cohort of patients who underwent bariatric surgery, visceral, and subcutaneous fat pad-specific bacterial 16SrRNA signatures. The corresponding Porphyromonadaceae, Campylobacteraceae, Prevotellaceae, Actimomycetaceae, Veillonellaceae, Anaerivoracaceae, Fusobacteriaceae, and the Clostridium family XI 16SrRNA DNA segment profiles are signatures of the subcutaneous adipose depot while Pseudomonadaceae and Micrococcacecae, 16SrRNA DNA sequence profiles characterize the visceral adipose depot. In addition, we have further identified that a specific pre-bariatric surgery adipose tissue bacterial DNA signature predicts the efficacy of body weight loss in obese patients 5-10 years after the surgery. 16SrRNA signatures discriminate (ROC ~ 1) the patients who did not maintain bodyweight loss and those who did. Second, from the 16SrRNA sequences we infer potential pathways suggestive of catabolic biochemical activities that could be signatures of subcutaneous adipose depots that predict body weight loss.
Collapse
Affiliation(s)
- Matthieu Minty
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Alberic Germain
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Jiuwen Sun
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Gracia Kaglan
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | | | | | - Emiri Misselis
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Radu Mircea Neagoe
- Science and Technology "George Emil Palade" Tîrgu Mures, Second Department of Surgery, Emergency Mureş County Hospital, University of Medicine Pharmacy, Târgu Mureș, Romania
| | - Menghini Rossella
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Marina Cardellini
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Massimo Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona 'Dr Josep Trueta'
- Institut d'Investigacio Biomedica de Girona IdibGi, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Vincent Blasco-Baque
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| |
Collapse
|
2
|
Lee AH, Rodriguez Jimenez DM, Meisel M. Limosilactobacillus reuteri - a probiotic gut commensal with contextual impact on immunity. Gut Microbes 2025; 17:2451088. [PMID: 39825615 DOI: 10.1080/19490976.2025.2451088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
The gut microbiome plays a key role in human health, influencing various biological processes and disease outcomes. The historical roots of probiotics are traced back to Nobel Laureate Élie Metchnikoff, who linked the longevity of Bulgarian villagers to their consumption of sour milk fermented by Lactobacilli. His pioneering work led to the global recognition of probiotics as beneficial supplements, now a multibillion-dollar industry. Modern probiotics have been extensively studied for their immunomodulatory effects. Limosilactobacillus reuteri (L. reuteri), a widely used probiotic, has garnered significant attention for its systemic immune-regulatory properties, particularly in relation to autoimmunity and cancer. This review delves into the role of L. reuteri in modulating immune responses, with a focus on its impact on systemic diseases.
Collapse
Affiliation(s)
- Amanda H Lee
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Yao J, Ning B, Ding J. The gut microbiota: an emerging modulator of drug resistance in hepatocellular carcinoma. Gut Microbes 2025; 17:2473504. [PMID: 40042184 PMCID: PMC11901387 DOI: 10.1080/19490976.2025.2473504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/08/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Liver cancer is usually diagnosed at an advanced stage and is the third most common cause of cancer-related death worldwide. In addition to the lack of effective treatment options, resistance to therapeutic drugs is a major clinical challenge. The gut microbiota has recently been recognized as one of the key factors regulating host health. The microbiota and its metabolites can directly or indirectly regulate gene expression in the liver, leading to gut-liver axis dysregulation, which is closely related to liver cancer occurrence and the treatment response. Gut microbiota disturbance may participate in tumor progression and drug resistance through metabolite production, gene transfer, immune regulation, and other mechanisms. However, systematic reviews on the role of the gut microbiota in drug resistance in liver cancer are lacking. Herein, we review the relationships between the gut microbiota and the occurrence and drug resistance of hepatocellular carcinoma, summarize the emerging mechanisms underlying gut microbiota-mediated drug resistance, and propose new personalized treatment options to overcome this resistance.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Beifang Ning
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Liu S, Ren Z, Yan M, Ye W, Hu Y. Strategies to enhance the penetration of nanomedicine in solid tumors. Biomaterials 2025; 321:123315. [PMID: 40185056 DOI: 10.1016/j.biomaterials.2025.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Nanomedicine was previously regarded as a promising solution in the battle against cancer. Over the past few decades, extensive research has been conducted to exploit nanomedicine for overcoming tumors. Unfortunately, despite these efforts, nanomedicine has not yet demonstrated its ability to cure tumors, and the research on nanomedicine has reached a bottleneck. For a significant period of time, drug delivery strategies have primarily focused on targeting nanomedicine delivery to tumors while neglecting its redistribution within solid tumors. The uneven distribution of nanomedicine within solid tumors results in limited therapeutic effects on most tumor cells and significantly hampers the efficiency of drug delivery and treatment outcomes. Therefore, this review discusses the challenges faced by nanomedicine in penetrating solid tumors and provides an overview of current nanotechnology strategies (alleviating penetration resistance, size regulation, tumor cell transport, and nanomotors) that facilitate enhanced penetration of nanomedicine into solid tumors. Additionally, we discussed the potential role of nanobionics in promoting effective penetration of nanomedicine.
Collapse
Affiliation(s)
- Sen Liu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zhendong Ren
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Manqi Yan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wei Ye
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
5
|
Hamza M, Wang S, Liu Y, Li K, Zhu M, Chen L. Unraveling the potential of bioengineered microbiome-based strategies to enhance cancer immunotherapy. Microbiol Res 2025; 296:128156. [PMID: 40158322 DOI: 10.1016/j.micres.2025.128156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
The human microbiome plays a pivotal role in the field of cancer immunotherapy. The microbial communities that inhabit the gastrointestinal tract, as well as the bacterial populations within tumors, have been identified as key modulators of therapeutic outcomes, affecting immune responses and reprogramming the tumor microenvironment. Advances in synthetic biology have made it possible to reprogram and engineer these microorganisms to improve antitumor activity, enhance T-cell function, and enable targeted delivery of therapies to neoplasms. This review discusses the role of the microbiome in modulating both innate and adaptive immune mechanisms-ranging from the initiation of cytokine production and antigen presentation to the regulation of immune checkpoints-and discusses how these mechanisms improve the efficacy of immune checkpoint inhibitors. We highlight significant advances with bioengineered strains like Escherichia coli Nissle 1917, Lactococcus lactis, Bifidobacterium, and Bacteroides, which have shown promising antitumor efficacy in preclinical models. These engineered microorganisms not only efficiently colonize tumor tissues but also help overcome resistance to standard therapies by reprogramming the local immune environment. Nevertheless, several challenges remain, such as the requirement for genetic stability, effective tumor colonization, and the control of potential safety issues. In the future, the ongoing development of genetic engineering tools and the optimization of bacterial delivery systems are crucial for the translation of microbiome-based therapies into the clinic. This review highlights the potential of bioengineered microbiota as an innovative, personalized approach in cancer immunotherapy, bringing hope for more effective and personalized treatment options for patients with advanced malignancies.
Collapse
Affiliation(s)
- Muhammad Hamza
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| | - Yike Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Motao Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Moskal K, Khurana N, Siegert L, Lee YS, Clevers H, Elinav E, Puschhof J. Modeling cancer-microbiome interactions in vitro: A guide to co-culture platforms. Int J Cancer 2025; 156:2053-2067. [PMID: 39716471 PMCID: PMC11970552 DOI: 10.1002/ijc.35298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 12/25/2024]
Abstract
The biology of cancer is characterized by an intricate interplay of cells originating not only from the tumor mass, but also its surrounding environment. Different microbial species have been suggested to be enriched in tumors and the impacts of these on tumor phenotypes is subject to intensive investigation. For these efforts, model systems that accurately reflect human-microbe interactions are rapidly gaining importance. Here we present a guide for selecting a suitable in vitro co-culture platform used to model different cancer-microbiome interactions. Our discussion spans a variety of in vitro models, including 2D cultures, tumor spheroids, organoids, and organ-on-a-chip platforms, where we delineate their respective advantages, limitations, and applicability in cancer microbiome research. Particular focus is placed on methodologies that facilitate the exposure of cancer cells to microbes, such as organoid microinjections and co-culture on microfluidic devices. We highlight studies offering critical insights into possible cancer-microbe interactions and underscore the importance of in vitro models in those discoveries. We anticipate the integration of more complex microbial communities and the inclusion of immune cells into co-culture systems to more accurately simulate the tumor microenvironment. The advent of ever more sophisticated co-culture models will aid in unraveling the mechanisms of cancer-microbiome interplay and contribute to exploiting their potential in novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Moskal
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- DKFZ Hector Cancer Institute at the University Medical CenterMannheimGermany
| | - Nimisha Khurana
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Luisa Siegert
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
| | - Ye Seul Lee
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Hans Clevers
- Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtHubrecht InstituteUtrechtThe Netherlands
- Present address:
Roche Pharmaceutical Research and Early DevelopmentBaselSwitzerland
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Jens Puschhof
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- DKFZ Hector Cancer Institute at the University Medical CenterMannheimGermany
| |
Collapse
|
7
|
Wu B, Yao C, Wang H, Dai H, Tian B, Li D, Xu J, Cheng H, Xu F, Sun D, Wang C. Ellagic acid-protein nano-complex inhibits tumor growth by reducing the intratumor bacteria and inhibiting histamine production. Biomaterials 2025; 317:123078. [PMID: 39753083 DOI: 10.1016/j.biomaterials.2024.123078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
In recent years, there has been growing interest in understanding the role of bacteria within tumors and their potential as targets for cancer therapy. In this work, we developed an ellagic acid (EA) - endogenous protein (eP) nanocomposite (eP-EA) to target tumors by EPR (enhanced permeability and retention), kill bacteria within tumors to regulate anti-tumor immune responses. The potential mechanism of eP-EA treatment is associated with the reduced abundance and diversity of microorganisms within the tumor, culminating with an altered metabolism within the Tumor microenvironment (TME). Among them, the metabolite histamine that contributes to tumor progression, is significantly reduced in the TME after eP-EA treatment. We show that one possible mechanism by which these microbes promote tumor growth is through the production of histamine. This work suggests that the ellagic acid (EA)-protein nano complex can enhance cancer immunotherapy by targeting the intratumoral bacteria and reduce their production of histamine, delineating the potential relationship between intratumor bacteria and their impact on tumors. Our work suggests that the EA-protein nano complex can enhance cancer immunotherapy by targeting the intratumoral bacteria, suggesting the role of bacterial metabolites in contributing to tumor progression.
Collapse
Affiliation(s)
- Bingbing Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chenlu Yao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bo Tian
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Dongxiao Li
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
8
|
Hesami Z, Sabzehali F, Khorsand B, Alipour S, Sadeghi A, Asri N, Pazienza V, Houri H. Microbiota as a state-of-the-art approach in precision medicine for pancreatic cancer management: A comprehensive systematic review. iScience 2025; 28:112314. [PMID: 40276756 PMCID: PMC12019022 DOI: 10.1016/j.isci.2025.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/22/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Emerging evidence suggests that harnessing the microbiome holds promise for innovative diagnostic and therapeutic strategies in the management of pancreatic cancer (PC). This study aims to systematically summarize the microbial markers associated with PC and assess their potential application in clinical outcome. Forty-one studies were included to assess the associations between microbial markers and PC. Among these, 13 were developed prediction models related to the microbiome in which the highest diagnostic and prognostic model belong to blood and intratumor markers, respectively. Notably, findings that utilize microbiotas from various body sites were elucidated, demonstrating their importance as unique signatures in biomarker discovery for diverse clinical applications. This review provides unique perspectives on overcoming challenges in PC by highlighting potential microbial-related markers as non-invasive approaches. Further clinical studies should evaluate the utility and accuracy of key indicators in the microbiome as a personalized tool for managing PC.
Collapse
Affiliation(s)
- Zeinab Hesami
- Student Research Committee, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fattaneh Sabzehali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Khorsand
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Samira Alipour
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Wang F, Yin L, Hu Y. Progress of extracellular vesicles-based system for tumor therapy. J Control Release 2025; 381:113570. [PMID: 39993635 DOI: 10.1016/j.jconrel.2025.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The increasing number of new cancer cases and cancer-related deaths worldwide highlights the urgent need to develop novel anti-tumor treatment methods to alleviate the current challenging situation. Nearly all organisms are capable of secreting extracellular vesicles (EVs), and these nano-scale EVs carrying biological molecules play an important role in intercellular communication, further affecting various physiological and pathological processes. Notably, EVs from different sources have differences in their characteristics and functions. Consequently, diverse EVs have been utilized as drug or vaccine delivery carriers for improving anti-tumor treatment due to their good safety, ease of modification and unique properties, and achieved satisfactory results. Meanwhile, the clinical trials of EV-based platform for tumor therapy are also continuously being conducted. Therefore, in this review, we summarize the recent research progress of EV-based tumor treatment methods, including the introduction of main sources and unique functions of EVs, the application of EVs in tumor treatment as well as their prospects and challenges. Additionally, considering the unique advantages of artificial EVs over natural EVs, we also highlighted their characteristics and applications in tumor treatments. We believe that this review will help researchers develop novel EV-based anti-tumor platforms through a bottom-up design and accelerate the development in this field.
Collapse
Affiliation(s)
- Fei Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China
| | - Le Yin
- Affiliated Tongzhou Hospital of Xinglin College, Nantong University, 999 Jianshe Road, Jinsha Town, Tongzhou District, Nantong, Jiangsu 226300, China.
| | - Yong Hu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
10
|
Khan ZA, Song SS, Xu H, Ahmad M, Wang A, Abdullah A, Jiang L, Ding X. Elimination of intracellular microbes using drug combination therapy and unveiling survival mechanism of host cells upon microbial invasion. Int J Antimicrob Agents 2025; 65:107471. [PMID: 39986398 DOI: 10.1016/j.ijantimicag.2025.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/16/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Intracellular microbes are actively present in various tumor types in low biomass and play a major role in metastasis. Eliminating intracellular microbes on a cellular level with precision remains a challenge. To address this issue, we designed a screening pipeline to characterize intracellular microbes and their interaction with host cells. We used host and microbial in vitro lab-based constant and reproducible model, host as (mammalian cancer HeLa), and microbial strain as (Escherichia coli 25922). To study the pharmacological impact on intracellular bacterial load, we used antibiotics (ampicillin, roxithromycin, and ciprofloxacin) and chemotherapy drugs (doxorubicin and cisplatin) as external stimuli for both host and microbes. We found that increasing pharmacological stress does not increase microbial load inside the host cells. Eliminations of intracellular bacteria was done by using permutation orthogonal arrays (POA), whereby we acquired optimal drug combination in particular sequence of drugs, which reduced 90%-95% of the intracellular microbial load. Proteomic analysis revealed that upon invasion of Escherichia coli 25922, HeLa cells enriched ATP production pathways to activate intermediate filaments, which should be investigated closely via in vivo models.
Collapse
Affiliation(s)
- Zara Ahmad Khan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China
| | - Sha-Sha Song
- Pathology Department, Yantai Fushan People's Hospital, Yantai, China
| | - Hongquan Xu
- Department of Statistics and Data Science, University of California, Los Angeles, California, USA
| | - Mashaal Ahmad
- Department of Anatomy, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China
| | - Aynur Abdullah
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China.
| |
Collapse
|
11
|
Wu R, He Y, Teng Z. Energy price instability and energy efficiency: Korea's macroeconomic framework during the COVID-19 pandemic. PLoS One 2025; 20:e0321793. [PMID: 40299861 PMCID: PMC12040203 DOI: 10.1371/journal.pone.0321793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/11/2025] [Indexed: 05/01/2025] Open
Abstract
The pervasive effects of the COVID-19 pandemic in Korea on the daily lives of Korean citizens, as well as the nation's economic and industrial landscape, cannot be understated. In this article, we explore the ramifications of energy price fluctuations, changes in energy efficiency, and shifts in monetary policy on the dynamic macroeconomic framework of the Korean economy during this unprecedented global crisis. Utilizing Bayesian estimation and impulse response functions, the study's findings reveal that a surge in energy prices triggered a cascade of detrimental effects, including reductions in output, investment, employment, energy consumption, real wages, investments, real monetary holdings, and loan interest rates, while simultaneously elevating the deposit interest rate. Conversely, a positive shock to energy utilization efficiency engendered multiple favorable outcomes, such as greater output, consumption, employment, energy consumption, real wages, investment, and real money holdings, along with declines in deposit and loan interest rates. In the short term, a monetary policy shock precipitated an upswing in output, consumption, employment, energy consumption, investment, real money holdings, deposit interest rates, and loan interest rates, while exerting downward pressure on real wages. In sum, integration of these findings into the existing literature on the subject in the Korean context may significantly increase the depth and comprehensiveness of the discourse, improving our understanding of the multiple impacts of the COVID-19 pandemic on the nation's economy.
Collapse
Affiliation(s)
- Renhong Wu
- School of Management, Kyung Hee University, Seoul, Republic of Korea
| | - Yugang He
- Department of Chinese Trade and Commerce, Sejong University, Seoul, Republic of Korea
| | - Zhuoqi Teng
- College of Business Administration, Henan Finance University, Zhengzhou, China
| |
Collapse
|
12
|
Adlakha YK, Chhabra R. The human microbiome: redefining cancer pathogenesis and therapy. Cancer Cell Int 2025; 25:165. [PMID: 40296128 PMCID: PMC12039184 DOI: 10.1186/s12935-025-03787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
The human microbiome has always been an important determinant of health and recently, its role has also been described in cancer. The altered microbiome could aid cancer progression, modulate chemoresistance and significantly alter drug efficacy. The broad implications of microbes in cancer have prompted researchers to investigate the microbe-cancer axis and identify whether modifying the microbiome could sensitize cancer cells for therapy and improve the survival outcome of cancer patients. The preclinical data has shown that enhancing the number of specific microbial species could restore the patients' response to cancer drugs and the microbial biomarkers may play a vital role in cancer diagnostics. The elucidation of detailed interactions of the human microbiota with cancer would not only help identify the novel drug targets but would also enhance the efficacy of existing drugs. The field exploring the emerging roles of microbiome in cancer is at a nascent stage and an in-depth scientific perspective on this topic would make it more accessible to a wider audience. In this review, we discuss the scientific evidence connecting the human microbiome to the origin and progression of cancer. We also discuss the potential mechanisms by which microbiota affects initiation of cancer, metastasis and chemoresistance. We highlight the significance of the microbiome in therapeutic outcome and evaluate the potential of microbe-based cancer therapy.
Collapse
Affiliation(s)
- Yogita K Adlakha
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh, 201303, India.
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
13
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
14
|
Yang S, Hu Y, Cui M, Xu Q, Han X, Chang X, Zheng Q, Xiao J, Chen T, Li P, Dai M, Zhao Y. Microbiome, metabolome, and ionome profiling of cyst fluids reveals heterogeneity in pancreatic cystic neoplasms. Cancer Lett 2025; 623:217730. [PMID: 40252823 DOI: 10.1016/j.canlet.2025.217730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Pancreatic cystic neoplasms (PCNs) carry variable malignant potential, requiring precise clinical management. However, the heterogeneity and progression of PCNs remain poorly understood. This study analyzed the microbiome, metabolome, and ionome profiles of cyst fluids from 188 patients, including 165 with PCNs and 23 with other cyst types, using PacBio full-length 16S/ITS sequencing, LC-MS/MS, and ICP-MS. Bioinformatic analyses were performed, and metabolic enzyme and endoplasmic reticulum (ER) stress-related gene expression were examined using the PAAD TCGA dataset. PCNs were classified into distinct histopathological subtypes, including mucinous cystic lesions (MCLs) and serous cystic lesions (SCLs). MCLs demonstrated lower microbial diversity compared to SCLs, indicating microbial instability. Streptococcus and Staphylococcus were identified as key taxa in intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), respectively. MCLs exhibited metabolic shifts towards lipid metabolism, while IPMNs showed distinct metabolic profiles potentially reflecting inflammation-related metabolic reprogramming. Ionic diversity varied among subtypes, with MCLs showing reduced diversity and IPMNs presenting broader ionic profiles. Palmitic acid (PA), a metabolite linked to Streptococcus, may contribute to pro-inflammatory metabolic alterations in IPMN. Our preliminary experiments demonstrated that co-culturing Streptococcus orails (S. orails) with ASAN-PaCa cells promoted their proliferation, accompanied by an elevation of PA levels in the supernatant. This integrative microbiome-metabolome-ionome analysis highlights histopathological heterogeneity among PCNs. While mechanistic associations remain to be fully defined, mucinous lesions may be more susceptible to microbe-driven metabolic disruption, with Streptococcus-associated lipid alterations as a potential contributing factor.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Ya Hu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Qiang Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Xianlin Han
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qingyuan Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Jinheng Xiao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Tianqi Chen
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Pengyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Menghua Dai
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China.
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
15
|
Chen M, Bie L. Intratumoral microbiota for hepatocellular carcinoma: from preclinical mechanisms to clinical cancer treatment. Cancer Cell Int 2025; 25:152. [PMID: 40247312 PMCID: PMC12007317 DOI: 10.1186/s12935-025-03745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Intratumoral microbiota has been found to be a crucial component of hepatocellular carcinoma (HCC). Due to insufficient recognition, technical limitations, and low biomass of intratumoral microbiota, it is poorly understood. Intratumoral microbiota exhibit significant diversity in HCC tissues. It is involved in the development of HCC through several mechanisms, such as remodeling the immunosuppressive microenvironment, metabolic reprogramming, and genetic alterations. Moreover, intratumoral microbiota is associated with the metastasis of HCC cells. Herein, we reviewed the history of intratumoral microbiota, applied biotechnology to depict the signatures of intratumoral microbiota, investigated the potential sources of intratumoral microbiota, and assessed their functions, mechanisms, and heterogeneity. Furthermore, in this review, we summarized the development of therapeutics that can be used in the treatment of HCC and proposed future perspectives for research in this field.
Collapse
Affiliation(s)
- Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Wuhan, 430030, Hubei, China
| |
Collapse
|
16
|
Sammallahti H, Rezasoltani S, Pekkala S, Kokkola A, Asadzadeh Agdaei H, Azizmohhammad Looha M, Ghanbari R, Zamani F, Sadeghi A, Sarhadi VK, Tiirola M, Puolakkainen P, Knuutila S. Fecal profiling reveals a common microbial signature for pancreatic cancer in Finnish and Iranian cohorts. Gut Pathog 2025; 17:24. [PMID: 40241224 PMCID: PMC12001732 DOI: 10.1186/s13099-025-00698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) presents a significant challenge in oncology because of its late-stage diagnosis and limited treatment options. The inadequacy of current screening methods has prompted investigations into stool-based assays and microbial classifiers as potential early detection markers. The gut microbiota composition of PC patients may be influenced by population differences, thereby impacting the accuracy of disease prediction. However, comprehensive profiling of the PC gut microbiota and analysis of these cofactors remain limited. Therefore, we analyzed the stool microbiota of 33 Finnish and 50 Iranian PC patients along with 35 Finnish and 34 Iranian healthy controls using 16S rRNA gene sequencing. We assessed similarities and differences of PC gut microbiota in both populations while considering sociocultural impacts and generated a statistical model for disease prediction based on microbial classifiers. Our aim was to expand the current understanding of the PC gut microbiota, discuss the impact of population differences, and contribute to the development of early PC diagnosis through microbial biomarkers. RESULTS Compared with healthy controls, PC patients presented reduced microbial diversity, with discernible microbial profiles influenced by factors such as ethnicity, demographics, and lifestyle. PC was marked by significantly higher abundances of facultative pathogens including Enterobacteriaceae, Enterococcaceae, and Fusobacteriaceae, and significantly lower abundances of beneficial bacteria. In particular, bacteria belonging to the Clostridia class, such as butyrate-producing Lachnospiraceae, Butyricicoccaceae, and Ruminococcaceae, were depleted. A microbial classifier for the prediction of pancreatic ductal adenocarcinoma (PDAC) was developed in the Iranian cohort and evaluated in the Finnish cohort, where it yielded a respectable AUC of 0.88 (95% CI 0.78, 0.97). CONCLUSIONS This study highlights the potential of gut microbes as biomarkers for noninvasive PC screening and the development of targeted therapies, emphasizing the need for further research to validate these findings in diverse populations. A comprehensive understanding of the role of the gut microbiome in PC could significantly enhance early detection efforts and improve patient outcomes.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sama Rezasoltani
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074, Aachen, Germany
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland
| | - Hamid Asadzadeh Agdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Mehdi Azizmohhammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Reza Ghanbari
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Marja Tiirola
- Department of Environmental and Biological Sciences, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
- BiopSense Oy, Eeronkatu 10, 40720, Jyväskylä, Finland
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
17
|
Sui Y, Zhang T, Ou S, Li G, Liu L, Lu T, Zhang C, Cao Y, Bai R, Zhou H, Zhao X, Yuan Y, Wang G, Chen H, Kong R, Sun B, Li L. Statin therapy associated Lactobacillus intestinalis attenuates pancreatic fibrosis through remodeling intestinal homeostasis. NPJ Biofilms Microbiomes 2025; 11:59. [PMID: 40234406 PMCID: PMC12000565 DOI: 10.1038/s41522-025-00695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
Chronic pancreatitis (CP) is characterized by irreversible fibrotic destruction and impaired pancreatic function. CP disrupts lipid metabolism and causes the imbalance of gut microbiota which in turn exacerbates pancreatic fibrosis. Statins alter gut microbiota and exert anti-inflammatory effects, but its role in CP has not been fully elucidated. Here, we found that statins-associated higher abundance of Lactobacillus intestinalis (L.intestinalis) maintained gut homeostasis that restrained bacteria translocation from gut to the pancreas, which eventually aggravated pancreatic fibrosis through inhibiting CD8+T cells-dependent immunity. Fecal microbiota transplantation (FMT) or L.intestinalis administration inhibited the infiltration of CD8+T cells and macrophages that delayed CP progression. L.intestinalis restrained the recruitment of M1 macrophages and limited the release of Ccl2/7 in the colon, which prevented epithelial damage and epithelial barrier dysfunction through blocking Ccl2/7-Ccr1 signaling. Our findings elucidate that the utilization of statin therapy or supplementation of L.intestinalis can be potential approach for the therapies of CP.
Collapse
Affiliation(s)
- Yuhang Sui
- Department of Liver Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Tao Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Suwen Ou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liwei Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Minimally Invasive Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianqi Lu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Can Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yukai Cao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Bai
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoxin Zhou
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinbo Zhao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Yuan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Oncology Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Kong
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China.
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
18
|
Li F, Zheng B, Chen J, Yan Q, Lu Z, Fang C, Fu Y, Li X. Regulating the Tumor Microbiome through Near-Infrared-III Light-Excited Photosynthesis. ACS NANO 2025; 19:14107-14120. [PMID: 40165013 DOI: 10.1021/acsnano.4c18954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Tumor microbiomes are increasingly associated with the growth and metastasis of tumors. Exploring the regulation of the tumor microbiome through therapeutics is an area of interest in cancer therapy. In this study, the authors have investigated a biohybrid with 1550 nm light-excited photosynthetic ability to regulate the tumor microbiome. This system utilizes Er-based core-shell upconversion nanoparticles to arm microalga Chlorella, enabling the rapid evolution of Chlorella to perform oxygenic photosynthesis under 1550 nm light excitation. This biohybrid may alleviate hypoxia within the tumor microenvironment and induce significant changes in the tumor microbiome, ultimately resulting in marked inhibition of tumor growth. Benefiting from the strong tissue penetration ability of 1550 nm light, this biohybrid also exhibits clear inhibition of deep-seated tumors. The therapeutic efficacy of microbiome regulation is directly mediated by immune activation, converting "cold" tumors into "hot" tumors, which also leads to a long-lasting immune memory effect.
Collapse
Affiliation(s)
- Feiyu Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Bingzhu Zheng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiafei Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qilong Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zijie Lu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Chao Fang
- iBioMat PharmTeck (Hangzhou) Co. Ltd., Building C 3F, 2959 Yuhangtang Road, Hangzhou 311100, China
| | - Yike Fu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Xiang Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Abdeen SK, Mastandrea I, Stinchcombe N, Puschhof J, Elinav E. Diet-microbiome interactions in cancer. Cancer Cell 2025; 43:680-707. [PMID: 40185096 DOI: 10.1016/j.ccell.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Diet impacts cancer in diverse manners. Multiple nutritional effects on tumors are mediated by dietary modulation of commensals, residing in mucosal surfaces and possibly also within the tumor microenvironment. Mechanistically understanding such diet-microbiome-host interactions may enable to develop precision nutritional interventions impacting cancer development, dissemination, and treatment responses. However, data-driven nutritional strategies integrating diet-microbiome interactions are infrequently incorporated into cancer prevention and treatment schemes. Herein, we discuss how dietary composition affects cancer-related processes through alterations exerted by specific nutrients and complex foods on the microbiome. We highlight how dietary timing, including time-restricted feeding, impacts microbial function in modulating cancer and its therapy. We review existing and experimental nutritional approaches aimed at enhancing microbiome-mediated cancer treatment responsiveness while minimizing adverse effects, and address challenges and prospects in integrating diet-microbiome interactions into precision oncology. Collectively, mechanistically understanding diet-microbiome-host interactomes may enable to achieve a personalized and microbiome-informed optimization of nutritional cancer interventions.
Collapse
Affiliation(s)
- Suhaib K Abdeen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nina Stinchcombe
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany
| | - Jens Puschhof
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
20
|
Wang SL, Chan TA. Navigating established and emerging biomarkers for immune checkpoint inhibitor therapy. Cancer Cell 2025; 43:641-664. [PMID: 40154483 DOI: 10.1016/j.ccell.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved outcomes of patients with many different cancers. These antibodies target molecules such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4) which normally function to limit immune activity. Treatment with ICIs reactivates T cells to destroy tumor cells in a highly specific manner, which in some patients, results in dramatic remissions and durable disease control. Over the last decade, much effort has been directed at characterizing factors that drive efficacy and resistance to ICI therapy. Food and Drug Administration (FDA)-approved biomarkers for ICI therapy have facilitated more judicious treatment of cancer patients and transformed the field of precision oncology. Yet, adaptive immunity against cancers is complex, and newer data have revealed the potential utility of other biomarkers. In this review, we discuss the utility of currently approved biomarkers and highlight how emerging biomarkers can further improve the identification of patients who benefit from ICIs.
Collapse
Affiliation(s)
- Stephen L Wang
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA.
| |
Collapse
|
21
|
Lee J, McClure S, Weichselbaum RR, Mimee M. Designing live bacterial therapeutics for cancer. Adv Drug Deliv Rev 2025; 221:115579. [PMID: 40228606 DOI: 10.1016/j.addr.2025.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Humans are home to a diverse community of bacteria, many of which form symbiotic relationships with their host. Notably, tumors can also harbor their own unique bacterial populations that can influence tumor growth and progression. These bacteria, which selectively colonize hypoxic and acidic tumor microenvironments, present a novel therapeutic strategy to combat cancer. Advancements in synthetic biology enable us to safely and efficiently program therapeutic drug production in bacteria, further enhancing their potential. This review provides a comprehensive guide to utilizing bacteria for cancer treatment. We discuss key considerations for selecting bacterial strains, emphasizing their colonization efficiency, the delicate balance between safety and anti-tumor efficacy, and the availability of tools for genetic engineering. We also delve into strategies for precise spatiotemporal control of drug delivery to minimize adverse effects and maximize therapeutic impact, exploring recent examples of engineered bacteria designed to combat tumors. Finally, we address the underlying challenges and future prospects of bacterial cancer therapy. This review underscores the versatility of bacterial therapies and outlines strategies to fully harness their potential in the fight against cancer.
Collapse
Affiliation(s)
- Jaehyun Lee
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Sandra McClure
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee On Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago 60637, USA; The Ludwig Center for Metastasis Research, University of Chicago, Chicago 60637, USA
| | - Mark Mimee
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee On Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Dunn M, Dymock L, Hoskins C. Solid lipid nanoparticles in pancreatic cancer treatment. BJC REPORTS 2025; 3:21. [PMID: 40217114 PMCID: PMC11992092 DOI: 10.1038/s44276-025-00130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 04/14/2025]
Abstract
Pancreatic cancer comes with one of the poorest prognoses of all cancers and as such it is crucial that new therapies are developed to improve on the current statistics. Currently, chemotherapy is the cornerstone of pancreatic cancer treatment with several drugs, and combinations of drugs being utilised for their anti-cancer effect. However, pancreatic cancer has a dense stroma around the tumour and intratumoral bacteria which result in drugs having difficulty penetrating the tumour or being metabolised by bacteria rendering them inactive. The utilisation of nanotechnology in chemotherapy for pancreatic cancer has been a huge area of focus for researchers worldwide with most of the focus being on lipid-based, inorganic and polymer-based nanoparticles. Solid lipid nanoparticles which have been studied since being first published in the 1990s, have been poorly researched for pancreatic cancer applications. Being composed of physiological lipids, solid lipid nanoparticles offer a greatly reduced risk of acute or chronic toxicities arising compared to inorganic or polymeric nanoparticles. They also possess the ability to improve on circulation time, permeability, and bioavailability of many first-line chemotherapeutics.
Collapse
Affiliation(s)
- Mia Dunn
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Lewis Dymock
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Clare Hoskins
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
23
|
Parveen S, Konde DV, Paikray SK, Tripathy NS, Sahoo L, Samal HB, Dilnawaz F. Nanoimmunotherapy: the smart trooper for cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002308. [PMID: 40230883 PMCID: PMC11996242 DOI: 10.37349/etat.2025.1002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Immunotherapy has gathered significant attention and is now a widely used cancer treatment that uses the body's immune system to fight cancer. Despite initial successes, its broader clinical application is hindered by limitations such as heterogeneity in patient response and challenges associated with the tumor immune microenvironment. Recent advancements in nanotechnology have offered innovative solutions to these barriers, providing significant enhancements to cancer immunotherapy. Nanotechnology-based approaches exhibit multifaceted mechanisms, including effective anti-tumor immune responses during tumorigenesis and overcoming immune suppression mechanisms to improve immune defense capacity. Nanomedicines, including nanoparticle-based vaccines, liposomes, immune modulators, and gene delivery systems, have demonstrated the ability to activate immune responses, modulate tumor microenvironments, and target specific immune cells. Success metrics in preclinical and early clinical studies, such as improved survival rates, enhanced tumor regression, and elevated immune activation indices, highlight the promise of these technologies. Despite these achievements, several challenges remain, including scaling up manufacturing, addressing off-target effects, and navigating regulatory complexities. The review emphasizes the need for interdisciplinary approaches to address these barriers, ensuring broader clinical adoption. It also provides insights into interdisciplinary approaches, advancements, and the transformative potential of nano-immunotherapy and promising results in checkpoint inhibitor delivery, nanoparticle-mediated photothermal therapy, immunomodulation as well as inhibition by nanoparticles and cancer vaccines.
Collapse
Affiliation(s)
- Suphiya Parveen
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Dhanshree Vikrant Konde
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Himansu Bhusan Samal
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| |
Collapse
|
24
|
Yun J, Song JS, Yoo JJ, Kweon S, Choi YY, Lim D, Kuk JC, Kim HJ, Park SK. Microbial and Immune Landscape of Malignant Ascites: Insights from Gut, Bladder, and Ascitic Fluid Analyses. Cancers (Basel) 2025; 17:1280. [PMID: 40282458 PMCID: PMC12025743 DOI: 10.3390/cancers17081280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Malignant ascites frequently arises in advanced cancers with peritoneal metastasis and is associated with poor outcomes. Known mechanisms include lymphatic obstruction by tumor cells, increased vascular permeability, and sodium retention via the renin-angiotensin-aldosterone system; however, the pathogenesis remains not fully understood. We investigated whether gut and bladder microbiomes correlate with malignant ascites development or progression and whether the immune microenvironment in ascitic fluid is altered. METHODS We enrolled 66 histologically confirmed cancer patients, dividing them into malignant ascites (n = 20) and non-ascites (n = 46) groups. Stool, urine, and ascitic fluid samples were analyzed using 16S rRNA next-generation sequencing. Immune cell subsets in ascitic fluid were characterized using flow cytometry. RESULTS In 19 of the 20 malignant ascites samples, the bacterial load was too low for reliable 16S rRNA sequencing, suggesting that malignant ascites is largely sterile. The overall gut microbiome diversity did not differ significantly by ascites status, although a trend emerged in patients with peritoneal metastasis, including the enrichment of class Clostridia and Gammaproteobacteria. Bladder microbiome analysis also showed no significant differences in ascites or metastasis status. Flow cytometry revealed reduced T-cell (CD3+, CD4+, CD8+) and NK cell (CD56+) populations compared to data from cirrhotic ascites. CONCLUSIONS Malignant ascites exhibit minimal bacterial biomass, making comprehensive microbiome analysis challenging. Although no major global changes were noted in gut and bladder microbiomes, specific taxa were linked to peritoneal metastasis. These findings highlight an immunosuppressive ascitic environment and suggest that larger-scale or multi-omics approaches may help elucidate the role of microbiota in malignant ascites.
Collapse
Affiliation(s)
- Jina Yun
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea; (H.-J.K.); (S.-K.P.)
| | - Ju-Sun Song
- GC Genome, Department of Laboratory Medicine, Green Cross Laboratories, Seoul 16924, Republic of Korea; (J.-S.S.); (S.K.)
| | - Jeong-Ju Yoo
- Division of Hepatology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea;
| | - Solbi Kweon
- GC Genome, Department of Laboratory Medicine, Green Cross Laboratories, Seoul 16924, Republic of Korea; (J.-S.S.); (S.K.)
| | - Yoon-Young Choi
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea; (Y.-Y.C.); (D.L.); (J.-C.K.)
| | - Daero Lim
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea; (Y.-Y.C.); (D.L.); (J.-C.K.)
| | - Jung-Cheol Kuk
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea; (Y.-Y.C.); (D.L.); (J.-C.K.)
| | - Hyun-Jung Kim
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea; (H.-J.K.); (S.-K.P.)
| | - Seong-Kyu Park
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea; (H.-J.K.); (S.-K.P.)
| |
Collapse
|
25
|
Greco L, Rubbino F, Ferrari C, Cameletti M, Grizzi F, Bonelli F, Malesci A, Mazzone M, Ricciardiello L, Laghi L. Association of Fusobacterium nucleatum with colorectal cancer molecular subtypes and its outcome: a systematic review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2025; 6:e5. [PMID: 40297307 PMCID: PMC12035788 DOI: 10.1017/gmb.2025.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Colorectal cancer (CRC) represents a relevant public health problem, with high incidence and mortality in Western countries. CRC can occur as sporadic (65%-75%), common familial (25%), or as a consequence of an inherited predisposition (up to 10%). While unravelling its genetic basis has been a long trip leading to relevant clinical implementation over more than 30 years, other contributing factors remain to be clarified. Among these, micro-organisms have emerged as critical players in the development and progression of the disease, as well as for CRC treatment response. Fusobacterium nucleatum (Fn) has been associated with CRC development in both pre-clinical models and clinical settings. Fusobacteria are core members of the human oral microbiome, while being less prevalent in the healthy gut, prompting questions about their localization in CRC and its precursor lesions. This review aims to critically discuss the evidence connecting Fn with CRC pathogenesis, its molecular subtypes and clinical outcomes.
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clarissa Ferrari
- Research and Clinical Trials Office, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Fabio Grizzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | - Massimiliano Mazzone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Macrophage Dynamics Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Luigi Ricciardiello
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
26
|
Kim K, Lee M, Shin Y, Lee Y, Kim TJ. Optimizing Cancer Treatment Through Gut Microbiome Modulation. Cancers (Basel) 2025; 17:1252. [PMID: 40227841 PMCID: PMC11988035 DOI: 10.3390/cancers17071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome plays a pivotal role in modulating cancer therapies, including immunotherapy and chemotherapy. Emerging evidence demonstrates its influence on treatment efficacy, immune response, and resistance mechanisms. Specific microbial taxa enhance immune checkpoint inhibitor efficacy, while dysbiosis can contribute to adverse outcomes. Chemotherapy effectiveness is also influenced by microbiome composition, with engineered probiotics and prebiotics offering promising strategies to enhance drug delivery and reduce toxicity. Moreover, microbial metabolites, such as short-chain fatty acids, and engineered microbial systems have shown potential to improve therapeutic responses. These findings underscore the importance of personalized microbiome-based approaches in optimizing cancer treatments.
Collapse
Affiliation(s)
- Kyuri Kim
- College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 03760, Republic of Korea;
| | - Mingyu Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoojin Shin
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoonji Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
27
|
Chang Z, Guo X, Li X, Wang Y, Zang Z, Pei S, Lu W, Li Y, Huang JD, Xiao Y, Liu C. Bacterial immunotherapy leveraging IL-10R hysteresis for both phagocytosis evasion and tumor immunity revitalization. Cell 2025; 188:1842-1857.e20. [PMID: 40037354 DOI: 10.1016/j.cell.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 12/07/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025]
Abstract
Bacterial immunotherapy holds promising cancer-fighting potential. However, unlocking its power requires a mechanistic understanding of how bacteria both evade antimicrobial immune defenses and stimulate anti-tumor immune responses within the tumor microenvironment (TME). Here, by harnessing an engineered Salmonella enterica strain with this dual proficiency, we unveil an underlying singular mechanism. Specifically, the hysteretic nonlinearity of interleukin-10 receptor (IL-10R) expression drives tumor-infiltrated immune cells into a tumor-specific IL-10Rhi state. Bacteria leverage this to enhance tumor-associated macrophages producing IL-10, evade phagocytosis by tumor-associated neutrophils, and coincidently expand and stimulate the preexisting exhausted tumor-resident CD8+ T cells. This effective combination eliminates tumors, prevents recurrence, and inhibits metastasis across multiple tumor types. Analysis of human samples suggests that the IL-10Rhi state might be a ubiquitous trait across human tumor types. Our study unveils the unsolved mechanism behind bacterial immunotherapy's dual challenge in solid tumors and provides a framework for intratumoral immunomodulation.
Collapse
Affiliation(s)
- Zhiguang Chang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuan Guo
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuefei Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Zang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiqi Lu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yang Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian-Dong Huang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China; Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chenli Liu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Li M, Li T, Liu Y, Han D, Wu S, Gong J. Dual Cascade-Responsive Multifunctional Nanoparticles to Overcome Bacterium-Induced Drug Inactivation and Enhanced Photodynamic and Chemo-Immunotherapy of Pancreatic Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412707. [PMID: 40095308 DOI: 10.1002/smll.202412707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/16/2025] [Indexed: 03/19/2025]
Abstract
The harsh biological barriers and bacteria within tumor microenvironment not only hinder drug penetration and induce drug inactivation, but also inhibit antitumor immune responses. Here a tumor microenvironment dual cascade-responsive multifunctional nanoparticle, Gem/Emo@NP@GHA is reported, which is engineered from a hyaluronidase (HAase)-responsive guanidine group functionalized hyaluronic acid (GHA) shell and a glutathione (GSH)-responsive biopolymer core (Gem/Emo@NP), that encapsulates anticancer drug gemcitabine (Gem) and two-photon-excited photosensitizer emodin (Emo). The constructed Gem/Emo@NP@GHA can specifically target the tumor and subsequently be degraded by HAase-abundant in the extracellular matrix. Thus, the resulting Gem/Emo@NP achieved size reduction and charge reversal, strengthening deep tumor penetration. Upon internalization, the positively charged Gem/Emo@NP effectively kills intratumor bacteria by inducing membrane depolarization. Furthermore, the high levels of GSH within tumor cells disrupt the disulfide bonds of Gem/Emo@NP, triggering drug release. Thereby, the undecomposed Gem successfully induces tumor cell apoptosis and necrosis. Under laser irradiation, photosensitizer Emo generates high singlet oxygen (1O2), further eliminating tumors and intracellular bacteria. More importantly, Gem/Emo@NP@GHA can activate T cell-mediated immune response, further enhancing antitumor activity. These findings provide a promising approach to treating bacterially infected tumors through the synergistic application of chem-immunotherapy and two-photon-excited photodynamic therapy.
Collapse
Affiliation(s)
- Maolin Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Tong Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, P. R. China
| | - Dandan Han
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
29
|
Stein-Thoeringer CK, Renz BW, De Castilhos J, von Ehrlich-Treuenstätt V, Wirth U, Tschaidse T, Hofmann FO, Koch DT, Beirith I, Ormanns S, Guba MO, Angele MK, Andrassy J, Niess H, D'Haese JG, Werner J, Ilmer M. Microbiome Dysbiosis With Enterococcus Presence in the Upper Gastrointestinal Tract Is a Risk Factor for Mortality in Patients Undergoing Surgery for Pancreatic Cancer. Ann Surg 2025; 281:615-623. [PMID: 38275104 DOI: 10.1097/sla.0000000000006210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
BACKGROUND Recent retrospective studies suggest a role for distinct microbiota in the perioperative morbidity and mortality of pancreatic head resections. OBJECTIVE We aimed to prospectively investigate the microbial colonization of critical operative sites of pancreatic head resections to identify microbial stratification factors for surgical and long-term oncologic outcomes. METHODS Prospective biomarker study applying 16S rRNA sequencing and microbial culturing to samples collected from various sites of the gastrointestinal tract and surgical sites of patients during pancreatic head resections at a German single high-volume pancreatic center. RESULTS A total of 101 patients were included {38 noncancer, 63 cancer patients [50 pancreatic ductal adenocarcinoma (PDAC) patients]} in the study. In a first data analysis series, 16S rRNA sequencing data were utilized from 96 patients to assess associations of microbiome profiles with clinical parameters and outcomes. In general, microbiome composition varied according to sampling site, cancer, age or preoperative endoscopic retrograde cholangiopancreatography (ERCP) intervention, notably for the bile microbiome. In the PDAC subcohort, the compositional variance of the bile or periampullary microbiome was significantly associated with postoperative complications such as intensive care unit admission; on a taxonomic level we observed Enterococcus spp. to be significantly more abundant in patients developing deep or organ-space surgical site infections (SSI). Elevated Enterococcus relative abundances in the upper gastrointestinal tract, in turn, were associated with 6 months mortality rates. In a second step, we focused on microbiological cultures collected from bile aspirates during surgery and investigated associations with perioperative complications and long-term survival. Notably, Enterococcus spp. were among the most prevalent pathobiont isolates observed in cancer patient bile specimens that were associated with severe SSIs, and thereby elevated mortality rates up to 24 months. Clinically relevant postoperative pancreatic fistulas or severe SSI were found as other major variables determining short-term mortality in this cancer patient cohort. In the context of adverse microbiological factors, a preoperative ERCP was also observed to segregate long-term survival, and it appeared to interact with the presence of Enterococcus spp. as highest mortality rates were observed in PDAC patients with both preoperative ERCP and presence of E. faecalis in bile aspirates. CONCLUSIONS The presence of Enterococcus spp. in bile ducts of PDAC patients undergoing pancreatic surgery represents a significant risk factor for perioperative infections and, thereby, elevated postoperative and long-term mortality. This finding supports previous data on the use of the antibiotic drug piperacillin-tazobactam as appropriate perioperative antibiotic prophylaxis for preventing adverse outcomes after pancreatoduodenectomy.
Collapse
Affiliation(s)
- Christoph K Stein-Thoeringer
- Laboratory of Translational Microbiome Science, Internal Medicine I, University Clinic Tuebingen, Germany
- CMFI Cluster of Excellence, University of Tuebingen, Germany
- DZIF (Deut. Zentrum für Infektionsforschung), HAARBI Partner Site Tuebingen, Germany
| | - Bernhard W Renz
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliana De Castilhos
- Laboratory of Translational Microbiome Science, Internal Medicine I, University Clinic Tuebingen, Germany
| | - Viktor von Ehrlich-Treuenstätt
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Tengis Tschaidse
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Felix O Hofmann
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik T Koch
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Iris Beirith
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Steffen Ormanns
- German Cancer Consortium (DKTK), Partner Site Munich, of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Markus O Guba
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Martin K Angele
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Hanno Niess
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Patra D, Dev G, Hand TW, Overacre-Delgoffe A. Friends close, enemies closer: the complex role of the microbiome in antitumor immunity. Curr Opin Immunol 2025; 93:102537. [PMID: 40015179 DOI: 10.1016/j.coi.2025.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Immunotherapy has achieved remarkable advances in cancer treatment by harnessing the immune system to combat tumors, yet its effectiveness remains inconsistent across patients and tumor types. The microbiota, a diverse assemblage of microorganisms residing at host barrier surfaces, is pivotal in shaping immune responses. This review explores the direct and indirect mechanisms via which the microbiota modulates antitumor immune responses both locally within the tumor microenvironment and systemically by affecting distant tumors. We discuss recent findings linking microbiota-derived metabolites and microbiota-derived antigens with antitumor immunity and immunotherapy response. Additionally, we discuss recent advances in microbiome-based therapies, including fecal microbiota transplantation. We propose the use and development of new analytical techniques to further characterize the complex functions and interactions between the microbiome and immune system. To conclude, we outline recommendations for future research and therapeutic approaches to leverage the microbiome to improve current immunotherapies.
Collapse
Affiliation(s)
- Dipyaman Patra
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, USA
| | - Gagan Dev
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Timothy W Hand
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| | - Abigail Overacre-Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, USA.
| |
Collapse
|
31
|
Li Y, Chen L, Chen Y, Shi H, Yu S, Funmilayo A, Wu C, Wang C, Deng Y. Exosome-decorated bio-heterojunctions reduce heat and ROS transfer distance for boosted antibacterial and tumor therapy. Biomaterials 2025; 315:122921. [PMID: 39467398 DOI: 10.1016/j.biomaterials.2024.122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
Photothermal and photodynamic therapies represent effective modalities for combatting bacteria and tumor cells. However, therapeutic outcomes are constrained by limitations related to the heat and reactive oxygen species (ROS) transfer distance from photosensitizers to targets. To address this issue, we have devised and developed exosome-decorated bio-heterojunctions (E-bioHJ) consisted of MXene (Ti3C2), liquid metal (LM) and exosomes sourced from CT26 cells to enhance the phototherapeutic consequences. Engineering E-bioHJ enhances phototherapeutic effect in antibacterial and anti-tumor treatment, which is ascribed to reducing transfer distance of the heat and ROS. When adorned with exosomes, E-bioHJ is targetedly delivered into the cytoplasm of tumor cells to generate amount heat and ROS under 808 nm near-infrared radiation, which further induces mitochondrial dysfunction and apoptosis/necroptosis. As envisaged, this study presents a novel tactic to enhance the antibacterial and anti-tumor efficacy of biomaterials through reducing the heat and ROS delivery travel distance.
Collapse
Affiliation(s)
- Yanni Li
- West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China; Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lin Chen
- West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Yonghao Chen
- West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China; Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongxing Shi
- West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Sheng Yu
- The School of Mechanical and Materials Engineering, Washington State University, Pullman, WA-99164, USA
| | - Adeleye Funmilayo
- The School of Mechanical and Materials Engineering, Washington State University, Pullman, WA-99164, USA
| | - Chao Wu
- Department of Orthopedics, Digital Medical Center, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Chunhui Wang
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, China; Pancreatitis Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Yi Deng
- West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|
32
|
Vaaben TH, Lützhøft DO, Koulouktsis A, Dawoodi IM, Stavnsbjerg C, Kvich L, Gögenur I, Vazquez-Uribe R, Sommer MOA. Modulating tumor immunity using advanced microbiome therapeutics producing an indole metabolite. EMBO Rep 2025; 26:1688-1708. [PMID: 40055466 PMCID: PMC11977207 DOI: 10.1038/s44319-025-00386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 04/09/2025] Open
Abstract
The gut microbiome has emerged as a key player in modulating immune responses against cancer, suggesting that microbial interventions can enhance treatment outcomes. Indole metabolites produced by probiotic bacteria activate the aryl hydrocarbon receptor (AhR), a transcription factor important for immune cell regulation. Cancer patients with high plasma concentrations of these metabolites have shown improved survival. Building on these findings, we have engineered Escherichia coli Nissle 1917 to produce the AhR agonist indole-3-acetic acid. Delivery of indole-3-acetic acid by tumor-colonizing bacteria changes the tumor microenvironment in a murine model, significantly increasing levels of CXCL9 and IFN-γ and elevating tumor-infiltrating T-cell abundance and activation. Treatment with our engineered strain inhibits tumor growth, improves survival in syngeneic tumor models, and leads to long-lasting immunity in a tumor rechallenge experiment. Further investigation indicates that this immune modulation is driven by the direct activation of AhR by indole-3-acetic acid, leading to differential cytokine expression and a shift in immune cell composition within the tumor. This study highlights the importance of microbial metabolites in immune modulation and supports exploring microbiome-based therapies in oncology.
Collapse
Affiliation(s)
- Troels Holger Vaaben
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK2800, Denmark
| | - Ditte Olsen Lützhøft
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK2800, Denmark
| | - Andreas Koulouktsis
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK2800, Denmark
| | - Ida Melisa Dawoodi
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Camilla Stavnsbjerg
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lasse Kvich
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Region Zealand, 4690, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Region Zealand, 4690, Denmark
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK2800, Denmark
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK2800, Denmark.
| |
Collapse
|
33
|
Fan X, Zhou Y, Bai W, Li X, Lin L, Lin H, Yang M, Yu X, Wang J, Lin L, Wang W. Intravital imaging of translocated bacteria via fluorogenic labeling of gut microbiota in situ. Proc Natl Acad Sci U S A 2025; 122:e2415845122. [PMID: 40153461 PMCID: PMC12002288 DOI: 10.1073/pnas.2415845122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/19/2025] [Indexed: 03/30/2025] Open
Abstract
The translocation of bacteria from intestinal tracts into blood vessels and distal organs plays pivotal roles in the pathogenesis of numerous severe diseases. Intravital monitoring of bacterial translocation, however, is not yet feasible, which greatly hinders us from comprehending this spatially and temporally dynamic process. Here we report an in vivo fluorogenic labeling method, which enables in situ imaging of mouse gut microbiota and real-time tracking of the translocated bacteria. By mimicking the peptidoglycan stem peptide in bacteria, a tetrapeptide probe composed of alternating D- and L-amino acids and separately equipped with a fluorophore and a quencher on the N- and C-terminal amino acid, is designed. Because of its resistance to host proteases, it can be directly used in gavage and achieves fluorogenic labeling of the microbiota in the gut via the functioning of the L,D-transpeptidases of the labeled bacteria. Using intravital two-photon microscopy, we then successfully visualize the translocation of gut bacteria into the bloodstream and liver in obesity mouse models. This technique can help further exploration into the spatiotemporal activities of gut microbiota in vivo, and be valuable in investigating the less understood pathogenicity of bacterial translocation in many severe diseases.
Collapse
Affiliation(s)
- Xinqi Fan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Yingjun Zhou
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai200438, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| | - Wenjuan Bai
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xue Li
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Liyuan Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| | - Huibin Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| | - Ming Yang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Liang Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai200438, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| |
Collapse
|
34
|
Lee D, Lee C, Han K, Goo T, Kim B, Han Y, Kwon W, Lee S, Jang JY, Park T. Machine learning models for pancreatic cancer diagnosis based on microbiome markers from serum extracellular vesicles. Sci Rep 2025; 15:10995. [PMID: 40164714 PMCID: PMC11958759 DOI: 10.1038/s41598-025-94183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
Pancreatic cancer (PC) is a fatal disease with an extremely low 5-year survival rate, mainly because of its poor detection rate in early stages. Given emerging evidence of the relationship between microbiota composition and diseases, this study aims to identify microbiome markers linked to the diagnosis of pancreatic cancer. We utilized extracellular vesicles (EVs) data obtained from blood samples of 38 pancreatic cancer patients and 51 health controls. Least absolute shrinkage and selection operator (LASSO) and stepwise method were used to obtain some candidate markers in genus and phylum levels. These markers were used to develop various machine learning models including logistic regression (LR), random forest (RF), support vector machine (SVM), and Deep Neural Network (DNN) methods. In phylum level, DNN performed best with three markers (Verrucomicrobia, Actinobacteria and Proteobacteria) selected by stepwise method with the test AUC 0.959. In genus level, DNN using 11 markers selected by LASSO (Ruminococcaceae UCG-013, Ruminiclostridium, Propionibacterium, Lachnospiraceae NK4A136 group, Corynebacterium.1, Akkermansia, Mucispirillum, Pseudomonas, Diaphorobacter, Clostridium sensu stricto 1 and Turicibacter) outperformed others with 0.961 test AUCs. These results highlight the potential of microbiome markers and prediction models in clinical studies of PC diagnosis.
Collapse
Affiliation(s)
- Doeun Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Chanhee Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Kyulhee Han
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Taewan Goo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Boram Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Youngmin Han
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seungyeoun Lee
- Department of Applied Mathematics, Sejong University, Seoul, 03080, Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea.
- Department of Statistics, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
35
|
Sulekha Suresh D, Jain T, Dudeja V, Iyer S, Dudeja V. From Microbiome to Malignancy: Unveiling the Gut Microbiome Dynamics in Pancreatic Carcinogenesis. Int J Mol Sci 2025; 26:3112. [PMID: 40243755 PMCID: PMC11988718 DOI: 10.3390/ijms26073112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/01/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic cancer is a major cause of cancer-associated mortality globally, characterized by a poor prognosis and limited therapeutic response. The current approach for treating pancreatic cancer involves locoregional control with surgical resection and systemic therapy in the form of cytotoxic chemotherapy. However, despite standard-of-care treatment, the outcomes remain dismal. Emerging evidence suggests that the gut microbiota plays a significant role in pancreatic carcinogenesis through dysbiosis, chronic inflammation and immune modulation. Dysbiosis-driven alterations in the gut microbiota composition can disrupt intestinal homeostasis, promote systemic inflammation and create a tumor-permissive microenvironment in the pancreas. Moreover, the gut microbiota modulates the efficacy of systemic therapies, including chemotherapy and immunotherapy, by impacting drug metabolism and shaping the tumor immune landscape. This review is mainly focused on exploring the intricate interplay between the gut microbiota and pancreatic cancer, and also highlighting its dual role in carcinogenesis and the therapeutic response.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery, The University of Alabama at Birmingham, BDB 573 1808 7th Avenue South, Birmingham, AL 35294, USA; (D.S.S.); (T.J.); (V.D.); (S.I.)
| |
Collapse
|
36
|
Daniel N, Farinella R, Belluomini F, Fajkic A, Rizzato C, Souček P, Campa D, Hughes DJ. The relationship of the microbiome, associated metabolites and the gut barrier with pancreatic cancer. Semin Cancer Biol 2025; 112:43-57. [PMID: 40154652 DOI: 10.1016/j.semcancer.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Pancreatic cancers have high mortality and rising incidence rates which may be related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and obesity rates. Recent data also suggest a role for the gut microbiome in the development of pancreatic cancer. Here, we review the experimental and observational evidence for the roles of the oral, gut and intratumoural microbiomes, impaired gut barrier function and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to pancreatic disease with a focus on pancreatic ductal adenocarcinoma (PDAC) initiation and progression. We also highlight some emerging gut microbiome editing techniques currently being investigated in the context of pancreatic disease. Notably, while the gut microbiome is significantly altered in PDAC and its precursor diseases, its utility as a diagnostic and prognostic tool is hindered by a lack of reproducibility and the potential for reverse causality in case-control cohorts. Future research should emphasise longitudinal and mechanistic studies as well as integrating lifestyle exposure and multi-omics data to unravel complex host-microbiome interactions. This will allow for deeper aetiologic and mechanistic insights that can inform treatments and guide public health recommendations.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Almir Fajkic
- Department of Pathophysiology Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Pavel Souček
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
37
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
38
|
Nieciecki VF, Blum FC, Johnson RC, Testerman TL, McAvoy TJ, King MC, Gushchin V, Whitmire JM, Frey KG, Glang L, Peña-Gomez D, Bishop-Lilly KA, Sardi A, Merrell DS, Metcalf JL. Cross-laboratory replication of pseudomyxoma peritonei tumor microbiome reveals reproducible microbial signatures. mSphere 2025; 10:e0065224. [PMID: 39976448 PMCID: PMC11934312 DOI: 10.1128/msphere.00652-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
Recent work has demonstrated that cancer-specific microbial communities often colonize tumor tissues. However, untangling low-biomass signals from environmental contamination makes this research technically challenging. We utilize pseudomyxoma peritonei (PMP), a cancer characterized by the spread of mucus-secreting cells throughout the peritoneal cavity, to develop a robust workflow for identifying reproducible tumor microbiomes. Typically originating from the rupture of an appendiceal tumor into the peritoneal cavity, metastasized tumors have been previously shown to harbor a core set of microbes. However, that work did not control for the potential contamination of these low microbial biomass samples. We expand upon these prior findings by characterizing the microbiome of 70 additional PMP tumors and six normal peritoneal control tissues along with appropriate laboratory controls. Additionally, DNA from a subset of 25 tissues was extracted and sequenced at an independent laboratory. We found evidence of reproducible microbial signatures between the replicates of six different PMP tumors that include a set of core taxa that may be introduced from surgical contamination, as well as patient-specific taxa that are also commonly implicated in colorectal cancer. In addition, preoperative chemotherapy treatment was found to reduce tumor microbiome diversity. Our findings demonstrate how independent sample replication can be a powerful approach to investigate low-biomass microbial communities associated with tumor tissues that will improve low microbial biomass research.IMPORTANCERecent work has demonstrated that microbial communities colonize over 30 different types of tumor tissues. The origin of these communities and their possible involvement in carcinogenesis or cancer treatment outcomes remains an unclear, yet important area of research. A current major challenge in characterizing low-biomass, tumor-associated microbiomes is the introduction of environmental contamination during collection, handling, DNA extraction, PCR, and sequencing. Here, we provide a framework for replicating low-biomass tumor microbiome samples to help identify tumors with robust microbial signals and low background contamination. Using this replication approach, we show that pseudomyxoma peritonei (PMP) tumors host reproducible microbial communities, including organisms that have previously been associated with colorectal cancer. Incorporating sample replication into future tumor microbiome studies is a promising approach that will help identify robust signals and increase reproducibility in the field.
Collapse
Affiliation(s)
- Victoria F. Nieciecki
- Graduate Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Faith C. Blum
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Traci L. Testerman
- School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Tom J. McAvoy
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Mary Caitlin King
- Department of Surgical Oncology, The Institute for Cancer Care at Mercy, Mercy Medical Center, Baltimore, Maryland, USA
| | - Vadim Gushchin
- Department of Surgical Oncology, The Institute for Cancer Care at Mercy, Mercy Medical Center, Baltimore, Maryland, USA
| | - Jeannette M. Whitmire
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Kenneth G. Frey
- Genomics & Bioinformatics Department, Naval Medical Research Command, NMRC-Frederick, Fort Detrick, Maryland, USA
| | - Lindsay Glang
- Genomics & Bioinformatics Department, Naval Medical Research Command, NMRC-Frederick, Fort Detrick, Maryland, USA
- Leidos, Reston, Virginia, USA
| | - Dessiree Peña-Gomez
- Genomics & Bioinformatics Department, Naval Medical Research Command, NMRC-Frederick, Fort Detrick, Maryland, USA
- Leidos, Reston, Virginia, USA
| | - Kimberly A. Bishop-Lilly
- Genomics & Bioinformatics Department, Naval Medical Research Command, NMRC-Frederick, Fort Detrick, Maryland, USA
| | - Armando Sardi
- Department of Surgical Oncology, The Institute for Cancer Care at Mercy, Mercy Medical Center, Baltimore, Maryland, USA
| | - D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Jessica L. Metcalf
- Graduate Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
- Canadian Institute for Advanced Research Global Scholar, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Wilson RP, Rink L, Tükel Ç. Microbiota and cancer: unraveling the significant influence of microbial communities on cancer treatment. Cancer Metastasis Rev 2025; 44:42. [PMID: 40120010 DOI: 10.1007/s10555-025-10256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Affiliation(s)
- R Paul Wilson
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Lori Rink
- Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
- Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Meng Y, Wang C, Usyk M, Kwak S, Peng C, Hu KS, Oberstein PE, Krogsgaard M, Li H, Hayes RB, Ahn J. Association of tumor microbiome with survival in resected early-stage PDAC. mSystems 2025; 10:e0122924. [PMID: 40013793 PMCID: PMC11915875 DOI: 10.1128/msystems.01229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
The pancreas tumor microbiota may influence tumor microenvironment and influence survival in early-stage pancreatic ductal adenocarcinoma (PDAC); however, current studies are limited and small. We investigated the relationship of tumor microbiota to survival in 201 surgically resected patients with localized PDAC (Stages I-II), from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts. We characterized the tumor microbiome using RNA-sequencing data. We examined the association of the tumor microbiome with overall survival (OS), via meta-analysis with the Cox PH model. A microbial risk score (MRS) was calculated from the OS-associated microbiota. We further explored whether the OS-associated microbiota is related to host tumor immune infiltration. PDAC tumor microbiome α- and β-diversities were not associated with OS; however, 11 bacterial species, including species of Gammaproteobacteria, confirmed by extensive resampling, were significantly associated with OS (all Q < 0.05). The MRS summarizing these bacteria was related to a threefold change in OS (hazard ratio = 2.96 per standard deviation change in the MRS, 95% confidence interval = 2.26-3.86). This result was consistent across the two cohorts and in stratified analyses by adjuvant therapy (chemotherapy/radiation). Identified microbiota and the MRS also exhibited association with memory B cells and naïve CD4+ T cells, which may be related to the immune landscape through BCR and TCR signaling pathways. Our study shows that a unique tumor microbiome structure, potentially affecting the tumor immune microenvironment, is associated with poorer survival in resected early-stage PDAC. These findings suggest that microbial mechanisms may be involved in PDAC survival, potentially informing PDAC prognosis and guiding personalized treatment strategies.IMPORTANCEMuch of the available data on the PDAC tumor microbiome and survival are derived from relatively small and heterogeneous studies, including those involving patients with advanced stages of pancreatic cancer. There is a critical knowledge gap in terms of the tumor microbiome and survival in early-stage patients treated by surgical resection; we expect that advancements in survival may initially be best achieved in these patients who are treated with curative intent.
Collapse
Affiliation(s)
- Yixuan Meng
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Chan Wang
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
| | - Mykhaylo Usyk
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Soyoung Kwak
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Chengwei Peng
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kenneth S Hu
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Paul E Oberstein
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Michelle Krogsgaard
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Huilin Li
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Richard B Hayes
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Jiyoung Ahn
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| |
Collapse
|
41
|
Guo X, Shao Y. Role of the oral-gut microbiota axis in pancreatic cancer: a new perspective on tumor pathophysiology, diagnosis, and treatment. Mol Med 2025; 31:103. [PMID: 40102723 PMCID: PMC11917121 DOI: 10.1186/s10020-025-01166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Pancreatic cancer, one of the most lethal malignancies, remains challenging due to late diagnosis, aggressive progression, and therapeutic resistance. Recent advances have revealed the presence of intratumoral microbiota, predominantly originating from the oral and gut microbiomes, which play pivotal roles in pancreatic cancer pathogenesis. The dynamic interplay between oral and gut microbial communities, termed the "oral-gut microbiota axis," contributes multifacetedly to pancreatic ductal adenocarcinoma (PDAC). Microbial translocation via anatomical or circulatory routes establishes tumor-resident microbiota, driving oncogenesis through metabolic reprogramming, immune regulation, inhibition of apoptosis, chronic inflammation, and dysregulation of the cell cycle. Additionally, intratumoral microbiota promote chemoresistance and immune evasion, further complicating treatment outcomes. Emerging evidence highlights microbial signatures in saliva and fecal samples as promising non-invasive diagnostic biomarkers, while microbial diversity correlates with prognosis. Therapeutic strategies targeting this axis-such as antibiotics, probiotics, and engineered bacteria-demonstrate potential to enhance treatment efficacy. By integrating mechanisms of microbial influence on tumor biology, drug resistance, and therapeutic applications, the oral-gut microbiota axis emerges as a critical regulator of PDAC, offering novel perspectives for early detection, prognostic assessment, and microbiome-based therapeutic interventions.
Collapse
Affiliation(s)
- Xuanchi Guo
- School of Stomatology, Shandong University, No. 44-1 Wenhua West Road, Jinan City, Shandong Province, China.
| | - Yuhan Shao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
42
|
Cheng H, Guo H, Wen C, Sun G, Tang F, Li Y. The dual role of gut microbiota in pancreatic cancer: new insights into onset and treatment. Ther Adv Med Oncol 2025; 17:17588359251324882. [PMID: 40093983 PMCID: PMC11909682 DOI: 10.1177/17588359251324882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Pancreatic cancer ranks among the most lethal digestive malignancies, exhibiting a steadily increasing incidence and mortality worldwide. Despite significant advances in cancer research, the 5-year survival rate remains below 10%, predominantly due to delayed diagnosis and limited therapeutic options. Concurrently, the gut microbiota-an integral component of host physiology-has emerged as a crucial player in the pathogenesis of pancreatic cancer. Mounting evidence indicates that alterations in gut microbial composition and function may influence tumor initiation, progression, and response to therapy. This review provides an in-depth examination of the intricate interplay between the gut microbiome and pancreatic cancer, highlighting potential diagnostic biomarkers and exploring microbiome-targeted therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Huijuan Cheng
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Hongkai Guo
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Chengming Wen
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Guodong Sun
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
- Department of Medical Affairs, Lanzhou University First Hospital, Lanzhou, Gansu, P.R. China
| | - Futian Tang
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Yumin Li
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
43
|
Sun J, Song S, Liu J, Chen F, Li X, Wu G. Gut microbiota as a new target for anticancer therapy: from mechanism to means of regulation. NPJ Biofilms Microbiomes 2025; 11:43. [PMID: 40069181 PMCID: PMC11897378 DOI: 10.1038/s41522-025-00678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
In order to decipher the relationship between gut microbiota imbalance and cancer, this paper reviewed the role of intestinal microbiota in anticancer therapy and related mechanisms, discussed the current research status of gut microbiota as a biomarker of cancer, and finally summarized the reasonable means of regulating gut microbiota to assist cancer therapy. Overall, our study reveals that the gut microbiota can serve as a potential target for improving cancer management.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shiyan Song
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiahua Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Xiaorui Li
- Department of oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
44
|
Liang F, Sun Y, Yang J, Shen Z, Wang G, Zhu J, Zhou C, Xia Y. Gut microbiome is associated with radiotherapy response in lung cancer patients with brain metastases. Front Cell Infect Microbiol 2025; 15:1562831. [PMID: 40129929 PMCID: PMC11931136 DOI: 10.3389/fcimb.2025.1562831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose To investigate the gut microbiome of lung cancer patients with brain metastases undergoing radiotherapy, identify key microorganisms associated with radiotherapy response, and evaluate their potential as biomarkers. Methods and materials This study enrolled 55 newly diagnosed lung cancer patients with brain metastases. Fecal samples were collected before radiotherapy and analyzed by 16S rRNA sequencing to assess the gut microbiome's composition and function. Patients were categorized into response (n=28) and non-response (n=27) groups based on treatment efficacy, and α-diversity, β-diversity, and functional pathways were compared between them. Linear Discriminant Analysis Effect Size was used to identify microbial features associated with treatment efficacy. Logistic regression analyses were performed to evaluate the predictive capacity of clinical and microbial factors for treatment outcomes. Results No significant difference in α-diversity was observed between the groups (P > 0.05), but β-diversity differed significantly (P = 0.036). Twelve characteristic microorganisms were identified in the response group, including g_ Oscillibacter and g_ Blautia, and nine in the non-response group, such as f_ Desulfovibrionaceae and g_ Megamonas. Metabolic pathways associated with treatment response included ketone body metabolism and pathways related to amyotrophic lateral sclerosis. Multivariate analysis identified g_Flavonifractor (odds ratio [OR] = 6.680, P = 0.004), g_Negativibacillus (OR = 3.862, P = 0.014), C-reactive protein (OR = 1.054, P = 0.017), and systemic inflammation response index (OR = 1.367, P = 0.043) as independent predictors of radiotherapy response. The nomogram and microbiome models achieved area under the curve (AUC) values of 0.935 and 0.866, respectively, demonstrating excellent predictive performance. Decision curve analysis further confirmed these models provided significant net benefits across risk thresholds. Conclusions The composition and functional characteristics of the gut microbiome in lung cancer patients with brain metastases prior to radiotherapy are associated with therapeutic response and possess potential as predictive biomarkers. Further studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Fei Liang
- Department of Radiation Oncology, the First People's Hospital of Lianyungang/ Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Yichu Sun
- Department of Radiation Oncology, the First People's Hospital of Lianyungang/ Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Jing Yang
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/ The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Ziqiang Shen
- Department of Radiation Oncology, the First People's Hospital of Lianyungang/ Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Guangfeng Wang
- Department of Radiation Oncology, the First People's Hospital of Lianyungang/ Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Jiangrui Zhu
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/ The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Chong Zhou
- Department of Radiation Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Youyou Xia
- Department of Radiation Oncology, the First People's Hospital of Lianyungang/ Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/ The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
45
|
Wei JR, Lu MY, Wei TH, Fleishman JS, Yu H, Chen XL, Kong XT, Sun SL, Li NG, Yang Y, Ni HW. Overcoming cancer therapy resistance: From drug innovation to therapeutics. Drug Resist Updat 2025; 81:101229. [PMID: 40081221 DOI: 10.1016/j.drup.2025.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; The First Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hui Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Li Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiang-Tu Kong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hai-Wen Ni
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
46
|
Kenneth MJ, Wu CC, Fang CY, Hsu TK, Lin IC, Huang SW, Chiu YC, Hsu BM. Exploring the Impact of Chemotherapy on the Emergence of Antibiotic Resistance in the Gut Microbiota of Colorectal Cancer Patients. Antibiotics (Basel) 2025; 14:264. [PMID: 40149075 PMCID: PMC11939702 DOI: 10.3390/antibiotics14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
With nearly half of colorectal cancer (CRC) patients diagnosed at advanced stages where surgery alone is insufficient, chemotherapy remains a cornerstone for this cancer treatment. To prevent infections and improve outcomes, antibiotics are often co-administered. However, chemotherapeutic interactions with the gut microbiota cause significant non-selective toxicity, affecting not only tumor and normal epithelial cells but also the gut microbiota. This toxicity triggers the bacterial SOS response and loss of microbial diversity, leading to bacterial mutations and dysbiosis. Consequently, pathogenic overgrowth and systemic infections increase, necessitating broad-spectrum antibiotics intervention. This review underscores how prolonged antibiotic use during chemotherapy, combined with chemotherapy-induced bacterial mutations, creates selective pressures that drive de novo antimicrobial resistance (AMR), allowing resistant bacteria to dominate the gut. This compromises the treatment efficacy and elevates the mortality risk. Restoring gut microbial diversity may mitigate chemotherapy-induced toxicity and improve therapeutic outcomes, and emerging strategies, such as fecal microbiota transplantation (FMT), probiotics, and prebiotics, show considerable promise. Given the global threat posed by antibiotic resistance to cancer treatment, prioritizing antimicrobial stewardship is essential for optimizing antibiotic use and preventing resistance in CRC patients undergoing chemotherapy. Future research should aim to minimize chemotherapy's impact on the gut microbiota and develop targeted interventions to restore microbial diversity affected during chemotherapy.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi 621, Taiwan
| | - Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
- College of Medicine, Tzu Chi University, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Tsui-Kang Hsu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - I-Ching Lin
- Department of Family Medicine, Asia University Hospital, Taichung 413, Taiwan
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Changhua 500, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|
47
|
Xiong LH, Hu P, Zhang J, Sun J, Geng J, Zhuo MP, Tang BZ, He X. Photosensitizing Quantum Dot Killers Encoded by Bivalent DNA for Sequential Cell Penetration, Intracellular Bacterial Imaging, and Targeted Elimination. ACS NANO 2025; 19:7898-7909. [PMID: 39961751 DOI: 10.1021/acsnano.4c14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The precise identification and efficient in situ eradication of intracellular bacteria can not only prevent the bacteria from persisting and spreading within the host but also accelerate the healing of infected wounds and decrease the caused complications. In this study, we designed a multifunctional quantum dot (QD) killer equipped with aggregation-induced emission (AIE) photosensitizers and heterobivalent DNA sequences with the capability to specifically target, fluorescently image, and efficiently eliminate intracellular bacteria. These QD killers undergo cell penetration following lipopolysaccharide receptor-mediated endocytosis and then translocate to the cytosol for intracellular bacterial recognition and labeling. Additionally, by leveraging the robust photodynamic activity of sensitizing QD killers, the complete eradication of intracellular bacteria was realized by reducing the viability of the infected macrophages. The cytocompatibility of QD killers ensures safe treatment without harming normal host cells. Notably, bacterial-infected wounds in vivo showed accelerated healing rates following successful bacterial elimination with QD killer administration. This work highlights the potential of QD killers in eradicating intracellular bacteria hidden within immune cells, providing a promising strategy for addressing intracellular infection-relevant diseases.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- School of Public Health, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Pengtong Hu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jing Zhang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Sun
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangtao Geng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ming-Peng Zhuo
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
48
|
Gong E, Fulop DJ, Serebrenik J, Labiner AJ, Cohen DJ, Sigel KM, Lucas AL. Antibiotic treatment and survival in patients with resected, early-stage pancreatic ductal adenocarcinoma receiving chemotherapy. JNCI Cancer Spectr 2025; 9:pkaf024. [PMID: 39982394 PMCID: PMC11917212 DOI: 10.1093/jncics/pkaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/19/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is a clinically challenging malignancy largely because of its chemoresistance. Bacteria within the pancreatic ductal adenocarcinoma microbiome may mediate chemoresistance, suggesting that alteration of the microbiome with antibiotics could improve chemotherapy response. METHODS We utilized the Surveillance, Epidemiology, and End Results Program-Medicare database to select patients with resected, early-stage pancreatic ductal adenocarcinoma diagnosed between 2007 and 2017. The primary outcome of this study was overall survival. Receipt of antibiotic treatment within 1 month after adjuvant chemotherapy initiation was determined from Medicare claims data. Propensity scores were used to match patients who received antibiotics with patients who did not receive antibiotics. The Kaplan-Meier method was used to calculate 5-year overall survival rates, and Cox regression analysis was used to assess the association between receiving antibiotics and overall survival. All hypotheses were 2 sided. RESULTS Of the 712 patients with resected, early-stage pancreatic ductal adenocarcinoma, 629 (88.3%) were treated with adjuvant gemcitabine and 177 (24.9%) received antibiotics in the 1 month following chemotherapy initiation. The mean (SD) age at diagnosis was 73.7 (5.1) years, and patients were mostly women, White, and from metropolitan areas in the northeastern or western United States. A total of 143 propensity score-matched pairs were evaluated. Among patients treated with gemcitabine, antibiotic treatment was associated with a 37% improvement in overall survival and a 30% improvement in cancer-specific survival. CONCLUSIONS Antibiotic treatment in the 1 month following adjuvant gemcitabine initiation was associated with improved survival. These findings provide additional support for the hypothesis that antibiotic treatment may alter the pancreatic microbiome in a manner that reduces chemoresistance, potentially improving pancreatic ductal adenocarcinoma outcomes.
Collapse
Affiliation(s)
- Emma Gong
- Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Daniel J Fulop
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Joyce Serebrenik
- Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Arielle J Labiner
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, United States
| | - Deirdre J Cohen
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Keith M Sigel
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Aimee L Lucas
- Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
49
|
Sun M, He L, Chen R, Lv M, Chen ZS, Fan Z, Zhou Y, Qin J, Du J. Rational design of peptides to overcome drug resistance by metabolic regulation. Drug Resist Updat 2025; 79:101208. [PMID: 39914188 DOI: 10.1016/j.drup.2025.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Chemotherapy is widely used clinically, however, its efficacy is often compromised by the development of drug resistance, which arises from prolonged administration of drugs or other stimuli. One of the driven causes of drug resistance in tumors or bacterial infections is metabolic reprogramming, which alters mitochondrial metabolism, disrupts metabolic pathways and causes ion imbalance. Bioactive peptide materials, due to their biocompatibility, diverse bioactivities, customizable sequences, and ease of modification, have shown promise in overcoming drug resistance. This review provides an in-depth analysis of metabolic reprogramming and associated microenvironmental changes that contribute to drug resistance in common tumors and bacterial infections, suggesting potential therapeutic targets. Additionally, we explore peptide-based materials for regulating metabolism and their potential synergic effect with other therapies, highlighting the mechanisms by which these peptides reverse drug resistance. Finally, we discuss future perspectives and the clinical challenges in peptide-based treatments, aiming to offer insights for overcoming drug-resistant diseases.
Collapse
Affiliation(s)
- Min Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Le He
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhen Fan
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| |
Collapse
|
50
|
Tardy KJ, Kwak HV, Tieniber AD, Mangold AK, Perez JE, Do K, Zeng S, Rossi F, DeMatteo RP. Intratumoral Bacteria are Uncommon in Gastrointestinal Stromal Tumor. Ann Surg Oncol 2025; 32:1504-1510. [PMID: 39578323 PMCID: PMC11811456 DOI: 10.1245/s10434-024-16526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Gastrointestinal stromal tumor (GIST) is the most common human sarcoma with over 5000 new patients diagnosed in the USA each year. The tumor originates from the interstitial cells of Cajal and forms an intramural lesion most commonly in the stomach or small intestine. The gut microbiome has been linked to other gastrointestinal cancers and a recent paper purported that GISTs contain substantial intratumoral bacteria. The purpose of this study is to further evaluate the presence of bacteria in GISTs. PATIENTS AND METHODS We collected 25 tumor samples of varying size and location from 24 patients under sterile conditions in the operating room immediately following surgical resection. 16S quantitative polymerase chain reaction (qPCR) and 16S ribosomal RNA (rRNA) gene amplicon sequencing were performed to evaluate the bacterial species present in each tumor. Retrospective chart review was performed to determine tumor characteristics, including tumor size, location, imatinib exposure, and mucosal involvement. RESULTS In 23 of the 25 tumor samples, there were fewer than 100 copy numbers of 16S rRNA per uL, indicating an absence of a significant bacterial load. 16S rRNA gene amplicon sequencing of the remaining two samples, one gastric tumor and one duodenal tumor, revealed the presence of normal intestinal bacteria. These two tumors, along with three others, had disruption of the mucosal lining. CONCLUSIONS GISTs generally lack substantial bacteria, except in some cases when the tumor disrupts the mucosa.
Collapse
Affiliation(s)
- Katherine J Tardy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyunjee V Kwak
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D Tieniber
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alina K Mangold
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juan E Perez
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Do
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shan Zeng
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ferdinando Rossi
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald P DeMatteo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|