1
|
Carver JJ, Bunner WP, Denbrock RR, Yin C, Huang W, Szatmari EM, Didonna A. Loss of ADAP1/CentA1 Protects Against Autoimmune Demyelination. FASEB J 2025; 39:e70604. [PMID: 40326762 PMCID: PMC12054340 DOI: 10.1096/fj.202403078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
ArfGAP with dual PH domain-containing protein 1 (ADAP1), also known as Centaurin alpha-1 (CentA1), is an actin-binding protein highly expressed in the central nervous system (CNS) that was previously shown to regulate dendritic spine density and plasticity. In the context of disease, ADAP1/CentA1 has been linked to Alzheimer's disease (AD) pathogenesis, cancer progression, and human immunodeficiency virus (HIV) reactivation. Here, we document that ADAP1/CentA1 is also mechanistically involved in CNS autoimmunity. We show that ADAP1/CentA1 deficient mice exhibit partial resistance to developing experimental autoimmune encephalomyelitis (EAE), an in vivo disease model recapitulating several features of multiple sclerosis (MS) pathogenesis. MS is a chronic autoimmune disorder of the CNS characterized by focal immune cell infiltration, demyelination, and axonal injury. Its etiology is still elusive, but genetic and environmental factors contribute to disease risk. By combining detailed immunophenotyping and single-cell RNA sequencing (scRNA-seq), we demonstrate that ADAP1/CentA1 is necessary for mounting a sufficient autoimmune response for EAE initiation and progression. In particular, the current study highlights that ADAP1/CentA1 expression in the immune system mainly targets the functioning of regulatory T cells (Tregs), monocytes, and natural killer (NK) cells. In summary, our study defines a novel function for ADAP/CentA1 outside of the CNS and helps elucidate the early molecular events taking place in the peripheral immune system in response to encephalitogenic challenges.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Mice, Knockout
- Female
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Autoimmunity
Collapse
Affiliation(s)
- Jonathan J. Carver
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Wyatt P. Bunner
- Department of Physical Therapy, College of Allied Health SciencesEast Carolina UniversityGreenvilleNorth CarolinaUSA
- Center for Immunotherapy & Precision Immuno‐OncologyCleveland ClinicClevelandOhioUSA
| | - Rachael R. Denbrock
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Changhong Yin
- Department of Pathology and Laboratory Medicine, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Erzsebet M. Szatmari
- Department of Physical Therapy, College of Allied Health SciencesEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Alessandro Didonna
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
2
|
Zhong Y, Li J, Lee ARYB, Tan JYJ, Tay CJX, Koh CW, Seow EYT, Yap WC, Wong SY, Yau CE, Low CE, Tan KB, Young BE, Su Y, Devasia AG, Dharuman P, Lezhava A, Pandey R, Govindaraju PS, Yee S, Weng R, Khoo C, Tan SSY, Lee M, Lim J, Chan E, Ho CL, Chai LYA, Tan CW, Lee SC, Chan KR, Sundar R. Cancer type and gene signatures associated with breakthrough infections following COVID-19 mRNA vaccination. NPJ Vaccines 2025; 10:90. [PMID: 40341527 PMCID: PMC12062431 DOI: 10.1038/s41541-025-01141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
We used epidemiological data from 21195 patients with cancer and 180407 matched controls, including in-depth analyses in 216 cancer patients, to discover clinical and molecular determinants that predispose cancer patients to breakthrough infections. Patients with B cell malignancies, with differential expression of CD24, CDK14 and PLEKHG1, were most susceptible to breakthrough infections, suggesting that these patients may require more booster immunisations to ameliorate cellular responses and immune protection against COVID-19.
Collapse
Affiliation(s)
- Youjia Zhong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS), Singapore, Singapore
| | - Jiaqi Li
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Carina Jing Xuan Tay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Clara Wt Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ethan Yong Tzi Seow
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wee Chee Yap
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Shi Yin Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chun En Yau
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chen Ee Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kelvin Bryan Tan
- Ministry of Health, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yan Su
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Arun George Devasia
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Perumal Dharuman
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alexander Lezhava
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rahul Pandey
- Diagnostics Development (DxD) Hub, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Panneer Selvi Govindaraju
- Diagnostics Development (DxD) Hub, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sidney Yee
- Diagnostics Development (DxD) Hub, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ruifen Weng
- Diagnostics Development (DxD) Hub, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Candy Khoo
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Shaun Shi Yan Tan
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Matilda Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Joline Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Esther Chan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Carol Lf Ho
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Chee Wah Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Soo Chin Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Raghav Sundar
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.
| |
Collapse
|
3
|
Derderian S, Jarry E, Santos A, Vesval Q, Hamel L, Sanchez‐Salas R, Rompré‐Brodeur A, Kassouf W, Rajan R, Brimo F, Duclos M, Aprikian A, Chevalier S. Clinical significance of stratifying prostate cancer patients through specific circulating genes. Mol Oncol 2025; 19:1310-1331. [PMID: 39840448 PMCID: PMC12077267 DOI: 10.1002/1878-0261.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Patient stratification remains a challenge for optimal treatment of prostate cancer (PCa). This clinical heterogeneity implies intra-tumoural heterogeneity, with different prostate epithelial cell subtypes not all targeted by current treatments. We reported that such cell subtypes are traceable in liquid biopsies through representative transcripts. Expanding on this concept, we included 57 genes representing cell subtypes, drug targets and relevant to resistance as non-invasive biomarkers for stratification. This panel was tested by RT-qPCR (quantitative reverse transcription polymerase chain reaction) in blood of controls and different categories of PCa patients. Overall, circulating transcripts showed predictive value throughout the disease. Those with aggressive pathological features such as intra-ductal carcinoma at diagnosis showed more genes over-expressed. In metastatic patients, signatures of subtypes or resistance were associated with treatments, progression-free survival and overall survival. Altogether, testing markers of cell diversity, an intrinsic feature of tumours, and drug targets via liquid biopsies represents a valuable means to stratify patients and predict responses to current or new therapeutic modalities. Over-expressed drug target genes suggest potential benefit from targeted treatments, justifying new clinical trials to offer patient-tailored strategies to eventually impact on PCa mortality.
Collapse
Affiliation(s)
- Seta Derderian
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute of the McGill University Health CenterMontrealCanada
- Department of Surgery (Urology Division)McGill UniversityMontrealCanada
| | - Edouard Jarry
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute of the McGill University Health CenterMontrealCanada
- Department of UrologyCentre Hospitalier Régional et Universitaire de LilleFrance
| | - Arynne Santos
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute of the McGill University Health CenterMontrealCanada
- Department of Surgery (Urology Division)McGill UniversityMontrealCanada
| | - Quentin Vesval
- Department of UrologyCentre Hospitalier Régional et Universitaire de RennesFrance
| | - Lucie Hamel
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute of the McGill University Health CenterMontrealCanada
| | | | | | - Wassim Kassouf
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute of the McGill University Health CenterMontrealCanada
- Department of Surgery (Urology Division)McGill UniversityMontrealCanada
- Department of OncologyMcGill UniversityMontrealCanada
| | - Raghu Rajan
- Department of OncologyMcGill UniversityMontrealCanada
| | - Fadi Brimo
- Department of PathologyMcGill UniversityMontrealCanada
| | - Marie Duclos
- Department of Radiation OncologyMcGill UniversityMontrealCanada
| | - Armen Aprikian
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute of the McGill University Health CenterMontrealCanada
- Department of Surgery (Urology Division)McGill UniversityMontrealCanada
- Department of OncologyMcGill UniversityMontrealCanada
| | - Simone Chevalier
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute of the McGill University Health CenterMontrealCanada
- Department of Surgery (Urology Division)McGill UniversityMontrealCanada
- Department of OncologyMcGill UniversityMontrealCanada
- Department of MedicineMcGill UniversityMontrealCanada
| |
Collapse
|
4
|
Mieland AO, Petrosino G, Dejung M, Chen JX, Fulzele A, Mahmoudi F, Tu JW, Mustafa AHM, Zeyn Y, Hieber C, Bros M, Schnöder TM, Heidel FH, Najafi S, Oehme I, Hofmann I, Schutkowski M, Hilscher S, Kosan C, Butter F, Bhatia S, Sippl W, Krämer OH. The protein deacetylase HDAC10 controls DNA replication in malignant lymphoid cells. Leukemia 2025:10.1038/s41375-025-02612-8. [PMID: 40301616 DOI: 10.1038/s41375-025-02612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
Histone deacetylases (HDACs) comprise a family of 18 epigenetic modifiers. The biologically relevant functions of HDAC10 in leukemia cells are enigmatic. We demonstrate that human cultured and primary acute B cell/T cell leukemia and lymphoma cells require the catalytic activity of HDAC10 for their survival. In such cells, HDAC10 controls a MYC-dependent transcriptional induction of the DNA polymerase subunit POLD1. Consequently, pharmacological inhibition of HDAC10 causes DNA breaks and an accumulation of poly-ADP-ribose chains. These processes culminate in caspase-dependent apoptosis. PZ48 does not damage resting and proliferating human normal blood cells. The in vivo activity of PZ48 against ALL cells is verified in a Danio rerio model. These data reveal a nuclear function for HDAC10. HDAC10 controls the MYC-POLD1 axis to maintain the processivity of DNA replication and genome integrity. This mechanistically defined "HDAC10ness" may be exploited as treatment option for lymphoid malignancies.
Collapse
Affiliation(s)
- Andreas O Mieland
- Institute of Toxicology, Mainz University Medical Center, Mainz, Germany
| | - Giuseppe Petrosino
- Institute of Molecular Biology (IMB), Core Facility Bioinformatics, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Core Facility Proteomics, Mainz, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology (IMB), Core Facility Proteomics, Mainz, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB), Core Facility Proteomics, Mainz, Germany
| | - Fereshteh Mahmoudi
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Al-Hassan M Mustafa
- Institute of Toxicology, Mainz University Medical Center, Mainz, Germany
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Christoph Hieber
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Tina M Schnöder
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover MedicalSchool (MHH), Hannover, Germany
| | - Florian H Heidel
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover MedicalSchool (MHH), Hannover, Germany
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Sara Najafi
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Ilse Hofmann
- Core Facility Antibodies, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mike Schutkowski
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Hilscher
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Kosan
- Friedrich-Schiller-University Jena, Faculty of Biological Sciences Center for Molecular Biomedicine (CMB) Department of Biochemistry Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Falk Butter
- Institute for Molecular Virology and Cell Biology (IMVZ), Greifswald, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Oliver H Krämer
- Institute of Toxicology, Mainz University Medical Center, Mainz, Germany.
| |
Collapse
|
5
|
Jonsson A, Korsgren O, Hedin A. Transcriptomic characterization of human pancreatic CD206- and CD206 + macrophages. Sci Rep 2025; 15:12037. [PMID: 40199933 PMCID: PMC11978877 DOI: 10.1038/s41598-025-96313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Macrophages reside in all organs and participate in homeostatic- and immune regulative processes. Little is known about pancreatic macrophage gene expression. In the present study, global gene expression was characterized in human pancreatic macrophage subpopulations. CD206- and CD206 + macrophages were sorted separately from pancreatic islets and exocrine tissue to high purity using flow cytometry, followed by RNA-seq analysis. Comparing CD206- with CD206 + macrophages, CD206- showed enrichment in histones, proliferation and cell cycle regulation, glycolysis and SPP1-associated immunosuppressive polarization while CD206 + showed enrichment in complement and coagulation-, IL-10 and IL-2RA immune regulation, as well as scavenging-related gene sets. Comparing islet CD206- with exocrine CD206-, enrichments in islet samples included two sets involved in immune regulation, while enrichments in exocrine samples included sets related to extracellular matrix and immune activation. Fewer differences were found between CD206 + macrophages, with enrichments in islet samples including two IL2-RA related gene sets, while enrichments in exocrine samples included sets related to extracellular matrix and immune activation. Comparing macrophages between individuals with normoglycemia, elevated HbA1c or type 2 diabetes, only a few diverse differentially expressed genes were identified. This work characterizes global gene expression and identifies differences between CD206- and CD206 + macrophage populations within the human pancreas.
Collapse
Affiliation(s)
- Alexander Jonsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anders Hedin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Bhatt B, Franco LM. Endogenous glucocorticoids and human immunity: Time to revisit old dogmas. Semin Immunol 2025; 78:101949. [PMID: 40203674 DOI: 10.1016/j.smim.2025.101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 02/24/2025] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Glucocorticoids (GCs) are steroid hormones with diverse and important roles in the physiologic response to stress. These include permissive and suppressive effects on immunity, which help prepare the organism for future infectious stressors and control the immunological response to a recent stressor, preventing autoimmune damage. The ability of GCs to rapidly suppress an overactive immune system has been harnessed pharmacologically and synthetic GCs have played a central role in the treatment of inflammatory and autoimmune diseases for the past eight decades. Given their importance in clinical medicine, an emphasis on the anti-inflammatory and immunosuppressive effects of synthetic GCs has overshadowed the study of the physiologic roles of endogenous GCs in human immunity. The rising interest in the intersection between neurobiology and immunity, and the development of technologies that facilitate direct experimentation with human cells and tissues, make this an ideal time to critically review existing knowledge on this subject. In this review of the past 100 years of biomedical literature on the effects of endogenous glucocorticoids on human immunity, we summarize existing experimental evidence, reveal key knowledge gaps and misconceptions, and highlight specific areas of opportunity for new research.
Collapse
Affiliation(s)
- Brinda Bhatt
- Functional Immunogenomics Section. National Institute of Arthritis and Musculoskeletal and Skin Diseases. National Institutes of Health, Bethesda, MD 20902, USA
| | - Luis M Franco
- Functional Immunogenomics Section. National Institute of Arthritis and Musculoskeletal and Skin Diseases. National Institutes of Health, Bethesda, MD 20902, USA.
| |
Collapse
|
7
|
Peckham H, Radziszewska A, Sikora J, de Gruijter NM, Restuadi R, Kartawinata M, Martin-Gutierrez L, Robinson GA, Deakin CT, Wedderburn LR, Jury EC, Butler G, Chambers ES, Rosser EC, Ciurtin C. Estrogen influences class-switched memory B cell frequency only in humans with two X chromosomes. J Exp Med 2025; 222:e20241253. [PMID: 40049222 PMCID: PMC11893172 DOI: 10.1084/jem.20241253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 03/12/2025] Open
Abstract
Sex differences in immunity are well-documented, though mechanisms underpinning these differences remain ill-defined. Here, in a human-only ex vivo study, we demonstrate that postpubertal cisgender females have higher levels of CD19+CD27+IgD- class-switched memory B cells compared with age-matched cisgender males. This increase is only observed after puberty and before menopause, suggesting a strong influence for sex hormones. Accordingly, B cells express high levels of estrogen receptor 2 (ESR2), and class-switch-regulating genes are enriched for ESR2-binding sites. In a gender-diverse cohort, blockade of natal estrogen in transgender males (XX karyotype) reduced class-switched memory B cell frequency, while gender-affirming estradiol treatment in transgender females (XY karyotype) did not increase these levels. In postmenopausal cis-females, class-switched memory B cells were increased in those taking hormone replacement therapy (HRT) compared with those who were not. These data demonstrate that sex hormones and chromosomes work in tandem to impact immune responses, with estrogen only influencing the frequency of class-switched memory B cells in individuals with an XX chromosomal background.
Collapse
Affiliation(s)
- Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Justyna Sikora
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Nina M. de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Restuadi Restuadi
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
| | - Melissa Kartawinata
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lucia Martin-Gutierrez
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - George A. Robinson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Claire T. Deakin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
- School of Population Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Lucy R. Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Elizabeth C. Jury
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Gary Butler
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
- University College London Hospital, London, UK
| | - Emma S. Chambers
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Elizabeth C. Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
- University College London Hospital, London, UK
| |
Collapse
|
8
|
Fan J, Shen Y, Chen C, Chen X, Yang X, Liu H, Chen R, Liu S, Zhang B, Zhang M, Zhou G, Wang Y, Sun H, Jiang Y, Wei X, Yang T, Liu Y, Tian D, Deng Z, Xu X, Liu X, Tian Z. A large-scale integrated transcriptomic atlas for soybean organ development. MOLECULAR PLANT 2025; 18:669-689. [PMID: 39973009 DOI: 10.1016/j.molp.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Soybean is one of the most important crops globally, and its production must be significantly increased to meet increasing demand. Elucidating the genetic regulatory networks underlying soybean organ development is essential for breeding elite and resilient varieties to ensure increased soybean production under climate change. An integrated transcriptomic atlas that leverages multiple types of transcriptomics data can facilitate the characterization of temporal-spatial expression patterns of most organ development-related genes and thereby help us to understand organ developmental processes. Here, we constructed a comprehensive, integrated transcriptomic atlas for soybeans, integrating bulk RNA sequencing (RNA-seq) datasets from 314 samples across the soybean life cycle, along with single-nucleus RNA-seq and spatially enhanced resolution omics sequencing datasets from five organs: root, nodule, shoot apex, leaf, and stem. Investigating genes related to organ specificity, blade development, and nodule formation, we demonstrate that the atlas has robust power for exploring key genes involved in organ formation. In addition, we developed a user-friendly panoramic database for the transcriptomic atlas, enabling easy access and queries, which will serve as a valuable resource to significantly advance future soybean functional studies.
Collapse
Affiliation(s)
- Jingwei Fan
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanting Shen
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Yazhouwan National Laboratory, Sanya 572000, Hainan, China.
| | | | - Xi Chen
- BGI-Beijing, Beijing 102601, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyue Yang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ruiying Chen
- BGI-Beijing, Beijing 102601, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Yazhouwan National Laboratory, Sanya 572000, Hainan, China
| | | | - Min Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoan Zhou
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Yazhouwan National Laboratory, Sanya 572000, Hainan, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haixi Sun
- BGI-Beijing, Beijing 102601, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Wei
- China National GeneBank, Shenzhen, Guangdong 518120, China
| | - Tao Yang
- China National GeneBank, Shenzhen, Guangdong 518120, China
| | - Yucheng Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongmei Tian
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ziqing Deng
- BGI-Beijing, Beijing 102601, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Xin Liu
- BGI-Beijing, Beijing 102601, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Zhixi Tian
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Yazhouwan National Laboratory, Sanya 572000, Hainan, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Bergmann L, Greimeier S, Riethdorf S, Rohlfing T, Kaune M, Busenbender T, Strewinsky N, Dyshlovoy S, Joosse S, Peine S, Pantel K, von Amsberg G, Werner S. Transcriptional profiles of circulating tumor cells reflect heterogeneity and treatment resistance in advanced prostate cancer. J Exp Clin Cancer Res 2025; 44:111. [PMID: 40181402 PMCID: PMC11967125 DOI: 10.1186/s13046-025-03367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
PURPOSE New biomarkers for the detection and monitoring of aggressive variant prostate cancer (AVPC) including therapy-induced neuroendocrine prostate cancer (NEPC) are urgently needed, as measuring prostate-specific antigen (PSA) is not reliable in androgen-indifferent diseases. Molecular analysis of circulating tumor cells (CTC) enables repeated analysis for monitoring and allows to capture the heterogeneity of the disease. EXPERIMENTAL DESIGN 102 blood samples from 76 metastatic prostate cancer (mPC) patients, including 37 samples from histologically proven NEPC, were collected and CTCs were enriched using label-dependent and label-independent methods. Relevant transcripts were selected for CTC profiling using semi-quantitative RT-PCR analysis and validated in published datasets and cell lines. Transcriptional profiles in patient samples were analyzed using supervised and unsupervised methods. RESULTS CTC counts were increased in AVPC and NEPC as compared to metastatic hormone-sensitive prostate cancer (mHSPC). Gene expression profiles of CTCs showed a high degree of inter-patient heterogeneity, but NEPC-specific transcripts were significantly increased in patients with proven NEPC, while adenocarcinoma markers were decreased. Unsupervised analysis identified four distinct clusters of CTClow, ARhigh, amphicrine and pure NEPC gene expression profiles that reflected the clinical groups. Based on the transcript panel, NEPC could be distinguished from mHSPC or AVPC patients with a specificity of 95.5% and 88.2%, respectively. CONCLUSION Molecular subtypes of mPC can be distinguished by transcriptional profiling of CTCs. In the future, our convenient PCR-based analysis may complement the monitoring of advanced PCa patients and allow timely detection of resistance to androgen receptor pathway inhibitors.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Sarah Greimeier
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Tina Rohlfing
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Moritz Kaune
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tobias Busenbender
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Nadja Strewinsky
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sergey Dyshlovoy
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simon Joosse
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Gunhild von Amsberg
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Stefan Werner
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
10
|
Shinozawa T, Miyamoto K, Baker KS, Faber SC, Flores R, Uetrecht J, von Hehn C, Yukawa T, Tohyama K, Kadali H, von Grotthuss M, Sudo Y, Smith EN, Diogo D, Zhu AZX, Dragan Y, Cebers G, Wagoner MP. TAK-994 mechanistic investigation into drug-induced liver injury. Toxicol Sci 2025; 204:143-153. [PMID: 39786842 PMCID: PMC11939078 DOI: 10.1093/toxsci/kfaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The frequency of drug-induced liver injury (DILI) in clinical trials remains a challenge for drug developers despite advances in human hepatotoxicity models and improvements in reducing liver-related attrition in preclinical species. TAK-994, an oral orexin receptor 2 agonist, was withdrawn from phase II clinical trials due to the appearance of severe DILI. Here, we investigate the likely mechanism of TAK-994 DILI in hepatic cell culture systems examined cytotoxicity, mitochondrial toxicity, impact on drug transporter proteins, and covalent binding. Hepatic liabilities were absent in rat and nonhuman primate safety studies, however, murine studies initiated during clinical trials revealed hepatic single-cell necrosis following cytochrome P450 induction at clinically relevant doses. Hepatic cell culture experiments uncovered wide margins to known mechanisms of intrinsic DILI, including cytotoxicity (>100× Cmax/IC50), mitochondrial toxicity (>100× Cmax/IC50), and bile salt efflux pump inhibition (>20× Css, avg/IC50). A potential covalent binding liability was uncovered with TAK-994 following hepatic metabolism consistent with idiosyncratic DILI and the delayed-onset clinical toxicity. Although idiosyncratic DILI is challenging to detect preclinically, reductions in total daily dose and covalent binding can reduce the covalent body binding burden and, subsequently, the clinical incidence of idiosyncratic DILI.
Collapse
Affiliation(s)
| | - Kazumasa Miyamoto
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Kevin S Baker
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Samantha C Faber
- Takeda Development Center Americas, Inc, San Diego, CA 92121, United States
| | | | - Jack Uetrecht
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Christian von Hehn
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Tomoya Yukawa
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Kimio Tohyama
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Harisha Kadali
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | | | - Yusuke Sudo
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Erin N Smith
- Takeda Development Center Americas, Inc, San Diego, CA 92121, United States
| | - Dorothée Diogo
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Andy Z X Zhu
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Yvonne Dragan
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Gvido Cebers
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Matthew P Wagoner
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| |
Collapse
|
11
|
Spector BL, Koseva B, McLennan R, Banerjee D, Lankachandra K, Bradley T, Selvarangan R, Grundberg E. Methylation patterns of the nasal epigenome of hospitalized SARS-CoV-2 positive patients reveal insights into molecular mechanisms of COVID-19. BMC Med Genomics 2025; 18:62. [PMID: 40170038 PMCID: PMC11963311 DOI: 10.1186/s12920-025-02125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/12/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has varied presentations from asymptomatic to death. Efforts to identify factors responsible for differential COVID-19 severity include but are not limited to genome wide association studies (GWAS) and transcriptomic analysis. More recently, variability in host epigenomic profiles have garnered attention, providing links to disease severity. However, whole epigenome analysis of the respiratory tract, the target tissue of SARS-CoV-2, remains ill-defined. RESULTS We interrogated the nasal methylome to identify pathophysiologic drivers in COVID-19 severity through whole genome bisulfite sequencing (WGBS) of nasal samples from COVID-19 positive individuals with severe and mild presentation of disease. We noted differential DNA methylation in intergenic regions and low methylated regions (LMRs), demonstrating the importance of distal regulatory elements in gene regulation in COVID-19 illness. Additionally, we demonstrated differential methylation of pathways implicated in immune cell recruitment and function, and the inflammatory response. We found significant hypermethylation of the FUT4 promoter implicating impaired neutrophil adhesion in severe disease. We also identified hypermethylation of ELF5 binding sites suggesting downregulation of ELF5 targets in the nasal cavity as a factor in COVID-19 phenotypic variability. CONCLUSIONS This study demonstrated DNA methylation as a marker of the immune response to SARS-CoV-2 infection, with enhancer-like elements playing significant roles. It is difficult to discern whether this differential methylation is a predisposing factor to severe COVID-19, or if methylation differences occur in response to disease severity. These differences in the nasal methylome may contribute to disease severity, or conversely, the nasal immune system may respond to severe infection through differential immune cell recruitment and immune function, and through differential regulation of the inflammatory response.
Collapse
Affiliation(s)
- Benjamin L Spector
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA.
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA.
| | - Boryana Koseva
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Rebecca McLennan
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Dithi Banerjee
- Department of Pathology and Laboratory Medicine, Children'S Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Kamani Lankachandra
- Department of Pathology, University Health, University of Missouri- Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Todd Bradley
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Rangaraj Selvarangan
- Department of Pathology and Laboratory Medicine, Children'S Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Elin Grundberg
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA.
| |
Collapse
|
12
|
Przygodzka P, Szulc-Kielbik I, Kielbik M, Pacholczyk M, Klink M. Neuromedin U in the tumor microenvironment - Possible actions in tumor progression. Biochim Biophys Acta Rev Cancer 2025; 1880:189269. [PMID: 39842617 DOI: 10.1016/j.bbcan.2025.189269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Tumor microenvironment (TME) has become a major focus of cancer research as a promising therapeutic target. TME comprises cancer cells surrounded by nonmalignant cells, vessels, lymphoid organs, immune cells, nerves, intercellular components, molecules and metabolites located within or near the tumor lesion. Neuromedin U (NMU), a secretory peptide identified in the TME, has gained much attention as an important player in cancer and nonmalignant cell crosstalk. NMU receptors were detected in cancer cells as well as in nonmalignant TME components, such as immune, stromal and endothelial cells. We propose here to discuss the concept that NMU secreted by cancer cells activates cellular components of TME and thus contributes to the formation of microenvironment that favors tumor growth and cancer progression. We summarized the available data on cancer tissues and cell types that have been identified as a source of NMU and/or receptor-expressing NMU targets. We made a critical selection of NMU-receptor positive cell types that are known components of the TME of most malignant tumors. Finally, we discussed whether NMUs and NMU receptors represent a potential therapeutic target for cancer treatment, and summarized information on the tools available to modulate their activity.
Collapse
Affiliation(s)
- Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| | - Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Marcin Pacholczyk
- Silesian University of Technology, Department of Systems Biology and Engineering, 16 Akademicka Str., 44-100 Gliwice, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| |
Collapse
|
13
|
Omange RW, Kim SC, Kolhatkar NS, Plott T, Van Trump W, Zhang K, O’Donnell H, Chen D, Hosny A, Wiest M, Barry Z, Addiego EC, Mengistu M, Odorizzi PM, Cai Y, Jacobson R, Wallin JJ. AI discovery of TLR agonist-driven phenotypes reveals unique features of peripheral cells from healthy donors and ART-suppressed people living with HIV. Front Immunol 2025; 16:1541152. [PMID: 40201178 PMCID: PMC11975909 DOI: 10.3389/fimmu.2025.1541152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Background Selective and potent Toll-like receptor (TLR) agonists are currently under evaluation in preclinical models and clinical studies to understand how the innate immune system can be harnessed for therapeutic potential. These molecules are designed to modulate innate and adaptive immune responses, making them promising therapeutic candidates for treating diseases such as cancer or chronic viral infections. Much is known about the expression and signaling of TLRs which varies based on cell type, cellular localization, and tissue distribution. However, the downstream effects of different TLR agonists on cellular populations and phenotypes are not well understood. This study aimed to investigate the impact of TLR pathway stimulation on peripheral blood mononuclear cell (PBMC) cultures from people living with HIV (PLWH) and healthy donors. Methods The effects of TLR4, TLR7, TLR7/8, TLR8 and TLR9 agonists were evaluated on cytokine production, cell population frequencies, and morphological characteristics of PBMC cultures over time. Changes in the proportions of different cell populations in blood and morphological features were assessed using high-content imaging and analyzed using an AI-driven approach. Results TLR4 and TLR8 agonists promoted a compositional shift and accumulation of small round (lymphocyte-like) PBMCs, whereas TLR9 agonists led to an accumulation of large round (myeloid-like) PBMCs. A related increase was observed in markers of cell death, most prominently with TLR4 and TLR8 agonists. All TLR agonists were shown to promote some features associated with cellular migration. Furthermore, a comparison of TLR agonist responses in healthy and HIV-positive PBMCs revealed pronounced differences in cytokine/chemokine responses and morphological cellular features. Most notably, higher actin contraction and nuclear fragmentation was observed in response to TLR4, TLR7, TLR7/8 and TLR9 agonists for antiretroviral therapy (ART)-suppressed PLWH versus healthy PBMCs. Conclusions These data suggest that machine learning, combined with cell imaging and cytokine quantification, can be used to better understand the cytological and soluble immune responses following treatments with immunomodulatory agents in vitro. In addition, comparisons of these responses between disease states are possible with the appropriate patient samples.
Collapse
Affiliation(s)
- Robert Were Omange
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Samuel C. Kim
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Nikita S. Kolhatkar
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| | | | | | | | | | - Daniel Chen
- Spring Science, San Carlos, CA, United States
| | - Ahmed Hosny
- Spring Science, San Carlos, CA, United States
| | | | - Zach Barry
- Spring Science, San Carlos, CA, United States
| | | | - Meron Mengistu
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Pamela M. Odorizzi
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Yanhui Cai
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| | | | - Jeffrey J. Wallin
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| |
Collapse
|
14
|
Moreno TM, Nieto-Torres JL, Kumsta C. Monitoring Autophagy in Human Aging: Key Cell Models and Insights. FRONT BIOSCI-LANDMRK 2025; 30:27091. [PMID: 40152379 PMCID: PMC12042822 DOI: 10.31083/fbl27091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 03/29/2025]
Abstract
Autophagy, a key cellular degradation and recycling pathway, is critical for maintaining cellular homeostasis and responding to metabolic and environmental stress. Evidence for age-related autophagic dysfunction and its implications in chronic age-related diseases including neurodegeneration is accumulating. However, as a complex, multi-step process, autophagy can be challenging to measure, particularly in humans and human aging- and disease-relevant models. This review describes the links between macroautophagy, aging, and chronic age-related diseases. We present three novel human cell models, peripheral blood mononuclear cells (PBMCs), primary dermal fibroblasts (PDFs), and induced neurons (iNs), which serve as essential tools for studying autophagy flux and assessing its potential as a biomarker for aging. Unlike traditional models, these cell models retain age- and disease-associated molecular signatures, enhancing their relevance for human studies. The development of robust tools and methodologies for measuring autophagy flux in human cell models holds promise for advancing our understanding of autophagy's role in aging and age-related diseases, ultimately facilitating the discovery of therapies to enhance health outcomes.
Collapse
Affiliation(s)
- Tatiana M. Moreno
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jose L. Nieto-Torres
- Department of Biomedical Sciences, School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Caroline Kumsta
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Nagel S, Meyer C. Aberrant Expression and Oncogenic Activity of SPP1 in Hodgkin Lymphoma. Biomedicines 2025; 13:735. [PMID: 40149711 PMCID: PMC11940585 DOI: 10.3390/biomedicines13030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Hodgkin lymphoma (HL) is a B-cell-derived malignancy and one of the most frequent types of lymphoma. The tumour cells typically exhibit multiple genomic alterations together with aberrantly activated signalling pathways, driven by paracrine and/or autocrine modes. SPP1 (alias osteopontin) is a cytokine acting as a signalling activator and has been connected with relapse in HL patients. To understand its pathogenic role, here, we investigated the mechanisms and function of deregulated SPP1 in HL. Methods: We screened public patient datasets and cell lines for aberrant SPP1 expression. HL cell lines were stimulated with SPP1 and subjected to siRNA-mediated knockdown. Gene and protein activities were analyzed by RQ-PCR, ELISA, Western blot, and immuno-cytology. Results: SPP1 expression was detected in 8.3% of classic HL patients and in HL cell line SUP-HD1, chosen to serve as an experimental model. The gene encoding SPP1 is located at chromosomal position 4q22 and is genomically amplified in SUP-HD1. Transcription factor binding site analysis revealed TALE and HOX factors as potential regulators. Consistent with this finding, we showed that aberrantly expressed PBX1 and HOXB9 mediate the transcriptional activation of SPP1. RNA-seq data and knockdown experiments indicated that SPP1 signals via integrin ITGB1 in SUP-HD1. Accordingly, SPP1 activated NFkB in addition to MAPK/ERK which in turn mediated the nuclear import of ETS2, activating oncogenic JUNB expression. Conclusions: SPP1 is aberrantly activated in HL cell line SUP-HD1 via genomic copy number gain and by homeodomain transcription factors PBX1 and HOXB9. SPP1-activated NFkB and MAPK merit further investigation as potential therapeutic targets in affected HL patients.
Collapse
Affiliation(s)
- Stefan Nagel
- Human and Animal Cell Lines, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | | |
Collapse
|
16
|
Aldersey JE, Abernathy JW, Beck BH, Lange MD. Single-nuclei transcriptome analysis of IgM + cells isolated from channel catfish ( Ictalurus punctatus) spleen. Front Immunol 2025; 16:1547193. [PMID: 40165976 PMCID: PMC11955638 DOI: 10.3389/fimmu.2025.1547193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/14/2025] [Indexed: 04/02/2025] Open
Abstract
Catfish production is the primary aquaculture sector in the United States, and the key cultured species is channel catfish (Ictalurus punctatus). The major causes of production losses are pathogenic diseases, and the spleen, an important site of adaptive immunity, is implicated in these diseases. To examine the channel catfish immune system, single-nuclei transcriptomes of sorted and captured IgM+ cells were produced from adult channel catfish. Three channel catfish (~1 kg) were euthanized, the spleen dissected, and the tissue dissociated. The lymphocytes were isolated using a Ficoll gradient and IgM+ cells were then sorted with flow cytometry. The IgM+ cells were lysed and single-nuclei libraries generated using a Chromium Next GEM Single Cell 3' GEM Kit and the Chromium X Instrument (10x Genomics) and sequenced with the Illumina NovaSeq X Plus sequencer. The reads were aligned to the I. punctatus reference assembly (Coco_2.0) using Cell Ranger, and normalization, cluster analysis, and differential gene expression analysis were carried out with Seurat. Across the three samples, approximately 753.5 million reads were generated for 18,686 cells. After filtering, 10,637 cells remained for the cluster analysis. The cluster analysis identified 16 clusters which were classified as B cells (10,276), natural killer-like (NK-like) cells (178), T cells or natural killer cells (45), hematopoietic stem and progenitor cells (HSPC)/megakaryocytes (MK) (66), myeloid/epithelial cells (40), and plasma cells (32). The B cell clusters were further defined as different populations of mature B cells, cycling B cells, and plasma cells. The plasma cells highly expressed ighm and we demonstrated that the secreted form of the transcript was largely being expressed by these cells. This atlas provides insight into the gene expression of IgM+ immune cells in channel catfish. The atlas is publicly available and could be used garner more important information regarding the gene expression of splenic immune cells.
Collapse
Affiliation(s)
- Johanna E. Aldersey
- ARS Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
- Aquatic Animal Health Research Unit, Agricultural Research Service (ARS), United States Department of Agriculture, Auburn, AL, United States
| | - Jason W. Abernathy
- Aquatic Animal Health Research Unit, Agricultural Research Service (ARS), United States Department of Agriculture, Auburn, AL, United States
| | - Benjamin H. Beck
- Aquatic Animal Health Research Unit, Agricultural Research Service (ARS), United States Department of Agriculture, Auburn, AL, United States
| | - Miles D. Lange
- Aquatic Animal Health Research Unit, Agricultural Research Service (ARS), United States Department of Agriculture, Auburn, AL, United States
| |
Collapse
|
17
|
Luo C, Zhang R, Guo R, Wu L, Xue T, He Y, Jin Y, Zhao Y, Zhang Z, Zhang P, Ye S, Li X, Li D, Zhang W, Wang C, Lai L, Pan-Hammarström Q, Wucherpfennig KW, Gao Z, Pan D, Zeng Z. Integrated computational analysis identifies therapeutic targets with dual action in cancer cells and T cells. Immunity 2025; 58:745-765.e9. [PMID: 40023158 DOI: 10.1016/j.immuni.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Many cancer drugs that target cancer cell pathways also impair the immune system. We developed a computational target discovery platform to enable examination of both cancer and immune cells so as to identify pathways that restrain tumor progression and potentiate anti-tumor immunity. Immune-related CRISPR screen analyzer of functional targets (ICRAFT) integrates immune-related CRISPR screen datasets, single-cell RNA sequencing (scRNA-seq) data, and pre-treatment RNA-seq data from clinical trials, enabling a systems-level approach to therapeutic target discovery. Using ICRAFT, we identified numerous targets that enhance both cancer cell susceptibility to immune attack and T cell activation, including tumor necrosis factor (TNF) alpha-induced protein 3 (TNFAIP3), protein tyrosine phosphatase non-receptor type 2 (PTPN2), and suppressor of cytokine signaling 1 (SOCS1). In cancer cells, Tnfaip3 (A20) deletion activated the TNF-nuclear factor kappa-B (NF-κB) pathway, promoting chemokine expression and T cell recruitment to the tumor. T cell-mediated elimination of Tnaifp3-null cancer cells was primarily driven by TNF-induced apoptosis. Inactivation of Tnfaip3 in T cells enhanced anti-tumor efficacy. By integrating diverse functional genomics and clinical datasets, ICRAFT provides an interactive resource toward a deeper understanding of anti-tumor immunity and immuno-oncology drug development.
Collapse
Affiliation(s)
- Ce Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Rui Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Rui Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Lijian Wu
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Xue
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Yufeng He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Yanping Zhao
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zongxu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Peng Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Sitong Ye
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Yale School of Medicine, New Haven, CT 06510, USA
| | - Xiaohong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Dian Li
- Division of Biology and Biomedical Sciences, Washington University in St. Louis School of Medicine, Saint Louis, MO 63108, USA
| | - Wubing Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Chenfei Wang
- Shanghai Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17165, Sweden
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100084, China.
| | - Deng Pan
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China.
| |
Collapse
|
18
|
Cardinale CJ, Liu Y, Kevadia A, Strong A, Watts VJ, Hakonarson H. The ulcerative colitis risk gene adenylyl cyclase 7 restrains the T-helper 2 phenotype and Class II antigen presentation. J Crohns Colitis 2025; 19:jjaf030. [PMID: 39957491 PMCID: PMC11920793 DOI: 10.1093/ecco-jcc/jjaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND AIMS Genome-wide association studies have shown that the most risk-conferring genetic polymorphism for ulcerative colitis (UC) outside the human leukocyte antigen locus is the amino acid substitution p.Asp439Glu in the adenylyl cyclase 7 gene (ADCY7). ADCY7 is the main isoform in the hematopoietic system and produces the second messenger cyclic AMP (cAMP) downstream of G protein-coupled receptor signaling. Our aim was to determine the contribution of this polymorphism to UC risk by analyzing its effect on ADCY7 function in cell-based assays. METHODS We characterized the p.Asp439Glu variant in cell lines using western blots, immunofluorescence, cAMP assay, and luciferase assay. We modeled this variant using siRNA knock-down in human primary CD4+ T cells and characterized them by RNA-seq, viability assay, flow cytometry, cAMP assay, and ELISA. RESULTS The p.Asp439Glu variant is deficient in protein expression but retains membrane localization. This results in a 40% reduction in cAMP synthesis and luciferase reporter expression. Knock-down of ADCY7 in T cells reduces the expression of ribosomal proteins and cAMP signaling proteins, while skewing cytokine production toward a T-helper 2 pattern and upregulating antigen presentation accompanied by increased surface expression of major histocompatibility complex Class II and CD86. CONCLUSIONS The UC risk-conferring variant, p.Asp439Glu, in ADCY7 reduces cyclic AMP signaling, leading to modifications in cytokine profile and antigen presentation. Medications that enhance cyclic AMP by direct activation of ADCY7 or by phosphodiesterase inhibition may be beneficial in this disease.
Collapse
Affiliation(s)
- Christopher J Cardinale
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yichuan Liu
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Aayush Kevadia
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Alanna Strong
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Dadson P, Honka MJ, Suomi T, Haridas PAN, Rokka A, Palani S, Goltseva E, Wang N, Roivainen A, Salminen P, James P, Olkkonen VM, Elo LL, Nuutila P. Proteomic profiling reveals alterations in metabolic and cellular pathways in severe obesity and following metabolic bariatric surgery. Am J Physiol Endocrinol Metab 2025; 328:E311-E324. [PMID: 39819027 DOI: 10.1152/ajpendo.00220.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
In this study, we investigated the impact of bariatric surgery on the adipose proteome to better understand the metabolic and cellular mechanisms underlying weight loss following the procedure. A total of 46 patients with severe obesity were included, with samples collected both before and after bariatric surgery. In addition, 15 healthy individuals without obesity who did not undergo surgery served as controls and were studied once. We utilized quantitative liquid chromatography-tandem mass spectrometry analysis to conduct a large-scale proteomic study on abdominal subcutaneous biopsies obtained from the study participants. Our proteomic profiling revealed that among the 2,254 compared proteins, 46 were upregulated and 34 were downregulated 6 months post surgery compared with baseline [false discovery rate (FDR) < 0.01]. We observed a downregulation of proteins associated with mitochondrial integrity, amino acid catabolism, and lipid metabolism in the patients with severe obesity compared with the controls. Bariatric surgery was associated with an upregulation in pathways related to mitochondrial function, protein synthesis, folding and trafficking, actin cytoskeleton regulation, and DNA binding and repair. These findings emphasize the significant changes in metabolic and cellular pathways following bariatric surgery, highlighting the potential mechanisms underlying the observed health improvements postbariatric surgery. The data provided alongside this paper will serve as a valuable resource for the development of targeted therapeutic strategies for obesity and related metabolic complications. ClinicalTrials.gov registration numbers: NCT00793143 (registered on 19 November 2008) (https://clinicaltrials.gov/ct2/show/NCT00793143) and NCT01373892 (registered on 15 June 2011) (https://clinicaltrials.gov/ct2/show/NCT01373892).NEW & NOTEWORTHY Our study investigates the effects of metabolic bariatric surgery on adipose tissue proteins, highlighting the mechanisms driving weight loss postsurgery. Through extensive proteomic analysis of adipose biopsies from patients with severe obesity pre- and postsurgery, alongside healthy subjects without obesity, we identified significant alterations in metabolic pathways. These findings provide insights into potential therapeutic targets for obesity-related complications.
Collapse
Affiliation(s)
- Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Miikka-Juhani Honka
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Division of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Elena Goltseva
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ning Wang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Paulina Salminen
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Department of Surgery, University of Turku, Turku, Finland
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Peter James
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
20
|
Benezeder T, Bordag N, Woltsche J, Falkensteiner K, Graier T, Schadelbauer E, Cerroni L, Meyersburg D, Mateeva V, Reich A, Kołt-Kamińska M, Ratzinger G, Maul JT, Meier-Schiesser B, Navarini AA, Ceovic R, Prillinger K, Marovt M, Pavlovksy L, Szegedi A, Sanzharovskaja M, Zach H, Wolf P. IL-36-driven pustulosis: Transcriptomic signatures match between generalized pustular psoriasis (GPP) and acute generalized exanthematous pustulosis (AGEP). J Allergy Clin Immunol 2025:S0091-6749(25)00176-9. [PMID: 39978684 DOI: 10.1016/j.jaci.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Due to similarities, the distinction between generalized pustular psoriasis (GPP) and acute generalized exanthematous pustulosis (AGEP) has been a matter of debate for a long time. OBJECTIVES Our aim was to define the molecular features of GPP and AGEP. METHODS We analyzed skin biopsy samples and clinical data from 125 patients with AGEP, GPP, palmoplantar pustulosis (PPP), plaque psoriasis (PSO), and nonpustular cutaneous adverse drug reactions (ADRs), as well as from healthy skin controls using RNA-sequencing and blinded histopathologic analyses. RESULTS The transcriptome and histopathologic features of AGEP and GPP samples exhibited significant overlap (177 differentially expressed genes [DEGs] in GPP and AGEP compared to healthy skin, only 2 DEGs comparing AGEP and GPP). Yet, they displayed marked differences from those of PPP, PSO, and ADR samples, with a notable number of DEGs (131 DEGs comparing AGEP and PSO, 75 DEGs comparing AGEP and PPP, and 52 DEGs comparing AGEP and ADR). A transcriptome profile subgroup evaluation of >13,000 analyzed genes did not reveal any DEGs in drug-induced GPP and AGEP. Moreover, the immune response pattern and immune cell composition did not differ between drug-induced GPP and AGEP, whereas non-drug-induced GPP had higher expression of TH17-cell-related genes and a higher neutrophil count than AGEP. CONCLUSIONS We propose that AGEP is a drug-induced variant of GPP and therefore part of IL-36-related pustulosis. A key signature overarching this spectrum was identified, thereby opening the therapeutic approach of IL-36 inhibition to all subtypes of the disease.
Collapse
Affiliation(s)
- Theresa Benezeder
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Natalie Bordag
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Johannes Woltsche
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | | | - Thomas Graier
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Eva Schadelbauer
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Lorenzo Cerroni
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Damian Meyersburg
- Department of Dermatology and Allergology, University Hospital Salzburg of the Paracelsus Medical University, Salzburg, Austria
| | - Valeria Mateeva
- Department of Dermatology and Venereology, Medical Faculty, Medical University, Sofia, Bulgaria
| | - Adam Reich
- Department of Dermatology, Faculty of Medicine, Medical College of Rzeszów University, Rzeszów, Poland
| | - Marta Kołt-Kamińska
- Department of Dermatology, Faculty of Medicine, Medical College of Rzeszów University, Rzeszów, Poland
| | - Gudrun Ratzinger
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia-Tatjana Maul
- Department of Dermatology, University of Zürich, Zürich, Switzerland; Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Barbara Meier-Schiesser
- Department of Dermatology, University of Zürich, Zürich, Switzerland; Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Romana Ceovic
- Department of Dermatology and Venereology, School of Medicine University of Zagreb, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Knut Prillinger
- Department of Dermatology, University Hospital St Pölten, St Pölten, Austria
| | - Maruska Marovt
- Department of Dermatology, University Medical Centre Maribor, Maribor, Slovenia
| | - Lev Pavlovksy
- Division of Dermatology, Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
21
|
Abdulrahman FA, Benford KA, Lin GT, Maroun AJ, Sammons C, Shirzad DN, Tsai H, Van Brunt VL, Jones Z, Marquez JE, Ratkus EC, Shehadeh AK, Abasto Valle H, Fejzo D, Gilbert AE, McWee CA, Underwood LF, Indico E, Rork BB, Nanjundan M. zDHHC-Mediated S-Palmitoylation in Skin Health and Its Targeting as a Treatment Perspective. Int J Mol Sci 2025; 26:1673. [PMID: 40004137 PMCID: PMC11854935 DOI: 10.3390/ijms26041673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
S-acylation, which includes S-palmitoylation, is the only known reversible lipid-based post-translational protein modification. S-palmitoylation is mediated by palmitoyl acyltransferases (PATs), a family of 23 enzymes commonly referred to as zDHHCs, which catalyze the addition of palmitate to cysteine residues on specific target proteins. Aberrant S-palmitoylation events have been linked to the pathogenesis of multiple human diseases. While there have been advances in elucidating the molecular mechanisms underlying the pathogenesis of various skin conditions, there remain gaps in the knowledge, specifically with respect to the contribution of S-palmitoylation to the maintenance of skin barrier function. Towards this goal, we performed PubMed literature searches relevant to S-palmitoylation in skin to define current knowledge and areas that may benefit from further research studies. Furthermore, to identify alterations in gene products that are S-palmitoylated, we utilized bioinformatic tools such as SwissPalm and analyzed relevant data from publicly available databases such as cBioportal. Since the targeting of S-palmitoylated targets may offer an innovative treatment perspective, we surveyed small molecules inhibiting zDHHCs, including 2-bromopalmitate (2-BP) which is associated with off-target effects, and other targeting strategies. Collectively, our work aims to advance both basic and clinical research on skin barrier function with a focus on zDHHCs and relevant protein targets that may contribute to the pathogenesis of skin conditions such as atopic dermatitis, psoriasis, and skin cancers including melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (F.A.A.); (K.A.B.); (G.T.L.); (A.J.M.); (C.S.); (D.N.S.); (H.T.); (V.L.V.B.); (Z.J.); (J.E.M.); (E.C.R.); (A.K.S.); (H.A.V.); (D.F.); (A.E.G.); (C.A.M.); (L.F.U.); (E.I.); (B.B.R.)
| |
Collapse
|
22
|
Vigeland MD, Flåm ST, Vigeland MD, Zucknick M, Wigemyr M, Bråten LCH, Gjefsen E, Zwart JA, Storheim K, Pedersen LM, Lie BA, the AIM Study Group. Gene Expression Correlates with Disability and Pain Intensity in Patients with Chronic Low Back Pain and Modic Changes in a Sex-Specific Manner. Int J Mol Sci 2025; 26:800. [PMID: 39859512 PMCID: PMC11766089 DOI: 10.3390/ijms26020800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic low back pain (cLBP) lacks clear physiological explanations, and the treatment options are of limited effect. We aimed to elucidate the underlying biology of cLBP in a subgroup of patients with Modic changes type I (suggestive of inflammatory vertebral bone marrow lesions) by correlating gene expression in blood with patient-reported outcomes on disability and pain intensity and explore sex differences. Patients were included from the placebo group of a clinical study on patients with cLBP and Modic changes. Blood was collected at the time of inclusion, after three months, and after one year, and gene expression was measured at all time points by high-throughput RNA sequencing. The patients reported disability using the Roland-Morris Disability Questionnaire, and pain intensity was assessed as a mean of three scores on a 0-10 numeric rating scale: current LBP, worst LBP within the last two weeks, and mean LBP within the last two weeks. The gene expression profiles were then correlated to the reported outcomes. Changes in gene expression over time correlated significantly with changes in both disability and pain. The findings showed distinct patterns in men and women, with negligible overlap in correlated genes between the sexes. The genes involved were enriched in immunological pathways, particularly T cell receptor complex and immune responses related to neutrophils. Several of the genes harbour polymorphisms that previously have been found to be associated with chronic pain. Taken together, our results indicate gender differences in the underlying biology of disability and pain intensity in patients with low back pain.
Collapse
Affiliation(s)
- Maria Dehli Vigeland
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, 0316 Oslo, Norway
| | - Monica Wigemyr
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| | - Lars Christian Haugli Bråten
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| | - Elisabeth Gjefsen
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - John-Anker Zwart
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Kjersti Storheim
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Linda Margareth Pedersen
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Benedicte Alexandra Lie
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - the AIM Study Group
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| |
Collapse
|
23
|
Martin A, Caron S, Marcotte M, Bronnec P, Garneret E, Martel N, Maalouf G, Sève P, Saadoun D, Jamilloux Y, Henry T. IFN-γ licenses normal and pathogenic ALPK1/TIFA pathway in human monocytes. iScience 2025; 28:111563. [PMID: 39868044 PMCID: PMC11758396 DOI: 10.1016/j.isci.2024.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 01/28/2025] Open
Abstract
Alpha-kinase 1 (ALPK1) is an immune receptor sensing the bacterial nucleotide sugar ADP-heptose. ALPK1 phosphorylates TIFA leading to its oligomerization and downstream NF-κB activation. Specific mutations in ALPK1 are associated with an autoinflammatory syndrome termed ROSAH and with spiradenoma (skin cancers with sweat gland differentiation). This study investigated ALPK1 responses in human mononuclear cells and demonstrates that human mononuclear cells have distinct abilities to respond to ADP-heptose. Notably, IFN-γ is required to license the ALPK1/TIFA pathway in monocytes, while it was dispensable for the responsiveness of B cells. IFN-γ induced TIFA upregulation in monocytes, and TIFA induction was sufficient to recapitulate the licensing effect of IFN-γ. IFN-γ treatment promoted the phenotypic expression of pathogenic ALPK1 mutations. The licensing effect of IFN-γ in monocytes was blocked by JAK inhibitors. These findings underscore the critical role of IFN-γ in ALPK1 function and suggest JAK inhibitors as potential therapies for ALPK1-related inflammatory conditions.
Collapse
Affiliation(s)
- Amandine Martin
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Solène Caron
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Mélissa Marcotte
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Pauline Bronnec
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Etienne Garneret
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Nora Martel
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Internal Medicine, University Hospital Croix-Rousse, Hospices Civils de Lyon, 69000 Lyon, France
| | - Georgina Maalouf
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Department of Internal Medicine and Clinical Immunology, Sorbonne Universités, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre National de Références Maladies Auto-immunes et Systémiques Rares, INSERM, UMR S959, Immunology-Immunopathology-Immunotherapy (I3), 83 Boulevard de L’hôpital, 75013 Paris, France
| | - Pascal Sève
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Internal Medicine, University Hospital Croix-Rousse, Hospices Civils de Lyon, 69000 Lyon, France
| | - David Saadoun
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Department of Internal Medicine and Clinical Immunology, Sorbonne Universités, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre National de Références Maladies Auto-immunes et Systémiques Rares, INSERM, UMR S959, Immunology-Immunopathology-Immunotherapy (I3), 83 Boulevard de L’hôpital, 75013 Paris, France
| | - Yvan Jamilloux
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Internal Medicine, University Hospital Croix-Rousse, Hospices Civils de Lyon, 69000 Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
| |
Collapse
|
24
|
Wlosik J, Orlanducci F, Richaud M, Demerle C, Amara AB, Rouviere MS, Livrati P, Gorvel L, Hospital MA, Dulphy N, Devillier R, Vey N, Olive D, Chretien AS. CD56 neg CD16 + cells represent a distinct mature NK cell subset with altered phenotype and are associated with adverse clinical outcome upon expansion in AML. Front Immunol 2025; 15:1487792. [PMID: 39867888 PMCID: PMC11760599 DOI: 10.3389/fimmu.2024.1487792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Acute myeloid leukemia (AML) is a rare haematological cancer with poor 5-years overall survival (OS) and high relapse rate. Leukemic cells are sensitive to Natural Killer (NK) cell mediated killing. However, NK cells are highly impaired in AML, which promote AML immune escape from NK cell immune surveillance. We made the first report of CD56neg CD16+ NK cells expansion in AML. This unconventional subset has been reported to expand in some chronic viral infections. Although it is unclear whether CD56neg NK cells expansion mechanism is common across diseases, it seems more relevant than ever to further investigate this subset, representing a potential therapeutic target. Methods We used PBMCs from AML patients and HV to perform mass cytometry, spectral flow cytometry, bulk RNA-seq and in vitro assays in order to better characterize CD56neg CD16+ NK cells that expand in AML. Results We confirmed that CD56neg CD16+ NK cells represent a unique NK cell subset coexpressing Eomes and T-bet. CD56neg CD16+ NK cells could recover CD56 expression in vitro where they displayed unaltered NK cell functions. We previously demonstrated that CD56neg CD16+ NK cells expansion at diagnosis was associated with adverse clinical outcome in AML. Here, we validated our findings in a validation cohort of N=38 AML patients. AML patients with CD56neg CD16+ NK cells expansion at diagnosis had decreased overall survival (HR[CI95]=5.5[1.2-24.5], p=0.0251) and relapse-free survival (HR[CI95]=13.1[1.9-87.5], p=0.0079) compared to AML patients without expansion after 36 months follow-up. RNA-seq unveiled that CD56neg CD16+ NK cells were mature circulating NK cells with functional capacities. Upon expansion, CD56neg CD16+ NK cells from AML patients showed altered proteomic phenotype, with increased frequency of terminally mature CD56neg CD16+ NK cells expressing TIGIT along with decreased frequency of Siglec-7+ CD56neg CD16+ NK cells. Discussion Taken together, our results suggest that we could harness CD56neg CD16+ NK cells cytotoxic potential in vitro to restore NK cell anti-tumor response in AML patients with CD56neg CD16+ NK cells expansion and improve patients' prognosis. To conclude, CD56neg CD16+ NK cells represent a relevant target for future NK-cell-based immunotherapies in AML.
Collapse
Affiliation(s)
- Julia Wlosik
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Florence Orlanducci
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Manon Richaud
- Cytometry Platform, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
| | - Clemence Demerle
- Centre for Clinical Investigation in Biotherapy, Paoli-Calmettes Institute, University of Aix-Marseille, Inserm CBT 1409, Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Marie-Sarah Rouviere
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Philippe Livrati
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Laurent Gorvel
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Marie-Anne Hospital
- Hematology Department, CRCM, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Marseille, France
| | - Nicolas Dulphy
- Paris Cité University, Saint-Louis Research Institute, Inserm UMRS1160, Paris, France
- Immunology and Histocompatibility Laboratory, Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Paris, France
| | - Raynier Devillier
- Hematology Department, CRCM, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Marseille, France
| | - Norbert Vey
- Hematology Department, CRCM, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Anne-Sophie Chretien
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| |
Collapse
|
25
|
Affar M, Bottardi S, Quansah N, Lemarié M, Ramón AC, Affar EB, Milot E. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ 2025; 32:37-55. [PMID: 37620540 PMCID: PMC11742659 DOI: 10.1038/s41418-023-01212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.
Collapse
Affiliation(s)
- Malik Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Maud Lemarié
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Ailyn C Ramón
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - El Bachir Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| | - Eric Milot
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
26
|
Hagenberg J, Brückl TM, Erhart M, Kopf-Beck J, Ködel M, Rehawi G, Röh-Karamihalev S, Sauer S, Yusupov N, Rex-Haffner M, Spoormaker VI, Sämann P, Binder E, Knauer-Arloth J. Dissecting depression symptoms: Multi-omics clustering uncovers immune-related subgroups and cell-type specific dysregulation. Brain Behav Immun 2025; 123:353-369. [PMID: 39303816 DOI: 10.1016/j.bbi.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
In a subset of patients with mental disorders, such as depression, low-grade inflammation and altered immune marker concentrations are observed. However, these immune alterations are often assessed by only one data type and small marker panels. Here, we used a transdiagnostic approach and combined data from two cohorts to define subgroups of depression symptoms across the diagnostic spectrum through a large-scale multi-omics clustering approach in 237 individuals. The method incorporated age, body mass index (BMI), 43 plasma immune markers and RNA-seq data from peripheral mononuclear blood cells (PBMCs). Our initial clustering revealed four clusters, including two immune-related depression symptom clusters characterized by elevated BMI, higher depression severity and elevated levels of immune markers such as interleukin-1 receptor antagonist (IL-1RA), C-reactive protein (CRP) and C-C motif chemokine 2 (CCL2 or MCP-1). In contrast, the RNA-seq data mostly differentiated a cluster with low depression severity, enriched in brain related gene sets. This cluster was also distinguished by electrocardiography data, while structural imaging data revealed differences in ventricle volumes across the clusters. Incorporating predicted cell type proportions into the clustering resulted in three clusters, with one showing elevated immune marker concentrations. The cell type proportion and genes related to cell types were most pronounced in an intermediate depression symptoms cluster, suggesting that RNA-seq and immune markers measure different aspects of immune dysregulation. Lastly, we found a dysregulation of the SERPINF1/VEGF-A pathway that was specific to dendritic cells by integrating immune marker and RNA-seq data. This shows the advantages of combining different data modalities and highlights possible markers for further stratification research of depression symptoms.
Collapse
Affiliation(s)
- Jonas Hagenberg
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry, 80804 Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Tanja M Brückl
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Mira Erhart
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry, 80804 Munich, Germany.
| | - Johannes Kopf-Beck
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Department of Psychology, LMU Munich, Leopoldstr. 13, 80802 Munich, Germany.
| | - Maik Ködel
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Ghalia Rehawi
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | | | - Susann Sauer
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Natan Yusupov
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry, 80804 Munich, Germany.
| | - Monika Rex-Haffner
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Victor I Spoormaker
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Philipp Sämann
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Elisabeth Binder
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 100 Woodruff Circle, Atlanta GA 30322, USA.
| | - Janine Knauer-Arloth
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
27
|
Kumar S, Mahendiran S, Nair RS, Vyas H, Singh SK, Srivastava P, Jha S, Rana B, Rana A. A mechanistic, functional, and clinical perspective on targeting CD70 in cancer. Cancer Lett 2024; 611:217428. [PMID: 39725151 DOI: 10.1016/j.canlet.2024.217428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
The oncoimmunology research has witnessed notable advancements in recent years. Reshaping the tumor microenvironment (TME) approach is an effective method to improve antitumor immune response. The T cell-mediated antitumor response is crucial for favorable therapeutic outcomes in several cancers. The United States Food and Drug Administration (FDA) has approved immune checkpoint inhibitors (ICIs) for targeting the immune checkpoint proteins (ICPs) expressed in various hematological and solid malignancies. The ICPs are T cell co-inhibitory molecules that block T cell activation and, thus, antitumor response. Currently, most of the FDA-approved ICIs are antagonistic antibodies of programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). In contrast to ICPs, the T cell costimulatory molecules are required for T cell activation, expansion, and effector function. However, the abrupt expression of these costimulatory molecules in tumors presents a concern for T cell-mediated antitumor response. One of the T cell costimulatory molecules, the cluster of differentiation 70 (CD70), has emerged as a druggable target in various hematological and solid malignancies due to its role in T cell effector function and immune evasion. The present review describes the expression of CD70, factors affecting the CD70 expression, the physiological and clinical relevance of CD70, and the current approaches to target CD70 in hematological and solid malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois Chicago, Chicago, IL, 60612, USA.
| | - Sowdhamini Mahendiran
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Harsh Vyas
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
28
|
Lorenz H, Menzel S, Roshchyna N, Albrecht B, Gebhardt AJ, Schneider E, Haag F, Rissiek B, Oheim R, Koch-Nolte F, Winzer R, Tolosa E. ENPP1/CD203a-targeting heavy-chain antibody reveals cell-specific expression on human immune cells. Cell Mol Life Sci 2024; 82:6. [PMID: 39694917 DOI: 10.1007/s00018-024-05539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
ENPP1/CD203a is a membrane-bound ectonucleotidase capable of hydrolyzing ATP, cGAMP and other substrates. Its enzymatic activity plays an important role in the balance of extracellular adenine nucleotides and the modulation of purinergic signaling, in soft tissue calcification, and in the regulation of the cGAS/STING pathway. However, a detailed analysis of ENPP1 surface expression on human immune cells has not been performed. Here, we selected VHH domains from human ENPP1-immunized alpacas to generate heavy-chain antibodies targeting ENPP1, and analyzed cell surface expression on all circulating immune cell subsets using flow cytometry. We find high expression of ENPP1 in CD141high conventional dendritic cells (cDC1), while ENPP1 was not detectable on other dendritic cells and monocytes. In the lymphocytic compartment, only CD56bright natural killer cells and mucosal-associated invariant T cells (MAIT) express ENPP1. In contrast, all other T cell subpopulations, CD56dim natural killer cells and B lymphocytes do not or only minimally express ENPP1. In summary, we describe highly cell type-specific expression of ENPP1 in the immune system using a newly generated heavy-chain antibody. This reagent will help to decipher the function of ENPP1 in the regulation of the immune response, allow a quick identification of ENPP1-deficiency and of ENPP1-positive tumors, and constitutes the basis for targeted anti-tumor intervention.
Collapse
Affiliation(s)
- Hannah Lorenz
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Innate Immunity, Core Facility Nanobodies, University Hospital Bonn, Bonn, Germany
| | - Nataliia Roshchyna
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birte Albrecht
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Josephine Gebhardt
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Deutschland
| | - Enja Schneider
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Hamburg, Hamburg, Deutschland.
| |
Collapse
|
29
|
Katrinli S, Wani AH, Maihofer AX, Ratanatharathorn A, Daskalakis NP, Montalvo-Ortiz J, Núñez-Ríos DL, Zannas AS, Zhao X, Aiello AE, Ashley-Koch AE, Avetyan D, Baker DG, Beckham JC, Boks MP, Brick LA, Bromet E, Champagne FA, Chen CY, Dalvie S, Dennis MF, Fatumo S, Fortier C, Galea S, Garrett ME, Geuze E, Grant G, Hauser MA, Hayes JP, Hemmings SMJ, Huber BR, Jajoo A, Jansen S, Kessler RC, Kimbrel NA, King AP, Kleinman JE, Koen N, Koenen KC, Kuan PF, Liberzon I, Linnstaedt SD, Lori A, Luft BJ, Luykx JJ, Marx CE, McLean SA, Mehta D, Milberg W, Miller MW, Mufford MS, Musanabaganwa C, Mutabaruka J, Mutesa L, Nemeroff CB, Nugent NR, Orcutt HK, Qin XJ, Rauch SAM, Ressler KJ, Risbrough VB, Rutembesa E, Rutten BPF, Seedat S, Stein DJ, Stein MB, Toikumo S, Ursano RJ, Uwineza A, Verfaellie MH, Vermetten E, Vinkers CH, Ware EB, Wildman DE, Wolf EJ, Young RM, Zhao Y, van den Heuvel LL, Uddin M, Nievergelt CM, Smith AK, Logue MW. Epigenome-wide association studies identify novel DNA methylation sites associated with PTSD: a meta-analysis of 23 military and civilian cohorts. Genome Med 2024; 16:147. [PMID: 39696436 PMCID: PMC11658418 DOI: 10.1186/s13073-024-01417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The occurrence of post-traumatic stress disorder (PTSD) following a traumatic event is associated with biological differences that can represent the susceptibility to PTSD, the impact of trauma, or the sequelae of PTSD itself. These effects include differences in DNA methylation (DNAm), an important form of epigenetic gene regulation, at multiple CpG loci across the genome. Moreover, these effects can be shared or specific to both central and peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and characterize the underlying biological mechanisms by examining the extent to which they mirror associations across multiple brain regions. METHODS As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we conducted the largest cross-sectional meta-analysis of epigenome-wide association studies (EWASs) of PTSD to date, involving 5077 participants (2156 PTSD cases and 2921 trauma-exposed controls) from 23 civilian and military studies. PTSD diagnosis assessments were harmonized following the standardized guidelines established by the PGC-PTSD Workgroup. DNAm was assayed from blood using Illumina HumanMethylation450 or MethylationEPIC (850 K) BeadChips. Within each cohort, DNA methylation was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. An inverse variance-weighted meta-analysis was performed. We conducted replication analyses in tissue from multiple brain regions, neuronal nuclei, and a cellular model of prolonged stress. RESULTS We identified 11 CpG sites associated with PTSD in the overall meta-analysis (1.44e - 09 < p < 5.30e - 08), as well as 14 associated in analyses of specific strata (military vs civilian cohort, sex, and ancestry), including CpGs in AHRR and CDC42BPB. Many of these loci exhibit blood-brain correlation in methylation levels and cross-tissue associations with PTSD in multiple brain regions. Out of 9 CpGs annotated to a gene expressed in blood, methylation levels at 5 CpGs showed significant correlations with the expression levels of their respective annotated genes. CONCLUSIONS This study identifies 11 PTSD-associated CpGs and leverages data from postmortem brain samples, GWAS, and genome-wide expression data to interpret the biology underlying these associations and prioritize genes whose regulation differs in those with PTSD.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Agaz H Wani
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Columbia University Mailmain School of Public Health, New York, NY, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nikolaos P Daskalakis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center of Excellence in Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Janitza Montalvo-Ortiz
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Diana L Núñez-Ríos
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Anthony S Zannas
- Carolina Stress Initiative, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Department of Genetics, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
| | - Xiang Zhao
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Allison E Aiello
- Robert N. Butler Columbia Aging Center, Department of Epidemiology, Columbia University, New York, NY, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Diana Avetyan
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jean C Beckham
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Durham VA Health Care System, Researcg, Durham, NC, USA
- Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht, UT, NL, Netherlands
| | - Leslie A Brick
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Evelyn Bromet
- Epidemiology Research Group, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Frances A Champagne
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Chia-Yen Chen
- Biogen Inc, Translational Sciences, Cambridge, MA, USA
| | - Shareefa Dalvie
- Department of Pathology, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- Division of Human Genetics, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Michelle F Dennis
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Durham VA Health Care System, Researcg, Durham, NC, USA
- Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
| | - Segun Fatumo
- MRC/UVRI and London School of Hygiene and Tropical Medicine, The African Computational Genomics (TACG) Research Group, Entebbe, Wakiso, Uganda
| | - Catherine Fortier
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS)/Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
| | - Sandro Galea
- School of Public Health, Boston University, Boston, MA, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Elbert Geuze
- Brain Research and Innovation Centre, Netherlands Ministry of Defence, Utrecht, UT, NL, Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, UT, Netherlands
| | - Gerald Grant
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Hauser
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jasmeet P Hayes
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Bertrand Russel Huber
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
| | - Aarti Jajoo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Stefan Jansen
- College of Medicine and Health Sciences, University of Rwanda, Kigali, RW, Rwanda
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Nathan A Kimbrel
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
- Mental Health Service Line, Durham VA Health Care System, Durham, NC, USA
| | - Anthony P King
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH, USA
- Psychiatry & Behavioral Health, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joel E Kleinman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Nastassja Koen
- Department of Psychiatry & Mental Health, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- Neuroscience Institute, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sarah D Linnstaedt
- Department of Anesthesiology, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- UNC Institute for Trauma Recovery, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Benjamin J Luft
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jurjen J Luykx
- Amsterdam Neuroscience Research Institute Stress & Sleep Program, Amsterdam University Medical Center, Amsterdam, NH, Netherlands
- Amsterdam Public Health Research Institute, Mental Health Program, Amsterdam University Medical Center, Amsterdam, NH, Netherlands
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, NH, Netherlands
| | - Christine E Marx
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
| | - Samuel A McLean
- Department of Psychiatry, UNC Institute for Trauma Recovery, NC, Chapel Hill, USA
| | - Divya Mehta
- Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, QLD, AU, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, AU, Brisbane, Australia
| | | | - Mark W Miller
- Biomedical Genetics & Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
| | - Mary S Mufford
- Department of Psychiatry and Mental Health, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Clarisse Musanabaganwa
- Research Innovation and Data Science Division, Rwanda Biomedical Center, Kigali, Rwanda
- Center of Human Genetics, University of Rwanda, Kigali, RW, Rwanda
| | - Jean Mutabaruka
- Department of Clinical Psychology, University of Rwanda, Huye, RW, Rwanda
| | - Leon Mutesa
- College of Medicine and Health Sciences, University of Rwanda, Kigali, RW, Rwanda
- Center for Human Genetics, University of Rwanda, Kigali, RW, Rwanda
| | - Charles B Nemeroff
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Nicole R Nugent
- Department of Emergency Medicine, Alpert Brown Medical School, Providence, RI, USA
- Department of Pediatrics, Alpert Brown Medical School, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Brown Medical School, Providence, RI, USA
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Xue-Jun Qin
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Sheila A M Rauch
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
- Joseph Maxwell Cleland Atlanta Veterans Affairs Healthcare System, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht Universitair Medisch Centrum, Maastricht, Limburg, NL, Netherlands
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SA MRC Extramural Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Dan J Stein
- Department of Psychiatry & Mental Health, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- Neuroscience Institute, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- School of Public Health, University of California San Diego, CA, La Jolla, USA
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SA MRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Robert J Ursano
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, USA
| | - Annette Uwineza
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Mieke H Verfaellie
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
| | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, ZH, NL, Netherlands
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Christiaan H Vinkers
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Holland, Netherlands
- Department of Psychiatry, Amsterdam, UMC Location Vrije Universiteit Amsterdam, Amsterdam, Holland, Netherlands
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Stress & Sleep Program, MoodPsychosisAmsterdam, Holland, AnxietyNL, Netherlands
| | - Erin B Ware
- Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Derek E Wildman
- College of Public Health, University of South Florida, Tampa, FL, USA
- Genomics Program, University of South Florida, Tampa, FL, USA
| | - Erika J Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ross McD Young
- School of Clinical Sciences, Queensland University of Technology, Kelvin Grove, QLD, AU, Brisbane, Australia
- University of the Sunshine Coast, The Chancellory Sippy Downs, QLD, AU, Buderim, Australia
| | - Ying Zhao
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SA MRC Extramural Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Mark W Logue
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Biomedical Genetics & Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
30
|
Nagel S, Meyer C, Pommerenke C. IRX-related homeobox gene MKX is a novel oncogene in acute myeloid leukemia. PLoS One 2024; 19:e0315196. [PMID: 39689089 DOI: 10.1371/journal.pone.0315196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Homeobox genes encode transcription factors which organize differentiation processes in all tissue types including the hematopoietic compartment. Recently, we have reported physiological expression of TALE-class homeobox gene IRX1 in early myelopoiesis restricted to the megakaryocyte-erythroid-progenitor stage and in early B-cell development to the pro-B-cell stage. In contrast, sister homeobox genes IRX2, IRX3 and IRX5 are aberrantly activated in the corresponding malignancies acute myeloid leukemia (AML) and B-cell progenitor acute lymphoid leukemia. Here, we examined the role of IRX-related homeobox gene MKX (also termed IRXL1 or mohawk) in normal and malignant hematopoiesis. Screening of public datasets revealed silent MKX in normal myelopoiesis and B-cell differentiation, and aberrant expression in subsets of AML and multiple myeloma (MM) cell lines and patients. To investigate its dysregulation and oncogenic function we used AML cell line OCI-AML3 as model which strongly expressed MKX at both RNA and protein levels. We found that IRX5, JUNB and NFkB activated MKX in this cell line, while downregulated GATA2 and STAT5 inhibited its expression. MKX downstream analysis was conducted by siRNA-mediated knockdown and RNA-sequencing in OCI-AML3, and by comparative expression profiling analysis of a public dataset from MM patients. Analysis of these data revealed activation of CCL2 which in turn promoted proliferation. Furthermore, MKX upregulated SESN3 and downregulated BCL2L11, which may together underlie decreased etoposide-induced apoptosis. Finally, myeloid differentiation genes CEBPD and GATA2 were respectively up- and downregulated by MKX. Taken together, our study identified MKX as novel aberrantly expressed homeobox gene in AML and MM, highlighting the function of IRX1 in normal myelopoiesis and B-cell development, and of IRX-related genes in corresponding malignancies. Our data merit further investigation of MKX and its deregulated target genes to serve as novel markers and/or potential therapeutic targets in AML patient subsets.
Collapse
Affiliation(s)
- Stefan Nagel
- Dept. of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Corinna Meyer
- Dept. of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Claudia Pommerenke
- Dept. of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| |
Collapse
|
31
|
Ros-Lucas A, Gabaldón-Figueira JC, Martínez-Peinado N, Losada-Galván I, Posada E, Escabia E, Martín-Mur B, Gut M, Esteve-Codina A, Gascón J, Pinazo MJ, Alonso-Padilla J. Transcriptomic Evidence of Immune Modulation in Subjects With Chronic Trypanosoma cruzi Infection. J Infect Dis 2024; 230:1518-1528. [PMID: 39194054 DOI: 10.1093/infdis/jiae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024] Open
Abstract
Chagas disease is a neglected tropical infection that affects millions of people. This study explores transcriptomic changes in Trypanosoma cruzi-infected subjects before and after treatment. Using total RNA sequencing, gene transcription was analyzed in peripheral blood mononuclear cells from asymptomatic (n = 19) and symptomatic (n = 8) T. cruzi-infected individuals, and noninfected controls (n = 15). Differential expression was compared across groups, and before/after treatment in infected subgroups. Untreated infection showed 12 upregulated and 206 downregulated genes in all T. cruzi-infected subjects, and 47 upregulated and 215 downregulated genes in the symptomatic group. Few differentially expressed genes were found after treatment and between the different infected groups. Gene set enrichment analysis highlighted immune-related pathways activated during infection, with therapy normalizing immune function. Changes in the kynurenine to tryptophan ratio, increased pretreatment, suggested chronic immune fatigue, which was restored posttreatment. These differentially expressed genes offer insights for potential biomarkers and pathways associated with disease progression and treatment response.
Collapse
Affiliation(s)
- Albert Ros-Lucas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- El Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | - Beatriz Martín-Mur
- National Center for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Gut
- National Center for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Esteve-Codina
- National Center for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Joaquim Gascón
- ISGlobal, Barcelona, Spain
- El Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - María-Jesús Pinazo
- El Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Julio Alonso-Padilla
- ISGlobal, Barcelona, Spain
- El Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Kreimeyer H, Gonzalez CG, Fondevila MF, Hsu CL, Hartmann P, Zhang X, Stärkel P, Bosques-Padilla F, Verna EC, Abraldes JG, Brown RS, Vargas V, Altamirano J, Caballería J, Shawcross DL, Louvet A, Lucey MR, Mathurin P, Garcia-Tsao G, Bataller R, Investigators A, Gonzalez DJ, Schnabl B. Faecal proteomics links neutrophil degranulation with mortality in patients with alcohol-associated hepatitis. Gut 2024; 74:103-115. [PMID: 39033024 PMCID: PMC11631684 DOI: 10.1136/gutjnl-2024-332730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Patients with alcohol-associated hepatitis (AH) have a high mortality. Alcohol exacerbates liver damage by inducing gut dysbiosis, bacterial translocation and inflammation, which is characterised by increased numbers of circulating and hepatic neutrophils. DESIGN In this study, we performed tandem mass tag (TMT) proteomics to analyse proteins in the faeces of controls (n=19), patients with alcohol-use disorder (AUD; n=20) and AH (n=80) from a multicentre cohort (InTeam). To identify protein groups that are disproportionately represented, we conducted over-representation analysis using Reactome pathway analysis and Gene Ontology to determine the proteins with the most significant impact. A faecal biomarker and its prognostic effect were validated by ELISA in faecal samples from patients with AH (n=70), who were recruited in a second and independent multicentre cohort (AlcHepNet). RESULT Faecal proteomic profiles were overall significantly different between controls, patients with AUD and AH (principal component analysis p=0.001, dissimilarity index calculated by the method of Bray-Curtis). Proteins that showed notable differences across all three groups and displayed a progressive increase in accordance with the severity of alcohol-associated liver disease were predominantly those located in neutrophil granules. Over-representation and Reactome analyses confirmed that differentially regulated proteins are part of granules in neutrophils and the neutrophil degranulation pathway. Myeloperoxidase (MPO), the marker protein of neutrophil granules, correlates with disease severity and predicts 60-day mortality. Using an independent validation cohort, we confirmed that faecal MPO levels can predict short-term survival at 60 days. CONCLUSIONS We found an increased abundance of faecal proteins linked to neutrophil degranulation in patients with AH, which is predictive of short-term survival and could serve as a prognostic non-invasive marker.
Collapse
Affiliation(s)
- Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Carlos G Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Marcos F Fondevila
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cynthia L Hsu
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Divison of Gastroenterology, Hepatology and Nutrition, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Herbert Wertehim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Peter Stärkel
- Department of Hepatology and Gastroenterology, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Francisco Bosques-Padilla
- Hospital Universitario, Departamento de Gastroenterología, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elizabeth C Verna
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Juan G Abraldes
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Alberta, Canada
| | - Robert S Brown
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Victor Vargas
- Liver Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Jose Altamirano
- Liver Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Caballería
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Hospital Clinic, Barcelona, Catalunya, Spain
| | - Debbie L Shawcross
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Alexandre Louvet
- Service des Maladies de L'appareil Digestif et Unité INFINITE 1286, Hôpital Huriez, Lille, France
| | - Michael R Lucey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Philippe Mathurin
- Service des Maladies de L'appareil Digestif et Unité INFINITE 1286, Hôpital Huriez, Lille, France
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- Section of Digestive Diseases, VA-CT Healthcare System, West Haven, CT, USA
| | - Ramón Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - David J Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
33
|
Kwok AWC, Shim H, McCarthy DJ. Going beyond cell clustering and feature aggregation: Is there single cell level information in single-cell ATAC-seq data? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626927. [PMID: 39713401 PMCID: PMC11661094 DOI: 10.1101/2024.12.04.626927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Single-cell Assay for Transposase Accessible Chromatin with sequencing (scATAC-seq) has become a widely used method for investigating chromatin accessibility at single-cell resolution. However, the resulting data is highly sparse with most data entries being zeros. As such, currently available computational methods for scATAC-seq feature a range of transformation procedures to extract meaningful information from the sparse data. Most notably, these transformations can be categorized into: 1) feature aggregation with known biological associations, 2) pseudo-bulking cells of similar biology, and 3) binarisation of count data. These strategies beg the question of whether or not scATAC-seq data actually has usable single-cell and single-region information as intended from the assay. If we can go beyond aggregated features and pooled cells, it opens up the possibility of more complex statistical tasks that require that degree of granularity. To reach the finest possible resolution of single-cell, single-region information there are inevitably many computational challenges to overcome. Here, we review the major data analysis challenges lying between raw data readout and biological discovery, and discuss the limitations of current data analysis approaches. Lastly, we conclude that chromatin accessibility profiling at true single-cell resolution is not yet achieved with current technology, but that it may be achieved with promising developments in optimising the efficiency of scATAC-seq assays.
Collapse
Affiliation(s)
- Aaron Wing Cheung Kwok
- Bioinformatics and Cellular Genomics, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Heejung Shim
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Davis J McCarthy
- Bioinformatics and Cellular Genomics, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
34
|
Liao W, Liu T, Li Y, Liang H, Deng J, Shen F. The bioinfomatics analysis of the M1 macrophage-related gene CXCL9 signature in cervical cancer. J OBSTET GYNAECOL 2024; 44:2373951. [PMID: 38963237 DOI: 10.1080/01443615.2024.2373951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The expression and function of coexpression genes of M1 macrophage in cervical cancer have not been identified. And the CXCL9-expressing tumour-associated macrophage has been poorly reported in cervical cancer. METHODS To clarify the regulatory gene network of M1 macrophage in cervical cancer, we downloaded gene expression profiles of cervical cancer patients in TCGA database to identify M1 macrophage coexpression genes. Then we constructed the protein-protein interaction networks by STRING database and performed functional enrichment analysis to investigate the biological effects of the coexpression genes. Next, we used multiple bioinformatics databases and experiments to overall investigate coexpression gene CXCL9, including western blot assay and immunohistochemistry assay, GeneMANIA, Kaplan-Meier Plotter, Xenashiny, TISCH2, ACLBI, HPA, TISIDB, GSCA and cBioPortal databases. RESULTS There were 77 positive coexpression genes and 5 negative coexpression genes in M1 macrophage. The coexpression genes in M1 macrophage participated in the production and function of chemokines and chemokine receptors. Especially, CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 expression would significantly decrease and high CXCL9 levels were linked to good prognosis in the cervical cancer tumour patients, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. The CXCL9 gene interaction network could regulate immune-related signalling pathways, and CXCL9 amplification was the most common mutation type in cervical cancer. Meanwhile, CXCL9 may had clinical significance for the drug response in cervical cancer, possibly mediating resistance to chemotherapy and targeted drug therapy. CONCLUSION Our findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms in cervical cancer, and indicated that M1 macrophage association gene CXCL9 may serve as a good prognostic gene and a potential therapeutic target for cervical cancer therapies.
Collapse
Affiliation(s)
- Wenxin Liao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yang Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hua Liang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Juexiao Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Fujin Shen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
35
|
Gurung R, Masood M, Singh P, Jha P, Sinha A, Ajmeriya S, Sharma M, Dohare R, Haque MM. Uncovering the role of aquaporin and chromobox family members as potential biomarkers in head and neck squamous cell carcinoma via integrative multiomics and in silico approach. J Appl Genet 2024; 65:839-851. [PMID: 38358594 DOI: 10.1007/s13353-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Head and neck squamous cell carcinoma (HNSC) is a diverse group of tumors arising from oral cavity, oropharynx, larynx, and hypopharynx squamous epithelium, posing significant morbidity. Aquaporins (AQPs) are membrane proteins forming water channels, some associated with carcinomas. Chromobox (CBX) family is known to modulate physiological and oncological processes. In our study, we analyzed AQPs and CBXs having significant expression followed by their prognostic and mutational assessment. Next, we performed enrichment and tumor infiltration analysis followed by HPA validation. Lastly, we established a 3-node miRNA-TF-mRNA regulatory network and performed protein-protein docking of the highest-degree subnetwork motif between TF and mRNA. Significant upregulation of CBX3/2 and downregulation of AQP3/5/7 correlated with poor overall survival (OS) in HNSC patients. The most significant pathway, GO-BP, GO-MF, and GO-CC terms associated with AQP3 and CBX3 were passive transport by aquaporins, response to vitamin, glycerol channel activity, and condensed chromosome, centromeric region. AQP3 negatively correlated withCD 4 + T cells, positively withCD 8 + T cells and B cells, and negatively with tumor purity, whereas CBX3 positively correlated withCD 4 + T cells, negatively withCD 8 + T cells and B cells, and positively with tumor purity. Three-node miRNA-TF-mRNA regulatory network revealed a highest-degree subnetwork motif comprising one TF (SMAD3), one miRNA (miR-423-5p), and one mRNA (AQP3). Protein-protein interaction studies suggested a direct interaction between AQP3 and Smad3 proteins. We concluded that AQP3 and CBX3 hold potential as treatment strategies and individual prognostic biomarkers, while further protein-protein interaction studies of AQP3 could offer insights into its interactions with Smad3 proteins.
Collapse
Affiliation(s)
- Rishabh Gurung
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Masood
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007, India
| | - Anuradha Sinha
- Department of Preventive Oncology, Homi Bhabha Cancer Hospital and Research Centre, Muzaffarpur, 842004, India
| | - Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Milin Sharma
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
36
|
Dong K, Jang J, Shannon CP, Ng R, Tebbutt SJ, Quon BS. Blood Transcriptomic and Inflammatory Protein Biomarkers Associated with Imminent Pulmonary Exacerbation Risk in Cystic Fibrosis. Ann Am Thorac Soc 2024; 21:1688-1697. [PMID: 39137349 DOI: 10.1513/annalsats.202402-215oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024] Open
Abstract
Rationale: The factors that lead to poor pulmonary exacerbation (PEx) outcomes in individuals with cystic fibrosis (CF) are still being investigated; however, delayed diagnosis and treatment are likely contributory. Identifying individuals at imminent risk of PEx could enable closer monitoring and/or earlier initiation of therapies to improve outcomes. Objectives: The goal of this study was to develop blood-based biomarkers that associate with imminent PEx risk in individuals with CF. Methods: We examined the whole-blood transcriptome and 55 inflammatory proteins from plasma and serum on 72 blood samples from 53 individuals with CF. Biomarker candidate genes and proteins were selected from 14 individuals with CF with paired stable and PEx visits (cohort 1). The biomarker candidates were then estimated and tested to classify individuals with CF who would experience a PEx within 4 months of a stable clinic visit or not (cohort 2). Results: A 16-gene panel and 9-protein panel were identified that could distinguish paired stable and PEx visits (area under the receiver operating characteristic curve [AUC] ± standard error = 0.83 ± 0.28 and 0.92 ± 0.18, respectively). These two panels also demonstrated strong performance in classifying individuals with CF who would experience a PEx within 4 months of a clinically stable visit or not (16-gene panel: AUC = 0.88; 9-protein panel: AUC = 0.83). In comparison, serum calprotectin and clinical variables (i.e., sex, precent predicted forced expiratory volume in 1 s, and the number of IV antibiotics in the preceding year) had AUCs of 0.75 and 0.71, respectively. Conclusions: Blood-based mRNA and protein biomarkers demonstrated strong performance in classifying individuals with CF at risk of imminent PEx. If the findings from this study can be validated, there is the potential to use blood biomarkers to enable more personalized disease activity monitoring in CF.
Collapse
Affiliation(s)
- Kang Dong
- Centre for Heart Lung Innovation, St. Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiah Jang
- Centre for Heart Lung Innovation, St. Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Casey P Shannon
- PROOF Centre of Excellence, Providence Research, Vancouver, British Columbia, Canada; and
| | - Raymond Ng
- PROOF Centre of Excellence, Providence Research, Vancouver, British Columbia, Canada; and
| | - Scott J Tebbutt
- Centre for Heart Lung Innovation, St. Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- PROOF Centre of Excellence, Providence Research, Vancouver, British Columbia, Canada; and
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bradley S Quon
- Centre for Heart Lung Innovation, St. Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Karaś K, Pastwińska J, Sałkowska A, Karwaciak I, Ratajewski M. Epigenetic regulation of the human GDAP1 gene. Biochem Biophys Rep 2024; 40:101827. [PMID: 39328838 PMCID: PMC11426145 DOI: 10.1016/j.bbrep.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene are linked to Charcot-Marie-Tooth (CMT) disease, a hereditary neurodegenerative condition. The protein encoded by this gene is involved in mitochondrial fission and calcium homeostasis. Recently, GDAP1 has also been implicated in the survival of patients with certain cancers. Despite its significant role in specific cellular processes and associated diseases, the mechanisms regulating GDAP1 expression are largely unknown. Here, we show for the first time that methylation of the CpG island in the proximal promoter of the GDAP1 gene inhibits its activity. Treating cells with low GDAP1 expression using methyltransferase and HDAC inhibitors induced the expression of this gene and its encoded protein. This induction was associated with promoter demethylation and increased association of acetylated histones with the GDAP1 promoter. Thus, we identified a mechanism that could be used to manipulate GDAP1 expression.
Collapse
Affiliation(s)
- Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| |
Collapse
|
38
|
Liu L, Hussain SA, Hu X. Fisetin reduces the resistance of MOLT-4 and K562 cells to TRAIL-induced apoptosis through upregulation of TRAIL receptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9689-9700. [PMID: 38918236 DOI: 10.1007/s00210-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 06/27/2024]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that is capable of apoptosis induction selectively in tumor cells. Although TRAIL has been harnessed in numerous clinical trials, resistance to TRAIL-induced apoptosis is a major challenge ahead of this therapy in various cancer models as well as in leukemia. Since histone deacetylases (HDACs) are known to affect drug resistance in malignant cells, the present study aimed to evaluate the potential of fisetin for sensitization of MOLT-4 and K-562 leukemic cells to TRAIL-induced apoptosis. The MOLT-4 and K-562 cells were treated with increasing concentrations of fisetin and its impact on the growth inhibition and apoptosis induction of TRAIL were evaluated by MTT and Annexin V/7-AAD assays. The impact of fisetin on the mRNA and protein expression levels of apoptosis regulatory genes such as BIRC2/c-IAP1, CFLAR/cFLIP, CASP3, CASP7, CASPP9, TNFRSF10A/DR4, TNFRSF10B/DR5, and BID were examined by PCR array, qRT-PCR, and flow cytometry. Pre-treatment of MOLT-4 and K-562 cells with fisetin reduced the IC50 of TRAIL in growth inhibition along with an improvement in apoptosis induction by TRAIL. The expression of the BIRC2 gene encoding antiapoptotic protein c-IAP1 downregulated in the fisetin-treated cells while the expressions of TNFRSF10A and TNFRSF10B encoding TRAIL death receptors increased. Fisetin demonstrated a potential for alleviating the TRAIL resistance by modulating the apoptosis regulatory factors and improving the expressions of TRAIL receptors that could facilitate the application of TRAIL in cancer therapies.
Collapse
Affiliation(s)
- Lei Liu
- Department of Hematology and Oncology, The First People's Hospital of Guiyang, Guiyang, 550018, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh, 11451, Saudi Arabia
| | - Xiaoyan Hu
- Department of Hematology and Oncology, The First People's Hospital of Guiyang, Guiyang, 550018, China.
| |
Collapse
|
39
|
Collinson RJ, Wilson L, Boey D, Ng ZY, Mirzai B, Chuah HS, Howman R, Grove CS, Malherbe JAJ, Leahy MF, Linden MD, Fuller KA, Erber WN, Guo BB. Transcription factor 3 is dysregulated in megakaryocytes in myelofibrosis. Platelets 2024; 35:2304173. [PMID: 38303515 DOI: 10.1080/09537104.2024.2304173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Transcription factor 3 (TCF3) is a DNA transcription factor that modulates megakaryocyte development. Although abnormal TCF3 expression has been identified in a range of hematological malignancies, to date, it has not been investigated in myelofibrosis (MF). MF is a Philadelphia-negative myeloproliferative neoplasm (MPN) that can arise de novo or progress from essential thrombocythemia [ET] and polycythemia vera [PV] and where dysfunctional megakaryocytes have a role in driving the fibrotic progression. We aimed to examine whether TCF3 is dysregulated in megakaryocytes in MPN, and specifically in MF. We first assessed TCF3 protein expression in megakaryocytes using an immunohistochemical approach analyses and showed that TCF3 was reduced in MF compared with ET and PV. Further, the TCF3-negative megakaryocytes were primarily located near trabecular bone and had the typical "MF-like" morphology as described by the WHO. Genomic analysis of isolated megakaryocytes showed three mutations, all predicted to result in a loss of function, in patients with MF; none were seen in megakaryocytes isolated from ET or PV marrow samples. We then progressed to transcriptomic sequencing of platelets which showed loss of TCF3 in MF. These proteomic, genomic and transcriptomic analyses appear to indicate that TCF3 is downregulated in megakaryocytes in MF. This infers aberrations in megakaryopoiesis occur in this progressive phase of MPN. Further exploration of this pathway could provide insights into TCF3 and the evolution of fibrosis and potentially lead to new preventative therapeutic targets.
Collapse
Affiliation(s)
- Ryan J Collinson
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lynne Wilson
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Darren Boey
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Zi Yun Ng
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
| | - Bob Mirzai
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Hun S Chuah
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
- Department of Haematology, Rockingham General Hospital, Rockingham, WA, Australia
| | - Rebecca Howman
- Department of Haematology, Sir Charles Gairdner Hospital Nedlands Australia
| | - Carolyn S Grove
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
- Department of Haematology, Sir Charles Gairdner Hospital Nedlands Australia
| | | | - Michael F Leahy
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Matthew D Linden
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Kathryn A Fuller
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Wendy N Erber
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Belinda B Guo
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
40
|
Albrecht V, Müller-Reif J, Nordmann TM, Mund A, Schweizer L, Geyer PE, Niu L, Wang J, Post F, Oeller M, Metousis A, Bach Nielsen A, Steger M, Wewer Albrechtsen NJ, Mann M. Bridging the Gap From Proteomics Technology to Clinical Application: Highlights From the 68th Benzon Foundation Symposium. Mol Cell Proteomics 2024; 23:100877. [PMID: 39522756 DOI: 10.1016/j.mcpro.2024.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
The 68th Benzon Foundation Symposium brought together leading experts to explore the integration of mass spectrometry-based proteomics and artificial intelligence to revolutionize personalized medicine. This report highlights key discussions on recent technological advances in mass spectrometry-based proteomics, including improvements in sensitivity, throughput, and data analysis. Particular emphasis was placed on plasma proteomics and its potential for biomarker discovery across various diseases. The symposium addressed critical challenges in translating proteomic discoveries to clinical practice, including standardization, regulatory considerations, and the need for robust "business cases" to motivate adoption. Promising applications were presented in areas such as cancer diagnostics, neurodegenerative diseases, and cardiovascular health. The integration of proteomics with other omics technologies and imaging methods was explored, showcasing the power of multimodal approaches in understanding complex biological systems. Artificial intelligence emerged as a crucial tool for the acquisition of large-scale proteomic datasets, extracting meaningful insights, and enhancing clinical decision-making. By fostering dialog between academic researchers, industry leaders in proteomics technology, and clinicians, the symposium illuminated potential pathways for proteomics to transform personalized medicine, advancing the cause of more precise diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Vincent Albrecht
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Johannes Müller-Reif
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thierry M Nordmann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Mund
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; BioInnovation Institute, OmicVision Biosciences, Copenhagen, Denmark
| | - Lisa Schweizer
- BioInnovation Institute, OmicVision Biosciences, Copenhagen, Denmark
| | - Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; ions.bio GmbH, Planegg, Germany
| | - Lili Niu
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Computational Biomarker Discovery, Novo Nordisk, Copenhagen, Denmark
| | - Juanjuan Wang
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Post
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marc Oeller
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Metousis
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Annelaura Bach Nielsen
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department for Clinical Biochemistry, University Hospital Copenhagen - Bispebjerg, Copenhagen, Copenhagen, Denmark
| | - Medini Steger
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nicolai J Wewer Albrechtsen
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department for Clinical Biochemistry, University Hospital Copenhagen - Bispebjerg, Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. J Virol 2024; 98:e0158224. [PMID: 39377586 DOI: 10.1128/jvi.01582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Under some conditions, dengue virus (DENV) can hijack IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR)-a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this unusual IgG-mediated infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout (KO) screens in an in vitro system poorly permissive to infection in the absence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates the binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired the binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that promote efficient ADE of DENV infection. Our findings represent a first step toward advancing fundamental knowledge behind the biology of a non-canonical infection route implicated in disease.IMPORTANCEAntibodies can paradoxically enhance rather than inhibit dengue virus (DENV) infection in some cases. To advance knowledge of the functional requirements of antibody-dependent enhancement (ADE) of infection beyond existing descriptive studies, we performed a genome-scale CRISPR knockout (KO) screen in an optimized in vitro system permissive to efficient DENV infection only in the presence of IgG. In addition to FcgRIIa, a known receptor that facilitates IgG-mediated uptake of IgG-bound, but not naked DENV particles, our screens identified TBC1D24 and SV2B, cellular factors with no known role in DENV infection. We validated a functional role for TBC1D24 and SV2B in mediating ADE of all four DENV serotypes in different cell lines and using various antibodies. Thus, we identify cellular factors beyond Fc gamma receptors that promote ADE mechanisms. This study represents a first step toward advancing fundamental knowledge beyond a poorly understood non-canonical viral entry mechanism.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
42
|
Xu K, Violich I, Hutchins E, Alsop E, Nalls MA, Blauwendraat C, Gibbs JR, Cookson MR, Moore A, Van Keuren-Jensen K, Craig DW. Decreased SNCA Expression in Whole-Blood RNA Analysis of Parkinson's Disease Adjusting for Lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623684. [PMID: 39605721 PMCID: PMC11601380 DOI: 10.1101/2024.11.18.623684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Blood-based RNA transcriptomics offers a promising avenue for identifying biomarkers of Parkinson's Disease (PD) progression and may provide mechanistic insights into the systemic biological processes underlying its pathogenesis beyond the well-defined neurodegenerative features. Previous studies have indicated an age-dependent increase in neutrophil-enriched gene expression, alongside a reduction in lymphocyte counts, in individuals with PD. These immune cell changes can obscure disease-relevant transcriptomic signals. In this study, we performed differential expression (DE) analysis of whole-blood RNA sequencing data from PD cohorts, incorporating a correction for immune cell-enriched gene expression, particularly neutrophil-related pathways, to improve the resolution of PD-associated molecular changes. Using 1,254 Parkinson's Progression Markers Initiative (PPMI) samples with complete blood count (CBC) data, we developed a predictive model to estimate neutrophil percentages in a 6,987 PPMI and Parkinson's Disease Biomarkers Program (PDBP) samples. We mitigated the confounding effects of immune cell-enriched gene expression by integrating predicted neutrophil percentages as a covariate in DE analysis. This approach revealed a consistent and significant downregulation of SNCA across all PD cohorts, a finding previously obscured by immune cell signatures. Lowered SNCA expression was found in individuals with known predisposition genes (e.g., SNCA, GBA, LRRK2) and in non-genetic PD cohorts lacking known pathogenic mutations, suggesting it may represent a key transcriptomic hallmark of the disease.
Collapse
Affiliation(s)
- Kayla Xu
- Integrated Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Ivo Violich
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Elizabeth Hutchins
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; DataTecnica International, Glen Echo, MD, USA
| | - Eric Alsop
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; DataTecnica International, Glen Echo, MD, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; DataTecnica International, Glen Echo, MD, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Anni Moore
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - David W Craig
- Integrated Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
43
|
Tepekule B, Jörimann L, Schenkel CD, Opitz L, Tschumi J, Wolfensberger R, Neumann K, Kusejko K, Zeeb M, Boeck L, Kälin M, Notter J, Furrer H, Hoffmann M, Hirsch HH, Calmy A, Cavassini M, Labhardt ND, Bernasconi E, Oesch G, Metzner KJ, Braun DL, Günthard HF, Kouyos RD, Duffy F, Nemeth J, the Swiss HIV Cohort Study. Transcriptional profile of Mycobacterium tuberculosis infection in people living with HIV. iScience 2024; 27:111228. [PMID: 39555417 PMCID: PMC11565417 DOI: 10.1016/j.isci.2024.111228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
In people with HIV-1 (PWH), Mycobacterium tuberculosis (MTB) infection poses a significant threat. While active tuberculosis (TB) accelerates immunodeficiency, the interaction between MTB and HIV-1 during asymptomatic phases remains unclear. Analysis of peripheral blood mononuclear cells (PBMC) transcriptomic profiles in PWH, with and without controlled viral loads, revealed distinct clustering in MTB-infected individuals. Functional annotation identified alterations in IL-6, TNF, and KRAS pathways. Notably, MTB-related genes displayed an inverse correlation with HIV-1 viremia, at both individual and signature score levels. These findings suggest that MTB infection in PWH induces a shift in immune system activation, inversely related to HIV-1 viral load. These results may explain the observed enhanced antiretroviral control in MTB-infected PWH. This study highlights the complex interplay between MTB and HIV-1, emphasizing the importance of understanding their interaction for managing co-infections in this population.
Collapse
Affiliation(s)
- Burcu Tepekule
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Lisa Jörimann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Corinne D. Schenkel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Jasmin Tschumi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Rebekka Wolfensberger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Kathrin Neumann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Marius Zeeb
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Lucas Boeck
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marisa Kälin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Julia Notter
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St. Gallen, Switzerland
| | - Hansjakob Furrer
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital Olten, Olten, Switzerland
| | - Hans H. Hirsch
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Department Biomedicine, Transplantation and Clinical Virology, University of Basel, Basel, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Niklaus D. Labhardt
- Division Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, University Hospital Geneva, University of Geneva, Geneva, Switzerland
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, Lugano, Switzerland
- University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Gabriela Oesch
- Department of Child Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Karin J. Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Dominique L. Braun
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Fergal Duffy
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Johannes Nemeth
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - the Swiss HIV Cohort Study
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St. Gallen, Switzerland
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital Olten, Olten, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Department Biomedicine, Transplantation and Clinical Virology, University of Basel, Basel, Switzerland
- Division of Infectious Diseases, University Hospital Geneva, University of Geneva, Geneva, Switzerland
- Division of Infectious Diseases, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
- Division Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, Lugano, Switzerland
- University of Geneva and University of Southern Switzerland, Lugano, Switzerland
- Department of Child Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Seattle Children’s Research Institute, Seattle, WA, USA
| |
Collapse
|
44
|
Palacios-Berraquero ML, Rodriguez-Marquez P, Calleja-Cervantes ME, Berastegui N, Zabaleta A, Burgos L, Alignani D, San Martin-Uriz P, Vilas-Zornoza A, Rodriguez-Diaz S, Inoges S, Lopez-Diaz de Cerio A, Huerga S, Tamariz E, Rifon J, Alfonso-Pierola A, Lasarte JJ, Paiva B, Hernaez M, Rodriguez-Otero P, San-Miguel J, Ezponda T, Rodriguez-Madoz JR, Prosper F. Molecular mechanisms promoting long-term cytopenia after BCMA CAR-T therapy in multiple myeloma. Blood Adv 2024; 8:5479-5492. [PMID: 39058976 PMCID: PMC11532743 DOI: 10.1182/bloodadvances.2023012522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
ABSTRACT Hematologic toxicity is a common side effect of chimeric antigen receptor T-cell (CAR-T) therapies, being particularly severe among patients with relapsed or refractory multiple myeloma (MM). In this study, we characterized 48 patients treated with B-cell maturation antigen (BCMA) CAR-T cells to understand kinetics of cytopenia, identify predictive factors, and determine potential mechanisms underlying these toxicities. We observed that overall incidence of cytopenia was 95.7%, and grade >3 thrombocytopenia and neutropenia, 1 month after infusion, was observed in 57% and 53% of the patients, respectively, being still present after 1 year in 4 and 3 patients, respectively. Baseline cytopenia and high peak inflammatory markers were highly correlated with cytopenia that persisted up to 3 months. To determine potential mechanisms underlying cytopenias, we evaluated the paracrine effect of BCMA CAR-T cells on hematopoietic stem and progenitor cell (HSPC) differentiation using an ex vivo myeloid differentiation model. Phenotypic analysis showed that supernatants from activated CAR-T cells (spCAR) halted HSPC differentiation, promoting more immature phenotypes, which could be prevented with a combination of interferon γ, tumor necrosis factor α/β, transforming growth factor β, interleukin-6 (IL-6) and IL-17 inhibitors. Single-cell RNA sequencing demonstrated upregulation of transcription factors associated with early stages of hematopoietic differentiation in the presence of spCAR (GATA2, RUNX1, CEBPA) and a decrease in the activity of key regulons involved in neutrophil and monocytic maturation (ID2 and MAFB). These results suggest that CAR-T activation induces HSPC maturation arrest through paracrine effects and provides potential treatments to mitigate the severity of this toxicity.
Collapse
Affiliation(s)
- Maria Luisa Palacios-Berraquero
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Paula Rodriguez-Marquez
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Maria Erendira Calleja-Cervantes
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Nerea Berastegui
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Aintzane Zabaleta
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Leire Burgos
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Diego Alignani
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Patxi San Martin-Uriz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Amaia Vilas-Zornoza
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Saray Rodriguez-Diaz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Susana Inoges
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Immunology and Immunotherapy Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ascensión Lopez-Diaz de Cerio
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Immunology and Immunotherapy Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Sofia Huerga
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Esteban Tamariz
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Jose Rifon
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Ana Alfonso-Pierola
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Juan Jose Lasarte
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Bruno Paiva
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Mikel Hernaez
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Data Science and Artificial Intelligence Institute, Universidad de Navarra, Pamplona, Spain
| | - Paula Rodriguez-Otero
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Jesus San-Miguel
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Teresa Ezponda
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Juan Roberto Rodriguez-Madoz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Felipe Prosper
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| |
Collapse
|
45
|
Vorperian SK, DeFelice BC, Buonomo JA, Chinchinian HJ, Gray IJ, Yan J, Mach KE, La V, Lee TJ, Liao JC, Lafayette R, Loeb GB, Bertozzi CR, Quake SR. Deconvolution of Human Urine across the Transcriptome and Metabolome. Clin Chem 2024; 70:1344-1354. [PMID: 39383112 PMCID: PMC11927302 DOI: 10.1093/clinchem/hvae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/10/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Early detection of the cell type changes underlying several genitourinary tract diseases largely remains an unmet clinical need, where existing assays, if available, lack the cellular resolution afforded by an invasive biopsy. While messenger RNA in urine could reflect the dynamic signal that facilitates early detection, current measurements primarily detect single genes and thus do not reflect the entire transcriptome and the underlying contributions of cell type-specific RNA. METHODS We isolated and sequenced the cell-free RNA (cfRNA) and sediment RNA from human urine samples (n = 6 healthy controls and n = 12 kidney stone patients) and measured the urine metabolome. We analyzed the resulting urine transcriptomes by deconvolving the noninvasively measurable cell type contributions and comparing to plasma cfRNA and the measured urine metabolome. RESULTS Urine transcriptome cell type deconvolution primarily yielded relative fractional contributions from genitourinary tract cell types in addition to cell types from high-turnover solid tissues beyond the genitourinary tract. Comparison to plasma cfRNA yielded enrichment of metabolic pathways and a distinct cell type spectrum. Integration of urine transcriptomic and metabolomic measurements yielded enrichment for metabolic pathways involved in amino acid metabolism and overlapped with metabolic subsystems associated with proximal tubule function. CONCLUSIONS Noninvasive whole transcriptome measurements of human urine cfRNA and sediment RNA reflects signal from hard-to-biopsy tissues exhibiting low representation in blood plasma cfRNA liquid biopsy at cell type resolution and are enriched in signal from metabolic pathways measurable in the urine metabolome.
Collapse
Affiliation(s)
- Sevahn K Vorperian
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States
- Sarafan ChEM-H, Stanford University, Stanford, CA, United States
| | | | - Joseph A Buonomo
- Sarafan ChEM-H, Stanford University, Stanford, CA, United States
- Department of Chemistry, Stanford University, Stanford, CA, United States
| | - Hagop J Chinchinian
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Ira J Gray
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Jia Yan
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Kathleen E Mach
- Department of Urology, Stanford University, Stanford, CA, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Vinh La
- Department of Urology, Stanford University, Stanford, CA, United States
| | - Timothy J Lee
- Department of Urology, Stanford University, Stanford, CA, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Joseph C Liao
- Department of Urology, Stanford University, Stanford, CA, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Richard Lafayette
- Division of Nephrology, Stanford School of Medicine, Stanford, CA, United States
| | - Gabriel B Loeb
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA, United States
- Department of Chemistry, Stanford University, Stanford, CA, United States
- Howard Hughes Medical Institute, Stanford, CA, United States
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- Department of Applied Physics, Stanford University, Stanford, CA, United States
- Chan Zuckerberg Initiative, Redwood City, CA, United States
| |
Collapse
|
46
|
Yıldırım Akdeniz G, Timuçin AC. Structure based computational RNA design towards MafA transcriptional repressor implicated in multiple myeloma. J Mol Graph Model 2024; 132:108839. [PMID: 39096645 DOI: 10.1016/j.jmgm.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Multiple myeloma is recognized as the second most common hematological cancer. MafA transcriptional repressor is an established mediator of myelomagenesis. While there are multitude of drugs available for targeting various effectors in multiple myeloma, current literature lacks a candidate RNA based MafA modulator. Thus, using the structure of MafA homodimer-consensus target DNA, a computational effort was implemented to design a novel RNA based chemical modulator against MafA. First, available MafA-consensus DNA structure was employed to generate an RNA library. This library was further subjected to global docking to select the most plausible RNA candidates, preferring to bind DNA binding region of MafA. Following global docking, MD-ready complexes that were prepared via local docking program, were subjected to 500 ns of MD simulations. First, each of these MD simulations were analyzed for relative binding free energy through MM-PBSA method, which pointed towards a strong RNA based MafA binder, RNA1. Second, through a detailed MD analysis, RNA1 was shown to prefer binding to a single monomer of the dimeric DNA binding domain of MafA using higher number of hydrophobic interactions compared with positive control MafA-DNA complex. At the final phase, a principal component analyses was conducted, which led us to identify the actual interaction region of RNA1 and MafA monomer. Overall, to our knowledge, this is the first computational study that presents an RNA molecule capable of potentially targeting MafA protein. Furthermore, limitations of our study together with possible future implications of RNA1 in multiple myeloma were also discussed.
Collapse
Affiliation(s)
- Güneş Yıldırım Akdeniz
- Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Tuzla, İstanbul, Turkey.
| | - Ahmet Can Timuçin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acıbadem Mehmet Ali Aydınlar University, 34752, Ataşehir, İstanbul, Turkey.
| |
Collapse
|
47
|
Monabbati S, Khalighi S, Fu P, Shi Q, Asa SL, Madabhushi A. A novel computational pathology approach for identifying gene signatures prognostic of disease-free survival for papillary thyroid carcinomas. Eur J Cancer 2024; 212:114326. [PMID: 39307037 PMCID: PMC11531387 DOI: 10.1016/j.ejca.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer, with the classical and follicular variants representing most cases. Despite generally favorable prognoses, approximately 10% of patients experience recurrence post-surgery and radioactive iodine therapy. Attempts to stratify risk of recurrence have relied on gene expression-based prognostic and predictive signatures with a focus on mutations of well-known driver genes, while hallmarks of tumor morphology have been ignored. OBJECTIVES We introduce a new computational pathology approach to develop prognostic gene signatures for PTC that is informed by quantitative features of tumor and immune cell morphology. METHODS We quantified nuclear and immune-related features of tumor morphology to develop a pathomic signature, which was then used to inform an RNA-expression signature model provides a notable advancement in risk stratification compared to both standalone and pathology-informed gene-expression signatures. RESULTS There was a 17.8% improvement in the C-index (from 0.605 to 0.783) for 123 cPTCs and 15% (from 0.576 to 0.726) for 38 fvPTCs compared to the standalone gene-expression signature. Hazard ratios also improved for cPTCs from 0.89 (0.67,0.99) to 4.43 (3.65,6.68) and fvPTC from 0.98 (0.76,1.32) to 2.28 (1.87,3.64). We validated the image-based risk model on an independent cohort of 32 cPTCs with hazard ratio 1.8 (1.534,2.167).
Collapse
Affiliation(s)
- Shayan Monabbati
- Dept. of Biomedical Engineering, Case Western Reserve University, OH, United States
| | - Sirvan Khalighi
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, United States
| | - Pingfu Fu
- Dept. of Population and Quantitative Health Sciences, Case Western Reserve University, OH, United States
| | - Qiuying Shi
- Dept. of Pathology, Emory University Hospital Midtown, Atlanta GA, United States
| | - Sylvia L Asa
- Dept. of Pathology, School of Medicine, Case Western Reserve University, and University Hospitals Cleveland Medical Center, OH, United States
| | - Anant Madabhushi
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, United States; Atlanta Veterans Administration Medical Center, GA, United States.
| |
Collapse
|
48
|
Nunes IV, Breitenbach L, Pawusch S, Eigenbrod T, Ananth S, Schad P, Fackler OT, Butter F, Dalpke AH, Chen LS. Bacterial RNA sensing by TLR8 requires RNase 6 processing and is inhibited by RNA 2'O-methylation. EMBO Rep 2024; 25:4674-4692. [PMID: 39363059 PMCID: PMC11549399 DOI: 10.1038/s44319-024-00281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
TLR8 senses single-stranded RNA (ssRNA) fragments, processed via cleavage by ribonuclease (RNase) T2 and RNase A family members. Processing by these RNases releases uridines and purine-terminated residues resulting in TLR8 activation. Monocytes show high expression of RNase 6, yet this RNase has not been analyzed for its physiological contribution to the recognition of bacterial RNA by TLR8. Here, we show a role for RNase 6 in TLR8 activation. BLaER1 cells, transdifferentiated into monocyte-like cells, as well as primary monocytes deficient for RNASE6 show a dampened TLR8-dependent response upon stimulation with isolated bacterial RNA (bRNA) and also upon infection with live bacteria. Pretreatment of bacterial RNA with recombinant RNase 6 generates fragments that induce TLR8 stimulation in RNase 6 knockout cells. 2'O-RNA methyl modification, when introduced at the first uridine in the UA dinucleotide, impairs processing by RNase 6 and dampens TLR8 stimulation. In summary, our data show that RNase 6 processes bacterial RNA and generates uridine-terminated breakdown products that activate TLR8.
Collapse
Affiliation(s)
- Ivanéia V Nunes
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| | - Luisa Breitenbach
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah Pawusch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Tatjana Eigenbrod
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- Institute of Laboratory Medicine, SLK Clinics Heilbronn GmbH, 74078, Heilbronn, Germany
| | - Swetha Ananth
- Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Paulina Schad
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany
| | - Falk Butter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Alexander H Dalpke
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany.
- University Hospital Heidelberg, Heidelberg, Germany.
| | - Lan-Sun Chen
- Dept. of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
49
|
Huang M, Stremlau M, Zavras J, Zivko C, Thomas AG, Pietri P, Machairaki V, Slusher BS. Neutral sphingomyelinase 2: A promising drug target for CNS disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 102:65-101. [PMID: 39929585 DOI: 10.1016/bs.apha.2024.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Neutral sphingomyelinase 2 (nSMase2), encoded by the SMPD3 gene, is a pivotal enzyme in sphingolipid metabolism, hydrolyzing sphingomyelin to produce ceramide, a bioactive lipid involved in apoptosis, inflammation, membrane structure, and extracellular vesicle (EV) biogenesis. nSMase2 is abundantly expressed in the central nervous system (CNS), particularly in neurons, and its dysregulation is implicated in pathologies such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), prion diseases, and neuroviral diseases. In this review, we discuss the critical role of nSMase2 in the CNS and its involvement in neurological as well as non-neurological diseases. We explore the enzyme's functions in sphingolipid metabolism, its regulatory mechanisms, and the implications of its dysregulation in disease pathogenesis. The chapter highlights the therapeutic potential of pharmacologically targeting nSMase2 with small molecule inhibitors and emphasizes the need for further research to optimize inhibitor specificity and efficacy for clinical applications. By understanding the multifaceted roles of nSMase2, we aim to provide insights into novel therapeutic strategies for treating complex diseases associated with its dysregulation.
Collapse
Affiliation(s)
- Meixiang Huang
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Matthew Stremlau
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jason Zavras
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States; The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Peter Pietri
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Vasiliki Machairaki
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States; The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States; Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States; Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States.
| |
Collapse
|
50
|
Jiang B, Quinn-Bohmann N, Diener C, Nathan VB, Han-Hallett Y, Reddivari L, Gibbons SM, Baloni P. Understanding disease-associated metabolic changes in human colon epithelial cells using i ColonEpithelium metabolic reconstruction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619644. [PMID: 39484551 PMCID: PMC11526933 DOI: 10.1101/2024.10.22.619644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The colon epithelium plays a key role in the host-microbiome interactions, allowing uptake of various nutrients and driving important metabolic processes. To unravel detailed metabolic activities in the human colon epithelium, our present study focuses on the generation of the first cell-type specific genome-scale metabolic model (GEM) of human colonic epithelial cells, named iColonEpithelium. GEMs are powerful tools for exploring reactions and metabolites at systems level and predicting the flux distributions at steady state. Our cell-type-specific iColonEpithelium metabolic reconstruction captures genes specifically expressed in the human colonic epithelial cells. The iColonEpithelium is also capable of performing metabolic tasks specific to the cell type. A unique transport reaction compartment has been included to allow simulation of metabolic interactions with the gut microbiome. We used iColonEpithelium to identify metabolic signatures associated with inflammatory bowel disease. We integrated single-cell RNA sequencing data from Crohn's Diseases (CD) and ulcerative colitis (UC) samples with the iColonEpithelium metabolic network to predict metabolic signatures of colonocytes between CD and UC compared to healthy samples. We identified reactions in nucleotide interconversion, fatty acid synthesis and tryptophan metabolism were differentially regulated in CD and UC conditions, which were in accordance with experimental results. The iColonEpithelium metabolic network can be used to identify mechanisms at the cellular level, and our network has the potential to be integrated with gut microbiome models to explore the metabolic interactions between host and gut microbiota under various conditions.
Collapse
|