1
|
Jin N, Lee J, Park SY, Han JS. NOTCH1-STAT3 signaling axis regulates astrocytic differentiation of hippocampal neural stem/progenitor cells. Biochem Biophys Res Commun 2025; 765:151844. [PMID: 40273624 DOI: 10.1016/j.bbrc.2025.151844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/31/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Hippocampal neural stem/progenitor cells (HNPCs) in the hippocampus can differentiate into neurons and astrocytes, and are regulated by complex signaling pathways, such as the NOTCH1-signal transducer and activator of transcription 3 (STAT3) axis, which are crucial for cell fate determination. However, the exact molecular mechanism underlying HNPC differentiation remains unclear. This study investigated the role of NOTCH1-STAT3 pathway in HNPC differentiation into neuronal and astrocytic lineages during embryonic development. Mouse HNPCs were cultured with basic fibroblast and epidermal growth factors to promote proliferation. Differentiation was assessed using western blotting, immunofluorescence, RNA sequencing (RNA-seq), and reverse transcription-quantitative PCR to analyze gene expression. The roles of NOTCH1 and STAT3 in cell fate were assessed using their respective inhibitors, DAPT and Stattic, respectively. Immunoprecipitation was performed to investigate the interactions between NOTCH1 and STAT3. Proliferative conditions induced a shift from neurogenesis to astrocytic differentiation in HNPCs, as demonstrated by the increased GFAP and decreased TUJ1 levels. RNA-seq and gene ontology analyses revealed the upregulation of astrocyte-related genes and suppression of neurogenesis. NOTCH1 signaling promoted astrocytic differentiation through elevated DLL1 expression. Additionally, the inhibition of STAT3 or NOTCH1 reduced GFAP expression, whereas NOTCH1 knockdown reduced STAT3 activation, suggesting that NOTCH1 regulates astrocytic fate via STAT3 in proliferating HNPCs. These findings reveal the regulatory mechanisms of neural differentiation, emphasizing the critical role of the NOTCH1-STAT3 signaling axis in astrocytic differentiation of HNPCs, thereby enhancing our understanding of the molecular basis of neural cell fate decisions during brain development.
Collapse
Affiliation(s)
- Nuri Jin
- Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Junwon Lee
- Biotechnology, Paichai University, Daejeon, Republic of Korea
| | - Shin-Young Park
- Biotechnology, Paichai University, Daejeon, Republic of Korea.
| | - Joong-Soo Han
- Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhang M, Zhang L, Liu J, Zhao J, Mei J, Zou J, Luo Y, Cai C. Mammary stem cells: molecular cues, orchestrated regulatory mechanisms and its implications in breast cancer. J Genet Genomics 2025:S1673-8527(25)00116-X. [PMID: 40254157 DOI: 10.1016/j.jgg.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Mammary stem cells (MaSCs), endowed with self-renewal and multilineage differentiation capabilities, are crucial for mammary gland development, function, and disease initiation. Recent advances in MaSCs biology research encompass molecular marker identification, regulatory pathway dissection, and microenvironmental crosstalk. This review synthesizes key progress and remaining challenges in MaSC research. Molecular profiling advances have identified key markers recently, such as Procr, Dll1, Bcl11b, and PD-L1. Central to their regulatory logic are evolutionarily conserved pathways, including Wnt, Notch, Hedgehog, and Hippo, which exhibit context-dependent thresholds to balance self-renewal and differentiation. Beyond intrinsic signaling, the dynamic interplay between MaSCs and their microenvironment, such as luminal-derived Wnt4, macrophage-mediated TNF-α signaling, and adrenergic inputs from sympathetic nerves, spatially orchestrates stem cell behavior. In addition, this review also discusses the roles of breast cancer stem cells (BCSCs) in tumorigenesis and therapeutic resistance, focusing on the molecular mechanisms underlying MaSC transformation into BCSCs. Despite progress, challenges remain: human MaSCs functional assays lack standardization, pathway inhibitors risk off-target effects, and delivery systems lack precision. Emerging tools like spatial multi-omics, organoids, and biomimetic scaffolds address these gaps. By integrating MaSCs and BCSCs biology, this review links mechanisms to breast cancer and outlines strategies to target malignancy to accelerate clinical translation.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Lingxian Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jie Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahui Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiayu Mei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahua Zou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Yaogan Luo
- Mengniu Institute of Nutrition Science, Shanghai 200124, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
3
|
Lin Z, Guo Y, Bai H, Liu X, Lin M, Zhang Y, Tang R, Hu T, Yu L, Wang C, Cai S. Distinct mammary stem cells orchestrate long-term homeostasis of adult mammary gland. Cell Discov 2025; 11:39. [PMID: 40234382 PMCID: PMC12000503 DOI: 10.1038/s41421-025-00794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/16/2025] [Indexed: 04/17/2025] Open
Abstract
The murine mammary gland is sustained by distinct pools of stem cells that are limited in space and time, exhibiting both unipotency and bipotency. However, the specific identities of the bipotent and unipotent mammary stem cells remain unclear. In this study, we investigated spatial heterogeneity of the mammary gland at the single-cell transcriptional level. We found that mammary basal cells exhibited spatially distinct populations and characteristics, which can be further divided based on the expression of CD34 and CD200 markers. Notably, CD34-CD200+ basal cells enriched at the nipple region demonstrated strong long-term self-renewal ability and possessed the highest stem cell frequency, while CD34+CD200- basal cells enriched in the terminal end buds (TEBs) showed reduced stem cell potency. Through lineage tracing experiments based on their signature genes, we discovered that Bcl11b+ cells were enriched in the CD34-CD200+ population and exhibited bipotency even in the postnatal mammary gland, with an increasing contribution to mammary epithelia observed during long-term tracing and after multiple rounds of pregnancies. Conversely, lineage tracing of Sema3a+ cells, enriched in the CD34+CD200- population, predominantly revealed their unipotent nature and significant contribution during alveologenesis. Notably, the Bcl11b+ cells displayed a slow response to pregnancy but contributed to long-term mammary homeostasis, in contrast to the rapid response observed in Sema3a+ cells. In addition, Bcl11b progenies survived much better than Sema3a progenies during involution stage, thereby exhibiting increased coverage in the mammary gland after multiple rounds of pregnancies. Importantly, depletion of Bcl11b in Krt14+ mammary basal cells resulted in reduced bipotency of mammary stem cells and impaired their long-term contribution to the mammary gland. Overall, our study identifies distinct bipotent and unipotent populations of mammary basal cells with different dynamic properties that play critical roles in maintaining postnatal mammary homeostasis. These findings are crucial for advancing our understanding of breast health and breast cancer research.
Collapse
Affiliation(s)
- Zuobao Lin
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yajing Guo
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Huiru Bai
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoqin Liu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meizhen Lin
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yue Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ruolan Tang
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tian'en Hu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lili Yu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chunhui Wang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Shang Cai
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Sarkar H, Lee E, Lopez-Darwin SL, Kang Y. Deciphering normal and cancer stem cell niches by spatial transcriptomics: opportunities and challenges. Genes Dev 2025; 39:64-85. [PMID: 39496456 PMCID: PMC11789490 DOI: 10.1101/gad.351956.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Cancer stem cells (CSCs) often exhibit stem-like attributes that depend on an intricate stemness-promoting cellular ecosystem within their niche. The interplay between CSCs and their niche has been implicated in tumor heterogeneity and therapeutic resistance. Normal stem cells (NSCs) and CSCs share stemness features and common microenvironmental components, displaying significant phenotypic and functional plasticity. Investigating these properties across diverse organs during normal development and tumorigenesis is of paramount research interest and translational potential. Advancements in next-generation sequencing (NGS), single-cell transcriptomics, and spatial transcriptomics have ushered in a new era in cancer research, providing high-resolution and comprehensive molecular maps of diseased tissues. Various spatial technologies, with their unique ability to measure the location and molecular profile of a cell within tissue, have enabled studies on intratumoral architecture and cellular cross-talk within the specific niches. Moreover, delineation of spatial patterns for niche-specific properties such as hypoxia, glucose deprivation, and other microenvironmental remodeling are revealed through multilevel spatial sequencing. This tremendous progress in technology has also been paired with the advent of computational tools to mitigate technology-specific bottlenecks. Here we discuss how different spatial technologies are used to identify NSCs and CSCs, as well as their associated niches. Additionally, by exploring related public data sets, we review the current challenges in characterizing such niches, which are often hindered by technological limitations, and the computational solutions used to address them.
Collapse
Affiliation(s)
- Hirak Sarkar
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Department of Computer Science, Princeton, New Jersey 08544, USA
| | - Eunmi Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Sereno L Lopez-Darwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA;
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
5
|
Van Keymeulen A. Mechanisms of Regulation of Cell Fate in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:167-184. [PMID: 39821026 DOI: 10.1007/978-3-031-70875-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This chapter focuses on the mechanisms of regulation of cell fate in breast development, occurring mainly after birth, as well as in breast cancer. First, we will review how the microenvironment of the breast, as well as external cues, plays a crucial role in mammary gland cell specification and will describe how it has been shown to reprogram non-mammary cells into mammary epithelial cells. Then we will focus on the transcription factors and master regulators which have been established to be determinant for basal (BC) and luminal cell (LC) identity, and will describe the experiments of ectopic expression or loss of function of these transcription factors which demonstrated that they were crucial for cell fate. We will also discuss how master regulators are involved in the fate choice of LCs between estrogen receptor (ER)-positive cells and ER- cells, which will give rise to alveolar cells upon pregnancy and lactation. We will describe how oncogene expression induces reprogramming and change of fate of mammary epithelial cells before tumor appearance, which could be an essential step in tumorigenesis. Finally, we will describe the involvement of master regulators of mammary epithelial cells in breast cancer.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Laboratory of Stem Cells and Cancer (LSCC), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
6
|
Agudo J, Miao Y. Stemness in solid malignancies: coping with immune attack. Nat Rev Cancer 2025; 25:27-40. [PMID: 39455862 DOI: 10.1038/s41568-024-00760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
Immunotherapy has become a key new pillar of cancer treatment, and this has sparked interest in understanding mechanisms of cancer immune evasion. It has long been appreciated that cancers are constituted by heterogeneous populations of tumour cells. This feature is often fuelled by specialized cells that have molecular programs resembling tissue stem cells. Although these cancer stem cells (CSCs) have capacity for unlimited self-renewal and differentiation, it is increasingly evident that some CSCs are capable of achieving remarkable immune resistance. Given that most immunotherapy regiments have overlooked CSC-specific immune-evasive mechanisms, many current treatment strategies often lead to cancer relapse. This Review focuses on advancements in understanding how CSCs in solid tumours achieve their unique immune-evasive properties, enabling them to drive tumour regrowth. Moreover, as cancers often arise from tissue stem cells that acquired oncogenic mutations, we discuss how tissue stem cells undergoing malignant transformation activate intrinsic immune-evasive mechanisms and establish close interactions with suppressive immune cells to escape immune surveillance. In addition, we summarize how in advanced disease stages, CSCs often hijack features of normal stem cells to resist antitumour immunity. Finally, we provide insights in how to design a new generation of cancer immunotherapies to ensure elimination of CSCs.
Collapse
Affiliation(s)
- Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Ludwig Center at Harvard, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
- New York Stem Cell Foundation, Robertson Investigator, New York, NY, USA.
| | - Yuxuan Miao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, USA.
- The University of Chicago Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
7
|
Kohler KT, Kim J, Villadsen R, Rønnov-Jessen L, Petersen OW. Oncogene activated human breast luminal progenitors contribute basally located myoepithelial cells. Breast Cancer Res 2024; 26:183. [PMID: 39695857 DOI: 10.1186/s13058-024-01939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Basal-like breast cancer originates in luminal progenitors, frequently with an altered PI3K pathway, and focally in close association with genetically altered myoepithelial cells at the site of tumor initiation. The exact trajectory behind this bi-lineage phenomenon remains poorly understood. METHODS AND RESULTS Here we used a breast cancer relevant transduction protocol including hTERT, shp16, shp53, and PIK3CAH1047R to immortalize FACS isolated luminal cells, and we identified a candidate multipotent progenitor. Specifically, we identified a keratin 23 (K23)+/ALDH1A3+/CALML5- ductal-like progenitor with the potential to differentiate into CALML5+ lobular-like cells. We found that the apparent luminal phenotype of these oncogene transduced progenitors was metastable giving rise to basal-like cells dependent on culture conditions. In 3D organoid culture and upon transplantation to mice the bipotent progenitor cell line organized into a bi-layered acinus-like structure reminiscent of that of the normal breast gland. CONCLUSIONS These findings provide proof of principle that progenitors within the human breast luminal epithelial compartment may serve as a source of correctly positioned myoepithelial cells. This may prove useful in assessing the role of myoepithelial cells in breast tumor progression.
Collapse
Affiliation(s)
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Chong JS, Doorbar J. Modulation of epithelial homeostasis by HPV using Notch and Wnt. Tumour Virus Res 2024; 18:200297. [PMID: 39542216 PMCID: PMC11617312 DOI: 10.1016/j.tvr.2024.200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Highly conserved signalling pathways such as Notch and Wnt are essential in the regulation of differentiation and proliferation processes during adult tissue homeostasis. Human papillomaviruses (HPVs) have evolved with humans to manipulate these signalling pathways to establish a basal reservoir of infected cells by limiting HPV-infected keratinocyte differentiation whilst ensuring that differentiating cells are in a replication-competent state. Here, we focus on the canonical Notch and Wnt signalling pathways and their crosstalk to ensure cell-fate lineage determination during epithelial homeostasis. We then examine how HPVs use their E6 and E7 proteins to inhibit differentiation and maintain stem-like characteristics using Notch and Wnt in HPV-infected cells. Determining the functions of E6 and E7 in the maintenance of the infected cell reservoir, and the molecular crosstalk between Notch and Wnt is vital for our understanding of HPV persistence, and may represent an important factor in the development of therapeutic agents for HPV-associated disease.
Collapse
Affiliation(s)
- June See Chong
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| |
Collapse
|
9
|
Li CMC, Cordes A, Oliphant MUJ, Quinn SA, Thomas M, Selfors LM, Silvestri F, Girnius N, Rinaldi G, Zoeller JJ, Shapiro H, Tsiobikas C, Gupta KP, Pathania S, Regev A, Kadoch C, Muthuswamy SK, Brugge JS. Brca1 haploinsufficiency promotes early tumor onset and epigenetic alterations in a mouse model of hereditary breast cancer. Nat Genet 2024; 56:2763-2775. [PMID: 39528827 DOI: 10.1038/s41588-024-01958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Germline BRCA1 mutation carriers face a high breast cancer risk; however, the underlying mechanisms for this risk are not completely understood. Using a new genetically engineered mouse model of germline Brca1 heterozygosity, we demonstrate that early tumor onset in a Brca1 heterozygous background cannot be fully explained by the conventional 'two-hit' hypothesis, suggesting the existence of inherent tumor-promoting alterations in the Brca1 heterozygous state. Single-cell RNA sequencing and assay for transposase-accessible chromatin with sequencing analyses uncover a unique set of differentially accessible chromatin regions in ostensibly normal Brca1 heterozygous mammary epithelial cells, distinct from wild-type cells and partially mimicking the chromatin and RNA-level changes in tumor cells. Transcription factor analyses identify loss of ELF5 and gain of AP-1 sites in these epigenetically primed regions; in vivo experiments further implicate AP-1 and Wnt10a as strong promoters of Brca1-related breast cancer. These findings reveal a previously unappreciated epigenetic effect of Brca1 haploinsufficiency in accelerating tumorigenesis, advancing our mechanistic understanding and informing potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Alyssa Cordes
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - S Aidan Quinn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mayura Thomas
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jason J Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hana Shapiro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Kushali P Gupta
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shailja Pathania
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Rojo MD, Bandyopadhyay I, Burke CM, Sturtz AD, Phillips ES, Matherne MG, Embrey SJ, LaRue R, Qiu Y, Schwertfeger KL, Machado HL. C/EBPβ deletion in macrophages impairs mammary gland alveolar budding during the estrous cycle. Life Sci Alliance 2024; 7:e202302516. [PMID: 39025525 PMCID: PMC11258408 DOI: 10.26508/lsa.202302516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Macrophages have important roles in mammary gland development and tissue homeostasis, but the specific mechanisms that regulate macrophage function need further elucidation. We have identified C/EBPβ as an important transcription factor expressed by multiple macrophage populations in the normal mammary gland. Mammary glands from mice with C/EBPβ-deficient macrophages (Cebpb ΔM) show a significant decrease in alveolar budding during the diestrus stage of the reproductive cycle, whereas branching morphogenesis remains unchanged. Defects in alveolar budding were found to be the result of both systemic hormones and local macrophage-directed signals. RNA sequencing shows significant changes in PR-responsive genes and alterations in the Wnt landscape of mammary epithelial cells of Cebpb ΔM mice, which regulate stem cell expansion during diestrus. Cebpb ΔM macrophages demonstrate a shift from a pro-inflammatory to a tissue-reparative phenotype, and exhibit increased phagocytic capacity as compared to WT. Finally, Cebpb ΔM macrophages down-regulate Notch2 and Notch3, which normally promote stem cell expansion during alveolar budding. These results suggest that C/EBPβ is an important macrophage factor that facilitates macrophage-epithelial crosstalk during a key stage of mammary gland tissue homeostasis.
Collapse
Affiliation(s)
- Michelle D Rojo
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ishitri Bandyopadhyay
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Caitlin M Burke
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexa D Sturtz
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Emily S Phillips
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Megan G Matherne
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samuel J Embrey
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Rebecca LaRue
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Yinjie Qiu
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, USA
| |
Collapse
|
11
|
Chen W, Guo L, Wei W, Cai C, Wu G. Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation is essential for maintenance of mammary stem cell activity. Cell Rep 2024; 43:114762. [PMID: 39321020 DOI: 10.1016/j.celrep.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Adult mammary stem cells (aMaSCs) are vital to tissue expansion and remodeling during the process of postnatal mammary development. The protein C receptor (Procr) is one of the well-identified surface markers of multipotent aMaSCs. However, an understanding of the regulatory mechanisms governing Procr's protein stability remains incomplete. In this study, we identified Glycoprotein m6a (Gpm6a) as a critical protein for aMaSC activity modulation by using the Gpm6a knockout mouse model. Interestingly, we determined that Gpm6a depletion results in a reduction of Procr protein stability. Mechanistically, Gpm6a regulates Procr protein stability by mediating the formation of lipid rafts, a process requiring Zdhhc1 and Zdhhc2 to palmitate Gpm6a at Cys17,18 and Cys246 sites. Our findings highlight an important mechanism involving Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation for the regulation of Procr stability, aMaSC activity, and postnatal mammary development.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Guo
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
12
|
Gholami A. Cancer stem cell-derived exosomes in CD8 + T cell exhaustion. Int Immunopharmacol 2024; 137:112509. [PMID: 38889509 DOI: 10.1016/j.intimp.2024.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Tumor-derived extracellular vesicles (EVs) are one of the most important ways of intercellular communication and signaling. Cancer stem cells (CSCs) secrete EVs to modulate immune checkpoint molecules and evade immune surveillance. Activated CD8+ T cells known as cytotoxic T lymphocytes (CTLs) are the most powerful anti-cancer adaptive cells. Their activity is compromised upon encountering cells and signaling within the tumor microenvironment (TME), resulting in hyporesponsiveness called exhaustion. CSC-derived exosomes express programmed death ligand-1 (PD-L1) and upregulate programmed death-1 (PD-1) on CD8+ T cells to promote their exhaustion. PD-L1 expression on tumor-derived exosomes appears to be induced by CSC-derived exosomes containing transforming growth factor (TGF)-β. Tenascin-C is another constituent of CSC exosomes that acts on mammalian target of rapamycin (mTOR) signaling in T cells. Glycolysis is a metabolic event promoted by the inducing effect of CSC-derived exosomes on hypoxia-inducible factor-1α (HIF-1α). CSC interaction with CD8+ T cells is even more complex as the CSC-derived exosomes contain Notch1 to stimulate stemness in non-tumor cells, and the inducible effect of Notch1 on PD-1 promotes CD8+ T cell exhaustion. CSC exosome targeting has not been extensively studied yet. Advances in the field will open up new therapeutic windows and shape the future of cancer immunotherapy.
Collapse
Affiliation(s)
- Amir Gholami
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
13
|
Liu F, Sun H, Li D, Huang J, Chen M, Lin X, Xu J, Ma R. DLL1/NOTCH1 signaling pathway maintain angiogenesis in meniscus development and degeneration. Int J Biochem Cell Biol 2024; 172:106589. [PMID: 38772475 DOI: 10.1016/j.biocel.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/05/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES The decline in vascular capacity within the meniscus is a well-documented phenomenon during both development and degeneration. Maintaining vascular integrity has been proposed as a potential therapeutic strategy for osteoarthritis. Therefore, our study aims to investigate the characteristics of endothelial cells and blood vessels in embryonic and degenerated meniscus tissues. METHODS Human embryonic and mature menisci were used for histological analyses. Single-cell RNA sequencing was used to identify cell clusters and their significant genes in embryo meniscus to uncover characteristic of endothelial cells. Computer analysis and various staining techniques were used to characterize vessels in development and osteoarthritis meniscus. RESULTS Vessels structure first observed in E12w and increasing in E14w. Vessels were veins majorly and arteries growth in E35w. Endothelial cells located not only perivascular but also in the surface of meniscus. The expression of DLL1 was observed to be significantly altered in endothelial cells within the vascular network that failed to form. Meniscus tissues affected by osteoarthritis, characterized by diminished vascular capacity, displayed reduced levels of DLL1 expression. Experiment in vitro confirmed DLL1/NOTCH1 be vital to angiogenesis. CONCLUSION Lack of DLL1/NOTCH1 signaling pathway was mechanism of vascular declination in development and degenerated meniscus.
Collapse
Affiliation(s)
- Fangzhou Liu
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Hao Sun
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Deng Li
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Junming Huang
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Meiyi Chen
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Xiaobin Lin
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Jie Xu
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China.
| | - Ruofan Ma
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
14
|
Kooistra T, Saez B, Roche M, Egea-Zorrilla A, Li D, Anketell D, Nguyen N, Villoria J, Gillis J, Petri E, Vera L, Blasco-Iturri Z, Smith NP, Alladina J, Zhang Y, Vinarsky V, Shivaraju M, Sheng SL, Gonzalez-Celeiro M, Mou H, Waghray A, Lin B, Paksa A, Yanger K, Tata PR, Zhao R, Causton B, Zulueta JJ, Prosper F, Cho JL, Villani AC, Haber A, Rajagopal J, Medoff BD, Pardo-Saganta A. Airway basal stem cells are necessary for the maintenance of functional intraepithelial airway macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600501. [PMID: 38979172 PMCID: PMC11230263 DOI: 10.1101/2024.06.25.600501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Adult stem cells play a crucial role in tissue homeostasis and repair through multiple mechanisms. In addition to being able to replace aged or damaged cells, stem cells provide signals that contribute to the maintenance and function of neighboring cells. In the lung, airway basal stem cells also produce cytokines and chemokines in response to inhaled irritants, allergens, and pathogens, which affect specific immune cell populations and shape the nature of the immune response. However, direct cell-to-cell signaling through contact between airway basal stem cells and immune cells has not been demonstrated. Recently, a unique population of intraepithelial airway macrophages (IAMs) has been identified in the murine trachea. Here, we demonstrate that IAMs require Notch signaling from airway basal stem cells for maintenance of their differentiated state and function. Furthermore, we demonstrate that Notch signaling between airway basal stem cells and IAMs is required for antigen-induced allergic inflammation only in the trachea where the basal stem cells are located whereas allergic responses in distal lung tissues are preserved consistent with a local circuit linking stem cells to proximate immune cells. Finally, we demonstrate that IAM-like cells are present in human conducting airways and that these cells display Notch activation, mirroring their murine counterparts. Since diverse lung stem cells have recently been identified and localized to specific anatomic niches along the proximodistal axis of the respiratory tree, we hypothesize that the direct functional coupling of local stem cell-mediated regeneration and immune responses permits a compartmentalized inflammatory response.
Collapse
|
15
|
Bai H, Liu X, Lin M, Meng Y, Tang R, Guo Y, Li N, Clarke MF, Cai S. Progressive senescence programs induce intrinsic vulnerability to aging-related female breast cancer. Nat Commun 2024; 15:5154. [PMID: 38886378 PMCID: PMC11183265 DOI: 10.1038/s41467-024-49106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Cancer incidence escalates exponentially with advancing age; however, the underlying mechanism remains unclear. In this study, we build a chronological molecular clock at single-cell transcription level with a mammary stem cell-enriched population to depict physiological aging dynamics in female mice. We find that the mammary aging process is asynchronous and progressive, initiated by an early senescence program, succeeded by an entropic late senescence program with elevated cancer associated pathways, vulnerable to cancer predisposition. The transition towards senescence program is governed by a stem cell factor Bcl11b, loss of which accelerates mammary ageing with enhanced DMBA-induced tumor formation. We have identified a drug TPCA-1 that can rejuvenate mammary cells and significantly reduce aging-related cancer incidence. Our findings establish a molecular portrait of progressive mammary cell aging and elucidate the transcriptional regulatory network bridging mammary aging and cancer predisposition, which has potential implications for the management of cancer prevalence in the aged.
Collapse
Affiliation(s)
- Huiru Bai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoqin Liu
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Meizhen Lin
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yuan Meng
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Ruolan Tang
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yajing Guo
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Michael F Clarke
- Institute of Stem Cell and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Shang Cai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Wang W, Cen Y, Lu Z, Xu Y, Sun T, Xiao Y, Liu W, Li JJ, Wang C. scCDC: a computational method for gene-specific contamination detection and correction in single-cell and single-nucleus RNA-seq data. Genome Biol 2024; 25:136. [PMID: 38783325 PMCID: PMC11112958 DOI: 10.1186/s13059-024-03284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
In droplet-based single-cell and single-nucleus RNA-seq assays, systematic contamination of ambient RNA molecules biases the quantification of gene expression levels. Existing methods correct the contamination for all genes globally. However, there lacks specific evaluation of correction efficacy for varying contamination levels. Here, we show that DecontX and CellBender under-correct highly contaminating genes, while SoupX and scAR over-correct lowly/non-contaminating genes. Here, we develop scCDC as the first method to detect the contamination-causing genes and only correct expression levels of these genes, some of which are cell-type markers. Compared with existing decontamination methods, scCDC excels in decontaminating highly contaminating genes while avoiding over-correction of other genes.
Collapse
Affiliation(s)
- Weijian Wang
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Yihui Cen
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Zezhen Lu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Yueqing Xu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Tianyi Sun
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA
| | - Ying Xiao
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China
| | - Wanlu Liu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Jingyi Jessica Li
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA.
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China.
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China.
- Biomedical and Health Translational Research Centre, Zhejiang University, Haining, Zhejiang, 314400, China.
| |
Collapse
|
17
|
Shao C, Xu H, Sun X, Pan Y, Liang X, Huang J, He Y, Guo W, Ye L, Zhang J. Jiawei Taohe Chengqi decoction inhibition of the notch signal pathway affects macrophage reprogramming to inhibit HSCs activation for the treatment of hepatic fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117486. [PMID: 38030027 DOI: 10.1016/j.jep.2023.117486] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Taohe Chengqi Tang (JTCD) is a modified formulation of Traditional Chinese Medicine (TCM) known as Taohe Chengqi Decoction, which has been described in the ancient TCM literature "Treatise on Febrile Diseases". As a formula that can activate blood circulation and eliminate blood stasis and regulate Yin and Yang in traditional Chinese medicine applications, JTCD has been reported to be effective in the treatment of chronic liver disease and hepatic fibrosis (HF). AIM OF STUDY The current study aimed to evaluate the effectiveness of JTCD in modulating hepatic macrophages by regulating the Notch signal pathway, and to further investigate the mechanisms underlying macrophage reprogramming that leads to HF. MATERIALS AND METHODS Molecular assays were performed using in vitro cultures of human mononuclear THP-1 cells and human-derived hepatic stellate cells LX-2. CCl4-induced mice were utilized as an in vivo model to simulate HF. RESULTS Our results demonstrated that JTCD exhibited dual effects by inhibiting hepatic stellate cell (HSCs) activation and modulating the polarisation of macrophages towards the M2 phenotype while decreasing the M1 phenotype. Network pharmacological analyses and molecular docking studies revealed that the Notch signal pathway was significantly enriched and played a crucial role in the therapeutic response of JTCD against HF. Moreover, through the establishment of a co-culture model, we validated that JTCD inhibited the Notch signal pathway in macrophages, leading to alterations in macrophage reprogramming, subsequent inhibition of HSC activation, and ultimately exerting anti-HF effects. CONCLUSION In conclusion, our findings provide solid evidence for JTCD in treating HF, as it suppresses the Notch signal pathway in macrophages, regulates macrophage reprogramming, and inhibits HSC activation.
Collapse
Affiliation(s)
- Chang Shao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Huihui Xu
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiguang Sun
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yun Pan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaofan Liang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jiaxin Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yi He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Wenqin Guo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Linmao Ye
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Junjie Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
18
|
Wu Y, Teh YC, Chong SZ. Going Full TeRM: The Seminal Role of Tissue-Resident Macrophages in Organ Remodeling during Pregnancy and Lactation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:513-521. [PMID: 38315948 DOI: 10.4049/jimmunol.2300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 02/07/2024]
Abstract
During pregnancy and lactation, the uterus and mammary glands undergo remarkable structural changes to perform their critical reproductive functions before reverting to their original dormant state upon childbirth and weaning, respectively. Underlying this incredible plasticity are complex remodeling processes that rely on coordinated decisions at both the cellular and tissue-subunit levels. With their exceptional versatility, tissue-resident macrophages play a variety of supporting roles in these organs during each stage of development, ranging from maintaining immune homeostasis to facilitating tissue remodeling, although much remains to be discovered about the identity and regulation of individual macrophage subsets. In this study, we review the increasingly appreciated contributions of these immune cells to the reproductive process and speculate on future lines of inquiry. Deepening our understanding of their interactions with the parenchymal or stromal populations in their respective niches may reveal new strategies to ameliorate complications in pregnancy and breastfeeding, thereby improving maternal health and well-being.
Collapse
Affiliation(s)
- Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
19
|
Ning H, Liu J, Tan J, Yi M, Lin X. The role of the Notch signalling pathway in the pathogenesis of ulcerative colitis: from the perspective of intestinal mucosal barrier. Front Med (Lausanne) 2024; 10:1333531. [PMID: 38249980 PMCID: PMC10796567 DOI: 10.3389/fmed.2023.1333531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Ulcerative colitis is a common digestive disorder worldwide, with increasing incidence in recent years. It is an urgent problem to be solved, as it seriously affects and threatens the health and life of the global population. Studies have shown that dysfunction of the intestinal mucosal barrier is a critical pathogenic factor and molecular basis of ulcerative colitis, and some scholars have described it as a "barrier organ disease." While the Notch signalling pathway affects a series of cellular processes, including proliferation, differentiation, development, migration, and apoptosis. Therefore, it can regulate intestinal stem cells, CD4+ T cells, innate lymphoid cells, macrophages, and intestinal microbiota and intervene in the chemical, physical, immune, and biological mucosal barriers in cases of ulcerative colitis. The Notch signalling pathway associated with the pathogenesis of ulcerative colitis has distinct characteristics, with good regulatory effects on the mucosal barrier. However, research on ulcerative colitis has mainly focused on immune regulation, anti-inflammatory activity, and antioxidant stress; therefore, the study of the Notch signalling pathway suggests the possibility of understanding the pathogenesis of ulcerative colitis from another perspective. In this article we explore the role and mechanism of the Notch signalling pathway in the pathogenesis of ulcerative colitis from the perspective of the intestinal mucosal barrier to provide new targets and theoretical support for further research on the pathogenesis and clinical treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Hang Ning
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiemin Liu
- Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jiaqian Tan
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Mengni Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyuan Lin
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
20
|
Liu C, Xu Y, Yang G, Tao Y, Chang J, Wang S, Cheung TH, Chen J, Zeng YA. Niche inflammatory signals control oscillating mammary regeneration and protect stem cells from cytotoxic stress. Cell Stem Cell 2024; 31:89-105.e6. [PMID: 38141612 DOI: 10.1016/j.stem.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/03/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Stem cells are known for their resilience and enhanced activity post-stress. The mammary gland undergoes frequent remodeling and is subjected to recurring stress during the estrus cycle, but it remains unclear how mammary stem cells (MaSCs) respond to the stress and contribute to regeneration. We discovered that cytotoxic stress-induced activation of CD11c+ ductal macrophages aids stem cell survival and prevents differentiation. These macrophages boost Procr+ MaSC activity through IL1β-IL1R1-NF-κB signaling during the estrus cycle in an oscillating manner. Deleting IL1R1 in MaSCs results in stem cell loss and skewed luminal differentiation. Moreover, under cytotoxic stress from the chemotherapy agent paclitaxel, ductal macrophages secrete higher IL1β levels, promoting MaSC survival and preventing differentiation. Inhibiting IL1R1 sensitizes MaSCs to paclitaxel. Our findings reveal a recurring inflammatory process that regulates regeneration, providing insights into stress-induced inflammation and its impact on stem cell survival, potentially affecting cancer therapy efficacy.
Collapse
Affiliation(s)
- Chunye Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yishu Xu
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guowei Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Tao
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiali Chang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shihui Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research Center for Systems Biology and Human Health, the State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518057, Guangdong, China
| | - Jianfeng Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yi Arial Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
21
|
Yang X, Xu H, Yang X, Wang H, Zou L, Yang Q, Qi X, Li L, Duan H, Yan X, Fu NY, Tan J, Hou Z, Jiao B. Mcam inhibits macrophage-mediated development of mammary gland through non-canonical Wnt signaling. Nat Commun 2024; 15:36. [PMID: 38167296 PMCID: PMC10761817 DOI: 10.1038/s41467-023-44338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
While canonical Wnt signaling is well recognized for its crucial regulatory functions in cell fate decisions, the role of non-canonical Wnt signaling in adult stem cells remains elusive and contradictory. Here, we identified Mcam, a potential member of the non-canonical Wnt signaling, as an important negative regulator of mammary gland epithelial cells (MECs) by genome-scale CRISPR-Cas9 knockout (GeCKO) library screening. Loss of Mcam increases the clonogenicity and regenerative capacity of MECs, and promotes the proliferation, differentiation, and ductal morphogenesis of mammary epithelial in knockout mice. Mechanically, Mcam knockout recruits and polarizes macrophages through the Il4-Stat6 axis, thereby promoting secretion of the non-canonical Wnt ligand Wnt5a and its binding to the non-canonical Wnt signaling receptor Ryk to induce the above phenotypes. These findings reveal Mcam roles in mammary gland development by orchestrating communications between MECs and macrophages via a Wnt5a/Ryk axis, providing evidences for non-canonical Wnt signaling in mammary development.
Collapse
Affiliation(s)
- Xing Yang
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Haibo Xu
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xu Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hui Wang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Zou
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qin Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xiaopeng Qi
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Li
- Research Center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hongxia Duan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100000, China
| | - Xiyun Yan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100000, China
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Jing Tan
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China.
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China.
| | - Zongliu Hou
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China.
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China.
| | - Baowei Jiao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
22
|
Barnes JL, Yoshida M, He P, Worlock KB, Lindeboom RGH, Suo C, Pett JP, Wilbrey-Clark A, Dann E, Mamanova L, Richardson L, Polanski K, Pennycuick A, Allen-Hyttinen J, Herczeg IT, Arzili R, Hynds RE, Teixeira VH, Haniffa M, Lim K, Sun D, Rawlins EL, Oliver AJ, Lyons PA, Marioni JC, Ruhrberg C, Tuong ZK, Clatworthy MR, Reading JL, Janes SM, Teichmann SA, Meyer KB, Nikolić MZ. Early human lung immune cell development and its role in epithelial cell fate. Sci Immunol 2023; 8:eadf9988. [PMID: 38100545 PMCID: PMC7615868 DOI: 10.1126/sciimmunol.adf9988] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/03/2023] [Indexed: 12/17/2023]
Abstract
Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1β drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1β-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.
Collapse
Affiliation(s)
- Josephine L Barnes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Rik G H Lindeboom
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Adam Pennycuick
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | - Iván T Herczeg
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Romina Arzili
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, UK
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Vitor H Teixeira
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - James L Reading
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
- Tumour Immunodynamics and Interception Laboratory, Cancer Institute, University College London, London, UK
| | - Sam M Janes
- UCL Respiratory, Division of Medicine, University College London, London, UK
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Physics/Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
23
|
Ben-Chetrit N, Niu X, Sotelo J, Swett AD, Rajasekhar VK, Jiao MS, Stewart CM, Bhardwaj P, Kottapalli S, Ganesan S, Loyher PL, Potenski C, Hannuna A, Brown KA, Iyengar NM, Giri DD, Lowe SW, Healey JH, Geissmann F, Sagi I, Joyce JA, Landau DA. Breast Cancer Macrophage Heterogeneity and Self-renewal are Determined by Spatial Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563749. [PMID: 37961223 PMCID: PMC10634790 DOI: 10.1101/2023.10.24.563749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Tumor-infiltrating macrophages support critical steps in tumor progression, and their accumulation in the tumor microenvironment (TME) is associated with adverse outcomes and therapeutic resistance across human cancers. In the TME, macrophages adopt diverse phenotypic alterations, giving rise to heterogeneous immune activation states and induction of cell cycle. While the transcriptional profiles of these activation states are well-annotated across human cancers, the underlying signals that regulate macrophage heterogeneity and accumulation remain incompletely understood. Here, we leveraged a novel ex vivo organotypic TME (oTME) model of breast cancer, in vivo murine models, and human samples to map the determinants of functional heterogeneity of TME macrophages. We identified a subset of F4/80highSca-1+ self-renewing macrophages maintained by type-I interferon (IFN) signaling and requiring physical contact with cancer-associated fibroblasts. We discovered that the contact-dependent self-renewal of TME macrophages is mediated via Notch4, and its inhibition abrogated tumor growth of breast and ovarian carcinomas in vivo, as well as lung dissemination in a PDX model of triple-negative breast cancer (TNBC). Through spatial multi-omic profiling of protein markers and transcriptomes, we found that the localization of macrophages further dictates functionally distinct but reversible phenotypes, regardless of their ontogeny. Whereas immune-stimulatory macrophages (CD11C+CD86+) populated the tumor epithelial nests, the stroma-associated macrophages (SAMs) were proliferative, immunosuppressive (Sca-1+CD206+PD-L1+), resistant to CSF-1R depletion, and associated with worse patient outcomes. Notably, following cessation of CSF-1R depletion, macrophages rebounded primarily to the SAM phenotype, which was associated with accelerated growth of mammary tumors. Our work reveals the spatial determinants of macrophage heterogeneity in breast cancer and highlights the disruption of macrophage self-renewal as a potential new therapeutic strategy.
Collapse
Affiliation(s)
- Nir Ben-Chetrit
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- These authors contributed equally
| | - Xiang Niu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- These authors contributed equally
- Present address: Genentech, Inc., South San Francisco, CA, USA
| | - Jesus Sotelo
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ariel D. Swett
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Vinagolu K. Rajasekhar
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria S. Jiao
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caitlin M. Stewart
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Priya Bhardwaj
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sanjay Kottapalli
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Saravanan Ganesan
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Pierre-Louis Loyher
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Catherine Potenski
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Assaf Hannuna
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neil M. Iyengar
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dilip D. Giri
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - John H. Healey
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Johanna A. Joyce
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Switzerland
| | - Dan A. Landau
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| |
Collapse
|
24
|
Wang Z, Zhang L, Li B, Song J, Yu M, Zhang J, Chen C, Zhan J, Zhang H. Kindlin-2 in myoepithelium controls luminal progenitor commitment to alveoli in mouse mammary gland. Cell Death Dis 2023; 14:675. [PMID: 37833248 PMCID: PMC10576046 DOI: 10.1038/s41419-023-06184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Myoepithelium plays an important role in mammary gland development, but less is known about the molecular mechanism underlying how myoepithelium controls acinus differentiation during gestation. Herein, we found that loss of Kindlin-2 in myoepithelial cells impaired mammary morphogenesis, alveologenesis, and lactation. Using five genetically modified mouse lines combined with single-cell RNA sequencing, we found a Kindlin-2-Stat3-Dll1 signaling cascade in myoepithelial cells that inactivates Notch signaling in luminal cells and consequently drives luminal progenitor commitment to alveolar cells identity. Single-cell profiling revealed that Kindlin-2 loss significantly reduces the proportion of matured alveolar cells. Mechanistically, Kindlin-2 depletion in myoepithelial cells promotes Stat3 activation and upregulates Dll1, which activates the Notch pathway in luminal cells and inhibits luminal progenitor differentiation and maturation during gestation. Inhibition of Notch1 with tangeretin allowed luminal progenitors to regain commitment ability in the pregnant mice with Kindlin-2 depletion in myoepithelium. Taken together, we demonstrated that Kindlin-2 is essential to myoepithelium-controlled luminal progenitors to alveoli transition during gestation.
Collapse
Affiliation(s)
- Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Bing Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
- Department of Histology and Embryology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
25
|
Brisset M, Mehlen P, Meurette O, Hollande F. Notch receptor/ligand diversity: contribution to colorectal cancer stem cell heterogeneity. Front Cell Dev Biol 2023; 11:1231416. [PMID: 37860822 PMCID: PMC10582728 DOI: 10.3389/fcell.2023.1231416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Cancer cell heterogeneity is a key contributor to therapeutic failure and post-treatment recurrence. Targeting cell subpopulations responsible for chemoresistance and recurrence seems to be an attractive approach to improve treatment outcome in cancer patients. However, this remains challenging due to the complexity and incomplete characterization of tumor cell subpopulations. The heterogeneity of cells exhibiting stemness-related features, such as self-renewal and chemoresistance, fuels this complexity. Notch signaling is a known regulator of cancer stem cell (CSC) features in colorectal cancer (CRC), though the effects of its heterogenous signaling on CRC cell stemness are only just emerging. In this review, we discuss how Notch ligand-receptor specificity contributes to regulating stemness, self-renewal, chemoresistance and cancer stem cells heterogeneity in CRC.
Collapse
Affiliation(s)
- Morgan Brisset
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Patrick Mehlen
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Olivier Meurette
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Lin S, Margueron R, Charafe-Jauffret E, Ginestier C. Disruption of lineage integrity as a precursor to breast tumor initiation. Trends Cell Biol 2023; 33:887-897. [PMID: 37061355 DOI: 10.1016/j.tcb.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
Increase in lineage infidelity and/or imbalance is frequently observed around the earliest stage of breast tumor initiation. In response to disruption of homeostasis, differentiated cells can partially lose their identity and gain cellular plasticity, a process involving epigenome landscape remodeling. This increase of cellular plasticity may promote the malignant transformation of breast tumors and fuel their heterogeneity. Here, we review recent studies that have yield insights into important regulators of lineage integrity and mechanisms that trigger mammary epithelial lineage derail, and evaluate their impacts on breast tumor development.
Collapse
Affiliation(s)
- Shuheng Lin
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - Raphaël Margueron
- Institut Curie, PSL Research University, Sorbonne University, Paris, France
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| |
Collapse
|
27
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Kijas D, Haller H, Schmidt-Ott K, Limbourg FP. CSF-1 and Notch signaling cooperate in macrophage instruction and tissue repair during peripheral limb ischemia. Front Immunol 2023; 14:1240327. [PMID: 37691936 PMCID: PMC10484478 DOI: 10.3389/fimmu.2023.1240327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Ischemia causes an inflammatory response featuring monocyte-derived macrophages (MF) involved in angiogenesis and tissue repair. Angiogenesis and ischemic macrophage differentiation are regulated by Notch signaling via Notch ligand Delta-like 1 (Dll1). Colony stimulating factor 1 (CSF-1) is an essential MF lineage factor, but its role in ischemic macrophage development and the interaction with Notch signaling is so far unclear. Using a mouse model of hind limb ischemia with CSF-1 inhibitor studies and Dll1 heterozygous mice we show that CSF-1 is induced in the ischemic niche by a subpopulation of stromal cells expressing podoplanin, which was paralleled by the development of ischemic macrophages. Inhibition of CSF-1 signaling with small molecules or blocking antibodies impaired macrophage differentiation but prolonged the inflammatory response, resulting in impaired perfusion recovery and tissue regeneration. Yet, despite high levels of CSF-1, macrophage maturation and perfusion recovery were impaired in mice with Dll1 haploinsufficiency, while inflammation was exaggerated. In vitro, CSF-1 was not sufficient to induce full MF differentiation from donor monocytes in the absence of recombinant DLL1, while the presence of DLL1 in a dose-dependent manner stimulated MF differentiation in combination with CSF-1. Thus, CSF-1 is an ischemic niche factor that cooperates with Notch signaling in a non-redundant fashion to instruct macrophage cell fate and maturation, which is required for ischemic perfusion recovery and tissue repair.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Kai Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Florian P. Limbourg
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Yan P, Wang J, Liu H, Liu X, Fu R, Feng J. M1 macrophage-derived exosomes containing miR-150 inhibit glioma progression by targeting MMP16. Cell Signal 2023:110731. [PMID: 37244635 DOI: 10.1016/j.cellsig.2023.110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
A large amount of clinical and experimental evidence indicates that M1 macrophages can inhibit tumor progression and expansion; however, the molecular mechanism by which macrophage-derived exosomes inhibit the proliferation of glioblastoma cells has not yet been elucidated. Here, we used M1 macrophage exosomes encapsulating microRNAs to inhibit the proliferation of glioma cells. Exosomes derived from M1 macrophages exhibited high expression levels of miR-150, and the inhibition of glioma cell proliferation mediated by exosomes derived from M1 macrophages was dependent on this microRNA. Mechanistically, miR-150 is transferred to glioblastoma cells through M1 macrophages and binds to MMP16, downregulating its expression and inhibiting glioma progression. Overall, these findings indicate that M1 macrophage-derived exosomes carrying miR-150 inhibit the proliferation of glioblastoma cells through targeted binding to MMP16. This dynamic mutual influence between glioblastoma cells and M1 macrophages provides new opportunities for the treatment of glioma.
Collapse
Affiliation(s)
- Pengfei Yan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Jia Wang
- Department of Critical Care, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China
| | - Hongya Liu
- Wuhan Cell Learning Technology Co., Ltd., Optics Valley International Biomedical enterprise accelerator phase I project, No. 388, Gaoxin Second Road, Donghu New Technology Development Zone, Wuhan, Hubei 430000, China
| | - Xia Liu
- Wuhan Cell Learning Technology Co., Ltd., Optics Valley International Biomedical enterprise accelerator phase I project, No. 388, Gaoxin Second Road, Donghu New Technology Development Zone, Wuhan, Hubei 430000, China
| | - Rong Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China.
| | - Jun Feng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China.
| |
Collapse
|
29
|
Rheinheimer BA, Pasquale MC, Limesand KH, Hoffman MP, Chibly AM. Evaluating the transcriptional landscape and cell-cell communication networks in chronically irradiated parotid glands. iScience 2023; 26:106660. [PMID: 37168562 PMCID: PMC10165028 DOI: 10.1016/j.isci.2023.106660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Understanding the transcriptional landscape that results in chronic salivary hypofunction after irradiation will help identify injury mechanisms and develop regenerative therapies. We present scRNA-seq analysis from control and irradiated murine parotid glands collected 10 months after irradiation. We identify a population of secretory cells defined by specific expression of Etv1, which may be an acinar cell precursor. Acinar and Etv1+ secretory express Ntrk2 and Erbb3, respectively while the ligands for these receptors are expressed in myoepithelial and stromal cells. Furthermore, our data suggests that secretory cells and CD4+CD8+T-cells are the most transcriptionally affected during chronic injury with radiation, suggesting active immune involvement. Lastly, evaluation of cell-cell communication networks predicts that neurotrophin, neuregulin, ECM, and immune signaling are dysregulated after irradiation, and thus may play a role in the lack of repair. This resource will be helpful to understand cell-specific pathways that may be targeted to repair chronic damage in irradiated glands.
Collapse
Affiliation(s)
| | - Mary C. Pasquale
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Kirsten H. Limesand
- Nutritional Sciences Department, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alejandro M. Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Pan L, Han J, Lin M. Targeting breast cancer stem cells directly to treat refractory breast cancer. Front Oncol 2023; 13:981247. [PMID: 37251931 PMCID: PMC10213424 DOI: 10.3389/fonc.2023.981247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/02/2023] [Indexed: 05/31/2023] Open
Abstract
For patients with refractory breast cancer (BC), integrative immunotherapies are emerging as a critical component of treatment. However, many patients remain unresponsive to treatment or relapse after a period. Different cells and mediators in the tumor microenvironment (TME) play important roles in the progression of BC, and cancer stem cells (CSCs) are deemed the main cause of relapse. Their characteristics depend on their interactions with their microenvironment as well as on the inducing factors and elements in this environment. Strategies to modulate the immune system in the TME of BC that are aimed at reversing the suppressive networks within it and eradicating residual CSCs are, thus, essential for improving the current therapeutic efficacy of BC. This review focuses on the development of immunoresistance in BCs and discusses the strategies that can modulate the immune system and target breast CSCs directly to treat BC including immunotherapy with immune checkpoint blockades.
Collapse
Affiliation(s)
- Liping Pan
- Wuhan Center for Clinical Laboratory, Wuhan, China
| | - Juan Han
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Lin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Zhou Y, Ye Z, Wei W, Zhang M, Huang F, Li J, Cai C. Macrophages maintain mammary stem cell activity and mammary homeostasis via TNF-α-PI3K-Cdk1/Cyclin B1 axis. NPJ Regen Med 2023; 8:23. [PMID: 37130846 PMCID: PMC10154328 DOI: 10.1038/s41536-023-00296-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Adult stem cell niche is a special environment composed of a variety stromal cells and signals, which cooperatively regulate tissue development and homeostasis. It is of great interest to study the role of immune cells in niche. Here, we show that mammary resident macrophages regulate mammary epithelium cell division and mammary development through TNF-α-Cdk1/Cyclin B1 axis. In vivo, depletion of macrophages reduces the number of mammary basal cells and mammary stem cells (MaSCs), while increases mammary luminal cells. In vitro, we establish a three-dimensional culture system in which mammary basal cells are co-cultured with macrophages, and interestingly, macrophage co-culture promotes the formation of branched functional mammary organoids. Moreover, TNF-α produced by macrophages activates the intracellular PI3K/Cdk1/Cyclin B1 signaling in mammary cells, thereby maintaining the activity of MaSCs and the formation of mammary organoids. Together, these findings reveal the functional significance of macrophageal niche and intracellular PI3K/Cdk1/Cyclin B1 axis for maintaining MaSC activity and mammary homeostasis.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengna Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
32
|
Zheng L, Duan SL. Molecular regulation mechanism of intestinal stem cells in mucosal injury and repair in ulcerative colitis. World J Gastroenterol 2023; 29:2380-2396. [PMID: 37179583 PMCID: PMC10167905 DOI: 10.3748/wjg.v29.i16.2380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with complex causes. The main pathological changes were intestinal mucosal injury. Leucine-rich repeat-containing G protein coupled receptor 5 (LGR5)-labeled small intestine stem cells (ISCs) were located at the bottom of the small intestine recess and inlaid among Paneth cells. LGR5+ small ISCs are active proliferative adult stem cells, and their self-renewal, proliferation and differentiation disorders are closely related to the occurrence of intestinal inflammatory diseases. The Notch signaling pathway and Wnt/β-catenin signaling pathway are important regulators of LGR5-positive ISCs and together maintain the function of LGR5-positive ISCs. More importantly, the surviving stem cells after intestinal mucosal injury accelerate division, restore the number of stem cells, multiply and differentiate into mature intestinal epithelial cells, and repair the damaged intestinal mucosa. Therefore, in-depth study of multiple pathways and transplantation of LGR5-positive ISCs may become a new target for the treatment of UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| |
Collapse
|
33
|
Tang X, Ren J, Wei X, Wang T, Li H, Sun Y, Liu Y, Chi M, Zhu S, Lu L, Zhang J, Yang B. Exploiting synergistic effect of CO/NO gases for soft tissue transplantation using a hydrogel patch. Nat Commun 2023; 14:2417. [PMID: 37105981 PMCID: PMC10140290 DOI: 10.1038/s41467-023-37959-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Autologous skin flap transplantation is a common method for repairing complex soft tissue defects caused by cancer, trauma, and congenital malformations. Limited blood supply range and post-transplantation ischemia-reperfusion injury can lead to distal necrosis of the flap and long-term functional loss, which severely restricts the decision-making regarding the optimal surgical plan. To address this issue, we develop a hydrogel patch that releases carbon monoxide and nitric oxide gases on demand, to afford a timely blood supply for skin flap transplantation during surgery. Using an ischemia-reperfusion dorsal skin flap model in rats, we show that the hydrogel patch maintains the immediate opening of blood flow channels in transplanted tissue and effective blood perfusion throughout the perioperative period, activating perfusion of the hemodynamic donor site. We demonstrate that the hydrogel patch promotes distal vascularization and long-term functional reconstruction of transplanted tissues by inhibiting inflammatory damage and accelerating blood vessel formation.
Collapse
Affiliation(s)
- Xiaoduo Tang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Jingyan Ren
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Xin Wei
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Tao Wang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Yihan Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Yang Liu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Mingli Chi
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
| | - Laijin Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
| | - Bai Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| |
Collapse
|
34
|
Thacker G, Henry S, Nandi A, Debnath R, Singh S, Nayak A, Susnik B, Boone MM, Zhang Q, Kesmodel SB, Gumber S, Das GM, Kambayashi T, Dos Santos CO, Chakrabarti R. Immature natural killer cells promote progression of triple-negative breast cancer. Sci Transl Med 2023; 15:eabl4414. [PMID: 36888695 PMCID: PMC10875969 DOI: 10.1126/scitranslmed.abl4414] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/26/2023] [Indexed: 03/10/2023]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that accumulate within the tumor microenvironment and are generally considered to be antitumorigenic. Using single-cell RNA sequencing and functional analysis of multiple triple-negative breast cancer (TNBC) and basal tumor samples, we observed a unique subcluster of Socs3highCD11b-CD27- immature NK cells that were present only in TNBC samples. These tumor-infiltrating NK cells expressed a reduced cytotoxic granzyme signature and, in mice, were responsible for activating cancer stem cells through Wnt signaling. NK cell-mediated activation of these cancer stem cells subsequently enhanced tumor progression in mice, whereas depletion of NK cells or Wnt ligand secretion from NK cells by LGK-974 decreased tumor progression. In addition, NK cell depletion or inhibition of their function improved anti-programmed cell death ligand 1 (PD-L1) antibody or chemotherapy response in mice with TNBC. Furthermore, tumor samples from patients with TNBC and non-TNBC revealed that increased numbers of CD56bright NK cells were present in TNBC tumors and were correlated to poor overall survival in patients with TNBC. Together, our findings identify a population of protumorigenic NK cells that may be exploited for both diagnostic and therapeutic strategies to improve outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Gatha Thacker
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Samantha Henry
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Ajeya Nandi
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul Debnath
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Snahlata Singh
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Barbara Susnik
- Department of Pathology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melinda M Boone
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Susan B Kesmodel
- DeWitt Daughtry Family Department of Surgery, Division of Surgical Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sanjeev Gumber
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Camila O. Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
35
|
Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 2023; 22:38. [PMID: 36810098 PMCID: PMC9942413 DOI: 10.1186/s12943-023-01748-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Bo Wu
- grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Xiang Shi
- grid.459742.90000 0004 1798 5889Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Meixi Jiang
- grid.412644.10000 0004 5909 0696Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
36
|
Hirano R, Okamoto K, Shinke M, Sato M, Watanabe S, Watanabe H, Kondoh G, Kadonosono T, Kizaka-Kondoh S. Tissue-resident macrophages are major tumor-associated macrophage resources, contributing to early TNBC development, recurrence, and metastases. Commun Biol 2023; 6:144. [PMID: 36737474 PMCID: PMC9898263 DOI: 10.1038/s42003-023-04525-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and highly heterogenous disease with no well-defined therapeutic targets. Treatment options are thus limited and mortality is significantly higher compared with other breast cancer subtypes. Mammary gland tissue-resident macrophages (MGTRMs) are found to be the most abundant stromal cells in early TNBC before angiogenesis. We therefore aimed to explore novel therapeutic approaches for TNBC by focusing on MGTRMs. Local depletion of MGTRMs in mammary gland fat pads the day before TNBC cell transplantation significantly reduced tumor growth and tumor-associated macrophage (TAM) infiltration in mice. Furthermore, local depletion of MGTRMs at the site of TNBC resection markedly reduced recurrence and distant metastases, and improved chemotherapy outcomes. This study demonstrates that MGTRMs are a major TAM resource and play pivotal roles in the growth and malignant progression of TNBC. The results highlight a possible novel anti-cancer approach targeting tissue-resident macrophages.
Collapse
Affiliation(s)
- Ryuichiro Hirano
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Koki Okamoto
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Miyu Shinke
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Marika Sato
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Shigeaki Watanabe
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Hitomi Watanabe
- grid.258799.80000 0004 0372 2033Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, 606-8507 Japan
| | - Gen Kondoh
- grid.258799.80000 0004 0372 2033Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, 606-8507 Japan
| | - Tetsuya Kadonosono
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
37
|
Zhang X, Ji L, Li MO. Control of tumor-associated macrophage responses by nutrient acquisition and metabolism. Immunity 2023; 56:14-31. [PMID: 36630912 PMCID: PMC9839308 DOI: 10.1016/j.immuni.2022.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Metazoan tissue specification is associated with integration of macrophage lineage cells in sub-tissular niches to promote tissue development and homeostasis. Oncogenic transformation, most prevalently of epithelial cell lineages, results in maladaptation of resident tissue macrophage differentiation pathways to generate parenchymal and interstitial tumor-associated macrophages that largely foster cancer progression. In addition to growth factors, nutrients that can be consumed, stored, recycled, or converted to signaling molecules have emerged as crucial regulators of macrophage responses in tumor. Here, we review how nutrient acquisition through plasma membrane transporters and engulfment pathways control tumor-associated macrophage differentiation and function. We also discuss how nutrient metabolism regulates tumor-associated macrophages and how these processes may be targeted for cancer therapy.
Collapse
Affiliation(s)
- Xian Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liangliang Ji
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
38
|
Zamfirescu AM, Yatsenko AS, Shcherbata HR. Notch signaling sculpts the stem cell niche. Front Cell Dev Biol 2022; 10:1027222. [PMID: 36605720 PMCID: PMC9810114 DOI: 10.3389/fcell.2022.1027222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Adult stem cells depend on their niches for regulatory signaling that controls their maintenance, division, and their progeny differentiation. While communication between various types of stem cells and their niches is becoming clearer, the process of stem cell niche establishment is still not very well understood. Model genetic organisms provide simplified systems to address various complex questions, for example, how is a stem cell niche formed? What signaling cascades induce the stem cell niche formation? Are the mechanisms of stem cell niche formation conserved? Notch signaling is an evolutionarily conserved pathway first identified in fruit flies, crucial in fate acquisition and spatiotemporal patterning. While the core logic behind its activity is fairly simple and requires direct cell-cell interaction, it reaches an astonishing complexity and versatility by combining its different modes of action. Subtleties such as equivalency between communicating cells, their physical distance, receptor and ligand processing, and endocytosis can have an effect on the way the events unfold, and this review explores some important general mechanisms of action, later on focusing on its involvement in stem cell niche formation. First, looking at invertebrates, we will examine how Notch signaling induces the formation of germline stem cell niche in male and female Drosophila. In the developing testis, a group of somatic gonadal precursor cells receive Delta signals from the gut, activating Notch signaling and sealing their fate as niche cells even before larval hatching. Meanwhile, the ovarian germline stem cell niche is built later during late larval stages and requires a two-step process that involves terminal filament formation and cap cell specification. Intriguingly, double security mechanisms of Notch signaling activation coordinated by the soma or the germline control both steps to ensure the robustness of niche assembly. Second, in the vast domains of mammalian cellular signaling, there is an emerging picture of Notch being an active player in a variety of tissues in health and disease. Notch involvement has been shown in stem cell niche establishment in multiple organs, including the brain, muscle, and intestine, where the stem cell niches are essential for the maintenance of adult stem cells. But adult stem cells are not the only cells looking for a home. Cancer stem cells use Notch signaling at specific stages to gain an advantage over endogenous tissue and overpower it, at the same time acquiring migratory and invasive abilities to claim new tissues (e.g., bone) as their territory. Moreover, in vitro models such as organoids reveal similar Notch employment when it comes to the developing stem cell niches. Therefore, a better understanding of the processes regulating stem cell niche assembly is key for the fields of stem cell biology and regenerative medicines.
Collapse
Affiliation(s)
| | | | - Halyna R. Shcherbata
- Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States,*Correspondence: Halyna R. Shcherbata,
| |
Collapse
|
39
|
Lambert AW, Fiore C, Chutake Y, Verhaar ER, Strasser PC, Chen MW, Farouq D, Das S, Li X, Eaton EN, Zhang Y, Liu Donaher J, Engstrom I, Reinhardt F, Yuan B, Gupta S, Wollison B, Eaton M, Bierie B, Carulli J, Olson ER, Guenther MG, Weinberg RA. ΔNp63/p73 drive metastatic colonization by controlling a regenerative epithelial stem cell program in quasi-mesenchymal cancer stem cells. Dev Cell 2022; 57:2714-2730.e8. [PMID: 36538894 PMCID: PMC10002472 DOI: 10.1016/j.devcel.2022.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/03/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) may serve as the cellular seeds of tumor recurrence and metastasis, and they can be generated via epithelial-mesenchymal transitions (EMTs). Isolating pure populations of CSCs is difficult because EMT programs generate multiple alternative cell states, and phenotypic plasticity permits frequent interconversions between these states. Here, we used cell-surface expression of integrin β4 (ITGB4) to isolate highly enriched populations of human breast CSCs, and we identified the gene regulatory network operating in ITGB4+ CSCs. Specifically, we identified ΔNp63 and p73, the latter of which transactivates ΔNp63, as centrally important transcriptional regulators of quasi-mesenchymal CSCs that reside in an intermediate EMT state. We found that the transcriptional program controlled by ΔNp63 in CSCs is largely distinct from the one that it orchestrates in normal basal mammary stem cells and, instead, it more closely resembles a regenerative epithelial stem cell response to wounding. Moreover, quasi-mesenchymal CSCs repurpose this program to drive metastatic colonization via autocrine EGFR signaling.
Collapse
Affiliation(s)
- Arthur W Lambert
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | - Elisha R Verhaar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | - Sunny Das
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Xin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Elinor Ng Eaton
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Joana Liu Donaher
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ian Engstrom
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sumeet Gupta
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | - Brian Bierie
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; MIT Ludwig Center for Molecular Oncology, Cambridge, MA 02139, USA.
| |
Collapse
|
40
|
Breast cancer prevention by short-term inhibition of TGFβ signaling. Nat Commun 2022; 13:7558. [PMID: 36476730 PMCID: PMC9729304 DOI: 10.1038/s41467-022-35043-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer prevention has a profound impact on cancer-associated mortality and morbidity. We previously identified TGFβ signaling as a candidate regulator of mammary epithelial cells associated with breast cancer risk. Here, we show that short-term TGFBR inhibitor (TGFBRi) treatment of peripubertal ACI inbred and Sprague Dawley outbred rats induces lasting changes and prevents estrogen- and carcinogen-induced mammary tumors, respectively. We identify TGFBRi-responsive cell populations by single cell RNA-sequencing, including a unique epithelial subpopulation designated secretory basal cells (SBCs) with progenitor features. We detect SBCs in normal human breast tissues and find them to be associated with breast cancer risk. Interactome analysis identifies SBCs as the most interactive cell population and the main source of insulin-IGF signaling. Accordingly, inhibition of TGFBR and IGF1R decrease proliferation of organoid cultures. Our results reveal a critical role for TGFβ in regulating mammary epithelial cells relevant to breast cancer and serve as a proof-of-principle cancer prevention strategy.
Collapse
|
41
|
Yousefi H, Bahramy A, Zafari N, Delavar MR, Nguyen K, Haghi A, Kandelouei T, Vittori C, Jazireian P, Maleki S, Imani D, Moshksar A, Bitaraf A, Babashah S. Notch signaling pathway: a comprehensive prognostic and gene expression profile analysis in breast cancer. BMC Cancer 2022; 22:1282. [PMID: 36476410 PMCID: PMC9730604 DOI: 10.1186/s12885-022-10383-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a complex disease exhibiting a great degree of heterogeneity due to different molecular subtypes. Notch signaling regulates the differentiation of breast epithelial cells during normal development and plays a crucial role in breast cancer progression through the abnormal expression of the Notch up-and down-stream effectors. To date, there are only a few patient-centered clinical studies using datasets characterizing the role of Notch signaling pathway regulators in breast cancer; thus, we investigate the role and functionality of these factors in different subtypes using publicly available databases containing records from large studies. High-throughput genomic data and clinical information extracted from TCGA were analyzed. We performed Kaplan-Meier survival and differential gene expression analyses using the HALLMARK_NOTCH_SIGNALING gene set. To determine if epigenetic regulation of the Notch regulators contributes to their expression, we analyzed methylation levels of these factors using the TCGA HumanMethylation450 Array data. Notch receptors and ligands expression is generally associated with the tumor subtype, grade, and stage. Furthermore, we showed gene expression levels of most Notch factors were associated with DNA methylation rate. Modulating the expression levels of Notch receptors and effectors can be a potential therapeutic approach for breast cancer. As we outline herein, elucidating the novel prognostic and regulatory roles of Notch implicate this pathway as an essential mediator controlling breast cancer progression.
Collapse
Affiliation(s)
- Hassan Yousefi
- Biochemistry & Molecular Biology, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, USA
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Zafari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Atousa Haghi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Kandelouei
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Cecilia Vittori
- Louisiana State University Health Sciences Center (LSUHSC), and Stanley S. Scott Cancer Center, New Orleans, LA, USA
| | - Parham Jazireian
- Department of Biology, University Campus 2, University of Guilan, Rasht, Iran
| | - Sajad Maleki
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amin Moshksar
- Interventional Radiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran.
| |
Collapse
|
42
|
Gao X, Wang C, Abdelrahman S, Kady N, Murga-Zamalloa C, Gann P, Sverdlov M, Wolfe A, Polk A, Brown N, Bailey NG, Inamdar K, Casavilca S, Montes J, Barrionuevo C, Taxa L, Reneau J, Siebel CW, Maillard I, Wilcox RA. Notch Signaling Promotes Mature T-Cell Lymphomagenesis. Cancer Res 2022; 82:3763-3773. [PMID: 36006995 PMCID: PMC9588752 DOI: 10.1158/0008-5472.can-22-1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Peripheral T-cell lymphomas (PTCL) are agressive lymphomas that develop from mature T cells. The most common PTCLs are genetically, molecularly, and clinically diverse and are generally associated with dismal outcomes. While Notch signaling plays a critically important role in both the development of immature T cells and their malignant transformation, its role in PTCL is poorly understood, despite the increasingly appreciated function of Notch in regulating the proliferation and differentiation of mature T cells. Here, we demonstrate that Notch receptors and their Delta-like family ligands (DLL1/DLL4) play a pathogenic role in PTCL. Notch1 activation was observed in common PTCL subtypes, including PTCL-not otherwise specified (NOS). In a large cohort of PTCL-NOS biopsies, Notch1 activation was significantly associated with surrogate markers of proliferation. Complementary genetically engineered mouse models and spontaneous PTCL models were used to functionally examine the role of Notch signaling, and Notch1/Notch2 blockade and pan-Notch blockade using dominant-negative MAML significantly impaired the proliferation of malignant T cells and PTCL progression in these models. Treatment with DLL1/DLL4 blocking antibodies established that Notch signaling is ligand-dependent. Together, these findings reveal a role for ligand-dependent Notch signaling in driving peripheral T-cell lymphomagenesis. SIGNIFICANCE This work demonstrates that ligand-dependent Notch activation promotes the growth and proliferation of mature T-cell lymphomas, providing new therapeutic strategies for this group of aggressive lymphomas.
Collapse
Affiliation(s)
- Xin Gao
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Chenguang Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Suhaib Abdelrahman
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Nermin Kady
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Peter Gann
- Department of Pathology, University of Illinois Chicago, Chicago, IL
| | - Maria Sverdlov
- Department of Pathology, University of Illinois Chicago, Chicago, IL
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Avery Polk
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, MI
| | - Sandro Casavilca
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Jaime Montes
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Luis Taxa
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Ivan Maillard
- Department of Medicine, Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA
| | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
43
|
Kosenko A, Salame TM, Friedlander G, Barash I. Macrophage-Secreted CSF1 Transmits a Calorie Restriction-Induced Self-Renewal Signal to Mammary Epithelial Stem Cells. Cells 2022; 11:cells11182923. [PMID: 36139499 PMCID: PMC9496835 DOI: 10.3390/cells11182923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Calorie restriction enhances stem cell self-renewal in various tissues, including the mammary gland. We hypothesized that similar to their intestinal counterparts, mammary epithelial stem cells are insulated from sensing changes in energy supply, depending instead on niche signaling. The latter was investigated by subjecting cultures of mammary epithelial stem cells for 8 days to in vivo paracrine calorie-restriction signals collected from a 4-day-conditioned medium of individual mammary cell populations. Conditioned medium from calorie-restricted non-epithelial cells induced latent cell propagation and mammosphere formation—established markers of stem cell self-renewal. Combined RNA-Seq, immunohistochemistry and immunofluorescence analyses of the non-epithelial population identified macrophages and secreted CSF1 as the energy sensor and paracrine signal, respectively. Calorie restriction-induced pStat6 expression in macrophages suggested that skewing to the M2 phenotype contributes to the sensing mechanism. Enhancing CSF1 signaling with recombinant protein and interrupting the interaction with its highly expressed receptor in the epithelial stem cells by neutralizing antibodies were both affected stem cell self-renewal. In conclusion, combined in vivo, in vitro and in silico studies identified macrophages and secreted CSF1 as the energy sensor and paracrine transmitter, respectively, of the calorie restriction-induced effect on mammary stem cell self-renewal.
Collapse
Affiliation(s)
- Anna Kosenko
- The Volcani Center, Agricultural Research Organization, Institute of Animal Science, Bet Dagan 50250, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Tomer Meir Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7632706, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7632706, Israel
| | - Itamar Barash
- The Volcani Center, Agricultural Research Organization, Institute of Animal Science, Bet Dagan 50250, Israel
- Correspondence:
| |
Collapse
|
44
|
Dai X, Wang X, Yang C, Huang M, Zhou Z, Qu Y, Cui X, Liu R, Chen C. Human fibroblasts facilitate the generation of iPSCs-derived mammary-like organoids. Stem Cell Res Ther 2022; 13:377. [PMID: 35902878 PMCID: PMC9330643 DOI: 10.1186/s13287-022-03023-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
Background Breast cancer is the most common malignancy in women worldwide, and its treatment largely depends on mastectomy. Patients after mastectomy suffer from crippled body image, self-esteem, and quality of life. Post-mastectomy breast reconstruction can improve patients’ psychosocial health. Although silicone and fat have been widely used for breast reconstruction, they have remarkable limitations. Our study aimed to establish an improved method for breast reconstruction from human-induced pluripotent stem cells (iPSCs). Methods We used a two-step procedure to induce mammary-like organoids (MLOs) from iPSCs and applied transcriptome sequencing to analyze the gene expression profiles during the development process from embryoid bodies (mEBs) to MLOs. Moreover, we evaluated the in vitro effect of fibroblasts cell line HFF (human foreskin fibroblasts) on the size and morphology of MLOs and explored the in vivo effect of HFF on regeneration rate of MLOs. Results MLOs had a similar gene expression profile and morphogenesis as the normal mammary glands. Furthermore, the addition of HFF increases the branching ratio and organoid diameters and facilitates the formation of multiple cell layers duct-like structures in MLOs in vitro. Finally, orthotopical transplantation of the MLOs to cleared mammary gland fad pad of NSG mice showed that HFF increases the formation of mammary gland-like structures. Conclusions Fibroblasts facilitate iPSC-derived MLOs to generate mammary gland-like structures in both in vitro and in vivo conditions. Our findings lay a foundation for breast reconstruction by using iPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03023-7.
Collapse
Affiliation(s)
- Xueqin Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Maobo Huang
- Biomedical Research Center, The First Hospital of Kunming (The Affiliated Calmette Hospital of Kunming Medical University), Kunming, 650224, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA, 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA, 90048, USA
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Translational Cancer Research Center, Peking University First Hospital, Beijing, 100034, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
45
|
Lee MY. Embryonic Programs in Cancer and Metastasis—Insights From the Mammary Gland. Front Cell Dev Biol 2022; 10:938625. [PMID: 35846378 PMCID: PMC9277484 DOI: 10.3389/fcell.2022.938625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is characterized as a reversion of a differentiated cell to a primitive cell state that recapitulates, in many aspects, features of embryonic cells. This review explores the current knowledge of developmental mechanisms that are essential for embryonic mouse mammary gland development, with a particular focus on genes and signaling pathway components that are essential for the induction, morphogenesis, and lineage specification of the mammary gland. The roles of these same genes and signaling pathways in mammary gland or breast tumorigenesis and metastasis are then summarized. Strikingly, key embryonic developmental pathways are often reactivated or dysregulated during tumorigenesis and metastasis in processes such as aberrant proliferation, epithelial-to-mesenchymal transition (EMT), and stem cell potency which affects cellular lineage hierarchy. These observations are in line with findings from recent studies using lineage tracing as well as bulk- and single-cell transcriptomics that have uncovered features of embryonic cells in cancer and metastasis through the identification of cell types, cell states and characterisation of their dynamic changes. Given the many overlapping features and similarities of the molecular signatures of normal development and cancer, embryonic molecular signatures could be useful prognostic markers for cancer. In this way, the study of embryonic development will continue to complement the understanding of the mechanisms of cancer and aid in the discovery of novel therapeutic targets and strategies.
Collapse
|
46
|
Li Y, Lu L, Zhang G, Ji G, Xu H. The role and therapeutic implication of endoplasmic reticulum stress in inflammatory cancer transformation. Am J Cancer Res 2022; 12:2277-2292. [PMID: 35693091 PMCID: PMC9185617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023] Open
Abstract
Endoplasmic reticulum (ER) stress occurs when proteins are affected by various factors, fail to fold properly into higher structures and accumulate in the lumen of the ER, which activates the unfolded protein response (UPR) to restore normal cellular function or induce apoptosis as a self-protective mechanism. However, a growing number of studies have shown that the three branches of ER stress and the UPR can mediate inflammation and cancer development by interacting with inflammatory transformation-related signaling pathways. Targeting the UPR, especially the use of small molecules that target the active sites of the enzymes IRE1α and PERK and BIP/GRP78 inhibitors are potential strategies for treating tumors and have shown promising results in some tumor models. Therefore, in this review, we summarize the progress of ER stress/UPR research and the signaling pathways associated with inflammatory cancer transformation, provide an in-depth description of the mechanisms of these pathways, and outline strategies in the field of UPR biology in tumor therapy to provide new ideas for the mechanisms of inflammatory cancer transformation and tumor-related treatment.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| |
Collapse
|
47
|
Samperio Ventayol P, Bartfeld S. Immune cell-stem cell interactions in regeneration and repair: who's calling the shots? Development 2022; 149:275251. [DOI: 10.1242/dev.200228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In November 2021, the Institute for Regenerative Medicine (IRM) and the Institute for Immunology (IFI) at the University of Pennsylvania, USA, joined forces and organized a symposium featuring external speakers as well as locally based scientists to discuss how the immune system influences tissue stem cell biology. As we review here, the presentations highlighted emerging concepts in the field, revealing how tissue-specific immune cell activation can guide stem cells in regeneration and repair.
Collapse
Affiliation(s)
- Pilar Samperio Ventayol
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Sina Bartfeld
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
- Si-M/‘Der Simulierte Mensch’, a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg 97020, Germany
| |
Collapse
|
48
|
Dianat-Moghadam H, Mahari A, Salahlou R, Khalili M, Azizi M, Sadeghzadeh H. Immune evader cancer stem cells direct the perspective approaches to cancer immunotherapy. Stem Cell Res Ther 2022; 13:150. [PMID: 35395787 PMCID: PMC8994338 DOI: 10.1186/s13287-022-02829-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Exploration of tumor immunity leads to the development of immune checkpoint inhibitors and cell-based immunotherapies which improve the clinical outcomes in several tumor types. However, the poor clinical efficacy of these treatments observed for other tumors could be attributed to the inherent complex tumor microenvironment (TME), cellular heterogeneity, and stemness driven by cancer stem cells (CSCs). CSC-specific characteristics provide the bulk tumor surveillance and resistance to entire eradication upon conventional therapies. CSCs-immune cells crosstalk creates an immunosuppressive TME that reshapes the stemness in tumor cells, resulting in tumor formation and progression. Thus, identifying the immunological features of CSCs could introduce the therapeutic targets with powerful antitumor responses. In this review, we summarized the role of immune cells providing CSCs to evade tumor immunity, and then discussed the intrinsic mechanisms represented by CSCs to promote tumors' resistance to immunotherapies. Then, we outlined potent immunotherapeutic interventions followed by a perspective outlook on the use of nanomedicine-based drug delivery systems for controlled modulation of the immune system.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amir Mahari
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Reza Salahlou
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khalili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadi Sadeghzadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Nimodipine Exerts Beneficial Effects on the Rat Oligodendrocyte Cell Line OLN-93. Brain Sci 2022; 12:brainsci12040476. [PMID: 35448007 PMCID: PMC9029615 DOI: 10.3390/brainsci12040476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). Therapy is currently limited to drugs that interfere with the immune system; treatment options that primarily mediate neuroprotection and prevent neurodegeneration are not available. Here, we studied the effects of nimodipine on the rat cell line OLN-93, which resembles young mature oligodendrocytes. Nimodipine is a dihydropyridine that blocks the voltage-gated L-type calcium channel family members Cav1.2 and Cav1.3. Our data show that the treatment of OLN-93 cells with nimodipine induced the upregulation of myelin genes, in particular of proteolipid protein 1 (Plp1), which was confirmed by a significantly greater expression of PLP1 in immunofluorescence analysis and the presence of myelin structures in the cytoplasm at the ultrastructural level. Whole-genome RNA sequencing additionally revealed the upregulation of genes that are involved in neuroprotection, remyelination, and antioxidation pathways. Interestingly, the observed effects were independent of Cav1.2 and Cav1.3 because OLN-93 cells do not express these channels, and there was no measurable response pattern in patch-clamp analysis. Taking into consideration previous studies that demonstrated a beneficial effect of nimodipine on microglia, our data support the notion that nimodipine is an interesting drug candidate for the treatment of MS and other demyelinating diseases.
Collapse
|
50
|
Yang X, Cao D, Ma W, Gao S, Wen G, Zhong J. Wnt signaling in triple-negative breast cancers: Its roles in molecular subtyping and cancer cell stemness and its crosstalk with non-coding RNAs. Life Sci 2022; 300:120565. [DOI: 10.1016/j.lfs.2022.120565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
|