1
|
Shi L, Ma Y, Hua Q, Hao J, Zhang Q, Ye Y, Yang L, Liu Q, Chen P, Liu Z, Shi P. Evolutionary repeatability of chromatin accessibility in the hippocampus between echolocating bats and soft-furred tree mice. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2935-7. [PMID: 40374988 DOI: 10.1007/s11427-024-2935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/11/2025] [Indexed: 05/18/2025]
Abstract
Echolocation is a compelling example of behavioral convergence in mammals and has evolved independently in at least five mammalian lineages. Despite increasing evidence of convergent evolution in protein-coding regions among echolocating mammals, the evolution of gene regulatory activity underlying mammalian echolocation remains undetermined. Here, we systematically investigate chromatin accessibility and transcriptomic data from the hippocampi of echolocating bats and soft-furred tree mice, as the hippocampus plays a crucial role in processing echolocation signals. Our results showed significant evolutionary repeatability in accessible chromatin regions among echolocating mammals compared with their non-echolocating counterparts. An analysis that paired gene expression with chromatin accessibility revealed that echolocating mammals have more complex gene regulatory networks in the hippocampus than non-echolocating mammals. This complexity is primarily attributed to the observed evolutionary repeatability in accessible chromatin regions among echolocating mammals. The shared gene regulations among echolocating mammals are particularly enriched in functional terms related to synaptic function, which is supported by the higher synaptic and mitochondrial densities in soft-furred tree mice than in laboratory mice. These findings demonstrate significant evolutionary repeatability of gene regulatory activity in the hippocampus among echolocating mammalian species, suggesting crucial contributions of gene regulatory activities to convergent phenotypes in mammals.
Collapse
Affiliation(s)
- Luye Shi
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuanshuo Ma
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qinyang Hua
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Junjun Hao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qin Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yaxin Ye
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lu Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qi Liu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Peng Chen
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhen Liu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming, 650201, China.
| | - Peng Shi
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
2
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. Proc Natl Acad Sci U S A 2025; 122:e2500553122. [PMID: 40314967 PMCID: PMC12088440 DOI: 10.1073/pnas.2500553122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Current genome sequencing initiatives across a wide range of life forms offer significant potential to enhance our understanding of evolutionary relationships and support transformative biological and medical applications. Species trees play a central role in many of these applications; however, despite the widespread availability of genome assemblies, accurate inference of species trees remains challenging due to the limited automation, substantial domain expertise, and computational resources required by conventional methods. To address this limitation, we present ROADIES, a fully automated pipeline to infer species trees starting from raw genome assemblies. In contrast to the prominent approach, ROADIES incorporates a unique strategy of randomly sampling segments of the input genomes to generate gene trees. This eliminates the need for predefining a set of loci, limiting the analyses to a fixed number of genes, and performing the cumbersome gene annotation and/or whole genome alignment steps. ROADIES also eliminates the need to infer orthology by leveraging existing discordance-aware methods that allow multicopy genes. Using the genomic datasets from large-scale sequencing efforts across four diverse life forms (placental mammals, pomace flies, birds, and budding yeasts), we show that ROADIES infers species trees that are comparable in quality to the state-of-the-art studies but in a fraction of the time and effort, including on challenging datasets with rampant gene tree discordance and complex polyploidy. With its speed, accuracy, and automation, ROADIES has the potential to vastly simplify species tree inference, making it accessible to a broader range of scientists and applications.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego, CA92093
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| |
Collapse
|
3
|
Qin T, Zhang H, Zou Z. Unveiling cell-type-specific mode of evolution in comparative single-cell expression data. J Genet Genomics 2025:S1673-8527(25)00131-6. [PMID: 40345525 DOI: 10.1016/j.jgg.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
While methodology for determining the mode of evolution in coding sequences has been well established, evaluation of adaptation events in emerging types of phenotype data needs further development. Here we propose an analysis framework (expression variance decomposition, EVaDe) for comparative single-cell expression data based on phenotypic evolution theory. After decomposing the gene expression variance into separate components, we use two strategies to identify genes exhibiting large between-taxon expression divergence and small within-cell-type expression noise in certain cell types, attributing this pattern to putative adaptive evolution. In a dataset of primate prefrontal cortex, we find that such human-specific key genes enrich with neurodevelopment-related functions, while most other genes exhibit neutral evolution patterns. Specific neuron types are found to harbor more of these key genes than other cell types, thus likely to have experienced more extensive adaptation. Reassuringly, at molecular sequence level, the key genes are significantly associated with the rapidly evolving conserved non-coding elements. An additional case analysis comparing the naked mole-rat (NMR) with the mouse suggests that innate-immunity-related genes and cell types have undergone putative expression adaptation in NMR. Overall, the EVaDe framework may effectively probe adaptive evolution mode in single-cell expression data.
Collapse
Affiliation(s)
- Tian Qin
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hongjiu Zhang
- Microsoft Canada Development Centre, Vancouver, British Columbia, V5C 1G1, Canada
| | - Zhengting Zou
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
4
|
Walker-Hale N, Guerrero-Rubio MA, Brockington SF. Multiple transitions to high l-DOPA 4,5-dioxygenase activity reveal molecular pathways to convergent betalain pigmentation in Caryophyllales. THE NEW PHYTOLOGIST 2025. [PMID: 40325884 DOI: 10.1111/nph.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025]
Abstract
Many specialized metabolic pathways have evolved convergently in plants, but distinguishing multiple origins from alternative evolutionary scenarios can be difficult. Here, we explore the evolution of l-3,4-dihydroxyphenylalanine (l-DOPA) 4,5-dioxygenase (DODA) enzymes to better resolve the convergent evolution of the betalain biosynthetic pathway within the flowering plant order Caryophyllales. We use yeast-based heterologous assays to quantify enzymatic activity of extant proteins and then employ ancestral sequence reconstruction to resurrect and assay ancestral DODA enzymes. We use a combination of ancestral sequence reconstruction, model-based methods, and structural modelling to describe patterns of molecular convergence. We confirm that high l-DOPA 4,5-dioxygenase activity is polyphyletic and show that high activity DODAs evolved at least three times from ancestral proteins with low activity. We show that molecular convergence is concentrated proximally to the binding pockets but also appears distally to active sites. Moreover, our analysis also suggests that many unique and divergent substitutions contribute to the evolution of DODA. Given the key role of DODA in betalain biosynthesis, our analysis further supports the convergent origins of betalains and illustrates how the iterative evolution of betalain biosynthesis has drawn on a complex mixture of convergent, divergent, and unique variation.
Collapse
Affiliation(s)
- Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
5
|
Duchêne DA, Chowdhury AA, Yang J, Iglesias-Carrasco M, Stiller J, Feng S, Bhatt S, Gilbert MTP, Zhang G, Tobias JA, Ho SYW. Drivers of avian genomic change revealed by evolutionary rate decomposition. Nature 2025; 641:1208-1216. [PMID: 40108459 PMCID: PMC12119353 DOI: 10.1038/s41586-025-08777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Modern birds have diversified into a striking array of forms, behaviours and ecological roles. Analyses of molecular evolutionary rates can reveal the links between genomic and phenotypic change1-4, but disentangling the drivers of rate variation at the whole-genome scale has been difficult. Using comprehensive estimates of traits and evolutionary rates across a family-level phylogeny of birds5,6, we find that genome-wide mutation rates across lineages are predominantly explained by clutch size and generation length, whereas rate variation across genes is driven by the content of guanine and cytosine. Here, to find the subsets of genes and lineages that dominate evolutionary rate variation in birds, we estimated the influence of individual lineages on decomposed axes of gene-specific evolutionary rates. We find that most of the rate variation occurs along recent branches of the tree, associated with present-day families of birds. Additional tests on axes of rate variation show rapid changes in microchromosomes immediately after the Cretaceous-Palaeogene transition. These apparent pulses of evolution are consistent with major changes in the genetic machineries for meiosis, heart performance, and RNA splicing, surveillance and translation, and correlate with the ecological diversity reflected in increased tarsus length. Collectively, our analyses paint a nuanced picture of avian evolution, revealing that the ancestors of the most diverse lineages of birds underwent major genomic changes related to mutation, gene usage and niche expansion in the early Palaeogene period.
Collapse
Affiliation(s)
- David A Duchêne
- Section of Health Data Science and AI, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Jingyi Yang
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Maider Iglesias-Carrasco
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Doñana Biological Station-Spanish Research Council CSIC, Seville, Spain
| | - Josefin Stiller
- Centre for Biodiversity Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Shaohong Feng
- Center for Evolutionary and Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
| | - Samir Bhatt
- Section of Health Data Science and AI, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Natural History, University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Ding Y, Zou M, Guo B. Genomic signatures associated with recurrent scale loss in cyprinid fish. Integr Zool 2025; 20:535-550. [PMID: 38816909 DOI: 10.1111/1749-4877.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Scale morphology represents a fundamental feature of fish and a key evolutionary trait underlying fish diversification. Despite frequent and recurrent scale loss throughout fish diversification, comprehensive genome-wide analyses of the genomic signatures associated with scale loss in divergent fish lineages remain scarce. In the current study, we investigated genome-wide signatures, specifically convergent protein-coding gene loss, amino acid substitutions, and cis-regulatory sequence changes, associated with recurrent scale loss in two divergent Cypriniformes lineages based on large-scale genomic, transcriptomic, and epigenetic data. Results demonstrated convergent changes in many genes related to scale formation in divergent scaleless fish lineages, including loss of P/Q-rich scpp genes (e.g. scpp6 and scpp7), accelerated evolution of non-coding elements adjacent to the fgf and fgfr genes, and convergent amino acid changes in genes (e.g. snap29) under relaxed selection. Collectively, these findings highlight the existence of a shared genetic architecture underlying recurrent scale loss in divergent fish lineages, suggesting that evolutionary outcomes may be genetically repeatable and predictable in the convergence of scale loss in fish.
Collapse
Affiliation(s)
- Yongli Ding
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| |
Collapse
|
7
|
Ghosh OM, Kinsler G, Good BH, Petrov DA. Low-dimensional genotype-fitness mapping across divergent environments suggests a limiting functions model of fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.05.647371. [PMID: 40291729 PMCID: PMC12026818 DOI: 10.1101/2025.04.05.647371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
A central goal in evolutionary biology is to be able to predict the effect of a genetic mutation on fitness. This is a major challenge because fitness depends both on phenotypic changes due to the mutation, and how these phenotypes map onto fitness in a particular environment. Genotype, phenotype, and environment spaces are all extremely complex, rendering bottom-up prediction unlikely. Here we show, using a large collection of adaptive yeast mutants, that fitness across a set of lab environments can be well-captured by top-down, low-dimensional linear models that generate abstract genotype-phenotype-fitness maps. We find that these maps are low-dimensional not only in the environment where the adaptive mutants evolved, but also in more divergent environments. We further find that the genotype-phenotype-fitness spaces implied by these maps overlap only partially across environments. We argue that these patterns are consistent with a "limiting functions" model of fitness, whereby only a small number of limiting functions can be modified to affect fitness in any given environment. The pleiotropic side-effects on non-limiting functions are effectively hidden from natural selection locally, but can be revealed globally. These results combine to emphasize the importance of environmental context in genotype-phenotype-fitness mapping, and have implications for the predictability and trajectory of evolution in complex environments.
Collapse
|
8
|
Xu S, Shan L, Tian R, Yu Z, Sun D, Zhang Z, Seim I, Zhou M, Sun L, Liang N, Zhang Q, Chai S, Yin D, Deme L, Wu T, Chen Y, Xu Z, Zheng Y, Ren W, Yang G. Multi-level genomic convergence of secondary aquatic adaptation in marine mammals. Innovation (N Y) 2025; 6:100798. [PMID: 40098664 PMCID: PMC11910941 DOI: 10.1016/j.xinn.2025.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/01/2025] [Indexed: 03/19/2025] Open
Abstract
Marine mammals provide a valuable model for studying the molecular basis of convergent evolution during secondary aquatic adaptation. Using multi-omics data and functional experiments, including CRISPR-Cas9 mouse models and luciferase reporter assays, this study explored the molecular mechanisms driving this transition across coding regions, regulatory elements, and genomic architecture. Convergent amino acid substitutions in APPL1 P378L and NEIL1 E71G were found to promote lipid accumulation and suppress cancer cell proliferation, likely contributing to the evolution of extensive blubber layers and cancer resistance. Convergently evolved conserved non-exonic elements (CNEs) and lineage-specific regulatory variations were shown to influence the activity of nearby genes (e.g., NKX3-2, SOX9, HAND2), shaping cetacean limb phenotypes. Additionally, convergent shifts in topologically associating domains (TADs) across cetaceans and pinnipeds were implicated in the regulation of ASXL3 and FAM43B expression, playing a role in the formation of thickened blubber layers and mitigating cancer susceptibility. Structural variations within conserved TADs were associated with the expression of neuronal genes, including NUP153 and ID4, potentially driving cognitive and social adaptations. These findings provide novel insights into the molecular foundations of the convergent evolution of secondary aquatic adaptations in mammals.
Collapse
Affiliation(s)
- Shixia Xu
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lei Shan
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ran Tian
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhenpeng Yu
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Di Sun
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhenhua Zhang
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4002, Australia
| | - Ming Zhou
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Linxia Sun
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Na Liang
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qian Zhang
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Simin Chai
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Daiqing Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Luoying Deme
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tianzhen Wu
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yongjie Chen
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhikang Xu
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yu Zheng
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
9
|
Zhang C, Nielsen R, Mirarab S. CASTER: Direct species tree inference from whole-genome alignments. Science 2025; 387:eadk9688. [PMID: 39847611 PMCID: PMC12038793 DOI: 10.1126/science.adk9688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/05/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Genomes contain mosaics of discordant evolutionary histories, challenging the accurate inference of the tree of life. Although genome-wide data are routinely used for discordance-aware phylogenomic analyses, because of modeling and scalability limitations, the current practice leaves out large chunks of genomes. As more high-quality genomes become available, we urgently need discordance-aware methods to infer the tree directly from a multiple genome alignment. In this study, we introduce Coalescence-Aware Alignment-Based Species Tree Estimator (CASTER), a theoretically justified site-based method that eliminates the need to predefine recombination-free loci. CASTER is scalable to hundreds of mammalian whole genomes. We demonstrate the accuracy and scalability of CASTER in simulations that include recombination and apply CASTER to several biological datasets, showing that its per-site scores can reveal both biological and artifactual patterns of discordance across the genome.
Collapse
Affiliation(s)
- Chao Zhang
- Bioinformatics and Systems Biology, University of
California San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA
- Integrative Biology Department, University of California
Berkeley, 110 Sproul Hall, Berkeley, 94704, CA, USA
- Globe Institute, University of Copenhagen, Øster
Voldgade 5-7, Copenhagen, 1350, Denmark
| | - Rasmus Nielsen
- Integrative Biology Department, University of California
Berkeley, 110 Sproul Hall, Berkeley, 94704, CA, USA
- Globe Institute, University of Copenhagen, Øster
Voldgade 5-7, Copenhagen, 1350, Denmark
| | - Siavash Mirarab
- Electrical and Computer Engineering, University of
California San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA
| |
Collapse
|
10
|
Dong S, Li X, Liu Q, Zhu T, Tian A, Chen N, Tu X, Ban L. Comparative genomics uncovers evolutionary drivers of locust migratory adaptation. BMC Genomics 2025; 26:203. [PMID: 40021962 PMCID: PMC11869625 DOI: 10.1186/s12864-025-11376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Locust migration is one of the main causes of locust plagues. While existing research has highlighted the adaptive migratory capabilities of locusts, the evolutionary patterns of their migration remain elusive. This study aims to explore these evolutionary patterns of locust migratory behavior at the genomic level. To achieve this, we conducted comparative genomics analysis using genomic data from 10 locust species with diverse migratory tendencies. RESULTS We identified 1064 genes showing signatures of positive selection in five migratory locust species using a dN/dS model. The BUSTED-PH model revealed 116 genes associated with migratory phenotypes. Gene ontology enrichment analysis indicated that these genes were predominantly related to metabolism and mitochondria-related pathways through both methods. Additionally, the evolutionary rate (RER) analysis between migratory and non-migratory locusts revealed significant divergence in energy metabolism pathways. Notably, of the genes analyzed, the SETX gene consistently showed evidence of positive selection across all five migratory species. CONCLUSIONS The findings suggest that the evolution of migratory behavior is associated with increased selective pressure on metabolism and mitochondria-related pathways. Hundreds of genes undergo selective changes during repetitive transitions to migratory behavior. These findings enhance our understanding of the genetic and phenotypic relationships underlying different locust migratory behaviors, providing important data for understanding the biological mechanisms behind locust outbreaks.
Collapse
Affiliation(s)
- Sujuan Dong
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinghua Li
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, 510640, China
| | - Tao Zhu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Aiwei Tian
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Nuo Chen
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiongbing Tu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Liping Ban
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Clark FE, Burdass J, Kavanagh A, King A. Palaeognath birds innovate to solve a novel foraging problem. Sci Rep 2025; 15:4512. [PMID: 39979404 PMCID: PMC11842627 DOI: 10.1038/s41598-025-88217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
The ability to innovate implies flexible cognition, and is used as a broad metric of intelligence. Innovation in birds has been intensively studied in the larger and more taxonomically diverse Neognathae clade (particularly crows and parrots) and overlooked in the smaller and more ancestral Palaeognathae clade. The current study provides the first known evidence of technical innovation in palaeognath birds. We tested the ability of nine individuals of three species to move a hole towards a chamber to access a food reward. This problem was different to traditional innovation puzzle-boxes where an obstacle is moved away from a food chamber. Three emus and one rhea produced a wheel-turning innovation, moving the hole in the most efficient direction (closer to the nearest food item) in 90% of cases. One rhea dismantled the task twice by removing the central bolt, which we suggest is a second type of innovation, and it did not persist once they innovated the wheel turning solution. Ostriches did not innovate. We classify innovation in palaeognaths as low level/simplistic, relying on general exploration and asocial trial and error learning. Our research suggests that technical innovation may have evolved far earlier in birds than previously thought, and palaeognath birds are a compelling taxonomic group for further cognitive research.
Collapse
Affiliation(s)
- Fay E Clark
- School of Psychological Science, University of Bristol, Bristol, BS8 1TU, UK.
| | - Jasmine Burdass
- School of Psychological Science, University of Bristol, Bristol, BS8 1TU, UK
| | - Annalise Kavanagh
- School of Psychological Science, University of Bristol, Bristol, BS8 1TU, UK
| | - Annabel King
- School of Psychological Science, University of Bristol, Bristol, BS8 1TU, UK
| |
Collapse
|
12
|
Cheng Y, Miller MJ, Lei F. Molecular Innovations Shaping Beak Morphology in Birds. Annu Rev Anim Biosci 2025; 13:99-119. [PMID: 39546421 DOI: 10.1146/annurev-animal-030424-074906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The beak, a pivotal evolutionary trait characterized by high morphological diversity and plasticity, has enabled birds to survive mass extinction events and subsequently radiate into diverse ecological niches worldwide. This remarkable ecological adaptability underscores the importance of uncovering the molecular mechanisms shaping avian beak morphology, particularly benefiting from the rapidly advancing archives of genomics and epigenomics. We review the latest advancements in understanding how genetic and epigenetic innovations control or regulate beak development and drive beak morphological adaptation and diversification over the past two decades. We conclude with several recommendations for future endeavors, expanding to more bird lineages, with a focus on beak shape and the lower beak, and conducting functional experiments. By directing research efforts toward these aspects and integrating advanced omics techniques, the complex molecular mechanisms involved in avian beak evolution and morphogenesis will be deeply interpreted.
Collapse
Affiliation(s)
- Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
- College of Life Science, Hebei University, Baoding, China
| | | | - Fumin Lei
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
13
|
Illera JC, Rando JC, Melo M, Valente L, Stervander M. Avian Island Radiations Shed Light on the Dynamics of Adaptive and Nonadaptive Radiation. Cold Spring Harb Perspect Biol 2024; 16:a041451. [PMID: 38621823 PMCID: PMC11610763 DOI: 10.1101/cshperspect.a041451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Understanding the mechanisms underlying species formation and differentiation is a central goal of evolutionary biology and a formidable challenge. This understanding can provide valuable insights into the origins of the astonishing diversity of organisms living on our planet. Avian evolutionary radiations on islands have long fascinated biologists as they provide the ideal variation to study the ecological and evolutionary forces operating on the continuum between incipient lineages to complete speciation. In this review, we summarize the key insights gained from decades of research on adaptive and nonadaptive radiations of both extant and extinct insular bird species. We present a new comprehensive global list of potential avian radiations on oceanic islands, based on published island species checklists, taxonomic studies, and phylogenetic analyses. We demonstrate that our understanding of evolutionary processes is being greatly enhanced through the use of genomic tools. However, to advance the field, it is critical to complement this information with a solid understanding of the ecological and behavioral traits of both extinct and extant avian island species.
Collapse
Affiliation(s)
- Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres 33600, Asturias, Spain
| | - Juan Carlos Rando
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
| | - Martim Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Museu de História Natural e da Ciência da Universidade do Porto, Porto 4050-368, Portugal
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town 7701, South Africa
| | - Luís Valente
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 AB, The Netherlands
| | - Martin Stervander
- Bird Group, Natural History Museum, Tring HP23 6AP, Hertfordshire, United Kingdom
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, United Kingdom
| |
Collapse
|
14
|
Borstein SR, Hammer MP, O'Meara BC, McGee MD. The macroevolutionary dynamics of pharyngognathy in fishes fail to support the key innovation hypothesis. Nat Commun 2024; 15:10325. [PMID: 39609375 PMCID: PMC11605008 DOI: 10.1038/s41467-024-53141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/30/2024] [Indexed: 11/30/2024] Open
Abstract
Key innovations, traits that provide species access to novel niches, are thought to be a major generator of biodiversity. One commonly cited example of key innovation is pharyngognathy, a set of modifications to the pharyngeal jaws found in some highly species-rich fish clades such as cichlids and wrasses. Here, using comparative phylogenomics and phylogenetic comparative methods, we investigate the genomic basis of pharyngognathy and the impact of this innovation on diversification. Whole genomes resolve the relationships of fish clades with this innovation and their close relatives, but high levels of topological discordance suggest the innovation may have evolved fewer times than previously thought. Closer examination of the topology of noncoding elements accelerated in clades with the pharyngognathy innovation reveals hidden patterns of shared ancestry across putatively independent transitions to pharyngognathy. When our updated phylogenomic relationships are used alongside large-scale phylogenetic and ecological datasets, we find no evidence pharyngognathy consistently modifies the macroevolutionary landscape of trophic ecology nor does it increase diversification. Our results highlight the necessity of incorporating genomic information in studies of key innovation.
Collapse
Affiliation(s)
- Samuel R Borstein
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Michael P Hammer
- Museum and Art Gallery of the Northern Territory, Darwin, Northern Territory, Australia
| | - Brian C O'Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Museums Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Li X, Zhu K, Zhen Y. A versatile pipeline to identify convergently lost ancestral conserved fragments associated with convergent evolution of vocal learning. Brief Bioinform 2024; 26:bbae614. [PMID: 39581870 PMCID: PMC11586126 DOI: 10.1093/bib/bbae614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Molecular convergence in convergently evolved lineages provides valuable insights into the shared genetic basis of converged phenotypes. However, most methods are limited to coding regions, overlooking the potential contribution of regulatory regions. We focused on the independently evolved vocal learning ability in multiple avian lineages, and developed a whole-genome-alignment-free approach to identify genome-wide Convergently Lost Ancestral Conserved fragments (CLACs) in these lineages, encompassing noncoding regions. We discovered 2711 CLACs that are overrepresented in noncoding regions. Proximal genes of these CLACs exhibit significant enrichment in neurological pathways, including glutamate receptor signaling pathway and axon guidance pathway. Moreover, their expression is highly enriched in brain tissues associated with speech formation. Notably, several have known functions in speech and language learning, including ROBO family, SLIT2, GRIN1, and GRIN2B. Additionally, we found significantly enriched motifs in noncoding CLACs, which match binding motifs of transcriptional factors involved in neurogenesis and gene expression regulation in brain. Furthermore, we discovered 19 candidate genes that harbor CLACs in both human and multiple avian vocal learning lineages, suggesting their potential contribution to the independent evolution of vocal learning in both birds and humans.
Collapse
Affiliation(s)
- Xiaoyi Li
- School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Kangli Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Ying Zhen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
16
|
Thomas GWC, Gemmell P, Shakya SB, Hu Z, Liu JS, Sackton TB, Edwards SV. Practical Guidance and Workflows for Identifying Fast Evolving Non-Coding Genomic Elements Using PhyloAcc. Integr Comp Biol 2024; 64:1513-1525. [PMID: 38816211 PMCID: PMC11579529 DOI: 10.1093/icb/icae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Comparative genomics provides ample ways to study genome evolution and its relationship to phenotypic traits. By developing and testing alternate models of evolution throughout a phylogeny, one can estimate rates of molecular evolution along different lineages in a phylogeny and link these rates with observations in extant species, such as convergent phenotypes. Pipelines for such work can help identify when and where genomic changes may be associated with, or possibly influence, phenotypic traits. We recently developed a set of models called PhyloAcc, using a Bayesian framework to estimate rates of nucleotide substitution on different branches of a phylogenetic tree and evaluate their association with pre-defined or estimated phenotypic traits. PhyloAcc-ST and PhyloAcc-GT both allow users to define a priori a set of target lineages and then compare different models to identify loci accelerating in one or more target lineages. Whereas ST considers only one species tree across all input loci, GT considers alternate topologies for every locus. PhyloAcc-C simultaneously models molecular rates and rates of continuous trait evolution, allowing the user to ask whether the two are associated. Here, we describe these models and provide tips and workflows on how to prepare the input data and run PhyloAcc.
Collapse
Affiliation(s)
| | - Patrick Gemmell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - Subir B Shakya
- Informatics Group, Harvard University, Cambridge, MA 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Zhirui Hu
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
| | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | | | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Robinson CD, Hale MD, Cox CL, John-Alder HB, Cox RM. Effects of Testosterone on Gene Expression Are Concordant between Sexes but Divergent across Species of Sceloporus Lizards. Am Nat 2024; 204:517-532. [PMID: 39486031 DOI: 10.1086/732200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractHormones mediate sexual dimorphism by regulating sex-specific patterns of gene expression, but it is unclear how much of this regulation involves sex-specific hormone levels versus sex-specific transcriptomic responses to the same hormonal signal. Moreover, transcriptomic responses to hormones can evolve, but the extent to which hormonal pleiotropy in gene regulation is conserved across closely related species is not well understood. We addressed these issues by elevating testosterone levels in juvenile females and males of three Sceloporus lizard species before sexual divergence in circulating testosterone and then characterizing transcriptomic responses in the liver. In each species, more genes were responsive to testosterone in males than in females, suggesting that early developmental processes prime sex-specific transcriptomic responses to testosterone later in life. However, overall transcriptomic responses to testosterone were concordant between sexes, with no genes exhibiting sex-by-treatment interactions. By contrast, hundreds of genes exhibited species-by-treatment interactions, particularly when comparing distantly related species with different patterns of sexual dimorphism, suggesting evolutionary lability in gene regulation by testosterone. Collectively, our results indicate that early organizational effects may lead to sex-specific differences in the magnitude, but not the direction, of transcriptomic responses to testosterone and that the hormone-genome interface accrues regulatory changes over evolutionary time.
Collapse
|
18
|
Griffin DK, Kretschmer R, Srikulnath K, Singchat W, O'Connor RE, Romanov MN. Insights into avian molecular cytogenetics-with reptilian comparisons. Mol Cytogenet 2024; 17:24. [PMID: 39482771 PMCID: PMC11526677 DOI: 10.1186/s13039-024-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
In last 100 years or so, much information has been accumulated on avian karyology, genetics, physiology, biochemistry and evolution. The chicken genome project generated genomic resources used in comparative studies, elucidating fundamental evolutionary processes, much of it funded by the economic importance of domestic fowl (which are also excellent model species in many areas). Studying karyotypes and whole genome sequences revealed population processes, evolutionary biology, and genome function, uncovering the role of repetitive sequences, transposable elements and gene family expansion. Knowledge of the function of many genes and non-expressed or identified regulatory components is however still lacking. Birds (Aves) are diverse, have striking adaptations for flight, migration and survival and inhabit all continents most islands. They also have a unique karyotype with ~ 10 macrochromosomes and ~ 30 microchromosomes that are smaller than other reptiles. Classified into Palaeognathae and Neognathae they are evolutionarily close, and a subset of reptiles. Here we overview avian molecular cytogenetics with reptilian comparisons, shedding light on their karyotypes and genome structure features. We consider avian evolution, then avian (followed by reptilian) karyotypes and genomic features. We consider synteny disruptions, centromere repositioning, and repetitive elements before turning to comparative avian and reptilian genomics. In this context, we review comparative cytogenetics and genome mapping in birds as well as Z- and W-chromosomes and sex determination. Finally, we give examples of pivotal research areas in avian and reptilian cytogenomics, particularly physical mapping and map integration of sex chromosomal genes, comparative genomics of chicken, turkey and zebra finch, California condor cytogenomics as well as some peculiar cytogenetic and evolutionary examples. We conclude that comparative molecular studies and improving resources continually contribute to new approaches in population biology, developmental biology, physiology, disease ecology, systematics, evolution and phylogenetic systematics orientation. This also produces genetic mapping information for chromosomes active in rearrangements during the course of evolution. Further insights into mutation, selection and adaptation of vertebrate genomes will benefit from these studies including physical and online resources for the further elaboration of comparative genomics approaches for many fundamental biological questions.
Collapse
Affiliation(s)
- Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas, 96010-900, RS, Brazil
| | - Kornsorn Srikulnath
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | | | - Michael N Romanov
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, 142132, Moscow Oblast, Russia.
| |
Collapse
|
19
|
Cooper KL. The case against simplistic genetic explanations of evolution. Development 2024; 151:dev203077. [PMID: 39369308 PMCID: PMC11463953 DOI: 10.1242/dev.203077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Humans are curious to understand the causes of traits that distinguish us from other animals and that distinguish vastly different species from one another. We also have a proclivity for simple stories and sometimes tend toward seeking and accepting simple genetic explanations for large evolutionary shifts, even to a single gene. Here, I reveal how a biased expectation of mechanistic simplicity threads through the long history of evolutionary and developmental genetics. I argue, however, that expecting a simple mechanism threatens a deeper understanding of evolution, and I define the limitations for interpreting experimental evidence in evolutionary developmental genetics.
Collapse
Affiliation(s)
- Kimberly L. Cooper
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Herbert AL, Allard CAH, McCoy MJ, Wucherpfennig JI, Krueger SP, Chen HI, Gourlay AN, Jackson KD, Abbo LA, Bennett SH, Sears JD, Rhyne AL, Bellono NW, Kingsley DM. Ancient developmental genes underlie evolutionary novelties in walking fish. Curr Biol 2024; 34:4339-4348.e6. [PMID: 39332403 PMCID: PMC11552234 DOI: 10.1016/j.cub.2024.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
A critical question in biology is how new traits evolve, but studying this in wild animals remains challenging. Here, we probe the genetic basis of trait gain in sea robin fish, which have evolved specialized leg-like appendages for locomotion and digging along the ocean floor. We use genome sequencing, transcriptional profiling, and interspecific hybrid analysis to explore the molecular and developmental basis of leg formation. We identified the ancient, conserved transcription factor tbx3a as a major determinant of sensory leg development. Genome editing confirms that tbx3a is required for normal leg formation in sea robins, and for formation of enlarged central nervous system lobes, sensory papillae, and adult digging behavior. Our study establishes sea robins as a model organism for studying the evolution of major trait gain and illustrates how ancient developmental control genes can underlie novel organ formation.
Collapse
Affiliation(s)
- Amy L Herbert
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Corey A H Allard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew J McCoy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia I Wucherpfennig
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie P Krueger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Heidi I Chen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Kohle D Jackson
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa A Abbo
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | | | | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - David M Kingsley
- Howard Hughes Medical Institute Stanford University School of Medicine, Stanford, CA 02543, USA.
| |
Collapse
|
21
|
Zakon HH. Evolution: Sea robins get a leg up. Curr Biol 2024; 34:R898-R901. [PMID: 39378848 DOI: 10.1016/j.cub.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Sea robins, fish with legs, walk on the ocean bottom. They have evolved taste receptors on their legs that direct digging to access prey. Examining these structures and behaviors advances our understanding of the origin of novel phenotypes.
Collapse
Affiliation(s)
- Harold H Zakon
- Department of Neuroscience, University of Texas, Austin, TX 78712, USA; Department of Integrative Biology, University of Texas, Austin, TX 78712, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
22
|
Schraiber JG, Edge MD, Pennell M. Unifying approaches from statistical genetics and phylogenetics for mapping phenotypes in structured populations. PLoS Biol 2024; 22:e3002847. [PMID: 39383205 PMCID: PMC11493298 DOI: 10.1371/journal.pbio.3002847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/21/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024] Open
Abstract
In both statistical genetics and phylogenetics, a major goal is to identify correlations between genetic loci or other aspects of the phenotype or environment and a focal trait. In these 2 fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The disconnect between their respective approaches is becoming untenable as questions in medicine, conservation biology, and evolutionary biology increasingly rely on integrating data from within and among species, and once-clear conceptual divisions are becoming increasingly blurred. To help bridge this divide, we lay out a general model describing the covariance between the genetic contributions to the quantitative phenotypes of different individuals. Taking this approach shows that standard models in both statistical genetics (e.g., genome-wide association studies; GWAS) and phylogenetic comparative biology (e.g., phylogenetic regression) can be interpreted as special cases of this more general quantitative-genetic model. The fact that these models share the same core architecture means that we can build a unified understanding of the strengths and limitations of different methods for controlling for genetic structure when testing for associations. We develop intuition for why and when spurious correlations may occur analytically and conduct population-genetic and phylogenetic simulations of quantitative traits. The structural similarity of problems in statistical genetics and phylogenetics enables us to take methodological advances from one field and apply them in the other. We demonstrate by showing how a standard GWAS technique-including both the genetic relatedness matrix (GRM) as well as its leading eigenvectors, corresponding to the principal components of the genotype matrix, in a regression model-can mitigate spurious correlations in phylogenetic analyses. As a case study, we re-examine an analysis testing for coevolution of expression levels between genes across a fungal phylogeny and show that including eigenvectors of the covariance matrix as covariates decreases the false positive rate while simultaneously increasing the true positive rate. More generally, this work provides a foundation for more integrative approaches for understanding the genetic architecture of phenotypes and how evolutionary processes shape it.
Collapse
Affiliation(s)
- Joshua G. Schraiber
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
23
|
Tsuboi E, Ono SF, Cordeiro IR, Yu R, Kawanishi T, Koizumi M, Shigenobu S, Sheng G, Okabe M, Tanaka M. Immobilization secondary to cell death of muscle precursors with a dual transcriptional signature contributes to the emu wing skeletal pattern. Nat Commun 2024; 15:8153. [PMID: 39300061 DOI: 10.1038/s41467-024-52203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Limb reduction has occurred multiple times in tetrapod history. Among ratites, wing reductions range from mild vestigialization to complete loss, with emus (Dromaius novaehollandiae) serving as a model for studying the genetic mechanisms behind limb reduction. Here, we explore the developmental mechanisms underlying wing reduction in emu. Our analyses reveal that immobilization resulting from the absence of distal muscles contributes to skeletal shortening, fusion and left-right intraindividual variation. Expression analysis and single cell-RNA sequencing identify muscle progenitors displaying a dual lateral plate mesodermal and myogenic signature. These cells aggregate at the proximal region of wing buds and undergo cell death. We propose that this cell death, linked to the lack of distal muscle masses, underlines the morphological features and variability in skeletal elements due to reduced mechanical loading. Our results demonstrate that differential mobility during embryonic development may drive morphological diversification in vestigial structures.
Collapse
Affiliation(s)
- Eriko Tsuboi
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Satomi F Ono
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Reiko Yu
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Toru Kawanishi
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Makoto Koizumi
- Laboratory Animal Facilities, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan
| | - Shuji Shigenobu
- Trans-Omics Facility, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan.
| |
Collapse
|
24
|
Tamagawa K, Dayi M, Sun S, Hata R, Kikuchi T, Haruta N, Sugimoto A, Makino T. Evolutionary changes of noncoding elements associated with transition of sexual mode in Caenorhabditis nematodes. SCIENCE ADVANCES 2024; 10:eadn9913. [PMID: 39270031 PMCID: PMC11397494 DOI: 10.1126/sciadv.adn9913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
The transition of the sexual mode occurs widely in animal evolution. In Caenorhabditis nematodes, androdioecy, a sexual polymorphism composed of males and hermaphrodites having the ability to self-fertilize, has evolved independently multiple times. While the modification of noncoding regulatory elements likely contributed to the evolution of hermaphroditism, little is known about these changes. Here, we conducted a genome-wide analysis of conserved noncoding elements (CNEs) focusing on the evolution of hermaphroditism in Caenorhabditis nematodes. We found that, in androdioecious nematodes, mutations rapidly accumulated in CNEs' neighboring genes associated with sexual traits. Expression analysis indicate that the identified CNEs are involved in spermatogenesis in hermaphrodites and associated with the transition of gene expression from dioecious to androdioecious nematodes. Last, genome editing of a CNE neighboring laf-1 resulted in a change in its expression in the gonadal region undergoing spermatogenesis. Our bioinformatic and experimental analyses highlight the importance of CNEs in gene regulation associated with the development of hermaphrodites.
Collapse
Affiliation(s)
- Katsunori Tamagawa
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Mehmet Dayi
- Forestry Vocational School, Duzce University, 81620 Duzce, Türkiye
| | - Simo Sun
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa City, Japan
| | - Rikako Hata
- Department of Biology, Faculty of Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Taisei Kikuchi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa City, Japan
| | - Nami Haruta
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Asako Sugimoto
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
25
|
Morales AE, Burbrink FT, Segall M, Meza M, Munegowda C, Webala PW, Patterson BD, Thong VD, Ruedi M, Hiller M, Simmons NB. Distinct Genes with Similar Functions Underlie Convergent Evolution in Myotis Bat Ecomorphs. Mol Biol Evol 2024; 41:msae165. [PMID: 39116340 PMCID: PMC11371419 DOI: 10.1093/molbev/msae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Convergence offers an opportunity to explore to what extent evolution can be predictable when genomic composition and environmental triggers are similar. Here, we present an emergent model system to study convergent evolution in nature in a mammalian group, the bat genus Myotis. Three foraging strategies-gleaning, trawling, and aerial hawking, each characterized by different sets of phenotypic features-have evolved independently multiple times in different biogeographic regions in isolation for millions of years. To investigate the genomic basis of convergence and explore the functional genomic changes linked to ecomorphological convergence, we sequenced and annotated 17 new genomes and screened 16,426 genes for positive selection and associations between relative evolutionary rates and foraging strategies across 30 bat species representing all Myotis ecomorphs across geographic regions as well as among sister groups. We identify genomic changes that describe both phylogenetic and ecomorphological trends. We infer that colonization of new environments may have first required changes in genes linked to hearing sensory perception, followed by changes linked to fecundity and development, metabolism of carbohydrates, and heme degradation. These changes may be linked to prey acquisition and digestion and match phylogenetic trends. Our findings also suggest that the repeated evolution of ecomorphs does not always involve changes in the same genes but rather in genes with the same molecular functions such as developmental and cellular processes.
Collapse
Affiliation(s)
- Ariadna E Morales
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Department of Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Centre for Translational Biodiversity Genomics, Frankfurt am Main, Hessen, Germany
- Senckenberg Research Institute, Frankfurt am Main, Hessen, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Frank T Burbrink
- Department of Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
| | - Marion Segall
- Department of Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d’Histoire Naturelle, CNRS, SU, EPHE, UA, CP 50, Paris, France
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Maria Meza
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Chetan Munegowda
- Centre for Translational Biodiversity Genomics, Frankfurt am Main, Hessen, Germany
- Senckenberg Research Institute, Frankfurt am Main, Hessen, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Paul W Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok 20500, Kenya
| | - Bruce D Patterson
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, USA
| | - Vu Dinh Thong
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Manuel Ruedi
- Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Geneva 1208, Switzerland
| | - Michael Hiller
- Centre for Translational Biodiversity Genomics, Frankfurt am Main, Hessen, Germany
- Senckenberg Research Institute, Frankfurt am Main, Hessen, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
| |
Collapse
|
26
|
Luo M, Hu J. Alternative splicing in parallel evolution and the evolutionary potential in sticklebacks. J Anim Ecol 2024; 93:1392-1405. [PMID: 39056271 DOI: 10.1111/1365-2656.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Repeatability of adaptation to similar environments provides opportunity to evaluate the predictability of natural selection. While many studies have investigated gene expression differences between populations adapted to contrasting environments, the role of post-transcriptional processes such as alternative splicing has rarely been evaluated in the context of parallel adaptation. To address the aforementioned knowledge gap, we reanalysed transcriptomic data from three pairs of threespine stickleback (Gasterosteus aculeatus) ecotypes adapted to marine or freshwater environment. First, we identified genes with repeated expression or splicing divergence across ecotype pairs, and compared the genetic architecture and biological processes between parallelly expressed and parallelly spliced loci. Second, we analysed the extent to which parallel adaptation was reflected at gene expression and alternative splicing levels. Finally, we tested how the two axes of transcriptional variation differed in their potential for evolutionary change. Although both repeated differential splicing and differential expression across ecotype pairs showed tendency for parallel divergence, the degree of parallelism was lower for splicing than expression. Furthermore, parallel divergences in splicing and expression were likely to be associated with distinct cis-regulatory genetic variants and functionally unique set of genes. Finally, we found that parallelly spliced genes showed higher nucleotide diversity than parallelly expressed genes, indicating splicing is less susceptible to genetic variation erosion during parallel adaptation. Our results provide novel insight into the role of splicing in parallel adaptation, and underscore the contribution of splicing to the evolutionary potential of wild populations under environmental change.
Collapse
Affiliation(s)
- Man Luo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Okamoto AS, Capellini TD. Parallel Evolution at the Regulatory Base-Pair Level Contributes to Mammalian Interspecific Differences in Polygenic Traits. Mol Biol Evol 2024; 41:msae157. [PMID: 39073613 PMCID: PMC11321361 DOI: 10.1093/molbev/msae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Parallel evolution occurs when distinct lineages with similar ancestral states converge on a new phenotype. Parallel evolution has been well documented at the organ, gene pathway, and amino acid sequence level but in theory, it can also occur at individual nucleotides within noncoding regions. To examine the role of parallel evolution in shaping the biology of mammalian complex traits, we used data on single-nucleotide polymorphisms (SNPs) influencing human intraspecific variation to predict trait values in other species for 11 complex traits. We found that the alleles at SNP positions associated with human intraspecific height and red blood cell (RBC) count variation are associated with interspecific variation in the corresponding traits across mammals. These associations hold for deeper branches of mammalian evolution as well as between strains of collaborative cross mice. While variation in RBC count between primates uses both ancient and more recently evolved genomic regions, we found that only primate-specific elements were correlated with primate body size. We show that the SNP positions driving these signals are flanked by conserved sequences, maintain synteny with target genes, and overlap transcription factor binding sites. This work highlights the potential of conserved but tunable regulatory elements to be reused in parallel to facilitate evolutionary adaptation in mammals.
Collapse
Affiliation(s)
- Alexander S Okamoto
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
28
|
Zou D, Huang S, Tian S, Kilunda FK, Murphy RW, Dahn HA, Zhou Y, Lee PS, Chen JM. Comparative genomics sheds new light on the convergent evolution of infrared vision in snakes. Proc Biol Sci 2024; 291:20240818. [PMID: 39043244 PMCID: PMC11265913 DOI: 10.1098/rspb.2024.0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Infrared vision is a highly specialized sensory system that evolved independently in three clades of snakes. Apparently, convergent evolution occurred in the transient receptor potential ankyrin 1 (TRPA1) proteins of infrared-sensing snakes. However, this gene can only explain how infrared signals are received, and not the transduction and processing of those signals. We sequenced the genome of Xenopeltis unicolor, a key outgroup species of pythons, and performed a genome-wide analysis of convergence between two clades of infrared-sensing snakes. Our results revealed pervasive molecular adaptation in pathways associated with neural development and other functions, with parallel selection on loci associated with trigeminal nerve structural organization. In addition, we found evidence of convergent amino acid substitutions in a set of genes, including TRPA1 and TRPM2. The analysis also identified convergent accelerated evolution in non-coding elements near 12 genes involved in facial nerve structural organization and optic nerve development. Thus, convergent evolution occurred across multiple dimensions of infrared vision in vipers and pythons, as well as amino acid substitutions, non-coding elements, genes and functions. These changes enabled independent groups of snakes to develop and use infrared vision.
Collapse
Affiliation(s)
- Dahu Zou
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, Hubei443002, People’s Republic of China
| | - Song Huang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu, Anhui241000, People’s Republic of China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing100000, People’s Republic of China
| | - Felista Kasyoka Kilunda
- Key Laboratory of Genetic Evolution and Animal Models and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, People’s Republic of China
| | - Robert W. Murphy
- Reptilia Zoo and Education Centre, 2501 Rutherford Road, Vaughan, ONL4K 2N6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ONM5S 2C6, Canada
| | - Hollis A. Dahn
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ONM5S 2C6, Canada
| | - Youbing Zhou
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, Hubei443002, People’s Republic of China
| | - Ping-Shin Lee
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu, Anhui241000, People’s Republic of China
| | - Jin-Min Chen
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu, Anhui241000, People’s Republic of China
| |
Collapse
|
29
|
Dort H, van der Bijl W, Wahlberg N, Nylin S, Wheat CW. Genome-Wide Gene Birth-Death Dynamics Are Associated with Diet Breadth Variation in Lepidoptera. Genome Biol Evol 2024; 16:evae095. [PMID: 38976568 PMCID: PMC11229701 DOI: 10.1093/gbe/evae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 07/10/2024] Open
Abstract
Comparative analyses of gene birth-death dynamics have the potential to reveal gene families that played an important role in the evolution of morphological, behavioral, or physiological variation. Here, we used whole genomes of 30 species of butterflies and moths to identify gene birth-death dynamics among the Lepidoptera that are associated with specialist or generalist feeding strategies. Our work advances this field using a uniform set of annotated proteins for all genomes, investigating associations while correcting for phylogeny, and assessing all gene families rather than a priori subsets. We discovered that the sizes of several important gene families (e.g. those associated with pesticide resistance, xenobiotic detoxification, and/or protein digestion) are significantly correlated with diet breadth. We also found 22 gene families showing significant shifts in gene birth-death dynamics at the butterfly (Papilionoidea) crown node, the most notable of which was a family of pheromone receptors that underwent a contraction potentially linked with a shift to visual-based mate recognition. Our findings highlight the importance of uniform annotations, phylogenetic corrections, and unbiased gene family analyses in generating a list of candidate genes that warrant further exploration.
Collapse
Affiliation(s)
- Hanna Dort
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Wouter van der Bijl
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | | | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
30
|
Widrig KE, Navalón G, Field DJ. Paleoneurology of stem palaeognaths clarifies the plesiomorphic condition of the crown bird central nervous system. J Morphol 2024; 285:e21710. [PMID: 38760949 DOI: 10.1002/jmor.21710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Lithornithidae, an assemblage of volant Palaeogene fossil birds, provide our clearest insights into the early evolutionary history of Palaeognathae, the clade that today includes the flightless ratites and volant tinamous. The neotype specimen of Lithornis vulturinus, from the early Eocene (approximately 53 million years ago) of Europe, includes a partial neurocranium that has never been thoroughly investigated. Here, we describe these cranial remains including the nearly complete digital endocasts of the brain and bony labyrinth. The telencephalon of Lithornis is expanded and its optic lobes are ventrally shifted, as is typical for crown birds. The foramen magnum is positioned caudally, rather than flexed ventrally as in some crown birds, with the optic lobes, cerebellum, and foramen magnum shifted further ventrally. The overall brain shape is similar to that of tinamous, the only extant clade of flying palaeognaths, suggesting that several aspects of tinamou neuroanatomy may have been evolutionarily conserved since at least the early Cenozoic. The estimated ratio of the optic lobe's surface area relative to the total brain suggests a diurnal ecology. Lithornis may provide the clearest insights to date into the neuroanatomy of the ancestral crown bird, combining an ancestrally unflexed brain with a caudally oriented connection with the spinal cord, a moderately enlarged telencephalon, and ventrally shifted, enlarged optic lobes.
Collapse
Affiliation(s)
- Klara E Widrig
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Guillermo Navalón
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Daniel J Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
- Fossil Reptiles, Amphibians and Birds Section, The Natural History Museum, London, UK
| |
Collapse
|
31
|
Montgomery J, Morran S, MacGregor DR, McElroy JS, Neve P, Neto C, Vila-Aiub MM, Sandoval MV, Menéndez AI, Kreiner JM, Fan L, Caicedo AL, Maughan PJ, Martins BAB, Mika J, Collavo A, Merotto A, Subramanian NK, Bagavathiannan MV, Cutti L, Islam MM, Gill BS, Cicchillo R, Gast R, Soni N, Wright TR, Zastrow-Hayes G, May G, Malone JM, Sehgal D, Kaundun SS, Dale RP, Vorster BJ, Peters B, Lerchl J, Tranel PJ, Beffa R, Fournier-Level A, Jugulam M, Fengler K, Llaca V, Patterson EL, Gaines TA. Current status of community resources and priorities for weed genomics research. Genome Biol 2024; 25:139. [PMID: 38802856 PMCID: PMC11129445 DOI: 10.1186/s13059-024-03274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.
Collapse
Affiliation(s)
- Jacob Montgomery
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Sarah Morran
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Dana R MacGregor
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - J Scott McElroy
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Paul Neve
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Célia Neto
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Martin M Vila-Aiub
- IFEVA-Conicet-Department of Ecology, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Analia I Menéndez
- Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Julia M Kreiner
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Longjiang Fan
- Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ana L Caicedo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | - Jagoda Mika
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Aldo Merotto
- Department of Crop Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Nithya K Subramanian
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Luan Cutti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Robert Cicchillo
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Roger Gast
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Neeta Soni
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Terry R Wright
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | | | - Gregory May
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Deepmala Sehgal
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Shiv Shankhar Kaundun
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Richard P Dale
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Bodo Peters
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Roland Beffa
- Senior Scientist Consultant, Herbicide Resistance Action Committee / CropLife International, Liederbach, Germany
| | | | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Kevin Fengler
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Victor Llaca
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Eric L Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
32
|
Edwards SV, Cloutier A, Cockburn G, Driver R, Grayson P, Katoh K, Baldwin MW, Sackton TB, Baker AJ. A nuclear genome assembly of an extinct flightless bird, the little bush moa. SCIENCE ADVANCES 2024; 10:eadj6823. [PMID: 38781323 PMCID: PMC11809649 DOI: 10.1126/sciadv.adj6823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
We present a draft genome of the little bush moa (Anomalopteryx didiformis)-one of approximately nine species of extinct flightless birds from Aotearoa, New Zealand-using ancient DNA recovered from a fossil bone from the South Island. We recover a complete mitochondrial genome at 249.9× depth of coverage and almost 900 megabases of a male moa nuclear genome at ~4 to 5× coverage, with sequence contiguity sufficient to identify more than 85% of avian universal single-copy orthologs. We describe a diverse landscape of transposable elements and satellite repeats, estimate a long-term effective population size of ~240,000, identify a diverse suite of olfactory receptor genes and an opsin repertoire with sensitivity in the ultraviolet range, show that the wingless moa phenotype is likely not attributable to gene loss or pseudogenization, and identify potential function-altering coding sequence variants in moa that could be synthesized for future functional assays. This genomic resource should support further studies of avian evolution and morphological divergence.
Collapse
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Glenn Cockburn
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Robert Driver
- Department of Biology, East Carolina University, E 5th Street, Greenville, NC 27605, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Kazutaka Katoh
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Maude W. Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Timothy B. Sackton
- Informatics Group, Harvard University, 38 Oxford Street, Cambridge, MA 02138, USA
| | - Allan J. Baker
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, ON M5S 3B2, Canada
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, ON M5S 2C6, Canada
| |
Collapse
|
33
|
Nakayama D, Makino T. Convergent accelerated evolution of mammal-specific conserved non-coding elements in hibernators. Sci Rep 2024; 14:11754. [PMID: 38782990 PMCID: PMC11116591 DOI: 10.1038/s41598-024-62455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Mammals maintain their body temperature, yet hibernators can temporarily lower their metabolic rate as an energy-saving strategy. It has been proposed that hibernators evolved independently from homeotherms, and it is possible that the convergent evolution of hibernation involved common genomic changes among hibernator-lineages. Since hibernation is a seasonal trait, the evolution of gene regulatory regions in response to changes in season may have been important for the acquisition of hibernation traits. High-frequency accumulation of mutations in conserved non-coding elements (CNEs) could, in principle, alter the expression of neighboring genes and thereby contribute to the acquisition of new traits. To address this possibility, we performed a comparative genomic analysis of mammals to identify accelerated CNEs commonly associated with hibernation. We found that accelerated CNEs are common to hibernator-lineages and could be involved with hibernation. We also found that common factors of genes that located near accelerated CNEs and are differentially expressed between normal and hibernation periods related to gene regulation and cell-fate determination. It suggests that the molecular mechanisms controlling hibernation have undergone convergent evolution. These results help broaden our understanding of the genetic adaptations that facilitated hibernation in mammals and may offer insights pertaining to stress responses and energy conservation.
Collapse
Affiliation(s)
- Daiki Nakayama
- Department of Biology, Faculty of Science, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Takashi Makino
- Department of Biology, Faculty of Science, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
34
|
Chen CK, Chang YM, Jiang TX, Yue Z, Liu TY, Lu J, Yu Z, Lin JJ, Vu TD, Huang TY, Harn HIC, Ng CS, Wu P, Chuong CM, Li WH. Conserved regulatory switches for the transition from natal down to juvenile feather in birds. Nat Commun 2024; 15:4174. [PMID: 38755126 PMCID: PMC11099144 DOI: 10.1038/s41467-024-48303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.
Collapse
Affiliation(s)
- Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen, Guangdong, China
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Tzu-Yu Liu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jiayi Lu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jinn-Jy Lin
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Trieu-Duc Vu
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Tao-Yu Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chen Siang Ng
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
35
|
De-Kayne R, Perry BW, McGowan KL, Landers J, Arias-Rodriguez L, Greenway R, Rodríguez Peña CM, Tobler M, Kelley JL. Evolutionary Rate Shifts in Coding and Regulatory Regions Underpin Repeated Adaptation to Sulfidic Streams in Poeciliid Fishes. Genome Biol Evol 2024; 16:evae087. [PMID: 38788745 PMCID: PMC11126329 DOI: 10.1093/gbe/evae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/26/2024] Open
Abstract
Adaptation to extreme environments often involves the evolution of dramatic physiological changes. To better understand how organisms evolve these complex phenotypic changes, the repeatability and predictability of evolution, and possible constraints on adapting to an extreme environment, it is important to understand how adaptive variation has evolved. Poeciliid fishes represent a particularly fruitful study system for investigations of adaptation to extreme environments due to their repeated colonization of toxic hydrogen sulfide-rich springs across multiple species within the clade. Previous investigations have highlighted changes in the physiology and gene expression in specific species that are thought to facilitate adaptation to hydrogen sulfide-rich springs. However, the presence of adaptive nucleotide variation in coding and regulatory regions and the degree to which convergent evolution has shaped the genomic regions underpinning sulfide tolerance across taxa are unknown. By sampling across seven independent lineages in which nonsulfidic lineages have colonized and adapted to sulfide springs, we reveal signatures of shared evolutionary rate shifts across the genome. We found evidence of genes, promoters, and putative enhancer regions associated with both increased and decreased convergent evolutionary rate shifts in hydrogen sulfide-adapted lineages. Our analysis highlights convergent evolutionary rate shifts in sulfidic lineages associated with the modulation of endogenous hydrogen sulfide production and hydrogen sulfide detoxification. We also found that regions with shifted evolutionary rates in sulfide spring fishes more often exhibited convergent shifts in either the coding region or the regulatory sequence of a given gene, rather than both.
Collapse
Affiliation(s)
- Rishi De-Kayne
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Kerry L McGowan
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jake Landers
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, México
| | - Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Carlos M Rodríguez Peña
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo 10105, Dominican Republic
| | - Michael Tobler
- Department of Biology, University of Missouri–St. Louis, St. Louis, MO 63131, USA
- Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, MO 63121, USA
- WildCare Institute, Saint Louis Zoo, St. Louis, MO 63110, USA
| | - Joanna L Kelley
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
36
|
Forni G, Mantovani B, Mikheyev AS, Luchetti A. Parthenogenetic Stick Insects Exhibit Signatures of Preservation in the Molecular Architecture of Male Reproduction. Genome Biol Evol 2024; 16:evae073. [PMID: 38573594 PMCID: PMC11108686 DOI: 10.1093/gbe/evae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/06/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024] Open
Abstract
After the loss of a trait, theory predicts that the molecular machinery underlying its phenotypic expression should decay. Yet, empirical evidence is contrasting. Here, we test the hypotheses that (i) the molecular ground plan of a lost trait could persist due to pleiotropic effects on other traits and (ii) that gene co-expression network architecture could constrain individual gene expression. Our testing ground has been the Bacillus stick insect species complex, which contains close relatives that are either bisexual or parthenogenetic. After the identification of genes expressed in male reproductive tissues in a bisexual species, we investigated their gene co-expression network structure in two parthenogenetic species. We found that gene co-expression within the male gonads was partially preserved in parthenogens. Furthermore, parthenogens did not show relaxed selection on genes upregulated in male gonads in the bisexual species. As these genes were mostly expressed in female gonads, this preservation could be driven by pleiotropic interactions and an ongoing role in female reproduction. Connectivity within the network also played a key role, with highly connected-and more pleiotropic-genes within male gonad also having a gonad-biased expression in parthenogens. Our findings provide novel insight into the mechanisms which could underlie the production of rare males in parthenogenetic lineages; more generally, they provide an example of the cryptic persistence of a lost trait molecular architecture, driven by gene pleiotropy on other traits and within their co-expression network.
Collapse
Affiliation(s)
- Giobbe Forni
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Barbara Mantovani
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Alexander S Mikheyev
- Research School of Biology, Australian National University, 2600 Canberra, ACT, Australia
| | - Andrea Luchetti
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Moreno JA, Dudchenko O, Feigin CY, Mereby SA, Chen Z, Ramos R, Almet AA, Sen H, Brack BJ, Johnson MR, Li S, Wang W, Gaska JM, Ploss A, Weisz D, Omer AD, Yao W, Colaric Z, Kaur P, Leger JS, Nie Q, Mena A, Flanagan JP, Keller G, Sanger T, Ostrow B, Plikus MV, Kvon EZ, Aiden EL, Mallarino R. Emx2 underlies the development and evolution of marsupial gliding membranes. Nature 2024; 629:127-135. [PMID: 38658750 PMCID: PMC11062917 DOI: 10.1038/s41586-024-07305-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.
Collapse
Affiliation(s)
- Jorge A Moreno
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Charles Y Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia
| | - Sarah A Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Zhuoxin Chen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Axel A Almet
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Harsha Sen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Benjamin J Brack
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Matthew R Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sha Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Wei Wang
- Lewis Sigler Center for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Jenna M Gaska
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Yao
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zane Colaric
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Parwinder Kaur
- The University of Western Australia, Crawley, Western Australia, Australia
| | - Judy St Leger
- Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | | | | | - Greta Keller
- Department of Biology, Loyola University, Chicago, IL, USA
| | - Thomas Sanger
- Department of Biology, Loyola University, Chicago, IL, USA
| | - Bruce Ostrow
- Department of Biology, Grand Valley State University, Allendale, MI, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- The Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
38
|
Setti PG, Deon GA, Zeni Dos Santos R, Goes CAG, Garnero ADV, Gunski RJ, de Oliveira EHC, Porto-Foresti F, de Freitas TRO, Silva FAO, Liehr T, Utsunomia R, Kretschmer R, de Bello Cioffi M. Evolution of bird sex chromosomes: a cytogenomic approach in Palaeognathae species. BMC Ecol Evol 2024; 24:51. [PMID: 38654159 PMCID: PMC11036779 DOI: 10.1186/s12862-024-02230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.
Collapse
Affiliation(s)
- Príncia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | | | | | - Analía Del Valle Garnero
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Ricardo José Gunski
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil
| | - Fábio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | | | - Fábio Augusto Oliveira Silva
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, 96.010-610, Pelotas, RS, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
39
|
Hogan MP, Holding ML, Nystrom GS, Colston TJ, Bartlett DA, Mason AJ, Ellsworth SA, Rautsaw RM, Lawrence KC, Strickland JL, He B, Fraser P, Margres MJ, Gilbert DM, Gibbs HL, Parkinson CL, Rokyta DR. The genetic regulatory architecture and epigenomic basis for age-related changes in rattlesnake venom. Proc Natl Acad Sci U S A 2024; 121:e2313440121. [PMID: 38578985 PMCID: PMC11032440 DOI: 10.1073/pnas.2313440121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024] Open
Abstract
Developmental phenotypic changes can evolve under selection imposed by age- and size-related ecological differences. Many of these changes occur through programmed alterations to gene expression patterns, but the molecular mechanisms and gene-regulatory networks underlying these adaptive changes remain poorly understood. Many venomous snakes, including the eastern diamondback rattlesnake (Crotalus adamanteus), undergo correlated changes in diet and venom expression as snakes grow larger with age, providing models for identifying mechanisms of timed expression changes that underlie adaptive life history traits. By combining a highly contiguous, chromosome-level genome assembly with measures of expression, chromatin accessibility, and histone modifications, we identified cis-regulatory elements and trans-regulatory factors controlling venom ontogeny in the venom glands of C. adamanteus. Ontogenetic expression changes were significantly correlated with epigenomic changes within genes, immediately adjacent to genes (e.g., promoters), and more distant from genes (e.g., enhancers). We identified 37 candidate transcription factors (TFs), with the vast majority being up-regulated in adults. The ontogenetic change is largely driven by an increase in the expression of TFs associated with growth signaling, transcriptional activation, and circadian rhythm/biological timing systems in adults with corresponding epigenomic changes near the differentially expressed venom genes. However, both expression activation and repression contributed to the composition of both adult and juvenile venoms, demonstrating the complexity and potential evolvability of gene regulation for this trait. Overall, given that age-based trait variation is common across the tree of life, we provide a framework for understanding gene-regulatory-network-driven life-history evolution more broadly.
Collapse
Affiliation(s)
- Michael P. Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Matthew L. Holding
- Department of Biological Science, Florida State University, Tallahassee, FL32306
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Gunnar S. Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Timothy J. Colston
- Department of Biological Science, Florida State University, Tallahassee, FL32306
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, PR00681
| | - Daniel A. Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Andrew J. Mason
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH43210
| | - Schyler A. Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Rhett M. Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
- School of Biological Sciences, Washington State University, Pullman, WA99164
| | - Kylie C. Lawrence
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Jason L. Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Biology, University of South Alabama, Mobile, AL36688
| | - Bing He
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Mark J. Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
| | - David M. Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA92121
| | - H. Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH43210
| | - Christopher L. Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC29634
| | - Darin R. Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| |
Collapse
|
40
|
Chiappone M, Rodriguez-Saltos C, Legendre LJ, Li Z, Clarke J. Ostrich (Struthio camelus) syrinx morphology and vocal repertoire across postnatal ontogeny and sex: Implications for understanding vocal evolution in birds. J Anat 2024; 244:541-556. [PMID: 38055909 PMCID: PMC10941561 DOI: 10.1111/joa.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
Vocal production in birds has been the target of considerable research that mostly has focused on phylogenetically well-nested songbirds. Anatomical descriptions and recordings of many non-songbirds have often only focused on a single ontogenetic stage or sex. While basic morphology of the vocal organ (syrinx) of ostrich (Palaeognathae, Struthio camelus) has been known since the 1800s, descriptions of its vocal repertoire and syrinx anatomy since then have been incomplete or inconsistent. New toolkits now enable detailed qualitative description of internal anatomy and meristic data and allow it to be compared to vocal production. Here we describe the anatomy of the syrinx in Struthio camelus for three post-hatching ontogenetic stages and both an adult male and female utilizing dissection and contrast enhanced X-ray computed tomography (diceCT). We find changes in ring geometry and spacing through ontogeny as well as lateral labia thickness. We document a small unpaired, midline, cartilaginous structure, a "pessuliform process" at the tracheobronchial juncture present throughout ontogeny and in both males and females. Investigation of the vocal repertoire of ostriches across ontogeny using a new dataset of 77 recordings led to identification of four vocalizations not previously reported in the literature, including the simultaneous production of a hiss and tonal. We find syrinx morphology largely consistent across ontogeny and in male and female adults. Both are capable of producing long duration tonal calls, but these may be more frequent in male birds. Closed-mouth boom calls remain unique to males. A detailed understanding of diversity in parts of early diverging clades is pivotal in attempting to estimate features of the ancestral syrinx in birds and how avian vocalization evolved.
Collapse
Affiliation(s)
- Michael Chiappone
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA
| | - Carlos Rodriguez-Saltos
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA
| | - Lucas J Legendre
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA
| | - Zhiheng Li
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA
| | - Julia Clarke
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
41
|
Bohutínská M, Peichel CL. Divergence time shapes gene reuse during repeated adaptation. Trends Ecol Evol 2024; 39:396-407. [PMID: 38155043 DOI: 10.1016/j.tree.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
When diverse lineages repeatedly adapt to similar environmental challenges, the extent to which the same genes are involved (gene reuse) varies across systems. We propose that divergence time among lineages is a key factor driving this variability: as lineages diverge, the extent of gene reuse should decrease due to reductions in allele sharing, functional differentiation among genes, and restructuring of genome architecture. Indeed, we show that many genomic studies of repeated adaptation find that more recently diverged lineages exhibit higher gene reuse during repeated adaptation, but the relationship becomes less clear at older divergence time scales. Thus, future research should explore the factors shaping gene reuse and their interplay across broad divergence time scales for a deeper understanding of evolutionary repeatability.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland; Department of Botany, Faculty of Science, Charles University, Prague, 12800, Czech Republic.
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland
| |
Collapse
|
42
|
Schraiber JG, Edge MD, Pennell M. Unifying approaches from statistical genetics and phylogenetics for mapping phenotypes in structured populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579721. [PMID: 38496530 PMCID: PMC10942266 DOI: 10.1101/2024.02.10.579721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In both statistical genetics and phylogenetics, a major goal is to identify correlations between genetic loci or other aspects of the phenotype or environment and a focal trait. In these two fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The disconnect between their respective approaches is becoming untenable as questions in medicine, conservation biology, and evolutionary biology increasingly rely on integrating data from within and among species, and once-clear conceptual divisions are becoming increasingly blurred. To help bridge this divide, we derive a general model describing the covariance between the genetic contributions to the quantitative phenotypes of different individuals. Taking this approach shows that standard models in both statistical genetics (e.g., Genome-Wide Association Studies; GWAS) and phylogenetic comparative biology (e.g., phylogenetic regression) can be interpreted as special cases of this more general quantitative-genetic model. The fact that these models share the same core architecture means that we can build a unified understanding of the strengths and limitations of different methods for controlling for genetic structure when testing for associations. We develop intuition for why and when spurious correlations may occur using analytical theory and conduct population-genetic and phylogenetic simulations of quantitative traits. The structural similarity of problems in statistical genetics and phylogenetics enables us to take methodological advances from one field and apply them in the other. We demonstrate this by showing how a standard GWAS technique-including both the genetic relatedness matrix (GRM) as well as its leading eigenvectors, corresponding to the principal components of the genotype matrix, in a regression model-can mitigate spurious correlations in phylogenetic analyses. As a case study of this, we re-examine an analysis testing for co-evolution of expression levels between genes across a fungal phylogeny, and show that including covariance matrix eigenvectors as covariates decreases the false positive rate while simultaneously increasing the true positive rate. More generally, this work provides a foundation for more integrative approaches for understanding the genetic architecture of phenotypes and how evolutionary processes shape it.
Collapse
|
43
|
Eastment RV, Wong BBM, McGee MD. Convergent genomic signatures associated with vertebrate viviparity. BMC Biol 2024; 22:34. [PMID: 38331819 PMCID: PMC10854053 DOI: 10.1186/s12915-024-01837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Viviparity-live birth-is a complex and innovative mode of reproduction that has evolved repeatedly across the vertebrate Tree of Life. Viviparous species exhibit remarkable levels of reproductive diversity, both in the amount of care provided by the parent during gestation, and the ways in which that care is delivered. The genetic basis of viviparity has garnered increasing interest over recent years; however, such studies are often undertaken on small evolutionary timelines, and thus are not able to address changes occurring on a broader scale. Using whole genome data, we investigated the molecular basis of this innovation across the diversity of vertebrates to answer a long held question in evolutionary biology: is the evolution of convergent traits driven by convergent genomic changes? RESULTS We reveal convergent changes in protein family sizes, protein-coding regions, introns, and untranslated regions (UTRs) in a number of distantly related viviparous lineages. Specifically, we identify 15 protein families showing evidence of contraction or expansion associated with viviparity. We additionally identify elevated substitution rates in both coding and noncoding sequences in several viviparous lineages. However, we did not find any convergent changes-be it at the nucleotide or protein level-common to all viviparous lineages. CONCLUSIONS Our results highlight the value of macroevolutionary comparative genomics in determining the genomic basis of complex evolutionary transitions. While we identify a number of convergent genomic changes that may be associated with the evolution of viviparity in vertebrates, there does not appear to be a convergent molecular signature shared by all viviparous vertebrates. Ultimately, our findings indicate that a complex trait such as viviparity likely evolves with changes occurring in multiple different pathways.
Collapse
Affiliation(s)
- Rhiannon V Eastment
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia.
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia
| |
Collapse
|
44
|
Zhang Y, Fu Y, Xian W, Li X, Feng Y, Bu F, Shi Y, Chen S, van Velzen R, Battenberg K, Berry AM, Salgado MG, Liu H, Yi T, Fournier P, Alloisio N, Pujic P, Boubakri H, Schranz ME, Delaux PM, Wong GKS, Hocher V, Svistoonoff S, Gherbi H, Wang E, Kohlen W, Wall LG, Parniske M, Pawlowski K, Normand P, Doyle JJ, Cheng S. Comparative phylogenomics and phylotranscriptomics provide insights into the genetic complexity of nitrogen-fixing root-nodule symbiosis. PLANT COMMUNICATIONS 2024; 5:100671. [PMID: 37553834 PMCID: PMC10811378 DOI: 10.1016/j.xplc.2023.100671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.
Collapse
Affiliation(s)
- Yu Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuan Fu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yong Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Fengjiao Bu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yan Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shiyu Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Robin van Velzen
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Kai Battenberg
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Alison M Berry
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Marco G Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Hui Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Tingshuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Pascale Fournier
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Nicole Alloisio
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Valerie Hocher
- French National Research Institute for Sustainable Development (IRD), UMR LSTM (IRD/CIRAD/INRAe/Montpellier University/Supagro)- Campus International Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Sergio Svistoonoff
- French National Research Institute for Sustainable Development (IRD), UMR LSTM (IRD/CIRAD/INRAe/Montpellier University/Supagro)- Campus International Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Hassen Gherbi
- French National Research Institute for Sustainable Development (IRD), UMR LSTM (IRD/CIRAD/INRAe/Montpellier University/Supagro)- Campus International Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Luis G Wall
- Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina
| | - Martin Parniske
- Faculty of Biology, Genetics, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Philippe Normand
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Jeffrey J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
45
|
Urban CA, Legendre LJ, Clarke JA. Description of natal down of the ostrich (Struthio camelus) and comparison with common quail (Coturnix coturnix): Developmental and evolutionary implications. J Anat 2023; 243:1007-1023. [PMID: 37515428 PMCID: PMC10641043 DOI: 10.1111/joa.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Natal down is a feather stage that differs in both form and function from the definitive feathers of adult birds. It has a simpler structure that has been speculated to be similar to the body coverings of non-avian dinosaurs. However, inference of the evolution of natal down has been limited by our understanding of its structural variation in extant birds. Most descriptive work has focused on neognathous birds, limiting our knowledge of the full diversity of feathers in extant taxa. Here, we describe the natal down of a post-hatch ostrich (Struthio camelus) and compare it to that of a post-hatch quail (Coturnix coturnix). We confirm the presence of featherless spaces (apteria) in S. camelus and the lack of barbules on the tips of natal down in both species. We also find differences between dorsal and ventral natal down structures, such as barbule density in S. camelus and the extent of the bare portion of the barb in both species. Surprisingly, we do not find that the neoptiles of either species follow the ideal morphologies for increasing insulation. Finally, we hypothesize that the different barb types present in S. camelus natal down result from a large addition of new barb ridges during development, which is not known except in feathers with a rachis. These results have implications for our understanding of how structure informs function and development in understudied feather types, such as those shared by non-avian dinosaurs.
Collapse
Affiliation(s)
- Carmen A Urban
- Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Lucas J Legendre
- Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Julia A Clarke
- Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
46
|
Robinson CD, Hale MD, Wittman TN, Cox CL, John-Alder HB, Cox RM. Species differences in hormonally mediated gene expression underlie the evolutionary loss of sexually dimorphic coloration in Sceloporus lizards. J Hered 2023; 114:637-653. [PMID: 37498153 DOI: 10.1093/jhered/esad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Phenotypic sexual dimorphism often involves the hormonal regulation of sex-biased expression for underlying genes. However, it is generally unknown whether the evolution of hormonally mediated sexual dimorphism occurs through upstream changes in tissue sensitivity to hormone signals, downstream changes in responsiveness of target genes, or both. Here, we use comparative transcriptomics to explore these possibilities in 2 species of Sceloporus lizards exhibiting different patterns of sexual dichromatism. Sexually dimorphic S. undulatus develops blue and black ventral coloration in response to testosterone, while sexually monomorphic S. virgatus does not, despite exhibiting similar sex differences in circulating testosterone levels. We administered testosterone implants to juveniles of each species and used RNAseq to quantify gene expression in ventral skin. Transcriptome-wide responses to testosterone were stronger in S. undulatus than in S. virgatus, suggesting species differences in tissue sensitivity to this hormone signal. Species differences in the expression of genes for androgen metabolism and sex hormone-binding globulin were consistent with this idea, but expression of the androgen receptor gene was higher in S. virgatus, complicating this interpretation. Downstream of androgen signaling, we found clear species differences in hormonal responsiveness of genes related to melanin synthesis, which were upregulated by testosterone in S. undulatus, but not in S. virgatus. Collectively, our results indicate that hormonal regulation of melanin synthesis pathways contributes to the development of sexual dimorphism in S. undulatus, and that changes in the hormonal responsiveness of these genes in S. virgatus contribute to the evolutionary loss of ventral coloration.
Collapse
Affiliation(s)
| | - Matthew D Hale
- University of Virginia, Department of Biology, Charlottesville, VA, United States
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
| | - Tyler N Wittman
- University of Virginia, Department of Biology, Charlottesville, VA, United States
| | - Christian L Cox
- Florida International University, Department of Biological Sciences and Institute of Environment, Miami, FL, United States
| | - Henry B John-Alder
- Rutgers University, Department of Ecology, Evolution, and Natural Resources, New Brunswick, NJ, United States
| | - Robert M Cox
- University of Virginia, Department of Biology, Charlottesville, VA, United States
| |
Collapse
|
47
|
Widrig KE, Bhullar BS, Field DJ. 3D atlas of tinamou (Neornithes: Tinamidae) pectoral morphology: Implications for reconstructing the ancestral neornithine flight apparatus. J Anat 2023; 243:729-757. [PMID: 37358291 PMCID: PMC10557402 DOI: 10.1111/joa.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Palaeognathae, the extant avian clade comprising the flightless ratites and flight-capable tinamous (Tinamidae), is the sister group to all other living birds, and recent phylogenetic studies illustrate that tinamous are phylogenetically nested within a paraphyletic assemblage of ratites. As the only extant palaeognaths that have retained the ability to fly, tinamous may provide key information on the nature of the flight apparatus of ancestral crown palaeognaths-and, in turn, crown birds-as well as insight into convergent modifications to the wing apparatus among extant ratite lineages. To reveal new information about the musculoskeletal anatomy of tinamous and facilitate development of computational biomechanical models of tinamou wing function, we generated a three-dimensional musculoskeletal model of the flight apparatus of the extant Andean tinamou (Nothoprocta pentlandii) using diffusible iodine-based contrast-enhanced computed tomography (diceCT). Origins and insertions of the pectoral flight musculature of N. pentlandii are generally consistent with those of other extant volant birds specialized for burst flight, and the entire suite of presumed ancestral neornithine flight muscles are present in N. pentlandii with the exception of the biceps slip. The pectoralis and supracoracoideus muscles are robust, similar to the condition in other extant burst-flying birds such as many extant Galliformes. Contrary to the condition in most extant Neognathae (the sister clade to Palaeognathae), the insertion of the pronator superficialis has a greater distal extent than the pronator profundus, although most other anatomical observations are broadly consistent with the conditions observed in extant neognaths. This work will help form a basis for future comparative studies of the avian musculoskeletal system, with implications for reconstructing the flight apparatus of ancestral crown birds and clarifying musculoskeletal modifications underlying the convergent origins of ratite flightlessness.
Collapse
Affiliation(s)
- Klara E. Widrig
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
| | - Bhart‐Anjan S. Bhullar
- Department of Earth and Planetary SciencesYale UniversityNew HavenConnecticutUSA
- Peabody Museum of Natural HistoryYale UniversityNew HavenConnecticutUSA
| | - Daniel J. Field
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Museum of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
48
|
Eliason CM, Mellenthin LE, Hains T, McCullough JM, Pirro S, Andersen MJ, Hackett SJ. Genomic signatures of convergent shifts to plunge-diving behavior in birds. Commun Biol 2023; 6:1011. [PMID: 37875535 PMCID: PMC10598022 DOI: 10.1038/s42003-023-05359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
Understanding the genetic basis of convergence at broad phylogenetic scales remains a key challenge in biology. Kingfishers (Aves: Alcedinidae) are a cosmopolitan avian radiation with diverse colors, diets, and feeding behaviors-including the archetypal plunge-dive into water. Given the sensory and locomotor challenges associated with air-water transitions, kingfishers offer a powerful opportunity to explore the effects of convergent behaviors on the evolution of genomes and phenotypes, as well as direct comparisons between continental and island lineages. Here, we use whole-genome sequencing of 30 diverse kingfisher species to identify the genomic signatures associated with convergent feeding behaviors. We show that species with smaller ranges (i.e., on islands) have experienced stronger demographic fluctuations than those on continents, and that these differences have influenced the dynamics of molecular evolution. Comparative genomic analyses reveal positive selection and genomic convergence in brain and dietary genes in plunge-divers. These findings enhance our understanding of the connections between genotype and phenotype in a diverse avian radiation.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, The Field Museum, Chicago, IL, USA.
- Negaunee Integrative Research Center, The Field Museum, Chicago, IL, USA.
| | - Lauren E Mellenthin
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Taylor Hains
- Grainger Bioinformatics Center, The Field Museum, Chicago, IL, USA
- Negaunee Integrative Research Center, The Field Museum, Chicago, IL, USA
- Committee on Evolution Biology, University of Chicago, Chicago, IL, USA
| | - Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Stacy Pirro
- Iridian Genomes, Inc., 6213 Swords Way, Bethesda, MD, USA
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Shannon J Hackett
- Committee on Evolution Biology, University of Chicago, Chicago, IL, USA
- Negaunee Integrative Research Center, The Field Museum, Chicago, IL, USA
| |
Collapse
|
49
|
Herbert AL, Allard CAH, McCoy MJ, Wucherpfennig JI, Krueger SP, Chen HI, Gourlay AN, Jackson KD, Abbo LA, Bennett SH, Sears JD, Rhyne AL, Bellono NW, Kingsley DM. The genetic basis of novel trait gain in walking fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562356. [PMID: 37873105 PMCID: PMC10592820 DOI: 10.1101/2023.10.14.562356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A major goal in biology is to understand how organisms evolve novel traits. Multiple studies have identified genes contributing to regressive evolution, the loss of structures that existed in a recent ancestor. However, fewer examples exist for genes underlying constructive evolution, the gain of novel structures and capabilities in lineages that previously lacked them. Sea robins are fish that have evolved enlarged pectoral fins, six mobile locomotory fin rays (legs) and six novel macroscopic lobes in the central nervous system (CNS) that innervate the corresponding legs. Here, we establish successful husbandry and use a combination of transcriptomics, CRISPR-Cas9 editing, and behavioral assays to identify key transcription factors that are required for leg formation and function in sea robins. We also generate hybrids between two sea robin species with distinct leg morphologies and use allele-specific expression analysis and gene editing to explore the genetic basis of species-specific trait diversity, including a novel sensory gain of function. Collectively, our study establishes sea robins as a new model for studying the genetic basis of novel organ formation, and demonstrates a crucial role for the conserved limb gene tbx3a in the evolution of chemosensory legs in walking fish.
Collapse
Affiliation(s)
- Amy L Herbert
- Department of Developmental Biology, Stanford University School of Medicine, Stanford CA 94305 USA
| | - Corey AH Allard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138 USA
| | - Matthew J McCoy
- Department of Pathology, Stanford University School of Medicine, Stanford CA 94305 USA
| | - Julia I Wucherpfennig
- Department of Developmental Biology, Stanford University School of Medicine, Stanford CA 94305 USA
| | - Stephanie P Krueger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138 USA
| | - Heidi I Chen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford CA 94305 USA
| | | | - Kohle D Jackson
- Department of Developmental Biology, Stanford University School of Medicine, Stanford CA 94305 USA
| | - Lisa A Abbo
- Marine Biological Laboratory, Woods Hole, MA, 02543 USA
| | | | | | | | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138 USA
| | - David M Kingsley
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford CA 94305 USA
| |
Collapse
|
50
|
Yusuf LH, Saldívar Lemus Y, Thorpe P, Macías Garcia C, Ritchie MG. Genomic Signatures Associated with Transitions to Viviparity in Cyprinodontiformes. Mol Biol Evol 2023; 40:msad208. [PMID: 37789509 PMCID: PMC10568250 DOI: 10.1093/molbev/msad208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
The transition from oviparity to viviparity has occurred independently over 150 times across vertebrates, presenting one of the most compelling cases of phenotypic convergence. However, whether the repeated, independent evolution of viviparity is driven by redeployment of similar genetic mechanisms and whether these leave a common signature in genomic divergence remains largely unknown. Although recent investigations into the evolution of viviparity have demonstrated striking similarity among the genes and molecular pathways involved across disparate vertebrate groups, quantitative tests for genome-wide convergent have provided ambivalent answers. Here, we investigate the potential role of molecular convergence during independent transitions to viviparity across an order of ray-finned freshwater fish (Cyprinodontiformes). We assembled de novo genomes and utilized publicly available genomes of viviparous and oviparous species to test for molecular convergence across both coding and noncoding regions. We found no evidence for an excess of molecular convergence in amino acid substitutions and in rates of sequence divergence, implying independent genetic changes are associated with these transitions. However, both statistical power and biological confounds could constrain our ability to detect significant correlated evolution. We therefore identified candidate genes with potential signatures of molecular convergence in viviparous Cyprinodontiformes lineages. Motif enrichment and gene ontology analyses suggest transcriptional changes associated with early morphogenesis, brain development, and immunity occurred alongside the evolution of viviparity. Overall, however, our findings indicate that independent transitions to viviparity in these fish are not strongly associated with an excess of molecular convergence, but a few genes show convincing evidence of convergent evolution.
Collapse
Affiliation(s)
- Leeban H Yusuf
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Yolitzi Saldívar Lemus
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Peter Thorpe
- The Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
- School of Medicine, University of North Haugh, St Andrews KY16 9TF, UK
| | - Constantino Macías Garcia
- Instituto de Ecologia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City CdMx, Mexico
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|