1
|
Dai X, Yang B, Zhou L, You R, Chen S, Li Z, Zeng X, Wen Z, Li C, Yan B. Label-free rapid diagnosis of jaw osteonecrosis via the intersection of Raman spectroscopy and deep learning. Bone 2025; 197:117510. [PMID: 40320103 DOI: 10.1016/j.bone.2025.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
OBJECTIVES To establish a precise and efficient diagnostic framework for distinguishing medication-related osteonecrosis of the jaw, radiation-induced osteonecrosis of the jaw, and normal bone tissue, thus enhancing clinical decision-making and enabling targeted therapeutic interventions. METHODS Raman spectroscopy was applied to investigate bone mineral composition, organic matrix content, and crystallinity in ninety bone tissue samples (30 MRONJ, 30 ORN, 30 control). Each mandible underwent 10 randomized spectral acquisitions, yielding 900 spectra across 200-2200 cm-1. The raw spectral data were preprocessed using Labspec6 software (Horiba Scientific). Principal component analysis (PCA) and linear discriminant analysis (LDA) were employed for feature extraction and classification. Additionally, a ResNet18 deep learning architecture was employed to enhance diagnostic accuracy. The model's performance was evaluated using precision, recall, and the area under the receiver operating characteristic curve to ensure robustness. RESULTS The PCA-LDA integration achieved 90.3 % accuracy in differentiating MRONJ, ORN, and healthy bone, with leave-one-out cross-validation confirming 89.1 % classification robustness. Furthermore, the ResNet18 deep learning model outperformed traditional classification methods, achieving 0.926 ± 0.024 accuracy, 0.924 ± 0.026 precision, 0.926 ± 0.024 recall, and 0.985 ± 0.007 AUROC on the validation set. SIGNIFICANCE These findings underscore the significant potential of combining Raman spectroscopy with advanced deep learning techniques as a rapid, noninvasive, and highly reliable diagnostic tool. This approach not only enhances the ability to differentiate between MRONJ and ORN but also offers substantial implications for improving patient management and therapeutic outcomes in clinical practice.
Collapse
Affiliation(s)
- Xiaobo Dai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bowen Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liangjun Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ran You
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuai Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - ZhongXu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xingzhi Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Bing Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Lei T, Zhang T, Fang T, Han J, Gu C, Liao Y, Fei Y, Luo J, Liu H, Wu Y, Shen W, Chen X, Yin Z, Wang J. Engineering a stem cell-embedded bilayer hydrogel with biomimetic collagen mineralization for tendon-bone interface healing. Bioact Mater 2025; 49:207-217. [PMID: 40130078 PMCID: PMC11931223 DOI: 10.1016/j.bioactmat.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 03/26/2025] Open
Abstract
The tendon-bone interface effectively transfers mechanical stress for movement, yet its regeneration presents significant clinical challenges due to its hierarchical structure and composition. Biomimetic strategies that replicate the distinctive characteristics have demonstrated potential for enhancing the healing process. However, there remains a challenge in developing a composite that replicates the nanostructure of the tendon-bone interface and embeds living cells. Here, we engineered a nanoscale biomimetic bilayer hydrogel embedded with tendon stem cells for tendon-bone interface healing. Specifically, the biomimetic hydrogel incorporates intra- and extrafibrillar mineralized collagen fibrils as well as non-mineralized collagen fibrils resembling the tendon-bone interface at the nanoscale. Furthermore, biomimetic mineralization with the presence of cells realizes living tendon-bone-like tissue constructs. In the in vivo patella-patellar tendon-interface injury model, the tendon stem cell-laden biomimetic hydrogel promoted tendon-bone interface regeneration, demonstrated by increased fibrocartilage formation, improved motor function, and enhanced biomechanical outcomes. This study highlights the potential of the stem cell-laden biomimetic hydrogel as an effective strategy for tendon-bone interface regeneration, offering a novel approach to engineering complex tissue interfaces.
Collapse
Affiliation(s)
- Tingyun Lei
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Tao Zhang
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Tianshun Fang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyi Gu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Youguo Liao
- Department of Burns and Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Fei
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Junchao Luo
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanhuan Liu
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Yan Wu
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Weiliang Shen
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiao Chen
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zi Yin
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Cell Biology, Zhejiang University, Hangzhou, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Shan J, Cheng L, Li X, Liu W, Liu Z, Chai Y, Yu Y, Wang X, Wen G. End-tail soaking strategy toward robust and biomimetic sandwich-layered hydrogels for full-thickness bone regeneration. Bioact Mater 2025; 49:486-501. [PMID: 40206197 PMCID: PMC11979482 DOI: 10.1016/j.bioactmat.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
Despite an increasing number of tissue-engineered scaffolds have been developing for bone regeneration, simple and universal fabrication of biomimetic bone microstructure to repair full-thickness bone defects remains a challenge and an acute clinical demand due to the negligence of microstructural differences within the cortex of cancellous bone. In this work, a biomimetic sandwich-layered PACG-CS@Mn(III) hydrogel (SL hydrogel) was facilely fabricated in an end-tail soaking strategy by simply post-crosslinking of poly(acryloyl 2-glycine)-chitosan (PACG-CS) composite hydrogel using trivalent manganese solutions. Taking the merits of in-situ formation and flexible adjustment of chain entanglements, hydrogen bonds and metal chelate interactions, SL hydrogel with sandwich-like three-layered structures and anisotropic mechanical performance was easily customized through control of the manganese concentration and soaking time in fore-and-aft sides, simulating the structurally and mechanically biomimetic characteristics of cortical and cancellous bone. Furthermore, the produced SL hydrogel also demonstrated favorable biocompatibility and enhanced MnSOD activity via a peroxidase-like reaction, which enabled the excellent radical scavenging efficiency and anti-inflammatory regulation for facilitating the activity, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In vivo studies further revealed that these SL hydrogels achieved restrictive pro-vascular regeneration through their stratified structure, thereby promoting the differentiation of osteoblasts. Simultaneously, the mechanical cues of stratified structure could mediate macrophage phenotype transitions in accordance with stem cell-osteoblast differentiation process via the PI3K-AKT pathway, resulting in robust osteogenesis and high-quality bone reconstruction. This facile yet efficient strategy of turning anisotropic hydrogel offers a promising alternative for full-thickness repair of bone defects, which is also significantly imperative to achieve high-performance scaffolds with specific usage requirements and expand their clinic applicability in more complex anisotropic tissues.
Collapse
Affiliation(s)
- Jianyang Shan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liang Cheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| | - Xiang Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| | - Wenhao Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
- Shanghai Ocean University, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Zhihua Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
- Shanghai Ocean University, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| |
Collapse
|
4
|
Huang D, Li Z, Li G, Zhou F, Wang G, Ren X, Su J. Biomimetic structural design in 3D-printed scaffolds for bone tissue engineering. Mater Today Bio 2025; 32:101664. [PMID: 40206144 PMCID: PMC11979411 DOI: 10.1016/j.mtbio.2025.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
The rising prevalence of bone diseases in an aging population underscores the urgent need for innovative and clinically translatable solutions in bone tissue engineering. While significant progress has been made in refining the chemical properties of biomaterials, the structural design of scaffolds-a critical determinant of repair success-remains comparatively underexplored. Structural parameters such as porosity, pore size, and interconnectivity are not only essential for achieving mechanical stability but also pivotal in regulating biological processes, including vascularization, osteogenesis, and immune modulation. This review systematically categorizes scaffold architectures documented in the literature and highlights how these design parameters can be optimized to enhance bone regeneration. Advanced fabrication technologies, particularly 3D printing, are emphasized for their transformative potential in creating precise, biomimetic scaffolds that align with the complex functional demands of native bone. Furthermore, this work synthesizes diverse findings to provide a comprehensive framework for designing next-generation scaffolds. By bridging the gap between structural innovation and clinical application, this review delivers actionable strategies and a strategic roadmap for advancing the field toward improved clinical outcomes and transformative breakthroughs in regenerative medicine.
Collapse
Affiliation(s)
- Dan Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Zuhao Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
5
|
Wang Y, Fang C, Mao LB, Feng YHZ, Meng YF, Wang HC, Yu SH, Wang ZL. A novel Liesegang-patterned mineralized hydrogel drives bone regeneration with microstructure control. Mater Today Bio 2025; 32:101775. [PMID: 40331154 PMCID: PMC12053635 DOI: 10.1016/j.mtbio.2025.101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Bone regeneration remains a critical challenge in modern medicine. Recent advancements have focused on incorporating hierarchical microstructures into biomaterials to enhance osteogenesis. Mineralized hydrogels, while promising, face limitations in precise microstructure control due to technical complexities. In this study, we present a biomimetic hierarchical structural mineralized hydrogel featuring a Liesegang pattern. In vitro experiments confirm that it significantly promotes the migration and osteogenic differentiation of bone mesenchymal stem cells (BMSCs). In vivo experiments further demonstrate its ability to significantly promote bone regeneration, with newly formed bone closely replicating the hydrogel's architecture. Notably, this hydrogel synthesis strategy eliminates time-consuming fabrication and extensive post-processing, offering a scalable and efficient route for advanced bone-regenerative materials.
Collapse
Affiliation(s)
- Yun Wang
- Department of Oral Implantology and Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Chao Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Li-Bo Mao
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Hui-Zhi Feng
- Department of Oral Implantology and Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yu-Feng Meng
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Hai-Cheng Wang
- Department of Oral Implantology and Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Shu-Hong Yu
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Institute of Innovative Materials, Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zuo-Lin Wang
- Department of Oral Implantology and Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| |
Collapse
|
6
|
Guimberteau JC, Sawaya ET, Armstrong C. New Perspectives on the Organization of Living Tissue and the Ongoing Connective Tissue/Fascia Nomenclature Debate, as Revealed by Intra-Tissue Endoscopy That Provides Real-Time Images During Surgical Procedures. Life (Basel) 2025; 15:791. [PMID: 40430217 DOI: 10.3390/life15050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Intra-tissue endoscopy, providing real-time images at all scales, from macroscopic to microscopic, from inside living tissue during surgical procedures, has revealed the existence of a body-wide fibrillar architecture that extends from the surface of the skin to the cell. Different types of cells are housed within this fibrillar architecture and gather together to carry out specific functions. This challenges the commonly accepted notion of the organization of living matter that associates separate organs with connective tissue packaging. We are thus confronted with the global nature of the living human body and its vital processes. This paper sets out to describe the architecture of this fibrillar network which could be assimilated with the fascial tissue and which attributes a more constitutive role to connective tissue. It also demonstrates how movements within this fibrillar network can occur with minimal local distortion while maintaining tissue continuity. The authors propose that the gliding of tissues can be explained by the existence of a highly adaptable fibrillar network that enables the gliding of distinct anatomical structures such as tendons and muscles, without any dynamic influence on the surrounding tissues. The authors propose a new model of tissue movement based on the observation of a ubiquitous dynamic polyhedric fibrillar network with an apparently dispersed and complex pattern of organization, that forms fluid-filled microvolumes, and is found everywhere in the human body. Furthermore, this fibrillar network appears to act as a force absorption system, in addition to providing a framework or scaffolding for cells throughout the body. Observation during intra-tissue endoscopy suggests that this fundamental architectural organization extends into the extracellular matrix that is the natural environment of all cells in the living body, regardless of their size, location or specific function.
Collapse
Affiliation(s)
- Jean Claude Guimberteau
- Surgeon Aquitaine Hand and Upper Extremity Institute, 56 Allée des Tulipes, 33600 Pessac, France
| | - Elias T Sawaya
- Surgeon Aquitaine Hand and Upper Extremity Institute, 56 Allée des Tulipes, 33600 Pessac, France
| | - Colin Armstrong
- Osteopathic Centre, 1732 Voie Aurelienne, 13450 Grans, France
| |
Collapse
|
7
|
Nelea V, Ittah E, McKee MD, Reznikov N. Bone mineral tessellation: Atomic force microscopy of the volume-filling mineralization pattern in hydrated and dehydrated states. Acta Biomater 2025:S1742-7061(25)00341-1. [PMID: 40345308 DOI: 10.1016/j.actbio.2025.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Bone is a specialized hard connective tissue with a hierarchical organization of its components. At the micrometer scale, mineral entities of roughly uniform shape tessellate in 3D within an organized, crosslinked and hydrated scaffold of mostly type I collagen. Here we report on the visualization by atomic force microscopy (AFM) of the volume-filling mineralization pattern of tesselles in lamellar bone, in hydrated and dehydrated conditions (for human, bovine, porcine and ovine bone). Microscale mineral tessellation was clearly visible when bulk lamellar bone was hydrated, whereas dry bone showed submicron nanogranularity instead of tesselle boundaries. Time-lapse AFM experiments of gradual passive dehydration of bone revealed topographical changes for all bone species with the tessellation appearance vanishing after two weeks of dehydration. AFM adhesion forces dropped within the first days of dehydration in all bone species, indicating that surface stickiness is more sensitive to passive dehydration than is stiffness. Irrespective of the bone species, AFM stiffness measurements found that hydrated bone was more compliant than dehydrated bone. AFM Young's modulus measurements of more recently formed osteonal lamellae intersecting with older interstitial lamellae found that the modulus in both hydrated and dehydrated states was lower in the osteonal lamellae. Modelling of water sorption to the surface of stochiometric hydroxyapatite showed that the presence of rigid hydration shells delineates the tesselle boundaries and smoothens the nanogranularity, confirming the AFM observations. This study highlights the importance of regarding water as a fundamental architecting component of bone. STATEMENT OF SIGNIFICANCE: Here we report on visualization of the mineral tessellation pattern in lamellar bone by atomic force microscopy (AFM) in hydrated and dehydrated conditions. We show that lamellar bone (human, bovine, porcine and ovine) contains a universal volume-filling mineral tessellation. The visibility of the tessellation pattern by AFM strongly depends on the state of bone hydration. Modelling water sorption to the surface of stochiometric hydroxyapatite indicated that mechanical and morphological characteristics of lamellar bone (e.g., stiffness, adhesion, contours of tesselle boundaries) can be attributed to the presence of rigid hydration shells. This study highlights the importance of water incorporation as a fundamental component of bone, on par with the mineral and the organic extracellular matrix.
Collapse
Affiliation(s)
- Valentin Nelea
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, 3640 Rue University, Montréal, H3A 2A7, Québec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, 2001 McGill College Ave, Montréal, H3A 1G1, Québec, Canada
| | - Eran Ittah
- Department of Bioengineering, Faculty of Engineering, McGill University, 3480 Rue University, Montréal, H3A 0E9, Québec, Canada
| | - Marc D McKee
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, 3640 Rue University, Montréal, H3A 2A7, Québec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, 2001 McGill College Ave, Montréal, H3A 1G1, Québec, Canada
| | - Natalie Reznikov
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, 3640 Rue University, Montréal, H3A 2A7, Québec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, 2001 McGill College Ave, Montréal, H3A 1G1, Québec, Canada; Department of Bioengineering, Faculty of Engineering, McGill University, 3480 Rue University, Montréal, H3A 0E9, Québec, Canada.
| |
Collapse
|
8
|
Kim K, Min S, Thangam R, Tag KR, Lee HJ, Heo J, Jung H, Swe TT, Zare I, Song G, Najafabadi AH, Lee J, Jung HD, Kim JS, Hur S, Song HC, Park SG, Zhang K, Zhao P, Bian L, Kim SH, Yoon J, Ahn JP, Kim HK, Kang H. Dynamic hierarchical ligand anisotropy for competing macrophage regulation in vivo. Bioact Mater 2025; 47:121-135. [PMID: 39897585 PMCID: PMC11787691 DOI: 10.1016/j.bioactmat.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Diverse connective tissues exhibit hierarchical anisotropic structures that intricately regulate homeostasis and tissue functions for dynamic immune response modulation. In this study, remotely manipulable hierarchical nanostructures are tailored to exhibit multi-scale ligand anisotropy. Hierarchical nanostructure construction involves coupling liganded nanoscale isotropic/anisotropic Au (comparable to few integrin molecules-scale) to the surface of microscale isotropic/anisotropic magnetic Fe3O4 (comparable to integrin cluster-scale) and then elastically tethering them to a substrate. Systematic independent tailoring of nanoscale or microscale ligand isotropy versus anisotropy in four different hierarchical nanostructures with constant liganded surface area demonstrates similar levels of integrin molecule bridging and macrophage adhesion on the nanoscale ligand isotropy versus anisotropy. Conversely, the levels of integrin cluster bridging across hierarchical nanostructures and macrophage adhesion are significantly promoted by microscale ligand anisotropy compared with microscale ligand isotropy. Furthermore, microscale ligand anisotropy dominantly activates the host macrophage adhesion and pro-regenerative M2 polarization in vivo over the nanoscale ligand anisotropy, which can be cyclically reversed by substrate-proximate versus substrate-distant magnetic manipulation. This unprecedented scale-specific regulation of cells can be diversified by unlimited tuning of the scale, anisotropy, dimension, shape, and magnetism of hierarchical structures to decipher scale-specific dynamic cell-material interactions to advance immunoengineering strategies.
Collapse
Affiliation(s)
- Kanghyeon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyong-Ryol Tag
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyun-Jeong Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongyun Heo
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hwapyung Jung
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Thet Thet Swe
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Hyun-Do Jung
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Sunghoon Hur
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Se Hoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong-Kyu Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Laxmi Swetha K, Vankadara S, Shiny chelshiya N, Akula B. Comparative fractal analysis of mandibular condyles in temporomandibular disorder and non-temporomandibular disorder patients using cone-beam computed tomography. J Oral Biol Craniofac Res 2025; 15:631-637. [PMID: 40256761 PMCID: PMC12008146 DOI: 10.1016/j.jobcr.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Temporomandibular joint (TMJ) anatomy and microstructure is complex. Multifactorial disorders of the TMJ may affect the musculoskeletal and osseous structures of the joint. It is highly beneficial to detect these changes early in the development of temporomandibular disorders (TMDs) in order to prevent their progression. There are several pathological conditions that can affect the trabecular bone of the mandibular condyle in the TMJ. In order to analyse these changes, it is possible to measure them through the use of fractal dimensional analysis, as they are natural fractals. Aim & objective Fractal analysis was used in this study to examine the trabecular pattern of the mandibular condyle, with the objective of assessing fractal dimension changes in mandibular condyles for TMD diagnosis. Methods The 120 subjects are divided into two groups, a Control group (non-TMD's-60 each) and a Study group (TMD's-60 each). The study includes participants diagnosed with TMD's according to RDC/TMD Axis -I & Axis-II (Research diagnostic criteria,2014). Cone bean computed Tomography (CBCT) images are captured and converted into JPEG images. A fractal dimensional analysis is performed on the condylar portion of the trabecular bone. With Image J software version 1.51 program (National Institutes of Health, Bethesda, MD @; https://imagej.nih.gov/ij/download.html). Results The present study found that subjects with TMD had significantly lower fractal values than controls (p < 0.001 on right side and left side p < 0.021). Conclusion The study group had lower fractal values than the control group. This study in additional hypothesized fractal values for each type of TMD. The use of CBCT can enhance the diagnosis of TMD.
Collapse
Affiliation(s)
- Kavali Laxmi Swetha
- Department of Oral Medicine and Radiology, G. Pullareddy Dental College and Hospital, 518007, Kurnool, Andhra Pradesh, India
| | - Sairam Vankadara
- Department of Oral Medicine and Radiology, G. Pullareddy Dental College and Hospital, 518007, Kurnool, Andhra Pradesh, India
| | - Nerrugatti Shiny chelshiya
- Department of Oral Medicine and Radiology, G. Pullareddy Dental College and Hospital, 518007, Kurnool, Andhra Pradesh, India
| | - Bhaandhavi Akula
- Department of Oral Medicine and Radiology, G. Pullareddy Dental College and Hospital, 518007, Kurnool, Andhra Pradesh, India
| |
Collapse
|
10
|
Yang Z, Yu X, Chen J, Ma W, Hao J, Wu C. Bioactive Scaffolds with Ordered Micro/Nano-Scale Topological Surface for Vascularized Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500975. [PMID: 40190062 DOI: 10.1002/smll.202500975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/07/2025] [Indexed: 05/27/2025]
Abstract
The ordered topological micro/nanostructures of scaffolds play a pivotal role in regulating bone development, remodeling, and regeneration. Nevertheless, achieving the integration of ordered micro/nanostructures into 3D scaffolds remains a formidable challenge. In this context, a brushing-assembly strategy is developed to construct 3D bioactive scaffolds with highly ordered micro/nanostructures. Such an engineered scaffold exhibits a positive regulatory effect on the behavior and fate of bone resident cells, such as mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs), through mechanical stimulation provided by the ordered micro/nanostructures, while also allowing for the precise spatial distribution of multiple cell types through assembly. In vivo experiments demonstrate that scaffolds with ordered nanostructures possess the potential to accelerate vascularized bone regeneration. Overall, this work proposed a universal strategy for the fabrication of bioactive scaffolds with ordered topological micro/nanostructures, bridging the gap between 3D scaffolds and ordered surface microstructures for tissue engineering.
Collapse
Affiliation(s)
- Zhibo Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Xiaopeng Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Wenping Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jianxin Hao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Ryan P, Yoon H, Amin S, Chambers JJ, Lee J. AI-Assisted Label-Free Monitoring Bone Mineral Metabolism on Demineralized Bone Paper. ACS Biomater Sci Eng 2025; 11:2096-2105. [PMID: 40103420 DOI: 10.1021/acsbiomaterials.4c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Effective drug development for bone-related diseases, such as osteoporosis and metastasis, is hindered by the lack of physiologically relevant in vitro models. Traditional platforms, including standard tissue culture plastic, fail to replicate the structural and functional complexity of the natural bone extracellular matrix. Recently, osteoid-mimicking demineralized bone paper (DBP), which preserves the intrinsic collagen structure of mature bone and exhibits semitransparency, has demonstrated the ability to reproduce in-vivo-relevant osteogenic processes and mineral metabolism. Here, we present a label-free, longitudinal, and quantitative monitoring of mineralized collagen formation by osteoblasts and subsequent osteoclast-driven mineral resorption on DBP using brightfield microscopy. A Segment.ai machine learning algorithm is applied for time-lapse bright-field image analysis, enabling identification of osteoclast resorption areas and automated quantification of large image datasets over a three-week culture period. This work highlights the potential of DBP as a transformative platform for bone-targeting drug screening and osteoporosis research.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular and Cellular Biology Graduate Program, UMass-Amherst, UMass-Amherst, Amherst, Massachusetts 01003, United States
| | - Hyejin Yoon
- Department of Biomedical Engineering, UMass-Amherst, Amherst, Massachusetts 01003, United States
| | - Seema Amin
- Molecular and Cellular Biology Graduate Program, UMass-Amherst, UMass-Amherst, Amherst, Massachusetts 01003, United States
| | - James J Chambers
- Institute for Applied Life Sciences, UMass-Amherst, Amherst, Massachusetts 01003, United States
| | - Jungwoo Lee
- Molecular and Cellular Biology Graduate Program, UMass-Amherst, UMass-Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, UMass-Amherst, Amherst, Massachusetts 01003, United States
- Department of Chemical Engineering, UMass-Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Castoldi G, Mauri M, D’Aliberti D, Spinelli S, Testa L, Gaverina F, Rubinacci A, Villa I, Bellelli G, Zerbini G, Piazza R, Zatti G. Transcriptomic Profile of Human Osteoblast-like Cells Grown on Trabecular Titanium. Int J Mol Sci 2025; 26:3598. [PMID: 40332083 PMCID: PMC12026869 DOI: 10.3390/ijms26083598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Trabecular titanium implants are widely used in orthopedic surgery and are known to promote osseointegration. In this study, we investigated whether primary human osteoblast-like cells grown inside a 3D trabecular titanium scaffold undergo changes in migration capacity, transcriptomic profile, and cellular phenotype as compared to the same osteoblasts not grown inside the scaffold. Scratch tests have shown that primary human osteoblast-like cells grown inside the 3D trabecular titanium scaffold promote the migration of cells from the external environment into the scaffold. Next generation sequencing analysis demonstrated that primary human osteoblast-like cells grown inside the 3D trabecular titanium scaffold modified the expression of genes involved in cell cycle and extracellular matrix remodeling, while maintaining a normal expression of the specific osteoblast markers, such as osteocalcin and osterix, as well as a comparable mineralization capacity. These data demonstrate that primary human osteoblast-like cells grown inside the titanium scaffold in a 3D environment acquire specific features favoring osseointegration.
Collapse
Affiliation(s)
- Giovanna Castoldi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (M.M.); (D.D.); (S.S.); (L.T.); (F.G.); (G.B.); (R.P.); (G.Z.)
| | - Mario Mauri
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (M.M.); (D.D.); (S.S.); (L.T.); (F.G.); (G.B.); (R.P.); (G.Z.)
| | - Deborah D’Aliberti
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (M.M.); (D.D.); (S.S.); (L.T.); (F.G.); (G.B.); (R.P.); (G.Z.)
| | - Silvia Spinelli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (M.M.); (D.D.); (S.S.); (L.T.); (F.G.); (G.B.); (R.P.); (G.Z.)
| | - Leonardo Testa
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (M.M.); (D.D.); (S.S.); (L.T.); (F.G.); (G.B.); (R.P.); (G.Z.)
- Clinica Ortopedica, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Federico Gaverina
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (M.M.); (D.D.); (S.S.); (L.T.); (F.G.); (G.B.); (R.P.); (G.Z.)
- Clinica Ortopedica, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | | | - Isabella Villa
- Laboratorio di Endocrinologia e Metabolismo Osseo, Istituto di Scienze Endocrine e Metaboliche, IRCCS Ospedale San Raffaele, 20132 Milano, Italy;
| | - Giuseppe Bellelli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (M.M.); (D.D.); (S.S.); (L.T.); (F.G.); (G.B.); (R.P.); (G.Z.)
- Acute Geriatric Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Gianpaolo Zerbini
- Unità Complicanze del Diabete, Diabetes Research Institute, IRCCS Istituto Scientifico San Raffaele, 20132 Milano, Italy;
| | - Rocco Piazza
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (M.M.); (D.D.); (S.S.); (L.T.); (F.G.); (G.B.); (R.P.); (G.Z.)
- Divisione di Ematologia, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Giovanni Zatti
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (M.M.); (D.D.); (S.S.); (L.T.); (F.G.); (G.B.); (R.P.); (G.Z.)
- Clinica Ortopedica, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
13
|
Zhang Z, Liang B, Wang D, Zhang Y, Geng Z, Xing D. Chiral polymer-induced hydroxyapatite for promoting bone regeneration. Mater Today Bio 2025; 31:101460. [PMID: 39885944 PMCID: PMC11780956 DOI: 10.1016/j.mtbio.2025.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025] Open
Abstract
Chirality is one of the basic characteristics of living matter, yet the effect of chiral polymers on osteogenesis is seldom studied. Thus, it is necessary to deeply recognize the behaviors of chiral polymers in osteogenic processes, which can be beneficial for the development of bone repair materials. In this work, chiral hydroxyapatite (HAP) was constructed simply using poly(levorotatory/dextral-tartaric acid) as the guest of the chiral transfer system. We studied the influence of chiral HAPs on the migration and differentiation of pre-osteoblasts, and angiogenesis of endothelial cell in vitro. The results showed that poly(levorotatory-tartaric acid)-induced HAP did promote vascular remodeling and exhibited excellent impact on osteogenetic differentiation by improving the related gene and protein expression, whereas no significant change was observed in poly(dextral-tartaric acid) or poly(racemic-tartaric acid) induced HAP, respectively. This study highlighted the effects of chiral polymers on osteogenic potential, which laid the groundwork for the development of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Zongying Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Basic Medicine Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dan Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Basic Medicine Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Ying Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zhongmin Geng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Shah FA. Revisiting the physical and chemical nature of the mineral component of bone. Acta Biomater 2025; 196:1-16. [PMID: 39892685 DOI: 10.1016/j.actbio.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
The physico-chemical characteristics of bone mineral remain heavily debated. On the nanoscale, bone mineral resides both inside and outside the collagen fibril as distinct compartments fused together into a cohesive continuum. On the micrometre level, larger aggregates are arranged in a staggered pattern described as crossfibrillar tessellation. Unlike geological and synthetic hydroxy(l)apatite, bone mineral is a unique form of apatite deficient in calcium and hydroxyl ions with distinctive carbonate and acid phosphate substitutions (CHAp), together with a minor contribution of amorphous calcium phosphate as a surface layer around a crystalline core of CHAp. In mammalian bone, an amorphous solid phase has not been observed, though an age-dependent shift in the amorphous-to-crystalline character is observed. Although octacalcium phosphate has been postulated as a bone mineral precursor, there is inconsistent evidence of calcium phosphate phases other than CHAp in the extracellular matrix. In association with micropetrosis, magnesium whitlockite is occasionally detected, indicating pathological calcification rather than a true extracellular matrix component. Therefore, the terms 'biomimetic' or 'bone-like' should be used cautiously in descriptions of synthetic biomaterials. The practice of reporting the calcium-to-phosphorus ratio (Ca/P) as proxy for bone mineral maturity oversimplifies the chemistry since both Ca2+ and PO43- ions are partially substituted. Moreover, non-mineral sources of phosphorus are ignored. Alternative compositional metrics should be considered. In the context of bone tissue and bone mineral, the term 'mature' must be used carefully, with clear criteria that consider both compositional and structural parameters and the potential impact on mechanical properties. STATEMENT OF SIGNIFICANCE: Bone mineral exhibits a unique hierarchical structure and is classified into intrafibrillar and extrafibrillar mineral compartments with distinct physico-chemical characteristics. The dynamic nature of bone mineral, i.e., evolving chemical composition and physical form, is poorly understood. For instance, bone mineral is frequently described as "hydroxy(l)apatite", even though the OH- content of mature bone mineral is negligible. Moreover, the calcium-to-phosphorus ratio is often taken as an indicator of bone mineral maturity without acknowledging substitutions at calcium and phosphate sites. This review takes a comprehensive look at the structure and composition of bone mineral, highlighting how experimental data are misinterpreted and unresolved concerns that warrant further investigation, which have implications for characterisation of bone material properties and development of bone repair biomaterials.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg Sweden.
| |
Collapse
|
15
|
Newman PLH, Mirkhalaf M, Gauci SC, Roohani I, Biro M, Barner‐Kowollik C, Zreiqat H. 3D Printed Materials with Nanovoxelated Elastic Moduli. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416262. [PMID: 40051216 PMCID: PMC12004887 DOI: 10.1002/adma.202416262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/29/2025] [Indexed: 04/18/2025]
Abstract
Fabrication methods that synthesize materials with higher precision and complexity at ever smaller scales are rapidly developing. Despite such advances, generating complex 3D materials with controlled mechanical properties at the nanoscale remains challenging. Exerting precise control over mechanical properties at the nanoscale would enable material strengths near theoretical maxima, and the replication of natural structures with hitherto unattainable strength-to-weight ratios. Here, a method for fabricating materials with nanovoxelated elastic moduli by employing a volume-conserving photoresist composed of a copolymer hydrogel, along with OpenScribe, an open-source software that enables the precise programming of material mechanics, is presented. Combining these, a material composed of periodic unit cells featuring heteromechanically tessellated soft-stiff structures, achieving a mechanical transition over an order-of-magnitude change in elastic modulus within 770 nm, a 130-fold improvement on previous reports, is demonstrated. This work critically advances material design and opens new avenues for fabricating materials with specifically tailored properties and functionalities through unparalleled control over nanoscale mechanics.
Collapse
Affiliation(s)
- Peter L. H. Newman
- The School of Biomedical EngineeringThe University of SydneySydneyAustralia
- EMBL AustraliaSingle Molecule Science nodeSchool of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Mohammad Mirkhalaf
- School of MechanicalMedical and Process EngineeringQueensland University of Technology2 George StBrisbaneQLD4000Australia
| | - Steven C. Gauci
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Iman Roohani
- School of Biomedical EngineeringFaculty of IT and EngineeringUniversity of Technology SydneySydneyNSW2007Australia
| | - Maté Biro
- EMBL AustraliaSingle Molecule Science nodeSchool of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Christopher Barner‐Kowollik
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholts‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholts‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Hala Zreiqat
- The School of Biomedical EngineeringThe University of SydneySydneyAustralia
| |
Collapse
|
16
|
Tang Q, Nie J, Fang W, Xie H, Wang W, Wang H, Ping H, Li B, Fu Z. Effects of Polyacrylic Acid with Different Molecular Weights on Stress Generation through Regulating the Growth of Calcium Carbonate within Collagen. ACS APPLIED BIO MATERIALS 2025; 8:2386-2396. [PMID: 40020212 DOI: 10.1021/acsabm.4c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Mineralized collagen fibrils are the building blocks of bone, and the mineralization of collagen fibrils is generally regulated by noncollagenous proteins (NCPs). However, the functions of NCPs are difficult to investigate in vivo. Here, we use poly(acrylic acid) (PAA) with different molecular weights (5, 50, 450, and 4000 kDa) as analogs of NCPs and explore their effects on collagen mineralization in vitro. All the PAA molecules can promote the intrafibrillar mineralization of calcium carbonate (CaCO3) following these steps: the precursors infiltrate the gap zones of collagen, and transform into organized calcite nanocrystals within collagen. An increase in molecular weight significantly accelerates the mineralization rate of collagen films, approximately 0.67 μm min-1 at 4000 kDa, four times that of 5 kDa (0.16 μm min-1). However, the generation of contractile stress via intrafibrillar mineralization in tendons exhibits a contrary tendency. It reaches 24.2 MPa at 5 kDa, much higher than that of 4000 kDa (8.3 MPa), due to rapid mineralization causing severe extrafibrillar precipitation around the tendon. The controllable mineralization of collagen matrices may inspire the development of bone repair and regeneration in the future.
Collapse
Affiliation(s)
- Qianshen Tang
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan 430070, China
| | - Jiawei Nie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan 430070, China
| | - Weijian Fang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan 430070, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Luoshi Road No. 122, Wuhan 430070, China
| | - Weimin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan 430070, China
| | - Hao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan 430070, China
| | - Hang Ping
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan 430070, China
| | - Bin Li
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan 430070, China
| |
Collapse
|
17
|
Cui J, Xia Y, Yu Y, Xu H, Zhang N, Tuo Z, Liu Z, Lin Z, Ma S, Liang Y, Ren L. Preparation and Application of Nature-inspired High-performance Mechanical Materials. Acta Biomater 2025; 195:1-41. [PMID: 39798641 DOI: 10.1016/j.actbio.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Natural materials are valued for their lightweight properties, high strength, impact resistance, and fracture toughness, often outperforming human-made materials. This paper reviews recent research on biomimetic composites, focusing on how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It explores biological structures such as mollusk shells, bones, and insect exoskeletons that inspire lightweight designs, including honeycomb structures for weight reduction and impact resistance. The paper also discusses the flexibility and durability of fibrous materials like arachnid proteins and evaluates traditional and modern fabrication techniques, including machine learning. The development of superior, multifunctional, and eco-friendly materials will benefit transportation, mechanical engineering, architecture, and biomedicine, promoting sustainable materials science. STATEMENT OF SIGNIFICANCE: Natural materials excel in strength, lightweight, impact resistance, and fracture toughness. This review focuses on biomimetic composites inspired by nature, examining how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It analyzes biological structures such as shells, bones, and exoskeletons, emphasizing honeycomb strength and lightness. The review also explores the flexibility and durability of fibrous materials like arachnid proteins and discusses fabrication techniques for biomaterials. It highlights impact-resistant materials that combine soft and hard components for enhanced strength and toughness, as well as lightweight, wear-resistant biomimetic materials that respond uniquely to cyclic stress. The article aims to advance sustainable materials science by exploring innovations in multifunctional and eco-friendly materials for various applications.
Collapse
Affiliation(s)
- Jiandong Cui
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; CRRC ChangChun Railway Vehicles., LTD, Changchun 130025, China
| | - Yan Xia
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Yingqing Yu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Zhiwei Tuo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zirui Liu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China.
| | - Zhaohua Lin
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Suqian Ma
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; The National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China.
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; The National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China.
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| |
Collapse
|
18
|
Georgiadis M, der Heiden FA, Abbasi H, Ettema L, Nirschl J, Taghavi HM, Wakatsuki M, Liu A, Ho WHD, Carlson M, Doukas M, Koppes SA, Keereweer S, Sobel RA, Setsompop K, Liao C, Amunts K, Axer M, Zeineh M, Menzel M. Micron-resolution fiber mapping in histology independent of sample preparation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.26.586745. [PMID: 38585744 PMCID: PMC10996646 DOI: 10.1101/2024.03.26.586745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mapping the brain's fiber network is crucial for understanding its function and malfunction, but resolving nerve trajectories over large fields of view is challenging. Electron microscopy only studies small brain volumes, diffusion magnetic resonance imaging (dMRI) has limited spatial resolution, and polarization microscopy provides unidirectional orientations in birefringence-preserving tissues. Scattered light imaging (SLI) has previously enabled micron-resolution mapping of multi-directional fibers in unstained brain cryo-sections. Here, we show that using a highly sensitive setup, computational SLI (ComSLI) can map fiber networks in histology independent of sample preparation, also in formalin-fixed paraffin-embedded (FFPE) tissues including whole human brain sections. We showcase this method in new and archived, animal and human brain sections, for different stains and steps of sample preparation (in paraffin, deparaffinized, stained) and for unstained fresh-frozen samples. Employing novel analyses, we convert microscopic orientations to microstructure-informed fiber orientation distributions (μFODs). Adapting MR tractography tools, we trace axonal trajectories via orientation distribution functions and microstructure-derived tractograms revealing white and gray matter connectivity. These allow us to identify altered microstructure in multiple sclerosis and leukoencephalopathy, reveal deficient tracts in hippocampal sclerosis and Alzheimer's disease, and show key advantages over dMRI, polarization microscopy, and structure tensor analysis. Finally, we map fibers in non-brain tissues, including muscle, bone, and blood vessels, unveiling the tissue's function. Our cost-effective, versatile approach enables micron-resolution studies of intricate fiber networks across tissues, species, diseases, and sample preparations, offering new dimensions to neuroscientific and biomedical research.
Collapse
Affiliation(s)
- Marios Georgiadis
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Franca auf der Heiden
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Hamed Abbasi
- Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Loes Ettema
- Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Jeffrey Nirschl
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Moe Wakatsuki
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Andy Liu
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | - Mackenzie Carlson
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michail Doukas
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sjors A. Koppes
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Raymond A. Sobel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, University Düsseldorf, Germany
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Physics, School of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Miriam Menzel
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
19
|
Luo Y. Biomechanical perspectives on image-based hip fracture risk assessment: advances and challenges. Front Endocrinol (Lausanne) 2025; 16:1538460. [PMID: 40104137 PMCID: PMC11915145 DOI: 10.3389/fendo.2025.1538460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025] Open
Abstract
Hip fractures pose a significant health challenge, particularly in aging populations, leading to substantial morbidity and economic burden. Most hip fractures result from a combination of osteoporosis and falls. Accurate assessment of hip fracture risk is essential for identifying high-risk individuals and implementing effective preventive strategies. Current clinical tools, such as the Fracture Risk Assessment Tool (FRAX), primarily rely on statistical models of clinical risk factors derived from large population studies. However, these tools often lack specificity in capturing the individual biomechanical factors that directly influence fracture susceptibility. Consequently, image-based biomechanical approaches, primarily leveraging dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), have garnered attention for their potential to provide a more precise evaluation of bone strength and the impact forces involved in falls, thereby enhancing risk prediction accuracy. Biomechanical approaches rely on two fundamental components: assessing bone strength and predicting fall-induced impact forces. While significant advancements have been made in image-based finite element (FE) modeling for bone strength analysis and dynamic simulations of fall-induced impact forces, substantial challenges remain. In this review, we examine recent progress in these areas and highlight the key challenges that must be addressed to advance the field and improve fracture risk prediction.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Biomedical Engineering (Graduate Program), University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
20
|
Tao S, Tao S, Yang J, Fu P, Li J, Li J. Wet adhesives for hard tissues. Acta Biomater 2025; 194:1-19. [PMID: 39855376 DOI: 10.1016/j.actbio.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The development of wet adhesives capable of bonding in aqueous environments, particularly for hard tissues such as bone, tooth, and cartilage, remains a significant challenge in material chemistry and biomedical research. Currently available hard tissue adhesives in clinical practice lack well-defined wet adhesion properties. Nature offers valuable inspiration through the adhesive mechanisms of marine organisms, advancing the design of bioinspired wet adhesives. Beyond biomimetic approaches, alternative strategies have emerged for the design of wet adhesives. This review systematically summarizes the current design strategies for wet adhesives, focusing on their applications to hard tissues. Then, the unique chemical, physical, mechanical, and biological requirements for wet adhesives applied to hard tissues are also discussed. The importance of understanding natural adhesion mechanisms and the need for high-performance materials that can meet the complex demands of hard tissue adhesion in a complex and delicate physiological microenvironment are highlighted. Finally, this review clarifies the future research directions that can further facilitate the clinical application of wet adhesives for hard tissues. STATEMENT OF SIGNIFICANCE: The significance of this review lies in its comprehensive analysis of wet adhesives for hard tissues, a field that has been largely overlooked despite its critical importance in biomedical applications. The insights gained from studying natural adhesives and the translation of these mechanisms into synthetic materials have the potential to revolutionize medical procedures involving hard tissue repair and regeneration. This review meticulously addresses the distinct challenges and specific requirements of hard tissue adhesives, providing an exhaustive roadmap for researchers striving to develop wet adhesives that can endure the demanding physiological conditions inside the human body. In doing so, it aims to facilitate the transition from laboratory findings to practical clinical applications.
Collapse
Affiliation(s)
- Sibei Tao
- Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Shuai Y, Yang T, Zheng M, Zheng L, Wang J, Mao C, Yang M. Oriented Cortical-Bone-Like Silk Protein Lamellae Effectively Repair Large Segmental Bone Defects in Pigs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414543. [PMID: 39871679 PMCID: PMC11899506 DOI: 10.1002/adma.202414543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/19/2024] [Indexed: 01/29/2025]
Abstract
Assembling natural proteins into large, strong, bone-mimetic scaffolds for repairing bone defects in large-animal load-bearing sites remain elusive. Here this challenge is tackled by assembling pure silk fibroin (SF) into 3D scaffolds with cortical-bone-like lamellae, superior strength, and biodegradability through freeze-casting. The unique lamellae promote the attachment, migration, and proliferation of tissue-regenerative cells (e.g., mesenchymal stem cells [MSCs] and human umbilical vein endothelial cells) around them, and are capable of developing in vitro into cortical-bone organoids with a high number of MSC-derived osteoblasts. High-SF-content lamellar scaffolds, regardless of MSC inoculation, regenerated more bone than non-lamellar or low-SF-content lamellar scaffolds. They accelerated neovascularization by transforming macrophages from M1 to M2 phenotype, promoting bone regeneration to repair large segmental bone defects (LSBD) in minipigs within three months, even without growth factor supplements. The bone regeneration can be further enhanced by controlling the orientation of the lamella to be parallel to the long axis of bone during implantation. This work demonstrates the power of oriented lamellar bone-like protein scaffolds in repairing LSBD in large animal models.
Collapse
Affiliation(s)
- Yajun Shuai
- Institute of Applied Bioresource ResearchCollege of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang ProvinceZhejiang UniversityHangzhou310058China
| | - Tao Yang
- Department of Biomedical EngineeringThe Chinese University of Hong KongSha TinHong Kong SARChina
| | - Meidan Zheng
- Institute of Applied Bioresource ResearchCollege of Animal SciencesZhejiang UniversityHangzhou310058China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for BiomedicineLife Sciences InstituteGuangxi Medical UniversityNanning530021China
| | - Jie Wang
- Institute of Applied Bioresource ResearchCollege of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang ProvinceZhejiang UniversityHangzhou310058China
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongSha TinHong Kong SARChina
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang ProvinceZhejiang UniversityHangzhou310058China
| |
Collapse
|
22
|
Wu X, Yang H, Liu G, Sun W, Li J, Zhao Y, Gao X, Liu X, Song F, Wang S, Lu Z, Chen C, Huang C. Osteomimix: A Multidimensional Biomimetic Cascade Strategy for Bone Defect Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416715. [PMID: 39924776 DOI: 10.1002/adma.202416715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Despite advancements in biomimetic mineralization techniques, the repair of large-scale bone defects remains a significant challenge. Inspired by the bone formation process, a multidimensional biomimetic cascade strategy is developed by replicating the biomineralization cascade, emulating the hierarchical structure of bone, and biomimicking its biological functions for efficient bone regeneration. This strategy involves the photocrosslinking of sodium methacrylate carboxymethyl cellulose-stabilized amorphous magnesium-calcium phosphate with methacrylate-modified type I collagen to create a self-mineralizing hydrogel. The hydrogel is then integrated with either naturally derived or synthetic oriented bulk scaffolds. The resulting composite, named Osteomimix, provides excellent mechanical support and can be customized for irregular bone defects using CAD/CAM technology. Through in vitro and in vivo studies, this work finds that Osteomimix exhibits spontaneous in situ biomimetic mineralization in a cell-free environment, while modulating immune responses and promoting vascularized bone formation in a cell-dependent manner. Built on bone-specific insights, this strategy achieves biomimicry across temporal, spatial, and functional dimensions, facilitating the seamless integration of artificial constructs with the natural tissue repair dynamics.
Collapse
Affiliation(s)
- Xiaoyi Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Hongye Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gufeng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wei Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jiyun Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaning Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xin Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xuzheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Fangfang Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shilei Wang
- Hubei Engineering Center of Natural Polymer-Based Medical Materials and Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziyang Lu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
23
|
Allgayer R, Kabir RF, Bergeron A, Demers P, Mantovani D, Cerruti M. A collagen-based laboratory model to mimic sex-specific features of calcific aortic valve disease. Acta Biomater 2025; 194:204-218. [PMID: 39864641 DOI: 10.1016/j.actbio.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Calcific aortic valve disease (CAVD) shows in the deposition of calcium phosphates in the collagen-rich layer of the valve leaflets. This stiffens the leaflets and eventually leads to heart failure. Recent research suggests that CAVD follows sex-specific pathways: at the same severity of the disease, women tend to have fewer and less crystalline calcifications, and the phases of their calcifications are decidedly different than those of men; namely, dicalcium phosphate dihydrate (DCPD) - one of the mineral phases in CAVD - occurs almost exclusively in females. Furthermore, the morphologies of heart valve calcifications might be sex-specific, but the sex dependence of the morphologies has not been systematically investigated. Herein, we first show that male CAVD patients have more compact and less fibrous calcifications than females, establishing sex-dependent morphological features of heart valve calcification. We then build a model that recapitulates the sex differences of the calcifications in CAVD, which is based on a collagen gel that we calcify in simulated body fluid with varying fetuin A concentrations. With increasing fetuin A concentration, the calcifications become less crystalline and more fibrous, and more DCPD deposits in the collagen matrix, resembling the physicochemical characteristics of the calcifications in female valves. Lower fetuin A concentrations give rise to a model that replicates male-specific mineral characteristics. The models could be used to develop sex-specific detection and treatment methods for CAVD. STATEMENT OF SIGNIFICANCE: Although calcific aortic valve disease (CAVD) affects ∼10 million people globally, researchers have only discovered recently that the disease follows sex-specific pathways, and many of its sex-specific features remain unknown. To further our understanding of sex differences in CAVD and to develop better detection and treatment methods, there is an urgent need to establish models for CAVD that account for its sex-specific manifestations. In this study, we first show that CAVD calcifications in men and women take on different morphologies. Second, we present a model that can replicate physicochemical calcification characteristics of male or female valves, including morphology, and that can help to develop sex-specific detection and treatment methods for CAVD.
Collapse
Affiliation(s)
- Raphaela Allgayer
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, QC H3A 0C5, Canada
| | - Reefah Fahmida Kabir
- Department of Bioengineering, McGill University, 3480 Rue University, Montreal, QC H2A 0E9, Canada
| | - Alexandre Bergeron
- Department of Surgery, Montreal Heart Institute, 5000 Rue Bélanger, Montreal, QC H1T 1C8, Canada
| | - Philippe Demers
- Department of Surgery, Montreal Heart Institute, 5000 Rue Bélanger, Montreal, QC H1T 1C8, Canada
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering & Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, QC H3A 0C5, Canada.
| |
Collapse
|
24
|
Silva Barreto I, Liebi M, Le Cann S, Ahmed S, Nielsen LC, Grünewald TA, Dejea H, Lutz-Bueno V, Nowlan NC, Isaksson H. Lack of embryonic skeletal muscle in mice leads to abnormal mineral deposition and growth. J Struct Biol 2025; 217:108178. [PMID: 39956301 DOI: 10.1016/j.jsb.2025.108178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Developing bones can be severely impaired by a range of disorders where muscular loading is abnormal. Recent work has indicated that the effects of absent skeletal muscle on bones are more severe early in development, with rudiment length and mineralization lengths being almost normal in muscle-less limbs just prior to birth. However, the impact of abnormal mechanical loading on the nanoscale structure and composition during prenatal mineralization remains unknown. In this exploratory study, we characterized the mineralization process of humeri from muscle-less limb embryonic mice using a multiscale approach by combining X-ray scattering and fluorescence with infrared and light microscopy to identify potential key aspects of interest for future in-depth investigations. Muscle-less humeri were characterized by initially less mineralized tissue to later catch up with controls, and exhibited continuous growth of mineral particles, which ultimately led to seemingly larger mineral particles than their controls at the end of development. Muscle-less limbs exhibited an abnormal pattern of mineralization, reflected by a more widespread distribution of zinc and homogenous distribution of hydroxyapatite compared to controls, which instead showed trabecular-like structures and zinc localized only to regions of ongoing mineralization. The decrease in collagen content in the hypertrophic zone due to resorption of the cartilage collagen matrix was less distinct in muscle-less limbs compared to controls. Surprisingly, the nanoscale orientation of the mineral particles was unaffected by the lack of skeletal muscle. The identified accelerated progression of ossification in muscle-less limbs at later prenatal stages provides a possible anatomical mechanism underlying their recovery in skeletal development.
Collapse
Affiliation(s)
| | - Marianne Liebi
- Photon Science Division, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland; Institute of Materials, Ecole Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Sophie Le Cann
- Department of Biomedical Engineering, Lund University, 223 62 Lund, Sweden; CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010 Créteil, France
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | - Leonard C Nielsen
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Hector Dejea
- Department of Biomedical Engineering, Lund University, 223 62 Lund, Sweden; MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Viviane Lutz-Bueno
- Photon Science Division, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK; School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
25
|
Zecca MA, Greer HF, Müller KH, Duer MJ. Poly(ADP-ribose) binding sites on collagen I fibrils for nucleating intrafibrillar bone mineral. Proc Natl Acad Sci U S A 2025; 122:e2414849122. [PMID: 39977326 PMCID: PMC11873830 DOI: 10.1073/pnas.2414849122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
Bone calcification is essential for vertebrate life. The mechanism by which mineral ions are transported into collagen fibrils to induce intrafibrillar mineral formation requires a calcium binding biopolymer that also has highly selective binding to the collagen fibril hole zones where intrafibrillar calcification begins, over other bone extracellular matrix components. Poly(ADP-ribose) (PAR) has been shown to be a candidate biopolymer for this process and we show here that PAR has high affinity, highly conserved binding sites in the collagen type I C-terminal telopeptides. The identification of these PAR-collagen binding sites gives insights into the chemical mechanisms underlying bone calcification and possible mechanisms behind pathologies where there is dysfunctional bone calcification.
Collapse
Affiliation(s)
- Marco A. Zecca
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Heather F. Greer
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Karin H. Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, CambridgeCB2 3DY, United Kingdom
| | - Melinda J. Duer
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| |
Collapse
|
26
|
Yuan B, Peng H, Wang Y, Li J, Zhang Y, Chen Z, Li K, Tu C, Zhang K, Zhu X, Shen B, Nie Y, Zhang X. Micro/Nanobiomimetic Iron-Based Scaffold Induces Vascularized Bone Regeneration To Repair Large Segmental Bone Defect in Load-Bearing Sites. ACS NANO 2025; 19:6840-6857. [PMID: 39933996 DOI: 10.1021/acsnano.4c11960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Biodegradable scaffolds, including metals, ceramics, and polymers, show great potential in bone tissue regeneration. However, current biodegradable scaffolds do not simultaneously possess suitable mechanical properties, biodegradability and osteoinductivity, which severely limits their clinical application for large segmental bone defect repair. Herein, we developed a biomimetic and hierarchically micro-nanoporous iron-based scaffold utilizing a synergistic approach combining 3-dimensional printing, surface dealloying treatment and electrochemical deposition. Compared to traditional periodic lattice structures, the biomimetic scaffold with a stochastic lattice structure promised superior stress transfer efficiency. Cell experiments revealed that the biomimetic scaffold notably enhanced osteogenesis and angiogenesis in vitro via EGFR-mediated Ras/Raf/MAPK signaling. Upon implantation in a rat femoral condyle defect model, the scaffold achieved a dynamic equilibrium between in vivo material degradation and bone formation. More importantly, the study conducted in a large animal model with an extended cycle of up to 1 year demonstrated that bionic iron-based scaffolds effectively facilitated the repair and functional reconstruction of large bone defects in load-bearing regions by inducing vascularized bone regeneration. This study not only introduces a potential solution for addressing critical-sized bone defects in load-bearing regions but also provides a viable approach for the design of other biomimetic biomaterials.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Huabei Peng
- College of Mechanical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jingming Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yuqi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zhikun Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Kang Li
- West China Biomedical Big Data Center, Sichuan University West China Hospital, Chengdu, Sichuan University, Chengdu 610041, P. R. China
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
- Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
27
|
Eriksen AMH, Rodríguez JA, Seersholm F, Hollund HI, Gotfredsen AB, Collins MJ, Grønnow B, Pedersen MW, Gilbert MTP, Matthiesen H. Exploring DNA degradation in situ and in museum storage through genomics and metagenomics. Commun Biol 2025; 8:210. [PMID: 39930064 PMCID: PMC11811298 DOI: 10.1038/s42003-025-07616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Understanding the environmental and microbial processes involved in DNA degradation from archaeological remains is a fundamental part of managing bone specimens. We investigated the state of DNA preservation in 33 archaeozoological caribou (Rangifer tarandus) ribs excavated from the same excavation trench at a former Inuit hunting camp in West Greenland, separated by 43 years: 1978 and 2021. Our findings show that DNA is better preserved in the most recently excavated samples, indicating a detrimental effect of museum storage on DNA integrity. Additionally, our data reveals a diverse microbiome in these bones, encoding genes relevant for bone degradation, such as enzymatic families relating to collagenases, peptidases and glycosidases. Microbes associated with bone degradation were present in both new and historical samples, with museum-stored bones showing significantly more DNA damage. Overall, our research sheds light on the nuanced dynamics governing the preservation of genomic material in archaeological contexts, underscoring the vital importance of careful considerations in museum curation practices for the sustainable conservation of invaluable skeletal records in museum repositories and in situ.
Collapse
Affiliation(s)
- Anne Marie Høier Eriksen
- Environmental Archaeology and Materials Science, National Museum of Denmark, 2800 Kgs, Lyngby, Denmark.
| | - Juan Antonio Rodríguez
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, 1353, Copenhagen, Denmark
| | - Frederik Seersholm
- Section for GeoGenetics, Globe Institute, University of Copenhagen, 1350, Copenhagen, Denmark
| | | | | | - Matthew James Collins
- Section for GeoBiology, Globe Institute, University of Copenhagen, 1353, Copenhagen, Denmark
- Department of Archaeology, University of Cambridge, CB2 3DZ, Cambridge, UK
| | - Bjarne Grønnow
- Modern History and World Cultures, National Museum of Denmark, 1220, Copenhagen, Denmark
| | - Mikkel Winther Pedersen
- Section for GeoGenetics, Globe Institute, University of Copenhagen, 1350, Copenhagen, Denmark
- Centre for Ancient Environmental Genomics, Globe Institute, University of Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, 1353, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Henning Matthiesen
- Environmental Archaeology and Materials Science, National Museum of Denmark, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
28
|
Debnath S, Agrawal A, Jain N, Chatterjee K, Player DJ. Collagen as a bio-ink for 3D printing: a critical review. J Mater Chem B 2025; 13:1890-1919. [PMID: 39775500 DOI: 10.1039/d4tb01060d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The significance of three-dimensional (3D) bioprinting in the domain of regenerative medicine and tissue engineering is readily apparent. To create a multi-functional bioinspired structure, 3D bioprinting requires high-performance bioinks. Bio-inks refer to substances that encapsulate viable cells and are employed in the printing procedure to construct 3D objects progressive through successive layers. For a bio-ink to be considered high-performance, it must meet several critical criteria: printability, gelation kinetics, structural integrity, elasticity and strength, cell adhesion and differentiation, mimicking the native ECM, cell viability and proliferation. As an exemplar application, tissue grafting is used to repair and replace severely injured tissues. The primary considerations in this case include compatibility, availability, advanced surgical techniques, and potential complications after the operation. 3D printing has emerged as an advancement in 3D culture for its use as a regenerative medicine approach. Thus, additive technologies such as 3D bioprinting may offer safe, compatible, and fast-healing tissue engineering options. Multiple methods have been developed for hard and soft tissue engineering during the past few decades, however there are many limitations. Despite significant advances in 3D cell culture, 3D printing, and material creation, a gold standard strategy for designing and rebuilding bone, cartilage, skin, and other tissues has not yet been achieved. Owing to its abundance in the human body and its critical role in protecting and supporting human tissues, soft and hard collagen-based bioinks is an attractive proposition for 3D bioprinting. Collagen, offers a good combination of biocompatibility, controllability, and cell loading. Collagen made of triple helical collagen subunit is a protein-based organic polymer present in almost every extracellular matrix of tissues. Collagen-based bioinks, which create bioinspired scaffolds with multiple functionalities and uses them in various applications, is a represent a breakthrough in the regenerative medicine and biomedical engineering fields. This protein can be blended with a variety of polymers and inorganic fillers to improve the physical and biological performance of the scaffolds. To date, there has not been a comprehensive review appraising the existing literature surround the use of collagen-based bioink applications in 'soft' or 'hard' tissue applications. The uses of the target region in soft tissues include the skin, nerve, and cartilage, whereas in the hard tissues, it specifically refers to bone. For soft tissue healing, collagen-based bioinks must meet greater functional criteria, whereas hard tissue restoration requires superior mechanical qualities. Herein, we summarise collagen-based bioink's features and highlight the most essential ones for diverse healing situations. We conclude with the primary challenges and difficulties of using collagen-based bioinks and suggest future research objectives.
Collapse
Affiliation(s)
- Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Akhilesh Agrawal
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK.
| |
Collapse
|
29
|
Peng X, Guo D, Ding H, Mu Z, Li B, Niu S, Han Z, Ren L. Chiton-Inspired Composites Synergizing Strength and Toughness Through Sinusoidal Interlocking Interfaces for Protective Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410836. [PMID: 39663684 DOI: 10.1002/adma.202410836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Introducing biological structures into materials design is expected to develop strong and tough structural materials. However, multiple interfaces are introduced simultaneously. They are always the weakest part of load transfer, becoming a critical vulnerability and failure-prone area. Here, it is the first found that the chiton achieves superior mechanical properties just by incorporating a unique sinusoidal interlocking interface into cross-lamellar architecture. These special interlocking interfaces make the chiton shell achieve damage delocalization and increase the resistance to crack initiation and propagation. Meanwhile, this "pre-engineered" path significantly increases the travel path of the cracks and balances the strength and toughness under quasi-static and impact loading. Inspired by this, a novel chiton-inspired composite is proposed. Through coupling the cross-lamellar structures and sinusoidal interlocking interfaces, its strength and toughness are increased by 88% and 107% under quasi-static loading, as well as by 17.8% and 52.4% under impact loading, respectively. These unusual interfaces make up the weak point of cross-lamellar structures and provide insights into the longer evolution of structural materials.
Collapse
Affiliation(s)
- Xianchang Peng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
| | - Dongfang Guo
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
| | - Hanliang Ding
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Bo Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, Jilin, 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, Jilin, 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, Jilin, 130022, China
| |
Collapse
|
30
|
Yu Y, Li Y, Gong Z, Liao P, Ma Y, Zhou L, Gong J. A Moldable, Tough Mineral-Dominated Nanocomposite as a Recyclable Structural Material. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410266. [PMID: 39757557 DOI: 10.1002/smll.202410266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Flexible hybrid minerals, primarily composed of inorganic ionic crystal nanolines and a small amount of organic molecules, have significant potential for the development of sustainable structural materials. However, the weak interactions and insufficient crosslinking among the inorganic nanolines limit the mechanical enhancement and application of these hybrid minerals in high-strength structural materials. Inspired by tough biominerals and modern reinforced concrete structures, this study proposes introducing an aramid nanofiber (ANF) network as a flexible framework during the polymerization of calcium phosphate oligomers (CPO), crosslinked by polyvinyl alcohol (PVA) and sodium alginate (SA). This approach allows the flexible inorganic nanolines formed through CPO polymerization to be integrated into the organic framework, thereby creating tough mineral-based structural materials (inorganic content: 70.7 wt.%), denoted as PVA/SA/ANF/CPO (PSAC). The multiple intermolecular interactions between the organic and inorganic phases, combined with the integrated nano-reinforced concrete structure, endow PSAC with significantly enhanced tensile strength (86.6 ± 8.6 MPa), comparable to that of high-strength polymer plastics. Moreover, PSAC possesses excellent plasticity and flame retardancy. The noncovalent molecular interactions within PSAC enable efficient recyclability. Consequently, PSAC has the potential to replace high-strength polymer plastics and structural components, providing a promising avenue for developing high-strength and toughness mineral-based structural materials.
Collapse
Affiliation(s)
- Yadong Yu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072, P. R. China
| | - Yexuan Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Zeyu Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Peng Liao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yanyu Ma
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Lina Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072, P. R. China
| |
Collapse
|
31
|
Buss DJ, Deering J, Reznikov N, McKee MD. Understanding the structural biology of osteomalacia through multiscale 3D X-ray and electron tomographic imaging: a review of X-linked hypophosphatemia, the Hyp mouse model, and imaging methods. JBMR Plus 2025; 9:ziae176. [PMID: 39896117 PMCID: PMC11783288 DOI: 10.1093/jbmrpl/ziae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
Biomineralization in bones and teeth is a highly regulated extracellular event. In the skeleton, mineralization at the tissue level is controlled within the collagenous extracellular matrix by both circulating and local factors. While systemic regulation of mineral ion homeostasis has been well-studied over many decades, much less is known about the regulation of mineralization at the local level directly within the extracellular matrix. Some local regulators have been identified, such as tissue-nonspecific alkaline phosphatase (TNAP), phosphate-regulating endopeptidase homolog X-linked (PHEX), pyrophosphate, and osteopontin, and others are currently under investigation. Dysregulation of the actions of enzyme-inhibitor substrate pairs engaged in mineralization (as we describe by the Stenciling Principle for extracellular matrix mineralization) leads to osteomalacic "soft bone" diseases, such as hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH). This review addresses how advances in 3D imaging tools and software now allow contextual and correlative viewing and interpretation of mineralized tissue structure across most length scales. Contextualized and integrated 3D multiscale data obtained from these imaging modalities have afforded an unprecedented structural biology view of bone from the macroscale to the nanoscale. Such correlated volume imaging data is highly quantitative, providing not only an integrated view of the skeleton in health, but also a means to observe alterations that occur in disease. In the context of the many hierarchical levels of skeletal organization, here we summarize structural features of bone over multiple length scales, with a focus on nano- and microscale features as viewed by X-ray and electron tomography imaging methods (submicron μCT and FIB-SEM). We additionally summarize structural changes observed after dysregulation of the mineralization pathway, focusing here on the Hyp mouse model for XLH. More specifically, we summarize how mineral patterns/packs at the microscale (3D crossfibrillar mineral tessellation), and how this is defective in Hyp mouse bone and Hyp enthesis fibrocartilage.
Collapse
Affiliation(s)
- Daniel J Buss
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Joseph Deering
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Natalie Reznikov
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Marc D McKee
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
32
|
Li W, Wang X, Mao R, Li D, Meng H, Zhang R, Fang J, Kang Z, Wu B, Ma W, Yao X, Xie C, Li R, Wang J, Chen X, Pan X, Chen W, Duan W, Gao H, Ouyang H. A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms. Proc Natl Acad Sci U S A 2025; 122:e2416085122. [PMID: 39854225 PMCID: PMC11789015 DOI: 10.1073/pnas.2416085122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025] Open
Abstract
Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan. Here, we investigated the multiscale graded mineralization structure and their strengthening mechanisms within the 30-micron soft-hard interface at the root-bone junction. This graded interface, featuring interdigitated structures and an exponential increase in modulus, undergoes a phase transition from amorphous calcium phosphate (ACP) to gradually matured hydroxyapatite (HAP) crystals, regulated by location-specific distributed biomolecules. In coordination with collagen fibril deformation and reorientation, the in situ tensile mechanical experiments and molecular dynamic simulations revealed that immature ACP particles debond from the collagenous matrix and translocate to dissipate energy, while the progressively matured HAP crystals with high stiffness pins propagating cracks, thereby enhancing both the toughness and fatigue resistance of the interface. To further validate our findings, we built biomimetic soft-hard interfaces with phase-transforming mineralization which exhibited boosted strength, toughness, and interface adhesion. This interface model is generalizable to other material joints and provides a blueprint for developing robust soft-hard composites across various applications.
Collapse
Affiliation(s)
- Wenyue Li
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining314400, China
- China Orthopedic Regenerative Medicine Group, Hangzhou310058, China
| | - Xiaozhao Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining314400, China
- China Orthopedic Regenerative Medicine Group, Hangzhou310058, China
| | - Renwei Mao
- Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, China
| | - Dong Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Hongxu Meng
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining314400, China
- China Orthopedic Regenerative Medicine Group, Hangzhou310058, China
| | - Ru Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining314400, China
- China Orthopedic Regenerative Medicine Group, Hangzhou310058, China
| | - Jinghua Fang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
| | | | - Boxuan Wu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining314400, China
- China Orthopedic Regenerative Medicine Group, Hangzhou310058, China
| | - Weiwei Ma
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining314400, China
- China Orthopedic Regenerative Medicine Group, Hangzhou310058, China
| | - Xudong Yao
- International lnstitutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu322000, China
| | - Chang Xie
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining314400, China
- China Orthopedic Regenerative Medicine Group, Hangzhou310058, China
| | - Rui Li
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining314400, China
- China Orthopedic Regenerative Medicine Group, Hangzhou310058, China
| | - Jin Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou310058, China
| | - Xiao Chen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining314400, China
- China Orthopedic Regenerative Medicine Group, Hangzhou310058, China
| | - Xihao Pan
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining314400, China
- China Orthopedic Regenerative Medicine Group, Hangzhou310058, China
| | - Weiqiu Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, China
| | - Wangping Duan
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan030001, China
| | - Huajian Gao
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing100084, China
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou311113, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining314400, China
- China Orthopedic Regenerative Medicine Group, Hangzhou310058, China
| |
Collapse
|
33
|
Rodriguez-Fernandez I, Bretschneider T, Menzel A, Suljevic O, Sommer NG, Weinberg AM, Appel C, Liebi M, Diaz A, Pircher L, Hellmich C, Schwarze UY, Lichtenegger HC, Grünewald TA. Physical exercise impacts bone remodeling around bio-resorbable magnesium implants. Acta Biomater 2025; 193:623-631. [PMID: 39637959 DOI: 10.1016/j.actbio.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Physical exercise has been shown to induce positive reactions in bone healing but next to nothing is known about how it affects the nanostructure, in particular around implants. In this study, we established this link by using small-angle X-ray scattering tensor tomography (SASTT) to investigate nanostructural parameters in 3D such as mineral particle orientation and thickness. As a model system, rat femoral bone with a bio-resorbable implant (ultra-high purity magnesium) was used. One-half of the rats underwent treadmill exercise while the other half were moving freely in a cage. At two- and six-weeks post-surgery, rats were sacrificed, and samples were taken. Our results point to an earlier start and stronger remodeling when physical exercise is applied and to a stronger reorientation of the mineralized collagen fibers around the implant. This study reveals the nanostructural response of bone with bio-resorbable implants to physical exercise. Understanding this response is very important for designing post-surgery treatments. STATEMENT OF SIGNIFICANCE: Physical exercise is known to have beneficial effects on the human body and is often incorporated into the recovery process following orthopedic surgeries. While the response of bone to physical exercise is well-documented, the structural response of bone to early exercise after implant placement, particularly its impact on the nanostructure, has not been extensively studied. In this study, we identify the effects of physical exercise on the bone nanostructure and the remodeling process around a bioresorbable implant. These findings could help develop tailored physical exercise strategies for post-surgery recovery in patients.
Collapse
Affiliation(s)
- Irene Rodriguez-Fernandez
- Center for Photon Science, Paul Scherrer Insitute (PSI), 5232 Villigen-PSI, Switzerland; Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Thomas Bretschneider
- Institute of Physics and Materials Science, BOKU University, 1190 Vienna, Austria
| | - Andreas Menzel
- Center for Photon Science, Paul Scherrer Insitute (PSI), 5232 Villigen-PSI, Switzerland
| | - Omer Suljevic
- Department of Orthopedics and Traumatology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole G Sommer
- Department of Orthopedics and Traumatology, Medical University of Graz, 8036 Graz, Austria
| | - Annelie-M Weinberg
- Department of Orthopedics and Traumatology, Medical University of Graz, 8036 Graz, Austria
| | - Christian Appel
- Center for Photon Science, Paul Scherrer Insitute (PSI), 5232 Villigen-PSI, Switzerland
| | - Marianne Liebi
- Center for Photon Science, Paul Scherrer Insitute (PSI), 5232 Villigen-PSI, Switzerland; Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ana Diaz
- Center for Photon Science, Paul Scherrer Insitute (PSI), 5232 Villigen-PSI, Switzerland
| | - Lukas Pircher
- Institute for Mechanics of Materials and Structures, TU Wien, 1040 Vienna, Austria
| | - Christian Hellmich
- Institute for Mechanics of Materials and Structures, TU Wien, 1040 Vienna, Austria
| | - Uwe Y Schwarze
- Department of Orthopedics and Traumatology, Medical University of Graz, 8036 Graz, Austria; Department of Dental Medicine and Oral Health, Medical University of Graz, 8010 Graz, Austria
| | - Helga C Lichtenegger
- Institute of Physics and Materials Science, BOKU University, 1190 Vienna, Austria.
| | - Tilman A Grünewald
- Aix-Marseille Univ, CNRS, Centrale Med, Institut Fresnel, 13013 Marseille, France.
| |
Collapse
|
34
|
Eustache RP, Boyde A, Jaurand X, Sander PM. Medusa's gaze: Cell traces and fibrils but no collagen in permineralized Jurassic ichthyosaur bone. iScience 2025; 28:111523. [PMID: 39817199 PMCID: PMC11732707 DOI: 10.1016/j.isci.2024.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 11/29/2024] [Indexed: 01/18/2025] Open
Abstract
Bone is formed by specialized cells whose activity allows bone to grow, change shape, and repair itself. Its composite structure of collagen fibrils and bioapatite nanocrystals gives bone exceptional mechanical strength. Using scanning electron microscopy, we show in fossil ichthyosaurs, 150 to 200 million years old, from the Jurassic of France and the UK, abundant and direct evidence of cellular activity on the fossilized forming, resting, and resorbing surfaces of bone trabeculae, as well as bone fibrils, Sharpey fibers, and cartilage fibers. These features are identical to those observed in fresh deproteinized mammalian bone, including human bone. Despite the striking similarity of the fibrils to those in modern bone, we found no evidence of collagen preservation. Fossilization removed non-mineralized components and exposed trabecular surfaces at the mineralization front. Cellular activity in skeletal tissue, familiar to any medical student, is preserved for >200 million years, and probably longer in vertebrate fossils.
Collapse
Affiliation(s)
| | - Alan Boyde
- Dental Physical Sciences Unit, Queen Mary University of London, Mile End Campus, London E1 4NS, UK
| | - Xavier Jaurand
- Centre Technologique des Microstructures, Université Claude Bernard Lyon 1, 5 rue Raphael Dubois, Villeurbanne, 69622 Cedex, France
| | - P. Martin Sander
- Abteilung Paläontologie, Bonner Institut für Organismische Biologie, Universität Bonn, 53115 Bonn, Germany
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| |
Collapse
|
35
|
Lama M, Merle M, Bessot E, Bussola Tovani C, Laurent G, Bouland N, Kerdjoudj H, Azaïs T, Ducouret G, Bortolotto T, Nassif N. Hierarchical Collagen/Apatite Co-assembly for Injection of Mineralized Fibrillar Tissue Analogues. ACS Biomater Sci Eng 2025; 11:564-576. [PMID: 39670834 DOI: 10.1021/acsbiomaterials.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Mineralized biological tissues rich in type I collagen (e.g., bone and dentin) exhibit complex anisotropic suprafibrillar organizations in which the organic and inorganic moieties are intimately coassembled over several length scales. Above a critical size, a defect in such tissue cannot be self-repaired. Biomimetic materials with a composition and microstructure similar to that of bone have been shown to favorably influence bone regeneration. This highlights the value of developing a similar formulation in an injectable form to enable minimally invasive techniques. Here, we report on the fabrication and application potential of an injectable collagen/CHA (carbonated hydroxyapatite) cell-free hydrogel. The organic part consists of spray-dried nondenatured and dense collagen microparticles, while the inorganic part consists of biomimetic apatite mineral. By mixing both powders at desired tissue-like ratios with an aqueous solvent in one step, spontaneous co-self-assembly occurs, leading to the formation of a mineralized matrix with suprafibrillar tissue-like features thanks to the induced liquid crystalline properties of collagen on one hand and apatite on the other hand. When injected into soft tissue, the mineralized collagen hydrogel free of chemical cross-linking agents exhibits suitable cohesion and is biocompatible. Preliminary in vitro tests in a tooth cavity model show its integration onto dentin with a biomimetic interface. Based on the results, this versatile injectable mineralized collagen hydrogel shows promising potential as a biomaterial for bone tissue repair and mineralized tissue-like ink for bioprinting applications.
Collapse
Affiliation(s)
- Milena Lama
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Marion Merle
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Elora Bessot
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Camila Bussola Tovani
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Guillaume Laurent
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Nicole Bouland
- University of Reims Champagne-Ardennes, 3 avenue du Maréchal Juin, 51100 Reims, France
| | - Halima Kerdjoudj
- University of Reims Champagne-Ardennes, 3 avenue du Maréchal Juin, 51100 Reims, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Guylaine Ducouret
- Soft Matter Science and Engineering, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Tissiana Bortolotto
- Division of Cariology and Endodontology, University Clinic of Dental Medicine, Faculty of Medicine, University of Geneva, rue Michel-Servet 1, Genève 4, 1211 Geneva, Switzerland
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
36
|
Wang Z, Kregel M, Meijers JL, Franch J, Cuijpers VMJI, Ahlers D, Karst U, Slootweg P, van der Geest IC, Leeuwenburgh SC, van den Beucken JJ. Cisplatin-functionalized dual-functional bone substitute granules for bone defect treatment after bone tumor resection. Acta Biomater 2025; 191:158-176. [PMID: 39551330 DOI: 10.1016/j.actbio.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Invasive bone tumors pose a significant healthcare challenge, often requiring systemic chemotherapy and limb salvage surgery. However, these strategies are hampered by severe side effects, complex post-resection bone defects, and high local recurrence rates. To address this, we developed dual-functional bone substitute biomaterials by functionalizing commercially available bone substitute granules (Bio-Oss® and MBCP®+) with the established anticancer agent cisplatin. Physicochemical characterization revealed that Bio-Oss® granules possess a higher surface area and lower crystallinity compared to MBCP®+ granules, which enhances their capacity for cisplatin adsorption and release. In co-cultures with metastatic breast and prostate cancer cells (MDA-MB-231 and PC3) and bone marrow stromal cells (hBMSCs), cisplatin-functionalized granules and their releasates exhibited dose-dependent cytotoxic effects on cancer cells while having less impact on hBMSCs. Furthermore, investigations on the mechanism of action indicated that cisplatin induced significant cell cycle arrest and apoptosis in MDA-MB-231 and PC3 cells, contrasting with minimal effects on hBMSCs. In a rat femoral condyle defect model, cisplatin-functionalized granules did not evoke adverse effects on bone tissue ingrowth or new bone formation. Importantly, local application of cisplatin-functionalized granules resulted in negligible cisplatin accumulation without signs of apoptotic damage in kidneys and livers. Taken together, we here provide hard evidence that cisplatin-functionalized granules maintain a favorable balance between biosafety, anticancer efficacy, and bone regenerative capacity. Consequently, loading granular bone substitutes with cisplatin holds promise for local treatment of bone defects following bone tumor resections, presenting a safe and potentially more effective alternative to systemic cisplatin administration. STATEMENT OF SIGNIFICANCE: Current treatments in combating malignant bone tumors are hampered by severe side effects, high local tumor recurrence, and complex bone defects after surgery. This study explores a facile manufacturing method to render two types of commercially available bone substitute granules (Bio-Oss® and MBCP®+) suitable for local delivery of cisplatin. The use of cisplatin-functionalized granules has shown promising results both in killing cancer cells in a dose-dependent manner and in aiding bone regeneration. Importantly, this local treatment strategy avoids the systemic toxicity associated with traditional chemotherapy to excretory organs. This dual-functional strategy represents a significant advancement in bone cancer treatment, offering a safe and more efficient alternative that could improve outcomes for patients following bone tumor resection.
Collapse
Affiliation(s)
- Zhule Wang
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Mark Kregel
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Jean-Luc Meijers
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Jordi Franch
- Department of Small Animal Medicine and Surgery, Veterinary School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Vincent M J I Cuijpers
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - David Ahlers
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Piet Slootweg
- Department of Pathology, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Ingrid Cm van der Geest
- Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands; Department of Orthopedics, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Sander Cg Leeuwenburgh
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Jeroen Jjp van den Beucken
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands.
| |
Collapse
|
37
|
Venkata Prathyusha E, Gomte SS, Ahmed H, Prabakaran A, Agrawal M, Chella N, Alexander A. Nanostructured polymer composites for bone and tissue regeneration. Int J Biol Macromol 2025; 284:137834. [PMID: 39577519 DOI: 10.1016/j.ijbiomac.2024.137834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Nanostructured polymer composites have gained significant attention in recent years for their remarkable potential in bone and tissue regeneration. Moreover, with the integration of 3D printing technology, these composites hold promise for use in personalized medicine, where patient-specific scaffolds can be tailored to enhance therapeutic outcomes. Therefore, this review article aims to provide a comprehensive overview of the latest advancements in the development and application of nanostructured polymeric composites within the field of tissue engineering and bone regeneration. Here, the potential of biopolymers, natural polymers, and 3D-printed polymers to craft biocompatible, non-toxic, and mechanically robust composites is discussed in brief. Further, the fabrication techniques for 3D scaffolds and various forms of nanocomposites, including nanoparticles, nanocapsules, nanofibers, nanogels, and micelles for bone and tissue regeneration, are listed. Also, particular emphasis is placed on the role of nano-scaffolds and in situ hydrogels in bone and tissue regeneration. Overall, this review provides a concise and authoritative summary of the current state-of-the-art in nanostructured polymer composites for regenerative medicine, highlighting future directions and potential clinical applications.
Collapse
Affiliation(s)
- E Venkata Prathyusha
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Shyam Sudhakar Gomte
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Hafiz Ahmed
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - A Prabakaran
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad 509301, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
38
|
Schemenz V, Scoppola E, Zaslansky P, Fratzl P. Bone strength and residual compressive stress in apatite crystals. J Struct Biol 2024; 216:108141. [PMID: 39442775 DOI: 10.1016/j.jsb.2024.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Residual stresses are omnipresent in composite materials, often arising during the fabrication process. Residual compressive stresses were recently observed to develop in collagen fibrils during the process of mineralization. They have in fact been reported in a range of bony materials spanning tooth dentin to mammalian and fish bones. Treatment by heat or by irradiation have shown that compressive residual stresses up to 100 MPa can be released in the mineral by inducing damage to the protein fibers. This mini-review assembles some of the knowledge about residual stresses in bony nanocomposites and uses a composite model to argue that such stresses play a major role in enhancing the strength of bone.
Collapse
Affiliation(s)
- Victoria Schemenz
- Department for Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Germany
| | - Ernesto Scoppola
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
39
|
Robin M, Mouloungui E, Castillo Dali G, Wang Y, Saffar JL, Pavon-Djavid G, Divoux T, Manneville S, Behr L, Cardi D, Choudat L, Giraud-Guille MM, Meddahi-Pellé A, Baudimont F, Colombier ML, Nassif N. Mineralized collagen plywood contributes to bone autograft performance. Nature 2024; 636:100-107. [PMID: 39567697 PMCID: PMC11618095 DOI: 10.1038/s41586-024-08208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
Autologous bone (AB) is the gold standard for bone-replacement surgeries1, despite its limited availability and the need for an extra surgical site. Traditionally, competitive biomaterials for bone repair have focused on mimicking the mineral aspect of bone, as evidenced by the widespread clinical use of bioactive ceramics2. However, AB also exhibits hierarchical organic structures that might substantially affect bone regeneration. Here, using a range of cell-free biomimetic-collagen-based materials in murine and ovine bone-defect models, we demonstrate that a hierarchical hybrid microstructure-specifically, the twisted plywood pattern of collagen and its association with poorly crystallized bioapatite-favourably influences bone regeneration. Our study shows that the most structurally biomimetic material has the potential to stimulate bone growth, highlighting the pivotal role of physicochemical properties in supporting bone formation and offering promising prospects as a competitive bone-graft material.
Collapse
Affiliation(s)
- Marc Robin
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, Paris, France
| | - Elodie Mouloungui
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, Paris, France
| | - Gabriel Castillo Dali
- URP2496, Laboratoire Pathologies, Imagerie et Biothérapies Orofaciales, UFR d'Odontologie, Université Paris Cité, Montrouge, France
- Instituto de Ciencia de Materiales de Sevilla (ICMS), Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Yan Wang
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, Paris, France
| | - Jean-Louis Saffar
- URP2496, Laboratoire Pathologies, Imagerie et Biothérapies Orofaciales, UFR d'Odontologie, Université Paris Cité, Montrouge, France
| | - Graciela Pavon-Djavid
- Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Inserm U1148, Villetaneuse, France
| | | | - Sébastien Manneville
- Laboratoire de Physique, ENSL, CNRS, Lyon, France
- Institut Universitaire de France (IUF), Paris, France
| | | | | | | | - Marie-Madeleine Giraud-Guille
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, Paris, France
| | - Anne Meddahi-Pellé
- Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Inserm U1148, Villetaneuse, France
| | | | - Marie-Laure Colombier
- URP2496, Laboratoire Pathologies, Imagerie et Biothérapies Orofaciales, UFR d'Odontologie, Université Paris Cité, Montrouge, France
| | - Nadine Nassif
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, Paris, France.
| |
Collapse
|
40
|
Feng P, Liu L, Yang F, Min R, Wu P, Shuai C. Shape/properties collaborative intelligent manufacturing of artificial bone scaffold: structural design and additive manufacturing process. Biofabrication 2024; 17:012005. [PMID: 39514965 DOI: 10.1088/1758-5090/ad905f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Artificial bone graft stands out for avoiding limited source of autograft as well as susceptibility to infection of allograft, which makes it a current research hotspot in the field of bone defect repair. However, traditional design and manufacturing method cannot fabricate bone scaffold that well mimics complicated bone-like shape with interconnected porous structure and multiple properties akin to human natural bone. Additive manufacturing, which can achieve implant's tailored external contour and controllable fabrication of internal microporous structure, is able to form almost any shape of designed bone scaffold via layer-by-layer process. As additive manufacturing is promising in building artificial bone scaffold, only combining excellent structural design with appropriate additive manufacturing process can produce bone scaffold with ideal biological and mechanical properties. In this article, we sum up and analyze state of art design and additive manufacturing methods for bone scaffold to realize shape/properties collaborative intelligent manufacturing. Scaffold design can be mainly classified into design based on unit cells and whole structure, while basic additive manufacturing and 3D bioprinting are the recommended suitable additive manufacturing methods for bone scaffold fabrication. The challenges and future perspectives in additive manufactured bone scaffold are also discussed.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Lingxi Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Rui Min
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Ping Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, People's Republic of China
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
41
|
Brochu BM, Sturm SR, Kawase De Queiroz Goncalves JA, Mirsky NA, Sandino AI, Panthaki KZ, Panthaki KZ, Nayak VV, Daunert S, Witek L, Coelho PG. Advances in Bioceramics for Bone Regeneration: A Narrative Review. Biomimetics (Basel) 2024; 9:690. [PMID: 39590262 PMCID: PMC11592113 DOI: 10.3390/biomimetics9110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Large osseous defects resulting from trauma, tumor resection, or fracture render the inherent ability of the body to repair inadequate and necessitate the use of bone grafts to facilitate the recovery of both form and function of the bony defect sites. In the United States alone, a large number of bone graft procedures are performed yearly, making it an essential area of investigation and research. Synthetic grafts represent a potential alterative to autografts due to their patient-specific customizability, but currently lack widespread acceptance in the clinical space. Early in their development, non-autologous bone grafts composed of metals such as stainless steel and titanium alloys were favorable due to their biocompatibility, resistance to corrosion, mechanical strength, and durability. However, since their inception, bioceramics have also evolved as viable alternatives. This review aims to present an overview of the fundamental prerequisites for tissue engineering devices using bioceramics as well as to provide a comprehensive account of their historical usage and significant advancements over time. This review includes a summary of commonly used manufacturing techniques and an evaluation of their use as drug carriers and bioactive coatings-for therapeutic ion/drug release, and potential avenues to further enhance hard tissue regeneration.
Collapse
Affiliation(s)
- Baylee M. Brochu
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Savanah R. Sturm
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | - Kayaan Zubin Panthaki
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karl Zubin Panthaki
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, 345 E. 24th St., Room 806, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
42
|
Pandit A, Indurkar A, Locs J, Haugen HJ, Loca D. Calcium Phosphates: A Key to Next-Generation In Vitro Bone Modeling. Adv Healthc Mater 2024; 13:e2401307. [PMID: 39175382 PMCID: PMC11582516 DOI: 10.1002/adhm.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/06/2024] [Indexed: 08/24/2024]
Abstract
The replication of bone physiology under laboratory conditions is a prime target behind the development of in vitro bone models. The model should be robust enough to elicit an unbiased response when stimulated experimentally, giving reproducible outcomes. In vitro bone tissue generation majorly requires the availability of cellular components, the presence of factors promoting cellular proliferation and differentiation, efficient nutrient supply, and a supporting matrix for the cells to anchor - gaining predefined topology. Calcium phosphates (CaP) are difficult to ignore while considering the above requirements of a bone model. Therefore, the current review focuses on the role of CaP in developing an in vitro bone model addressing the prerequisites of bone tissue generation. Special emphasis is given to the physico-chemical properties of CaP that promote osteogenesis, angiogenesis and provide sufficient mechanical strength for load-bearing applications. Finally, the future course of action is discussed to ensure efficient utilization of CaP in the in vitro bone model development field.
Collapse
Affiliation(s)
- Ashish Pandit
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | - Abhishek Indurkar
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | - Janis Locs
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | | | - Dagnija Loca
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| |
Collapse
|
43
|
Pan P, Hu Y, Wang C, Liu Q, Hu L, Yu H, Fan Y, Chen L, Chen J. Abalone shells bioenhanced carboxymethyl chitosan/collagen/PLGA bionic hybrid scaffolds achieving biomineralization and osteogenesis for bone regeneration. Int J Biol Macromol 2024; 279:135018. [PMID: 39208911 DOI: 10.1016/j.ijbiomac.2024.135018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Inspired by the formation of natural abalone shells (AS) similar to calcium salt deposition in human orthodontics, AS is used as an emulsifier in the scaffold to solve the problem of coexistence of natural and synthetic polymers and promote new bone formation. In this study, AS-stabilized and reinforced carboxymethyl chitosan/collagen/PLGA porous bionic composite scaffolds (AS/CMCS/Col/PLGA) were fabricated through the emulsion polymerization and bionic hybrid technology. As the addition of AS increased from 0.75 to 3.0 wt%, homogeneous distribution of flower-like particles could be observed on the inner surface of the scaffold, and its mechanical properties were improved. Particularly, 3.0 wt% AS-doped scaffolds (S3 and C + S3) exhibited excellent inorganic mineral deposition and osteoblast proliferation and differentiation abilities in vitro. In a SD rat calvarial defect model, they effectively promoted new bone formation in the defect and accelerated expression of osteogenic-angiogenic related proteins (COLI, OCN, VEGF). By virtue of its combined merits including good mechanical properties, inducing mineralization crystallization and facilitating osteogenesis, the 3.0 wt% AS-doped scaffold promises to be employed as a novel bone repair material for bone tissue regeneration.
Collapse
Affiliation(s)
- Panpan Pan
- Marine College, Shandong University, Weihai 264209, China
| | - Yimin Hu
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Hui Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Yinuo Fan
- Marine College, Shandong University, Weihai 264209, China
| | - Li Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; State Key Laboratory of Mineral Processing, Beijing 100160, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China.
| |
Collapse
|
44
|
Foley B, Nadaud F, Selmane M, Valentin L, Mezzetti A, Egles C, Jolivalt C, El Kirat K, Guibert C, Landoulsi J. Seriation of Enzyme-Functionalized Multilayers for the Design of Scalable Biomimetic Mineralized Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402128. [PMID: 39246187 DOI: 10.1002/smll.202402128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Indexed: 09/10/2024]
Abstract
Biomimetic hydroxyapatites are widely explored for their potential applications in the repair of mineralized tissues, particularly dental enamel, which is acellular and, thus, not naturally reformed after damage. Enamel is formed with a highly-controlled hierarchical structure, which is difficult to replicate up to the macroscale. A biomimetic approach is thus warranted, based on the same principles that drive biomineralization in vivo. Herein, a strategy for the design of enamel-like architectures is described, utilizing enzymes embedded in polyelectrolyte multilayers to generate inorganic phosphate locally, and provide a favorable chemical environment for the nucleation and growth of minerals. Moreover, a method is proposed to build up seriated mineral layers with scalable thicknesses, continuous mineral growth, and tunable morphology. Results show the outstanding growth of cohesive mineral layers, yielding macroscopic standalone fluoride and/or carbonate-substituted hydroxyapatite materials with comparable crystal structure and composition to native human mineralized tissues. This strategy presents a promising path forward for the biomimetic design of biomineral materials, particularly relevant for restorative applications, with an exquisite level of synthetic control over multiple orders of magnitude.
Collapse
Affiliation(s)
- Brittany Foley
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Frédéric Nadaud
- Service Analyses Physico-Chimiques SAPC, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Mohamed Selmane
- Fédération de Chimie et Matériaux de Paris-Centre (FCMat) FR2482, Paris, F-75005, France
| | - Laetitia Valentin
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Alberto Mezzetti
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Christophe Egles
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, Polymères Biopolymères et Surfaces (PBS, UMR 6270), 55 Rue Saint-Germain, Évreux, 27 000, France
| | - Claude Jolivalt
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Karim El Kirat
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Clément Guibert
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| |
Collapse
|
45
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
46
|
Fang J, Wang X, Lai H, Li W, Yao X, Pan Z, Mao R, Yan Y, Xie C, Lin J, Sun W, Li R, Wang J, Dai J, Xu K, Yu X, Xu T, Duan W, Qian J, Ouyang H, Dai X. Decoding the mechanical characteristics of the human anterior cruciate ligament entheses through graduated mineralization interfaces. Nat Commun 2024; 15:9253. [PMID: 39462005 PMCID: PMC11513108 DOI: 10.1038/s41467-024-53542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The anterior cruciate ligament is anchored to the femur and tibia via specialized interfaces known as entheses. These play a critical role in ligament homeostasis and joint stability by transferring forces, varying in magnitude and direction between structurally and functionally dissimilar tissues. However, the precise structural and mechanical characteristics underlying the femoral and tibial entheses and their intricate interplay remain elusive. In this study, two thin-graduated mineralization regions in the femoral enthesis (~21 μm) and tibial enthesis (~14 μm) are identified, both exhibiting distinct biomolecular compositions and mineral assembly patterns. Notably, the femoral enthesis interface exhibits progressively maturing hydroxyapatites, whereas the mineral at the tibial enthesis interface region transitions from amorphous calcium phosphate to hydroxyapatites with increasing crystallinity. Proteomics results reveal that Matrix Gla protein uniquely enriched at the tibial enthesis interface, may stabilize amorphous calcium phosphate, while C-type lectin domain containing 11 A, enriched at the femoral enthesis interface, could facilitate the interface mineralization. Moreover, the finite element analysis indicates that the femoral enthesis model exhibited higher resistance to shearing, whereas the tibial enthesis model contributes to tensile resistance, suggesting that the discrepancy in biomolecular expression and the corresponding mineral assembly heterogeneities collectively contribute to the superior mechanical properties of both the femoral enthesis and tibial enthesis models. These findings provide novel perspectives on the structure-function relationships of anterior cruciate ligament entheses, paving the way for improved management of anterior cruciate ligament injury and regeneration.
Collapse
Affiliation(s)
- Jinghua Fang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhao Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Huinan Lai
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wenyue Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Zongyou Pan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Renwei Mao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yiyang Yan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Xie
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China
| | - Junxin Lin
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Sun
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jiacheng Dai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinning Yu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Wangping Duan
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China.
| | - Hongwei Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China.
| | - Xuesong Dai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
47
|
Ford EM, Hilderbrand AM, Kloxin AM. Harnessing multifunctional collagen mimetic peptides to create bioinspired stimuli responsive hydrogels for controlled cell culture. J Mater Chem B 2024; 12:9600-9621. [PMID: 39211975 PMCID: PMC11362912 DOI: 10.1039/d4tb00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The demand for synthetic soft materials with bioinspired structures continues to grow. Material applications range from in vitro and in vivo tissue mimics to therapeutic delivery systems, where well-defined synthetic building blocks offer precise and reproducible property control. This work examines a synthetic assembling peptide, specifically a multifunctional collagen mimetic peptide (mfCMP) either alone or with reactive macromers, for the creation of responsive hydrogels that capture aspects of soft collagen-rich tissues. We first explored how buffer choice impacts mfCMP hierarchical assembly, in particular, peptide melting temperature, fibril morphology, and ability to form physical hydrogels. Assembly in physiologically relevant buffer resulted in collagen-like fibrillar structures and physically assembled hydrogels with shear-thinning (as indicated through strain-yielding) and self-healing properties. Further, we aimed to create fully synthetic, composite peptide-polymer hydrogels with dynamic responses to various stimuli, inspired by the extracellular matrix (ECM). Specifically, we established mfCMP-poly(ethylene glycol) (PEG) hydrogel compositions that demonstrate increasing non-linear viscoelasticity in response to applied strain as the amount of assembled mfCMP content increases. Furthermore, the thermal responsiveness of mfCMP physical crosslinks was harnessed to manipulate the composite hydrogel mechanical properties in response to changes in temperature. Finally, cells relevant in wound healing, human lung fibroblasts, were encapsulated within these peptide-polymer hydrogels to explore the impact of increased mfCMP, and the resulting changes in viscoelasticity, on cell response. This work establishes mfCMP building blocks as versatile tools for creating hybrid and adaptable systems with applications ranging from injectable shear-thinning materials to responsive interfaces and synthetic ECMs for tissue engineering.
Collapse
Affiliation(s)
- Eden M Ford
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Amber M Hilderbrand
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
48
|
Blázquez-Carmona P, Mora-Macías J, Pajares A, Mármol Á, Reina-Romo E. On the influence of structural and chemical properties on the elastic modulus of woven bone under healing. Front Bioeng Biotechnol 2024; 12:1476473. [PMID: 39411059 PMCID: PMC11473380 DOI: 10.3389/fbioe.2024.1476473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Woven bone, a heterogeneous and temporary tissue in bone regeneration, is remodeled by osteoblastic and osteoclastic activity and shaped by mechanical stress to restore healthy tissue properties. Characterizing this tissue at different length scales is crucial for developing micromechanical models that optimize mechanical parameters, thereby controlling regeneration and preventing non-unions. Methods This study examines the temporal evolution of the mechanical properties of bone distraction callus using nanoindentation, ash analysis, micro-CT for trabecular microarchitecture, and Raman spectroscopy for mineral quality. It also establishes single- and two-parameter power laws based on experimental data to predict tissue-level and bulk mechanical properties. Results At the macro-scale, the tissue exhibited a considerable increase in bone fraction, controlled by the widening of trabeculae. The Raman mineral-to-matrix ratios increased to cortical levels during regeneration, but the local elastic modulus remained lower. During healing, the tissue underwent changes in ash fraction and in the percentages of Calcium and Phosphorus. Six statistically significant power laws were identified based on the ash fraction, bone fraction, and chemical and Raman parameters. Discussion The microarchitecture of woven bone plays a more significant role than its chemical composition in determining the apparent elastic modulus of the tissue. Raman parameters were demonstrated to provide more significant power laws correlations with the micro-scale elastic modulus than mineral content from ash analysis.
Collapse
Affiliation(s)
| | - Juan Mora-Macías
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Huelva, Spain
| | - Antonia Pajares
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Badajoz, Spain
| | - Álvaro Mármol
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Huelva, Spain
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
49
|
Sakr C, Al-Mosawi M, Grünewald TA, Cook P, Tack P, Vincze L, Micha JS, Anderson P, Al-Jawad M, Lichtenegger HC. Energy-dispersive Laue diffraction analysis of the influence of statherin and histatin on the crystallographic texture during human dental enamel demineralization. J Appl Crystallogr 2024; 57:1514-1527. [PMID: 39387092 PMCID: PMC11460385 DOI: 10.1107/s1600576724007180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/20/2024] [Indexed: 10/12/2024] Open
Abstract
Energy-dispersive Laue diffraction (EDLD) is a powerful method to obtain position-resolved texture information in inhomogeneous biological samples without the need for sample rotation. This study employs EDLD texture scanning to investigate the impact of two salivary peptides, statherin (STN) and histatin-1 (HTN) 21 N-terminal peptides (STN21 and HTN21), on the crystallographic structure of dental enamel. These proteins are known to play crucial roles in dental caries progression. Three healthy incisors were randomly assigned to three groups: artificially demineralized, demineralized after HTN21 peptide pre-treatment and demineralized after STN21 peptide pre-treatment. To understand the micro-scale structure of the enamel, each specimen was scanned from the enamel surface to a depth of 250 µm using microbeam EDLD. Via the use of a white beam and a pixelated detector, where each pixel functions as a spectrometer, pole figures were obtained in a single exposure at each measurement point. The results revealed distinct orientations of hydroxyapatite crystallites and notable texture variation in the peptide-treated demineralized samples compared with the demineralized control. Specifically, the peptide-treated demineralized samples exhibited up to three orientation populations, in contrast to the demineralized control which displayed only a single orientation population. The texture index of the demineralized control (2.00 ± 0.21) was found to be lower than that of either the STN21 (2.32 ± 0.20) or the HTN21 (2.90 ± 0.46) treated samples. Hence, texture scanning with EDLD gives new insights into dental enamel crystallite orientation and links the present understanding of enamel demineralization to the underlying crystalline texture. For the first time, the feasibility of EDLD texture measurements for quantitative texture evaluation in demineralized dental enamel samples is demonstrated.
Collapse
Affiliation(s)
- Charbel Sakr
- University of Natural Resources and Life Sciences (BOKU)ViennaAustria
- European Synchrotron Radiation FacilityGrenobleFrance
| | | | | | - Philip Cook
- University of LeedsLeedsUnited Kingdom
- Danish Technological InstituteHøje TaastrupDenmark
| | | | | | | | | | | | | |
Collapse
|
50
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. Collagen Mineralization Decreases NK Cell-Mediated Cytotoxicity of Breast Cancer Cells via Increased Glycocalyx Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311505. [PMID: 38279892 PMCID: PMC11471288 DOI: 10.1002/adma.202311505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|