1
|
Hurst S, Holloway R, Garvin H, Bocko G, Garcia K, Cofran Z, Hawks J, Berger L. A reanalysis of the Taung endocranial surface: Comparison with large samples of living hominids. J Hum Evol 2025; 200:103637. [PMID: 39965466 DOI: 10.1016/j.jhevol.2024.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Since its discovery, the natural endocast of the Taung cranium has played a central role in the interpretation of human brain evolution. Aspects of the endocast including the identification of the lunate sulcus, possible expansion of the parietal lobe, and rounded profile suggested to R. Dart that the Taung individual was aligned with humans and not with other anthropoid primates, yet these interpretations were immediately controversial and remain so today. We have generated a detailed curvature map of the Taung endocast to evaluate its surface organization with reference to 189 chimpanzee and 20 human brains. These data enable evolutionary consideration of the surface detail of depressions and projections sufficient to mark primary sulci and variations in sulcal organization due to superficial bridges between adjacent gyri. Our results suggest that the lunate sulcus in the Taung endocast displays a gyral bridge between the occipital lobe and the inferior parietal lobule seen in 65% of our adult human brain hemispheres but in only 1.8% of our chimpanzee ones. The frontal lobe organization of the Taung endocast reflects a superior frontal sulcus pattern seen in 92.8% of our adult human brain hemispheres, but in 0% of our adult chimpanzee sample, and an inferior frontal sulcus pattern seen in 100% of our adult human brain hemispheres but in only 2.1% of our chimpanzee ones. The Taung inferior frontal gyrus retains a fronto-orbital sulcus which is seen in 0% of our adult human brain hemispheres and in 100% of our adult chimpanzee ones. These observations help to resolve some apparent inconsistencies of interpretation of the posterior endocast of the Taung specimen while showing that the specimen shared some derived aspects of endocast organization with humans that were not found in chimpanzees.
Collapse
Affiliation(s)
- Shawn Hurst
- Department of Biology, University of Indianapolis, Indianapolis, IN, USA.
| | - Ralph Holloway
- Department of Anthropology, Columbia University, New York City, NY, USA
| | - Heather Garvin
- Department of Anatomy, Des Moines University, Des Moines, IA, USA
| | - Grace Bocko
- Department of Anthropology, SUNY University at Buffalo, Buffalo, NY, USA
| | - Kara Garcia
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Evansville, IN, USA
| | - Zachary Cofran
- Department of Anthropology, Vassar College, Poughkeepsie, NY, USA
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa; Department of Anthropology, University of Wisconsin-Madison, USA
| | - Lee Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa; The National Geographic Society, Washington, DC, USA; The Carnegie Institution for Science, Washington, DC, USA
| |
Collapse
|
2
|
Ekström AG, Gärdenfors P, Snyder WD, Friedrichs D, McCarthy RC, Tsapos M, Tennie C, Strait DS, Edlund J, Moran S. Correlates of Vocal Tract Evolution in Late Pliocene and Pleistocene Hominins. HUMAN NATURE (HAWTHORNE, N.Y.) 2025; 36:22-69. [PMID: 40244547 PMCID: PMC12058909 DOI: 10.1007/s12110-025-09487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 04/18/2025]
Abstract
Despite decades of research on the emergence of human speech capacities, an integrative account consistent with hominin evolution remains lacking. We review paleoanthropological and archaeological findings in search of a timeline for the emergence of modern human articulatory morphological features. Our synthesis shows that several behavioral innovations coincide with morphological changes to the would-be speech articulators. We find that significant reductions of the mandible and masticatory muscles and vocal tract anatomy coincide in the hominin fossil record with the incorporation of processed and (ultimately) cooked food, the appearance and development of rudimentary stone tools, increases in brain size, and likely changes to social life and organization. Many changes are likely mutually reinforcing; for example, gracilization of the hominin mandible may have been maintainable in the lineage because food processing had already been outsourced to the hands and stone tools, reducing selection pressures for robust mandibles in the process. We highlight correlates of the evolution of craniofacial and vocal tract features in the hominin lineage and outline a timeline by which our ancestors became 'pre-adapted' for the evolution of fully modern human speech.
Collapse
Affiliation(s)
- Axel G Ekström
- Speech, Music & Hearing, KTH Royal Institute of Technology, Stockholm, Sweden.
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| | - Peter Gärdenfors
- Department of Philosophy, Lund University, Lund, Sweden
- Paleo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - William D Snyder
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
- Early Prehistory and Quaternary Ecology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Daniel Friedrichs
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Linguistics Research Infrastructure (LiRI), University of Zurich, Zürich, Switzerland
| | - Robert C McCarthy
- Department of Biological Sciences, Benedictine University, Lisle, IL, US
| | - Melina Tsapos
- Department of Philosophy, Lund University, Lund, Sweden
| | - Claudio Tennie
- Early Prehistory and Quaternary Ecology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - David S Strait
- Paleo-Research Institute, University of Johannesburg, Johannesburg, South Africa
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, US
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", University of Tübingen, Tübingen, Germany
| | - Jens Edlund
- Speech, Music & Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Steven Moran
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Linguistics Research Infrastructure (LiRI), University of Zurich, Zürich, Switzerland
- Department of Anthropology, University of Miami, Coral Gables, FL, US
| |
Collapse
|
3
|
Hannon Bozorgmehr J. The De Novo Emergence of Two Brain Genes in the Human Lineage Appears to be Unsupported. J Mol Evol 2025; 93:3-10. [PMID: 39725692 DOI: 10.1007/s00239-024-10227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recently, certain studies have claimed that cognitive features and pathologies unique to humans can be traced to certain changes in the nervous system. These are caused by genes that have likely evolved "from scratch," not having any coding precursors. The translated proteins would not appear outside of the human lineage and any orthologs in other species should be non-coding. This contrasts with research that has identified a decisive role for duplication, and modifications to regulatory sequences, for such phenotypic traits. Closer examination, however, reveals that the inferred lineage-specific emergence of at least two of these genes is likely a misinterpretation owing to a lack of peptide verification, experimental oversights, and insufficient species comparisons. A possible pseudogenic origin is proposed for one of them. The implications of these claims for the study of molecular evolution are discussed.
Collapse
|
4
|
Chen Y, Wang S, Zhang X, Yang Q, Hua M, Li Y, Qin W, Liu F, Liang M. Functional Connectivity-Based Searchlight Multivariate Pattern Analysis for Discriminating Schizophrenia Patients and Predicting Clinical Variables. Schizophr Bull 2024; 51:108-119. [PMID: 38819252 PMCID: PMC11661961 DOI: 10.1093/schbul/sbae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND Schizophrenia, a multifaceted psychiatric disorder characterized by functional dysconnectivity, poses significant challenges in clinical practice. This study explores the potential of functional connectivity (FC)-based searchlight multivariate pattern analysis (CBS-MVPA) to discriminate between schizophrenia patients and healthy controls while also predicting clinical variables. STUDY DESIGN We enrolled 112 schizophrenia patients and 119 demographically matched healthy controls. Resting-state functional magnetic resonance imaging data were collected, and whole-brain FC subnetworks were constructed. Additionally, clinical assessments and cognitive evaluations yielded a dataset comprising 36 clinical variables. Finally, CBS-MVPA was utilized to identify subnetworks capable of effectively distinguishing between the patient and control groups and predicting clinical scores. STUDY RESULTS The CBS-MVPA approach identified 63 brain subnetworks exhibiting significantly high classification accuracies, ranging from 62.2% to 75.6%, in distinguishing individuals with schizophrenia from healthy controls. Among them, 5 specific subnetworks centered on the dorsolateral superior frontal gyrus, orbital part of inferior frontal gyrus, superior occipital gyrus, hippocampus, and parahippocampal gyrus showed predictive capabilities for clinical variables within the schizophrenia cohort. CONCLUSION This study highlights the potential of CBS-MVPA as a valuable tool for localizing the information related to schizophrenia in terms of brain network abnormalities and capturing the relationship between these abnormalities and clinical variables, and thus, deepens our understanding of the neurological mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Yayuan Chen
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Sijia Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xi Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Qingqing Yang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minghui Hua
- Department of Radiology, Chest Hospital, Tianjin University, Tianjin, China
| | - Yifan Li
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Wen Qin
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Thibault S, Koun E, Salemme R, Roy AC, Boulenger V, Brozzoli C. Activity in Occipito-Temporal Cortex Is Involved in Tool-Use Planning and Contributes to Tool-Related Semantic Neural Representations. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:1008-1024. [PMID: 39640363 PMCID: PMC11620707 DOI: 10.1162/nol_a_00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/18/2024] [Indexed: 12/07/2024]
Abstract
Tool use and language are highly refined human abilities which may show neural commonalities due to their potential reciprocal interaction during evolution. Recent work provided evidence for shared neural resources between tool use and syntax. However, whether activity within the tool-use network also contributes to semantic neural representations of tool nouns remains untested. To this aim, we identified the tool-use planning network with functional magnetic resonance imaging while participants used pliers. The very same participants underwent a semantic priming task including two categories, tool nouns and animal nouns, to highlight the respective underlying networks. With multivariate analyses of the activation neural patterns, we tested whether activity in tool-use brain clusters takes part in the neural representation of tool nouns as compared with animal nouns. The results revealed that word semantic categories were decoded within the left occipito-temporal cortex activated by preparing to use a tool, with similar patterns of brain activity for words within the same category. In addition, in the same area, neural activations for tool nouns were found to be higher than those for animal nouns. These findings suggest that activity in tool-use related brain areas encodes semantic information separately for tool nouns and animal nouns, thus supporting the embodiment of tool-noun processing in the tool-use sensorimotor network.
Collapse
Affiliation(s)
- Simon Thibault
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Lyon, France
- University of Lyon, Lyon, France
| | - Eric Koun
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Lyon, France
| | - Romeo Salemme
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Lyon, France
| | - Alice C. Roy
- University of Lyon, Lyon, France
- Laboratoire Dynamique du Langage, CNRS UMR5596, Lyon, France
| | - Véronique Boulenger
- University of Lyon, Lyon, France
- Laboratoire Dynamique du Langage, CNRS UMR5596, Lyon, France
| | - Claudio Brozzoli
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Lyon, France
- University of Lyon, Lyon, France
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Zollikofer CPE, Beyrand V, Lordkipanidze D, Tafforeau P, Ponce de León MS. Dental evidence for extended growth in early Homo from Dmanisi. Nature 2024; 635:906-911. [PMID: 39537931 PMCID: PMC11602720 DOI: 10.1038/s41586-024-08205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Human life history is characterized by an extended period of immaturity during which there is a disjunction between cerebral and somatic growth rates1. This mode of ontogeny is thought to be essential for the acquisition of advanced cognitive capabilities in a socially complex environment while the brain is still growing2. Key information about when and how this pattern evolved can be gleaned from the teeth of fossil hominins because dental development informs about the pace of life history3-5. Here we show that the first evolutionary steps towards an extended growth phase occurred in the genus Homo at least 1.77 million years ago, before any substantial increase in brain size. We used synchrotron phase-contrast tomography6 to track the microstructural development of the dentition of a subadult early Homo individual from Dmanisi, Georgia. The individual died at the age of 11.4 ± 0.6 years, shortly before reaching dental maturity. Tooth growth rates were high, similar to rates in living great apes. However, the Dmanisi individual showed a human-like delayed formation of the posterior relative to the anterior dentition, and a late growth spurt of the dentition as a whole. The unique combination of great-ape-like and human-like features of dental ontogeny suggests that early Homo had evolved an extended growth phase before a general slow-down in life history, possibly related to biocultural reproduction7 rather than brain growth.
Collapse
Affiliation(s)
- Christoph P E Zollikofer
- Department of Informatics, University of Zurich, Zurich, Switzerland.
- IBS Center for Climate Physics, Busan, South Korea.
| | - Vincent Beyrand
- Department of Informatics, University of Zurich, Zurich, Switzerland
- European Synchrotron Radiation Facility, Grenoble, France
| | - David Lordkipanidze
- Georgian National Museum, Tbilisi, Georgia
- Tbilisi State University, Tbilisi, Georgia
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| | - Marcia S Ponce de León
- Department of Informatics, University of Zurich, Zurich, Switzerland.
- IBS Center for Climate Physics, Busan, South Korea.
| |
Collapse
|
7
|
Zeller E, Timmermann A. The evolving three-dimensional landscape of human adaptation. SCIENCE ADVANCES 2024; 10:eadq3613. [PMID: 39383234 PMCID: PMC11463275 DOI: 10.1126/sciadv.adq3613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Over the past 3 million years, humans have expanded their ecological niche and adapted to more diverse environments. The temporal evolution and underlying drivers behind this niche expansion remain largely unknown. By combining archeological findings with landscape topographic data and model simulations of the climate and biomes, we show that human sites clustered in areas with increased terrain roughness, corresponding to higher levels of biodiversity. We find a gradual increase in human habitat preferences toward rough terrains until about 1.1 million years ago (Ma), followed by a 300 thousand-year-long contraction of the ecological niche. This period coincided with the Mid-Pleistocene Transition and previously hypothesized ancestral population bottlenecks. Our statistical analysis further reveals that from 0.8 Ma onward, the human niche expanded again, with human species (e.g., H. heidelbergensis, H. neanderthalensis, and H. sapiens) adapting to rougher terrain, colder and drier conditions, and toward regions of higher ecological diversity.
Collapse
Affiliation(s)
- Elke Zeller
- IBS Center for Climate Physics, Busan, Republic of Korea
- Department of Climate System, PNU, Busan, Republic of Korea
| | - Axel Timmermann
- IBS Center for Climate Physics, Busan, Republic of Korea
- Department of Climate System, PNU, Busan, Republic of Korea
| |
Collapse
|
8
|
Falk D, Marom A. The DNH 7 endocast of Paranthropus robustus from Drimolen, South Africa: Reconsidering the functional significance of an enlarged occipital-marginal (O/M) sinus system in robust australopithecines. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25010. [PMID: 39150888 DOI: 10.1002/ajpa.25010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024]
Abstract
This paper presents a detailed analysis of the endocast of one of the most complete Paranthropus robustus crania known, DNH 7, from the Drimolen site (South Africa), and compares it with the morphology of other australopithecine endocasts. We focus on endocranial volume, the impressions of cortical sulci, cranial sutures, and the pattern of cranial venous sinuses on the endocast. A noteworthy observation is the estimated endocranial capacity of 403 cm3, which is small for an adult Paranthropus. Fragmentary sulci identified in the frontal and temporal lobes of DNH 7 exhibit similarities with patterns observed in chimpanzees and gracile australopithecines. We observe the presence of a large remnant of an occipital-marginal sinus on DNH 7 and provide an updated table of 13 Paranthropus endocasts that are scorable for this trait, which reinforces the hypothesis that an enlarged occipital-marginal (O/M) sinus system was fixed across the three species of Paranthropus. In light of this, the possible functional significance of the occipital-marginal sinus system is reevaluated considering the ontogenetic development of cranial venous blood flow in human children. This leads us to hypothesize that the ontogenetic development of cranial blood flow in Paranthropus and Australopithecus africanus infants were different and to suggest that Taung 1 was the only A. africanus specimen known to have exhibited an enlarged O/M sinus system because it was an immature individual.
Collapse
Affiliation(s)
- Dean Falk
- Department of Anthropology, Florida State University, Tallahassee, Florida, USA
| | - Assaf Marom
- Department of Neuroscience, The Farkas Family Center for Anatomical Research and Education, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Miller JA, Constantinidis C. Timescales of learning in prefrontal cortex. Nat Rev Neurosci 2024; 25:597-610. [PMID: 38937654 DOI: 10.1038/s41583-024-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
The lateral prefrontal cortex (PFC) in humans and other primates is critical for immediate, goal-directed behaviour and working memory, which are classically considered distinct from the cognitive and neural circuits that support long-term learning and memory. Over the past few years, a reconsideration of this textbook perspective has emerged, in that different timescales of memory-guided behaviour are in constant interaction during the pursuit of immediate goals. Here, we will first detail how neural activity related to the shortest timescales of goal-directed behaviour (which requires maintenance of current states and goals in working memory) is sculpted by long-term knowledge and learning - that is, how the past informs present behaviour. Then, we will outline how learning across different timescales (from seconds to years) drives plasticity in the primate lateral PFC, from single neuron firing rates to mesoscale neuroimaging activity patterns. Finally, we will review how, over days and months of learning, dense local and long-range connectivity patterns in PFC facilitate longer-lasting changes in population activity by changing synaptic weights and recruiting additional neural resources to inform future behaviour. Our Review sheds light on how the machinery of plasticity in PFC circuits facilitates the integration of learned experiences across time to best guide adaptive behaviour.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Bickel B, Giraud AL, Zuberbühler K, van Schaik CP. Language follows a distinct mode of extra-genomic evolution. Phys Life Rev 2024; 50:211-225. [PMID: 39153248 DOI: 10.1016/j.plrev.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
As one of the most specific, yet most diverse of human behaviors, language is shaped by both genomic and extra-genomic evolution. Sharing methods and models between these modes of evolution has significantly advanced our understanding of language and inspired generalized theories of its evolution. Progress is hampered, however, by the fact that the extra-genomic evolution of languages, i.e. linguistic evolution, maps only partially to other forms of evolution. Contrasting it with the biological evolution of eukaryotes and the cultural evolution of technology as the best understood models, we show that linguistic evolution is special by yielding a stationary dynamic rather than stable solutions, and that this dynamic allows the use of language change for social differentiation while maintaining its global adaptiveness. Linguistic evolution furthermore differs from technological evolution by requiring vertical transmission, allowing the reconstruction of phylogenies; and it differs from eukaryotic biological evolution by foregoing a genotype vs phenotype distinction, allowing deliberate and biased change. Recognising these differences will improve our empirical tools and open new avenues for analyzing how linguistic, cultural, and biological evolution interacted with each other when language emerged in the hominin lineage. Importantly, our framework will help to cope with unprecedented scientific and ethical challenges that presently arise from how rapid cultural evolution impacts language, most urgently from interventional clinical tools for language disorders, potential epigenetic effects of technology on language, artificial intelligence and linguistic communicators, and global losses of linguistic diversity and identity. Beyond language, the distinctions made here allow identifying variation in other forms of biological and cultural evolution, developing new perspectives for empirical research.
Collapse
Affiliation(s)
- Balthasar Bickel
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland.
| | - Anne-Lise Giraud
- Department of Basic Neurosciences, University of Geneva, Switzerland; Institut de l'Audition, Institut Pasteur, INSERM, Université Paris Cité, France
| | - Klaus Zuberbühler
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland; Institute of Biology, University of Neuchâtel, Switzerland; School of Psychology and Neuroscience, University of St Andrews, United Kingdom
| | - Carel P van Schaik
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland; Department of Evolutionary Biology and Environmental Science, University of Zurich, Switzerland; Max Planck Institute for Animal Behavior, Konstanz, Germany
| |
Collapse
|
11
|
Hurst SD, Holloway RL, Balzeau A, Garvin HM, Vanti WB, Berger LR, Hawks J. The endocast morphology of LES1, Homo naledi. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24983. [PMID: 38864146 DOI: 10.1002/ajpa.24983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES Homo naledi is near the extreme of small brain size within Homo but is easily recognized as Homo in other aspects of endocast morphology. This study adds new evidence of the endocast morphology of H. naledi by describing the Lesedi Hominin 1 (LES1) endocranium from the Lesedi Chamber and compares it to the previously known H. naledi individual Dinaledi Hominin 3 (DH3) as well as other hominin taxa. MATERIALS AND METHODS We examined interlandmark distances with both univariate and multivariate methods in multiple hominin taxa and both species of Pan. For each distance, we compared groups using adjusted Z-scores (Azs). Our multivariate analyses included both principal component analyses (PCA) and linear discriminant analyses (LDA). RESULTS DH3 and LES1 each have absolute third frontal convolution measures that enter the upper half of the variation for Homo sapiens, Homo erectus, and Homo neanderthalensis. Examined relative to the cube root of endocranial volume, H. naledi ranks among the highest values in these samples of Homo. Both absolute and relative values for H. naledi specimens are far above Pan, Australopithecus, and Paranthropus, suggesting an expanded Broca's area. CONCLUSIONS Both qualitative and quantitative analyses show consistency between LES1 and other H. naledi endocasts and confirm the shared morphology of H. naledi with H. sapiens, H. neanderthalensis, and some specimens of H. erectus.
Collapse
Affiliation(s)
- Shawn D Hurst
- Department of Biology, University of Indianapolis, Indianapolis, USA
| | | | - Antoine Balzeau
- Département Homme et Environnement, Muséum National d'Histoire Naturelle, PaleoFED team, Paris, France
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Heather M Garvin
- Department of Anatomy, Des Moines University, Des Moines, USA
- Centre for the Exploration of the Deep Human Journey, University of Witwatersrand, Johannesburg, South Africa
| | - William B Vanti
- Science and Engineering Library, Columbia University, New York, USA
| | - Lee R Berger
- Centre for the Exploration of the Deep Human Journey, University of Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, DC, USA
- The Carnegie Institution for Science, Washington, DC, USA
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
12
|
Duran-Nebreda S, Bentley RA, Vidiella B, Spiridonov A, Eldredge N, O'Brien MJ, Valverde S. On the multiscale dynamics of punctuated evolution. Trends Ecol Evol 2024; 39:734-744. [PMID: 38821781 DOI: 10.1016/j.tree.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
For five decades, paleontologists, paleobiologists, and ecologists have investigated patterns of punctuated equilibria in biology. Here, we step outside those fields and summarize recent advances in the theory of and evidence for punctuated equilibria, gathered from contemporary observations in geology, molecular biology, genetics, anthropology, and sociotechnology. Taken in the aggregate, these observations lead to a more general theory that we refer to as punctuated evolution. The quality of recent datasets is beginning to illustrate the mechanics of punctuated evolution in a way that can be modeled across a vast range of phenomena, from mass extinctions hundreds of millions of years ago to the possible future ahead in the Anthropocene. We expect the study of punctuated evolution to be applicable beyond biological scenarios.
Collapse
Affiliation(s)
- Salva Duran-Nebreda
- Evolution of Networks Lab, Institut de Biologia Evolutiva, Passeig Marítim de la Barceloneta 37 49, Barcelona 08003, Spain
| | - R Alexander Bentley
- Department of Anthropology, University of Tennessee, Knoxville, TN 37996, USA
| | - Blai Vidiella
- Evolution of Networks Lab, Institut de Biologia Evolutiva, Passeig Marítim de la Barceloneta 37 49, Barcelona 08003, Spain
| | - Andrej Spiridonov
- Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania
| | - Niles Eldredge
- The American Museum of Natural History, New York, NY 10024, USA
| | - Michael J O'Brien
- Department of History, Philosophy, and Geography and Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224, USA; Department of Anthropology, University of Missouri, Columbia, MO 65205, USA.
| | - Sergi Valverde
- Evolution of Networks Lab, Institut de Biologia Evolutiva, Passeig Marítim de la Barceloneta 37 49, Barcelona 08003, Spain; European Centre for Living Technology, Ca' Bottacin, Dorsoduro 3911, 30123 Venice, Italy.
| |
Collapse
|
13
|
Manrique HM, Friston KJ, Walker MJ. 'Snakes and ladders' in paleoanthropology: From cognitive surprise to skillfulness a million years ago. Phys Life Rev 2024; 49:40-70. [PMID: 38513522 DOI: 10.1016/j.plrev.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/23/2024]
Abstract
A paradigmatic account may suffice to explain behavioral evolution in early Homo. We propose a parsimonious account that (1) could explain a particular, frequently-encountered, archeological outcome of behavior in early Homo - namely, the fashioning of a Paleolithic stone 'handaxe' - from a biological theoretic perspective informed by the free energy principle (FEP); and that (2) regards instances of the outcome as postdictive or retrodictive, circumstantial corroboration. Our proposal considers humankind evolving as a self-organizing biological ecosystem at a geological time-scale. We offer a narrative treatment of this self-organization in terms of the FEP. Specifically, we indicate how 'cognitive surprises' could underwrite an evolving propensity in early Homo to express sporadic unorthodox or anomalous behavior. This co-evolutionary propensity has left us a legacy of Paleolithic artifacts that is reminiscent of a 'snakes and ladders' board game of appearances, disappearances, and reappearances of particular archeological traces of Paleolithic behavior. When detected in the Early and Middle Pleistocene record, anthropologists and archeologists often imagine evidence of unusual or novel behavior in terms of early humankind ascending the rungs of a figurative phylogenetic 'ladder' - as if these corresponded to progressive evolution of cognitive abilities that enabled incremental achievements of increasingly innovative technical prowess, culminating in the cognitive ascendancy of Homo sapiens. The conjecture overlooks a plausible likelihood that behavior by an individual who was atypical among her conspecifics could have been disregarded in a community of Hominina (for definition see Appendix 1) that failed to recognize, imagine, or articulate potential advantages of adopting hitherto unorthodox behavior. Such failure, as well as diverse fortuitous demographic accidents, would cause exceptional personal behavior to be ignored and hence unremembered. It could disappear by a pitfall, down a 'snake', as it were, in the figurative evolutionary board game; thereby causing a discontinuity in the evolution of human behavior that presents like an evolutionary puzzle. The puzzle discomforts some paleoanthropologists trained in the natural and life sciences. They often dismiss it, explaining it away with such self-justifying conjectures as that, maybe, separate paleospecies of Homo differentially possessed different cognitive abilities, which, supposedly, could account for the presence or absence in the Pleistocene archeological record of traces of this or that behavioral outcome or skill. We argue that an alternative perspective - that inherits from the FEP and an individual's 'active inference' about its surroundings and of its own responses - affords a prosaic, deflationary, and parsimonious way to account for appearances, disappearances, and reappearances of particular behavioral outcomes and skills of early humankind.
Collapse
Affiliation(s)
- Héctor Marín Manrique
- Department of Psychology and Sociology, Universidad de Zaragoza, Ciudad Escolar, s/n, Teruel 44003, Spain
| | - Karl John Friston
- Imaging Neuroscience, Institute of Neurology, and The Wellcome Centre for Human Imaging, University College London, London WC1N 3AR, UK
| | - Michael John Walker
- Physical Anthropology, Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad de Murcia, Campus Universitario de Espinardo Edificio 20, Murcia 30100, Spain.
| |
Collapse
|
14
|
Lindhout FW, Krienen FM, Pollard KS, Lancaster MA. A molecular and cellular perspective on human brain evolution and tempo. Nature 2024; 630:596-608. [PMID: 38898293 DOI: 10.1038/s41586-024-07521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.
Collapse
Affiliation(s)
- Feline W Lindhout
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
15
|
Taubert M, Ziegler G, Lehmann N. Higher surface folding of the human premotor cortex is associated with better long-term learning capability. Commun Biol 2024; 7:635. [PMID: 38796622 PMCID: PMC11127997 DOI: 10.1038/s42003-024-06309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
The capacity to learn enabled the human species to adapt to various challenging environmental conditions and pass important achievements on to the next generation. A growing body of research suggests links between neocortical folding properties and numerous aspects of human behavior, but their impact on enhanced human learning capacity remains unexplored. Here we leverage three training cohorts to demonstrate that higher levels of premotor cortical folding reliably predict individual long-term learning gains in a challenging new motor task, above and beyond initial performance differences. Individual folding-related predisposition to motor learning was found to be independent of cortical thickness and intracortical microstructure, but dependent on larger cortical surface area in premotor regions. We further show that learning-relevant features of cortical folding occurred in close spatial proximity to practice-induced structural brain plasticity. Our results suggest a link between neocortical surface folding and human behavioral adaptability.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Gabriel Ziegler
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Nico Lehmann
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
16
|
Manrique HM, Read DW, Walker MJ. On some statistical and cerebral aspects of the limits of working memory capacity in anthropoid primates, with particular reference to Pan and Homo, and their significance for human evolution. Neurosci Biobehav Rev 2024; 158:105543. [PMID: 38220036 DOI: 10.1016/j.neubiorev.2024.105543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Some comparative ontogenetic data imply that effective working-memory capacity develops in ways that are independent of brain size in humans. These are interpreted better from neuroscientific considerations about the continuing development of neuronal architecture in adolescents and young adults, than from one about gross brain mass which already is reached in childhood. By contrast, working-memory capacity in Pan never develops beyond that of three- or four-year-old children. The phylogenetic divergence begs the question of whether it is any longer plausible to infer from the fossil record, that over the past two million years, an ostensibly gradual increase in endocranial volumes, assigned to the genus Homo, can be correlated in a scientifically-meaningful manner with the gradual evolution of our effective executive working memory. It is argued that whereas Pan's effective working-memory capacity is relatively similar to that of its storage working-memory, our working memory is relatively larger with deeper executive control.
Collapse
Affiliation(s)
- Héctor M Manrique
- Department of Psychology and Sociology, Universidad de Zaragoza, Campus Universitario de Teruel, Ciudad Escolar, s/n. 44003 Teruel, Spain.
| | - Dwight W Read
- Department of Anthropology and Department of Statistics, University of California, Los Angeles, CA 90095, USA.
| | - Michael J Walker
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, Murcia, Spain.
| |
Collapse
|
17
|
Labra N, Mounier A, Leprince Y, Rivière D, Didier M, Bardinet E, Santin MD, Mangin JF, Filippo A, Albessard‐Ball L, Beaudet A, Broadfield D, Bruner E, Carlson KJ, Cofran Z, Falk D, Gilissen E, Gómez‐Robles A, Neubauer S, Pearson A, Röding C, Zhang Y, Balzeau A. What do brain endocasts tell us? A comparative analysis of the accuracy of sulcal identification by experts and perspectives in palaeoanthropology. J Anat 2024; 244:274-296. [PMID: 37935387 PMCID: PMC10780157 DOI: 10.1111/joa.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
Palaeoneurology is a complex field as the object of study, the brain, does not fossilize. Studies rely therefore on the (brain) endocranial cast (often named endocast), the only available and reliable proxy for brain shape, size and details of surface. However, researchers debate whether or not specific marks found on endocasts correspond reliably to particular sulci and/or gyri of the brain that were imprinted in the braincase. The aim of this study is to measure the accuracy of sulcal identification through an experiment that reproduces the conditions that palaeoneurologists face when working with hominin endocasts. We asked 14 experts to manually identify well-known foldings in a proxy endocast that was obtained from an MRI of an actual in vivo Homo sapiens head. We observe clear differences in the results when comparing the non-corrected labels (the original labels proposed by each expert) with the corrected labels. This result illustrates that trying to reconstruct a sulcus following the very general known shape/position in the literature or from a mean specimen may induce a bias when looking at an endocast and trying to follow the marks observed there. We also observe that the identification of sulci appears to be better in the lower part of the endocast compared to the upper part. The results concerning specific anatomical traits have implications for highly debated topics in palaeoanthropology. Endocranial description of fossil specimens should in the future consider the variation in position and shape of sulci in addition to using models of mean brain shape. Moreover, it is clear from this study that researchers can perceive sulcal imprints with reasonably high accuracy, but their correct identification and labelling remains a challenge, particularly when dealing with extinct species for which we lack direct knowledge of the brain.
Collapse
Affiliation(s)
- Nicole Labra
- Département Homme et EnvironnementUMR 7194, CNRS, PaleoFED Team, Muséum national d’Histoire naturelleParisFrance
| | - Aurélien Mounier
- Département Homme et EnvironnementUMR 7194, CNRS, PaleoFED Team, Muséum national d’Histoire naturelleParisFrance
- Turkana Basin InstituteNairobiKenya
| | - Yann Leprince
- Université Paris‐Saclay, CEA, CNRS UMR 9027, Baobab, NeuroSpinGif‐sur‐YvetteFrance
| | - Denis Rivière
- Université Paris‐Saclay, CEA, CNRS UMR 9027, Baobab, NeuroSpinGif‐sur‐YvetteFrance
| | - Mélanie Didier
- ICM—Institut du Cerveau, Hôpital Pitié‐Salpêtrière, Centre de NeuroImagerie de Recherche—CENIRParisFrance
| | - Eric Bardinet
- ICM—Institut du Cerveau, Hôpital Pitié‐Salpêtrière, Centre de NeuroImagerie de Recherche—CENIRParisFrance
| | - Mathieu D. Santin
- ICM—Institut du Cerveau, Hôpital Pitié‐Salpêtrière, Centre de NeuroImagerie de Recherche—CENIRParisFrance
| | - Jean François Mangin
- Université Paris‐Saclay, CEA, CNRS UMR 9027, Baobab, NeuroSpinGif‐sur‐YvetteFrance
| | - Andréa Filippo
- Département Homme et EnvironnementUMR 7194, CNRS, PaleoFED Team, Muséum national d’Histoire naturelleParisFrance
| | - Lou Albessard‐Ball
- Département Homme et EnvironnementUMR 7194, CNRS, PaleoFED Team, Muséum national d’Histoire naturelleParisFrance
- Department of ArchaeologyPalaeoHub, University of YorkYorkUK
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRSUniversité de PoitiersPoitiersFrance
| | | | - Emiliano Bruner
- Paleobiología, Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
| | - Kristian J. Carlson
- Evolutionary Studies InstituteUniversity of the Witwatersrand, Palaeosciences CentreJohannesburgSouth Africa
- Department of Integrative Anatomical Sciences, Keck School of MedicineUniversity of Southern CaliforniaCaliforniaLos AngelesUSA
| | - Zachary Cofran
- Anthropology DepartmentVassar CollegePoughkeepsieNew YorkUSA
| | - Dean Falk
- Department of AnthropologyFlorida State UniversityTallahasseeFloridaUSA
| | - Emmanuel Gilissen
- Department of African ZoologyRoyal Museum for Central AfricaTervurenBelgium
| | | | - Simon Neubauer
- Institute of Anatomy and Cell BiologyJohannes Kepler University LinzLinzAustria
| | - Alannah Pearson
- School of Archaeology and AnthropologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Carolin Röding
- Paleoanthropology, Institute for Archaeological Sciences and Senckenberg Centre for Human Evolution and PaleoenvironmentEberhard Karls University of TübingenTübingenGermany
| | - Yameng Zhang
- Institute of Cultural HeritageShandong UniversityQingdaoShandongChina
| | - Antoine Balzeau
- Département Homme et EnvironnementUMR 7194, CNRS, PaleoFED Team, Muséum national d’Histoire naturelleParisFrance
- Department of African ZoologyRoyal Museum for Central AfricaTervurenBelgium
| |
Collapse
|
18
|
Friederici AD, Wittig RM, Anwander A, Eichner C, Gräßle T, Jäger C, Kirilina E, Lipp I, Düx A, Edwards LJ, Girard-Buttoz C, Jauch A, Kopp KS, Paquette M, Pine KJ, Unwin S, Haun DBM, Leendertz FH, McElreath R, Morawski M, Gunz P, Weiskopf N, Crockford C. Brain structure and function: a multidisciplinary pipeline to study hominoid brain evolution. Front Integr Neurosci 2024; 17:1299087. [PMID: 38260006 PMCID: PMC10800984 DOI: 10.3389/fnint.2023.1299087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
To decipher the evolution of the hominoid brain and its functions, it is essential to conduct comparative studies in primates, including our closest living relatives. However, strong ethical concerns preclude in vivo neuroimaging of great apes. We propose a responsible and multidisciplinary alternative approach that links behavior to brain anatomy in non-human primates from diverse ecological backgrounds. The brains of primates observed in the wild or in captivity are extracted and fixed shortly after natural death, and then studied using advanced MRI neuroimaging and histology to reveal macro- and microstructures. By linking detailed neuroanatomy with observed behavior within and across primate species, our approach provides new perspectives on brain evolution. Combined with endocranial brain imprints extracted from computed tomographic scans of the skulls these data provide a framework for decoding evolutionary changes in hominin fossils. This approach is poised to become a key resource for investigating the evolution and functional differentiation of hominoid brains.
Collapse
Affiliation(s)
- Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Roman M. Wittig
- Evolution of Brain Connectivity Project, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Cognitive Sciences Marc Jeannerod, UMR CNRS, University Claude Bernard Lyon, Bron, France
- Taï Chimpanzee Project, CSRS, Abidjan, Côte d'Ivoire
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Cornelius Eichner
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tobias Gräßle
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Carsten Jäger
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Medical Faculty, Center of Neuropathology and Brain Research, Paul Flechsig Institute, University of Leipzig, Leipzig, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ariane Düx
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Helmholtz Institute for One Health, University of Greifswald, Greifswald, Germany
| | - Luke J. Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Cédric Girard-Buttoz
- Evolution of Brain Connectivity Project, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Cognitive Sciences Marc Jeannerod, UMR CNRS, University Claude Bernard Lyon, Bron, France
| | - Anna Jauch
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kathrin S. Kopp
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michael Paquette
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kerrin J. Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Steve Unwin
- School of Bioscience, University of Birmingham, Birmingham, United Kingdom
| | - Daniel B. M. Haun
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fabian H. Leendertz
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Helmholtz Institute for One Health, University of Greifswald, Greifswald, Germany
| | - Richard McElreath
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Markus Morawski
- Medical Faculty, Center of Neuropathology and Brain Research, Paul Flechsig Institute, University of Leipzig, Leipzig, Germany
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Physics and Earth System Sciences, Felix Bloch Institute for Solid State Physics, Leipzig University, Leipzig, Germany
| | - Catherine Crockford
- Evolution of Brain Connectivity Project, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Cognitive Sciences Marc Jeannerod, UMR CNRS, University Claude Bernard Lyon, Bron, France
- Taï Chimpanzee Project, CSRS, Abidjan, Côte d'Ivoire
| |
Collapse
|
19
|
Bruner E. Cognitive archaeology, and the psychological assessment of extinct minds. J Comp Neurol 2024; 532:e25583. [PMID: 38289186 DOI: 10.1002/cne.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Evolutionary anthropology relies on both neontological and paleontological information. In the latter case, fields such as paleoneurology, neuroarchaeology, and cognitive archaeology are supplying new perspectives in prehistory and neuroscience. Cognitive archaeology, in particular, investigates the behaviors associated with extinct species or cultures according to specific psychological models. For example, changes in working memory, attention, or visuospatial integration can be postulated when related behavioral changes are described in the archaeological record. However, cognition is a process based on different and partially independent functional elements, and extinct species could hence have evolved distinct combinations of cognitive abilities or features, based on both quantitative and qualitative differences. Accordingly, differences in working memory can lead to more conceptual or more holistic mindsets, with important changes in the perception and management of the mental experience. The parietal cortex is particularly interesting, in this sense, being involved in functions associated with body-tool integration, attention, and visual imaging. In some cases, evolutionary mismatches among these elements can induce drawbacks that, despite their positive effects on natural selection, can introduce important constraints in our own mental skills. Beyond the theoretical background, some hypotheses can be tested following methods in experimental psychology. In any case, theories in cognitive evolution must acknowledge that, beyond the brain and its biology, the human mind is also deeply rooted in body perception, in social networks, and in technological extension.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| |
Collapse
|
20
|
Muzik O, Diwadkar VA. Depth and hierarchies in the predictive brain: From reaction to action. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1664. [PMID: 37518831 DOI: 10.1002/wcs.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
The human brain is a prediction device, a view widely accepted in neuroscience. Prediction is a rational and efficient response that relies on the brain's ability to create and employ generative models to optimize actions over unpredictable time horizons. We argue that extant predictive frameworks while compelling, have not explicitly accounted for the following: (a) The brain's generative models must incorporate predictive depth (i.e., rely on degrees of abstraction to enable predictions over different time horizons); (b) The brain's implementation scheme to account for varying predictive depth relies on dynamic predictive hierarchies formed using the brain's functional networks. We show that these hierarchies incorporate the ascending processes (driven by reaction), and the descending processes (related to prediction), eventually driving action. Because they are dynamically formed, predictive hierarchies allow the brain to address predictive challenges in virtually any domain. By way of application, we explain how this framework can be applied to heretofore poorly understood processes of human behavioral thermoregulation. Although mammalian thermoregulation has been closely tied to deep brain structures engaged in autonomic control such as the hypothalamus, this narrow conception does not translate well to humans. In addition to profound differences in evolutionary history, the human brain is bestowed with substantially increased functional complexity (that itself emerged from evolutionary differences). We argue that behavioral thermoregulation in humans is possible because, (a) ascending signals shaped by homeostatic sub-networks, interject with (b) descending signals related to prediction (implemented in interoceptive and executive sub-networks) and action (implemented in executive sub-networks). These sub-networks cumulatively form a predictive hierarchy for human thermoregulation, potentiating a range of viable responses to known and unknown thermoregulatory challenges. We suggest that our proposed extensions to the predictive framework provide a set of generalizable principles that can further illuminate the many facets of the predictive brain. This article is categorized under: Neuroscience > Behavior Philosophy > Action Psychology > Prediction.
Collapse
Affiliation(s)
- Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan, Michigan, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
21
|
Friederici AD. Evolutionary neuroanatomical expansion of Broca's region serving a human-specific function. Trends Neurosci 2023; 46:786-796. [PMID: 37596132 DOI: 10.1016/j.tins.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
The question concerning the evolution of language is directly linked to the debate on whether language and action are dependent or not and to what extent Broca's region serves as a common neural basis. The debate resulted in two opposing views, one arguing for and one against the dependence of language and action mainly based on neuroscientific data. This article presents an evolutionary neuroanatomical framework which may offer a solution to this dispute. It is proposed that in humans, Broca's region houses language and action independently in spatially separated subregions. This became possible due to an evolutionary expansion of Broca's region in the human brain, which was not paralleled by a similar expansion in the chimpanzee's brain, providing additional space needed for the neural representation of language in humans.
Collapse
Affiliation(s)
- Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1A, 04103 Leipzig, Germany.
| |
Collapse
|
22
|
Beaudet A, de Jager E. Broca's area, variation and taxic diversity in early Homo from Koobi Fora (Kenya). eLife 2023; 12:RP89054. [PMID: 37721480 PMCID: PMC10506792 DOI: 10.7554/elife.89054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Because brain tissues rarely fossilize, pinpointing when and how modern human cerebral traits emerged in the hominin lineage is particularly challenging. The fragmentary nature of the fossil material, coupled with the difficulty of characterizing such a complex organ, has been the source of long-standing debates. Prominent among them are the uncertainties around the derived or primitive state of the brain organization in the earliest representatives of the genus Homo, more particularly in key regions such as the Broca's area. By revisiting a particularly well-preserved fossil endocast from the Turkana basin (Kenya), here we confirm that early Homo in Africa had a primitive organization of the Broca's area ca. 1.9 million years ago. Additionally, our description of KNM-ER 3732 adds further information about the variation pattern of the inferior frontal gyrus in fossil hominins, with implications for early Homo taxic diversity (i.e. one or two Homo species at Koobi Fora) and the nature of the mechanisms involved in the emergence of derived cerebral traits.
Collapse
Affiliation(s)
- Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & University of PoitiersPoitiersFrance
- Department of Archaeology, University of CambridgeCambridgeUnited Kingdom
- School of Geography, Archaeology and Environmental Studies, University of the WitwatersrandJohannesburgSouth Africa
| | - Edwin de Jager
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & University of PoitiersPoitiersFrance
| |
Collapse
|
23
|
Bruner E. Cognitive Archeology and the Attentional System: An Evolutionary Mismatch for the Genus Homo. J Intell 2023; 11:183. [PMID: 37754912 PMCID: PMC10532831 DOI: 10.3390/jintelligence11090183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Brain evolution is a key topic in evolutionary anthropology. Unfortunately, in this sense the fossil record can usually support limited anatomical and behavioral inferences. Nonetheless, information from fossil species is, in any case, particularly valuable, because it represents the only direct proof of cerebral and behavioral changes throughout the human phylogeny. Recently, archeology and psychology have been integrated in the field of cognitive archeology, which aims to interpret current cognitive models according to the evidence we have on extinct human species. In this article, such evidence is reviewed in order to consider whether and to what extent the archeological record can supply information regarding changes of the attentional system in different taxa of the human genus. In particular, behavioral correlates associated with the fronto-parietal system and working memory are employed to consider recent changes in our species, Homo sapiens, and a mismatch between attentional and visuospatial ability is hypothesized. These two functional systems support present-moment awareness and mind-wandering, respectively, and their evolutionary unbalance can explain a structural sensitivity to psychological distress in our species.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain
| |
Collapse
|
24
|
Lawless WF, Moskowitz IS, Doctor KZ. A Quantum-like Model of Interdependence for Embodied Human-Machine Teams: Reviewing the Path to Autonomy Facing Complexity and Uncertainty. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1323. [PMID: 37761622 PMCID: PMC10528279 DOI: 10.3390/e25091323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
In this review, our goal is to design and test quantum-like algorithms for Artificial Intelligence (AI) in open systems to structure a human-machine team to be able to reach its maximum performance. Unlike the laboratory, in open systems, teams face complexity, uncertainty and conflict. All task domains have complexity levels-some low, and others high. Complexity in this new domain is affected by the environment and the task, which are both affected by uncertainty and conflict. We contrast individual and interdependence approaches to teams. The traditional and individual approach focuses on building teams and systems by aggregating the best available information for individuals, their thoughts, behaviors and skills. Its concepts are characterized chiefly by one-to-one relations between mind and body, a summation of disembodied individual mental and physical attributes, and degrees of freedom corresponding to the number of members in a team; however, this approach is characterized by the many researchers who have invested in it for almost a century with few results that can be generalized to human-machine interactions; by the replication crisis of today (e.g., the invalid scale for self-esteem); and by its many disembodied concepts. In contrast, our approach is based on the quantum-like nature of interdependence. It allows us theorization about the bistability of mind and body, but it poses a measurement problem and a non-factorable nature. Bistability addresses team structure and performance; the measurement problem solves the replication crisis; and the non-factorable aspect of teams reduces the degrees of freedom and the information derivable from teammates to match findings by the National Academies of Science. We review the science of teams and human-machine team research in the laboratory versus in the open field; justifications for rejecting traditional social science while supporting our approach; a fuller understanding of the complexity of teams and tasks; the mathematics involved; a review of results from our quantum-like model in the open field (e.g., tradeoffs between team structure and performance); and the path forward to advance the science of interdependence and autonomy.
Collapse
Affiliation(s)
- William F. Lawless
- Department of Mathematics and Psychology, Paine College, Augusta, GA 30901, USA
| | - Ira S. Moskowitz
- Naval Research Laboratory, Information Technology Division, Washington, DC 20375, USA; (I.S.M.); (K.Z.D.)
| | - Katarina Z. Doctor
- Naval Research Laboratory, Information Technology Division, Washington, DC 20375, USA; (I.S.M.); (K.Z.D.)
| |
Collapse
|
25
|
Kozol RA, Conith AJ, Yuiska A, Cree-Newman A, Tolentino B, Benesh K, Paz A, Lloyd E, Kowalko JE, Keene AC, Albertson C, Duboue ER. A brain-wide analysis maps structural evolution to distinct anatomical module. eLife 2023; 12:e80777. [PMID: 37498318 PMCID: PMC10435234 DOI: 10.7554/elife.80777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
The vertebrate brain is highly conserved topologically, but less is known about neuroanatomical variation between individual brain regions. Neuroanatomical variation at the regional level is hypothesized to provide functional expansion, building upon ancestral anatomy needed for basic functions. Classically, animal models used to study evolution have lacked tools for detailed anatomical analysis that are widely used in zebrafish and mice, presenting a barrier to studying brain evolution at fine scales. In this study, we sought to investigate the evolution of brain anatomy using a single species of fish consisting of divergent surface and cave morphs, that permits functional genetic testing of regional volume and shape across the entire brain. We generated a high-resolution brain atlas for the blind Mexican cavefish Astyanax mexicanus and coupled the atlas with automated computational tools to directly assess variability in brain region shape and volume across all populations. We measured the volume and shape of every grossly defined neuroanatomical region of the brain and assessed correlations between anatomical regions in surface fish, cavefish, and surface × cave F2 hybrids, whose phenotypes span the range of surface to cave. We find that dorsal regions of the brain are contracted, while ventral regions have expanded, with F2 hybrid data providing support for developmental constraint along the dorsal-ventral axis. Furthermore, these dorsal-ventral relationships in anatomical variation show similar patterns for both volume and shape, suggesting that the anatomical evolution captured by these two parameters could be driven by similar developmental mechanisms. Together, these data demonstrate that A. mexicanus is a powerful system for functionally determining basic principles of brain evolution and will permit testing how genes influence early patterning events to drive brain-wide anatomical evolution.
Collapse
Affiliation(s)
- Robert A Kozol
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Andrew J Conith
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - Anders Yuiska
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Alexia Cree-Newman
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Bernadeth Tolentino
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Kasey Benesh
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Alexandra Paz
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Evan Lloyd
- Department of Biology, Texas A&M UniversityCollege StationUnited States
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Alex C Keene
- Department of Biology, Texas A&M UniversityCollege StationUnited States
| | - Craig Albertson
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| |
Collapse
|
26
|
de Sousa AA, Beaudet A, Calvey T, Bardo A, Benoit J, Charvet CJ, Dehay C, Gómez-Robles A, Gunz P, Heuer K, van den Heuvel MP, Hurst S, Lauters P, Reed D, Salagnon M, Sherwood CC, Ströckens F, Tawane M, Todorov OS, Toro R, Wei Y. From fossils to mind. Commun Biol 2023; 6:636. [PMID: 37311857 PMCID: PMC10262152 DOI: 10.1038/s42003-023-04803-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 06/15/2023] Open
Abstract
Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.
Collapse
Affiliation(s)
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & Université de Poitiers, Poitiers, France.
- University of Cambridge, Cambridge, UK.
| | - Tanya Calvey
- Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Ameline Bardo
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500, Bron, France
| | | | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | | | - Shawn Hurst
- University of Indianapolis, Indianapolis, IN, USA
| | - Pascaline Lauters
- Institut royal des Sciences naturelles, Direction Opérationnelle Terre et Histoire de la Vie, Brussels, Belgium
| | - Denné Reed
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| | - Mathilde Salagnon
- CNRS, CEA, IMN, GIN, UMR 5293, Université Bordeaux, Bordeaux, France
- PACEA UMR 5199, CNRS, Université Bordeaux, Pessac, France
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Felix Ströckens
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Yongbin Wei
- Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|
27
|
Levinson SC. Gesture, spatial cognition and the evolution of language. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210481. [PMID: 36871589 PMCID: PMC9985965 DOI: 10.1098/rstb.2021.0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/03/2022] [Indexed: 03/07/2023] Open
Abstract
Human communication displays a striking contrast between the diversity of languages and the universality of the principles underlying their use in conversation. Despite the importance of this interactional base, it is not obvious that it heavily imprints the structure of languages. However, a deep-time perspective suggests that early hominin communication was gestural, in line with all the other Hominidae. This gestural phase of early language development seems to have left its traces in the way in which spatial concepts, implemented in the hippocampus, provide organizing principles at the heart of grammar. This article is part of a discussion meeting issue 'Face2face: advancing the science of social interaction'.
Collapse
Affiliation(s)
- Stephen C. Levinson
- Max Planck Institute for Psycholinguistics, Nijmegen, 6525XD, The Netherlands
| |
Collapse
|
28
|
Schwartz E, Nenning KH, Heuer K, Jeffery N, Bertrand OC, Toro R, Kasprian G, Prayer D, Langs G. Evolution of cortical geometry and its link to function, behaviour and ecology. Nat Commun 2023; 14:2252. [PMID: 37080952 PMCID: PMC10119184 DOI: 10.1038/s41467-023-37574-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Studies in comparative neuroanatomy and of the fossil record demonstrate the influence of socio-ecological niches on the morphology of the cerebral cortex, but have led to oftentimes conflicting theories about its evolution. Here, we study the relationship between the shape of the cerebral cortex and the topography of its function. We establish a joint geometric representation of the cerebral cortices of ninety species of extant Euarchontoglires, including commonly used experimental model organisms. We show that variability in surface geometry relates to species' ecology and behaviour, independent of overall brain size. Notably, ancestral shape reconstruction of the cortical surface and its change during evolution enables us to trace the evolutionary history of localised cortical expansions, modal segregation of brain function, and their association to behaviour and cognition. We find that individual cortical regions follow different sequences of area increase during evolutionary adaptations to dynamic socio-ecological niches. Anatomical correlates of this sequence of events are still observable in extant species, and relate to their current behaviour and ecology. We decompose the deep evolutionary history of the shape of the human cortical surface into spatially and temporally conscribed components with highly interpretable functional associations, highlighting the importance of considering the evolutionary history of cortical regions when studying their anatomy and function.
Collapse
Affiliation(s)
- Ernst Schwartz
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Nenning
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Nathan Jeffery
- Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool, England
| | - Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès., Barcelona, Spain
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, EH9 3FE, United Kingdom
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria.
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
29
|
Antón SC, Middleton ER. Making meaning from fragmentary fossils: Early Homo in the Early to early Middle Pleistocene. J Hum Evol 2023; 179:103307. [PMID: 37030994 DOI: 10.1016/j.jhevol.2022.103307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 04/10/2023]
Abstract
In celebration of the 50th anniversary of the Journal of Human Evolution, we re-evaluate the fossil record for early Homo (principally Homo erectus, Homo habilis, and Homo rudolfensis) from early diversification and dispersal in the Early Pleistocene to the ultimate demise of H. erectus in the early Middle Pleistocene. The mid-1990s marked an important historical turning point in our understanding of early Homo with the redating of key H. erectus localities, the discovery of small H. erectus in Asia, and the recovery of an even earlier presence of early Homo in Africa. As such, we compare our understanding of early Homo before and after this time and discuss how the order of fossil discovery and a focus on anchor specimens has shaped, and in many ways biased, our interpretations of early Homo species and the fossils allocated to them. Fragmentary specimens may counter conventional wisdom but are often overlooked in broad narratives. We recognize at least three different cranial and two or three pelvic morphotypes of early Homo. Just one postcranial morph aligns with any certainty to a cranial species, highlighting the importance of explicitly identifying how we link specimens together and to species; we offer two ways of visualizing these connections. Chronologically and morphologically H. erectus is a member of early Homo, not a temporally more recent species necessarily evolved from either H. habilis or H. rudolfensis. Nonetheless, an ancestral-descendant notion of their evolution influences expectations around the anatomy of missing elements, especially the foot. Weak support for long-held notions of postcranial modernity in H. erectus raises the possibility of alternative drivers of dispersal. New observations suggest that the dearth of faces in later H. erectus may mask taxonomic diversity in Asia and suggest various later mid-Pleistocene populations could derive from either Asia or Africa. Future advances will rest on the development of nuanced ways to affiliate fossils, greater transparency of implicit assumptions, and attention to detailed life history information for comparative collections; all critical pursuits for future research given the great potential they have to enrich our evolutionary reconstructions for the next fifty years and beyond.
Collapse
Affiliation(s)
- Susan C Antón
- Center for the Study of Human Origins, Department of Anthropology, New York University, NY, NY 10003, USA.
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, WI 53211, USA
| |
Collapse
|
30
|
Andersson C, Czárán T. The transition from animal to human culture-simulating the social protocell hypothesis. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210416. [PMID: 36688383 PMCID: PMC9869448 DOI: 10.1098/rstb.2021.0416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/26/2022] [Indexed: 01/24/2023] Open
Abstract
The origin of human cumulative culture is commonly envisioned as the appearance (some 2.0-2.5 million years ago) of a capacity to faithfully copy the know-how that underpins socially learned traditions. While certainly plausible, this story faces a steep 'startup problem'. For example, it presumes that ape-like early Homo possessed specialized cognitive capabilities for faithful know-how copying and that early toolmaking actually required such a capacity. The social protocell hypothesis provides a leaner story, where cumulative culture may have originated even earlier-as cumulative systems of non-cumulative traditions ('institutions' and 'cultural lifestyles'), via an emergent group-level channel of cultural inheritance. This channel emerges as a side-effect of a specific but in itself unremarkable suite of social group behaviours. It is independent of faithful know-how copying, and an ancestral version is argued to persist in Pan today. Hominin cultural lifestyles would thereby have gained in complexity and sophistication, eventually becoming independent units of selection (socionts) via a cultural evolutionary transition in individuality, abstractly similar to the origin of early cells. We here explore this hypothesis by simulating its basic premises. The model produces the expected behaviour and reveals several additional and non-trivial phenomena as fodder for future work. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Claes Andersson
- Department of Space, Earth and Environment, Division for Physical Resource Theory, Complex System Group, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- European Centre for Living Technology, University of Venice Ca’ Foscari, Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Tamás Czárán
- Evolutionary Systems Research Group, ELKH Centre for Ecological Research, Karolina Road 29, H-1113 Budapest, Hungary
- Institute of Evolution, ELKH Centre for Ecological Research, Karolina Road 29, H-1113 Budapest, Hungary
- ELKH-ELTE Theoretical Biology and Evolutionary Research Group, Eötvös Loránd University, Egyetem tér 1–3, H-1053 Budapest, Hungary
| |
Collapse
|
31
|
Townsend C, Ferraro JV, Habecker H, Flinn MV. Human cooperation and evolutionary transitions in individuality. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210414. [PMID: 36688393 PMCID: PMC9869453 DOI: 10.1098/rstb.2021.0414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/31/2022] [Indexed: 01/24/2023] Open
Abstract
A major evolutionary transition in individuality involves the formation of a cooperative group and the transformation of that group into an evolutionary entity. Human cooperation shares principles with those of multicellular organisms that have undergone transitions in individuality: division of labour, communication, and fitness interdependence. After the split from the last common ancestor of hominoids, early hominins adapted to an increasingly terrestrial niche for several million years. We posit that new challenges in this niche set in motion a positive feedback loop in selection pressure for cooperation that ratcheted coevolutionary changes in sociality, communication, brains, cognition, kin relations and technology, eventually resulting in egalitarian societies with suppressed competition and rapid cumulative culture. The increasing pace of information innovation and transmission became a key aspect of the evolutionary niche that enabled humans to become formidable cooperators with explosive population growth, the ability to cooperate and compete in groups of millions, and emergent social norms, e.g. private property. Despite considerable fitness interdependence, the rise of private property, in concert with population explosion and socioeconomic inequality, subverts potential transition of human groups into evolutionary entities due to resurgence of latent competition and conflict. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Cathryn Townsend
- Department of Anthropology, Baylor University, Waco, TX 76798-7334, USA
| | - Joseph V. Ferraro
- Department of Anthropology, Baylor University, Waco, TX 76798-7334, USA
| | - Heather Habecker
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798-7334, USA
| | - Mark V. Flinn
- Department of Anthropology, Baylor University, Waco, TX 76798-7334, USA
| |
Collapse
|
32
|
Manrique HM, Walker MJ. To copy or not to copy? That is the question! From chimpanzees to the foundation of human technological culture. Phys Life Rev 2023; 45:6-24. [PMID: 36931123 DOI: 10.1016/j.plrev.2023.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
A prerequisite for copying innovative behaviour faithfully is the capacity of observers' brains, regarded as 'hierarchically mechanistic minds', to overcome cognitive 'surprisal' (see 2.), by maximising the evidence for their internal models, through active inference. Unlike modern humans, chimpanzees and other great apes show considerable limitations in their ability, or 'Zone of Bounded Surprisal', to overcome cognitive surprisal induced by innovative or unorthodox behaviour that rarely, therefore, is copied precisely or accurately. Most can copy adequately what is within their phenotypically habitual behavioural repertoire, in which technology plays scant part. Widespread intra- and intergenerational social transmission of complex technological innovations is not a hall-mark of great-ape taxa. 3 Ma, precursors of the genus Homo made stone artefacts, and stone-flaking likely was habitual before 2 Ma. After that time, early Homo erectus has left traces of technological innovations, though faithful copying of these and their intra- and intergenerational social transmission were rare before 1 Ma. This likely owed to a cerebral infrastructure of interconnected neuronal systems more limited than ours. Brains were smaller in size than ours, and cerebral neuronal systems ceased to develop when early Homo erectus attained full adult maturity by the mid-teen years, whereas its development continues until our mid-twenties nowadays. Pleistocene Homo underwent remarkable evolutionary adaptation of neurobiological propensities, and cerebral aspects are discussed that, it is proposed here, plausibly, were fundamental for faithful copying, which underpinned social transmission of technologies, cumulative learning, and culture. Here, observers' responses to an innovation are more important for ensuring its transmission than is an innovator's production of it, because, by themselves, the minimal cognitive prerequisites that are needed for encoding and assimilating innovations are insufficient for practical outcomes to accumulate and spread intra- and intergenerationally.
Collapse
Affiliation(s)
- Héctor M Manrique
- Departamento de Psicología y Sociología, Universidad de Zaragoza, Campus Universitario de Teruel, 44003, Teruel, Spain.
| | - Michael J Walker
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad de Murcia, Campus Universitario de Espinardo Edificio 20, 30100 Murcia, Spain.
| |
Collapse
|
33
|
Richards GD, Jabbour RS, Guipert G, Defleur A. Endocranial anatomy of the Guercy 1 early Neanderthal from Baume Moula-Guercy (Soyons, Ardèche, France). Anat Rec (Hoboken) 2023; 306:564-593. [PMID: 36336759 DOI: 10.1002/ar.25118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
We provide the first comparative description of the endocranium of the Guercy 1 Early Neanderthal and examine its affinities to Preneanderthals, Neanderthals, and Homo sapiens. The Guercy 1 cranium derives from deposits chronostratigraphically and biostratigraphically dated to the Eemian Interglacial (MIS 5e). For comparative purposes, we compiled a sample of European and Southwest Asian subadult and adult Middle-to-Late Pleistocene hominins (≈MIS 12-MIS 1; N = 65). We sampled both a Preneanderthal-Neanderthal group and a Homo sapiens group. The Preneanderthal-Neanderthal group was further divided into three time-successive subgroups defined by associated MIS stages. Metric and morphological observations were made on original fossils and physical and virtual endocranial reconstructions. Guercy 1 and other Early Neanderthals, differ from Preneanderthals by increased development of the prefrontal cortex, precentral and postcentral gyri, inferior parietal lobule, and frontoparietal operculum. Early Neanderthal differ, in general, from Late Neanderthals by exhibiting less development in most of the latter brain structures. The late group additionally differentiates itself from the early group by a greater development of the rostral superior parietal lobule, angular gyrus, superior and middle temporal gyri, and caudal branches of the superior temporal gyrus. Endocranial morphology assessed along the Preneanderthal-Neanderthal sequence show that brain structures prominent in Preneanderthals are accentuated in Early-to-Late Neanderthals. However, both the Early and Late groups differentiate themselves by also showing regionally specific changes in brain development. This pattern of morphological change is consistent with a mosaic pattern of neural evolution in these Middle-to-Late Pleistocene hominins.
Collapse
Affiliation(s)
- Gary D Richards
- Department of Biomedical Sciences, A. A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - Rebecca S Jabbour
- Department of Biology, Saint Mary's College of California, Moraga, California, USA
| | - Gaspard Guipert
- Institut de Paléontologie Humaine, Fondation Albert Ier Prince de Monaco, Paris, France
| | - Alban Defleur
- CEPAM - UMR 7264 CNRS, Université de Nice, Nice Cedex 4, France
| |
Collapse
|
34
|
Hill H, Mirazón Lahr M, Beaudet A. Brain evolution and language: A comparative 3D analysis of Wernicke's area in extant and fossil hominids. PROGRESS IN BRAIN RESEARCH 2023; 275:117-142. [PMID: 36841566 DOI: 10.1016/bs.pbr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The spoken word does not fossilize. Despite this, scientists have long sought to unearth the origins of language within the human lineage. One of the lines of evidence they have pursued is functional brain areas, such as Broca's and Wernicke's areas, which are associated with speech production and comprehension, respectively. Sulcal layout of Broca's area clearly differs between humans and our closest living relatives, the chimpanzees, enabling its homolog in fossil hominins to be deemed more chimpanzee-like (i.e., closer to the ancestral form) or more human-like (i.e., derived form) with relative ease. Yet, no such differences have been found for Wernicke's area. This study compares sulcal and gyral organization of Wernicke's area across extant human brains (n=4), extant chimpanzee brains (n=5) and fossil hominin endocasts (n=4). Some chimpanzee brains had indications of leftward Wernicke's area asymmetry in the form of a shorter Sylvian fissure and/or caudal superior temporal gyral bulging in the left hemisphere. Overlap between the superior and middle temporal sulci in human but not chimpanzee brains may be due to a relatively larger Wernicke's area in humans. Fragmentation of the main body of the superior temporal sulcus exclusively in human left hemispheres was ascribed to a leftward Wernicke's area asymmetry in this species. Endocast examination found that, while Paranthropus robustus exhibit human-like overlap between the superior and middle temporal sulci, Australopithecus africanus do not, although they do exhibit chimpanzee-like caudal superior temporal gyral bulging. Such findings signal, albeit loosely, a more human-like Wernicke's area in Paranthropus than Australopithecus.
Collapse
Affiliation(s)
- Harmony Hill
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Marta Mirazón Lahr
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
35
|
Ganapathee DS, Gunz P. Insights into brain evolution through the genotype-phenotype connection. PROGRESS IN BRAIN RESEARCH 2023; 275:73-92. [PMID: 36841571 DOI: 10.1016/bs.pbr.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.
Collapse
Affiliation(s)
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
36
|
Pestana C, de Sousa AA, Todorov OS, Beaudet A, Benoit J. Evolutionary history of hominin brain size and phylogenetic comparative methods. PROGRESS IN BRAIN RESEARCH 2023; 275:217-232. [PMID: 36841569 DOI: 10.1016/bs.pbr.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
An absolutely and relatively large brain has traditionally been viewed as a distinctive characteristic of the Homo genus, with anatomically modern humans presented at the apex of a long line of progressive increases in encephalization. Many studies continue to focus attention on increasing brain size in the Homo genus, while excluding measures of absolute and relative brain size of more geologically recent, smaller brained, hominins such as Homo floresiensis, and Homo naledi and smaller brained Homo erectus specimens. This review discusses the benefits of using phylogenetic comparative methods to trace the diverse changes in hominin brain evolution and the drawbacks of not doing so.
Collapse
Affiliation(s)
- Christopher Pestana
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julien Benoit
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
37
|
Bruner E, Holloway R, Baab KL, Rogers MJ, Semaw S. The endocast from Dana Aoule North (DAN5/P1): A 1.5 million year-old human braincase from Gona, Afar, Ethiopia. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:206-215. [PMID: 36810873 DOI: 10.1002/ajpa.24717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
The nearly complete cranium DAN5/P1 was found at Gona (Afar, Ethiopia), dated to 1.5-1.6 Ma, and assigned to the species Homo erectus. Its size is, nonetheless, particularly small for the known range of variation of this taxon, and the cranial capacity has been estimated as 598 cc. In this study, we analyzed a reconstruction of its endocranial cast, to investigate its paleoneurological features. The main anatomical traits of the endocast were described, and its morphology was compared with other fossil and modern human samples. The endocast shows most of the traits associated with less encephalized human taxa, like narrow frontal lobes and a simple meningeal vascular network with posterior parietal branches. The parietal region is relatively tall and rounded, although not especially large. Based on our set of measures, the general endocranial proportions are within the range of fossils included in the species Homo habilis or in the genus Australopithecus. Similarities with the genus Homo include a more posterior position of the frontal lobe relative to the cranial bones, and the general endocranial length and width when size is taken into account. This new specimen extends the known brain size variability of Homo ergaster/erectus, while suggesting that differences in gross brain proportions among early human species, or even between early humans and australopiths, were absent or subtle.
Collapse
Affiliation(s)
- Emiliano Bruner
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Ralph Holloway
- Department of Anthropology, Columbia University, New York, New York, USA
| | - Karen L Baab
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Michael J Rogers
- Department of Anthropology, Southern Connecticut State University, New Haven, Connecticut, USA
| | - Sileshi Semaw
- Programa de Arqueología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain.,Stone Age Institute, Gosport, Indiana, USA
| |
Collapse
|
38
|
Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood. Nat Ecol Evol 2023; 7:42-50. [PMID: 36604552 DOI: 10.1038/s41559-022-01933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023]
Abstract
There is controversy around the mechanisms that guided the change in brain shape during the evolution of modern humans. It has long been held that different cortical areas evolved independently from each other to develop their unique functional specializations. However, some recent studies suggest that high integration between different cortical areas could facilitate the emergence of equally extreme, highly specialized brain functions. Here, we analyse the evolution of brain shape in primates using three-dimensional geometric morphometrics of endocasts. We aim to determine, firstly, whether modern humans present unique developmental patterns of covariation between brain cortical areas; and secondly, whether hominins experienced unusually high rates of evolution in brain covariation as compared to other primates. On the basis of analyses including modern humans and other extant great apes at different developmental stages, we first demonstrate that, unlike our closest living relatives, Homo sapiens retain high levels of covariation between cortical areas into adulthood. Among the other great apes, high levels of covariation are only found in immature individuals. Secondly, at the macro-evolutionary level, our analysis of 400 endocasts, representing 148 extant primate species and 6 fossil hominins, shows that strong covariation between different areas of the brain in H. sapiens and Homo neanderthalensis evolved under distinctly higher evolutionary rates than in any other primate, suggesting that natural selection favoured a greatly integrated brain in both species. These results hold when extinct species are excluded and allometric effects are accounted for. Our findings demonstrate that high covariation in the brain may have played a critical role in the evolution of unique cognitive capacities and complex behaviours in both modern humans and Neanderthals.
Collapse
|
39
|
Bruner E, Beaudet A. The brain of Homo habilis: Three decades of paleoneurology. J Hum Evol 2023; 174:103281. [PMID: 36455402 DOI: 10.1016/j.jhevol.2022.103281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
In 1987, Phillip Tobias published a comprehensive anatomical analysis of the endocasts attributed to Homo habilis, discussing issues dealing with brain size, sulcal patterns, and vascular traces. He suggested that the neuroanatomy of this species evidenced a clear change toward many cerebral traits associated with our genus, mostly when concerning the morphology of the frontal and parietal cortex. After more than 30 years, the fossil record associated with this taxon has not grown that much, but we have much more information on cranial and brain biology, and we are using a larger array of digital methods to investigate the paleoneurological variation observed in the human genus. Brain volume, the size of the frontal lobe, or the gross hemispheric asymmetries are still relevant issues, but they are considered to be less central than before. More attention is instead being paid to the cortical organization, the relationships with the cranial architecture, and the influence of molecular or ecological factors. Although the field of paleoneurology can currently count on a larger range of tools and principles, there is still a general lack of anatomical information on many endocranial traits. This aspect is probably crucial for the agenda of paleoneurology. More importantly, the whole science is undergoing a delicate change, because of the growing influence of the social environment. In this sense, the disciplines working with fossils (and, in particular, with brain evolution) should take particular care to maintain a healthy professional situation, avoiding an excess of speculation and overstatement.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain.
| | - Amélie Beaudet
- University of Cambridge, Henry Wellcome Building, Fitzwilliam St, Cambridge CB2 1QH, UK; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Carrer de l'Escola Industrial, 23, 08201 Sabadell, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
40
|
Hublin JJ, Changeux JP. Paleoanthropology of cognition: an overview on Hominins brain evolution. C R Biol 2022; 345:57-75. [PMID: 36847465 DOI: 10.5802/crbiol.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Recent advances in neurobiology, paleontology, and paleogenetics allow us to associate changes in brain size and organization with three main "moments" of increased behavioral complexity and, more speculatively, language development. First, Australopiths display a significant increase in brain size relative to the great apes and an incipient extension of postnatal brain development. However, their cortical organization remains essentially similar to that of apes. Second, over the last 2 My, with two notable exceptions, brain size increases dramatically, partly in relation to changes in body size. Differential enlargements and reorganizations of cortical areas lay the foundation for the "language-ready" brain and cumulative culture of later Homo species. Third, in Homo sapiens, brain size remains fairly stable over the last 300,000 years but an important cerebral reorganization takes place. It affects the frontal and temporal lobes, the parietal areas and the cerebellum and resulted in a more globular shape of the brain. These changes are associated, among others, with an increased development of long-distance-horizontal-connections. A few regulatory genetic events took place in the course of this hominization process with, in particular, enhanced neuronal proliferation and global brain connectivity.
Collapse
|
41
|
Zuberbühler K, Bickel B. Transition to language: From agent perception to event representation. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1594. [PMID: 35639563 PMCID: PMC9786335 DOI: 10.1002/wcs.1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
Abstract
Spoken language, as we have it, requires specific capacities-at its most basic advanced vocal control and complex social cognition. In humans, vocal control is the basis for speech, achieved through coordinated interactions of larynx activity and rapid changes in vocal tract configurations. Most likely, speech evolved in response to early humans perceiving reality in increasingly complex ways, to the effect that primate-like signaling became unsustainable as a sole communication device. However, in what ways did and do humans see the world in more complex ways compared to other species? Although animal signals can refer to external events, in contrast to humans, they usually refer to the agents only, sometimes in compositional ways, but never together with patients. It may be difficult for animals to comprehend events as part of larger social scripts, with antecedent causes and future consequences, which are more typically tie the patient into the event. Human brain enlargement over the last million years probably has provided the cognitive resources to represent social interactions as part of bigger social scripts, which enabled humans to go beyond an agent-focus to refer to agent-patient relations, the likely foundation for the evolution of grammar. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Linguistics > Evolution of Language Psychology > Comparative.
Collapse
Affiliation(s)
- Klaus Zuberbühler
- Institute of Biology, University of NeuchatelNeuchatel
- School of Psychology and NeuroscienceUniversity of St AndrewsSt Andrews
| | - Balthasar Bickel
- Department of Comparative Language ScienceUniversity of ZurichZurichSwitzerland
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichZurichSwitzerland
| |
Collapse
|
42
|
Vidiella B, Carrignon S, Bentley RA, O’Brien MJ, Valverde S. A cultural evolutionary theory that explains both gradual and punctuated change. J R Soc Interface 2022; 19:20220570. [PMID: 36382378 PMCID: PMC9667142 DOI: 10.1098/rsif.2022.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Cumulative cultural evolution (CCE) occurs among humans who may be presented with many similar options from which to choose, as well as many social influences and diverse environments. It is unknown what general principles underlie the wide range of CCE dynamics and whether they can all be explained by the same unified paradigm. Here, we present a scalable evolutionary model of discrete choice with social learning, based on a few behavioural science assumptions. This paradigm connects the degree of transparency in social learning to the human tendency to imitate others. Computer simulations and quantitative analysis show the interaction of three primary factors-information transparency, popularity bias and population size-drives the pace of CCE. The model predicts a stable rate of evolutionary change for modest degrees of popularity bias. As popularity bias grows, the transition from gradual to punctuated change occurs, with maladaptive subpopulations arising on their own. When the popularity bias gets too severe, CCE stops. This provides a consistent framework for explaining the rich and complex adaptive dynamics taking place in the real world, such as modern digital media.
Collapse
Affiliation(s)
- Blai Vidiella
- Evolution of Networks Lab, Institute of Evolutionary Biology (UPF-CSIC), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Simon Carrignon
- McDonald Institute for Archaeological Research, Downing Street, Cambridge CB2 3ER, UK
| | | | - Michael J. O’Brien
- Department of Communication, History, and Philosophy and Department of Life Sciences, Texas A&M University–San Antonio, Texas 78224, USA
- Department of Anthropology, University of Missouri-Columbia, Missouri 65201, USA
| | - Sergi Valverde
- Evolution of Networks Lab, Institute of Evolutionary Biology (UPF-CSIC), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
- European Centre for Living Technology (ECLT), Ca’ Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venezia, Italy
| |
Collapse
|
43
|
Lawless WF. Interdependent Autonomous Human-Machine Systems: The Complementarity of Fitness, Vulnerability and Evolution. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1308. [PMID: 36141193 PMCID: PMC9497611 DOI: 10.3390/e24091308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
For the science of autonomous human-machine systems, traditional causal-time interpretations of reality in known contexts are sufficient for rational decisions and actions to be taken, but not for uncertain or dynamic contexts, nor for building the best teams. First, unlike game theory where the contexts are constructed for players, or machine learning where contexts must be stable, when facing uncertainty or conflict, a rational process is insufficient for decisions or actions to be taken; second, as supported by the literature, rational explanations cannot disaggregate human-machine teams. In the first case, interdependent humans facing uncertainty spontaneously engage in debate over complementary tradeoffs in a search for the best path forward, characterized by maximum entropy production (MEP); however, in the second case, signified by a reduction in structural entropy production (SEP), interdependent team structures make it rationally impossible to discern what creates better teams. In our review of evidence for SEP-MEP complementarity for teams, we found that structural redundancy for top global oil producers, replicated for top global militaries, impedes interdependence and promotes corruption. Next, using UN data for Middle Eastern North African nations plus Israel, we found that a nation's structure of education is significantly associated with MEP by the number of patents it produces; this conflicts with our earlier finding that a U.S. Air Force education in air combat maneuvering was not associated with the best performance in air combat, but air combat flight training was. These last two results exemplify that SEP-MEP interactions by the team's best members are made by orthogonal contributions. We extend our theory to find that competition between teams hinges on vulnerability, a complementary excess of SEP and reduced MEP, which generalizes to autonomous human-machine systems.
Collapse
Affiliation(s)
- William F Lawless
- Departments of Mathematics and Psychology, Paine College, Augusta, GA 30901, USA
| |
Collapse
|
44
|
Levinson SC. The interaction engine: cuteness selection and the evolution of the interactional base for language. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210108. [PMID: 35876196 PMCID: PMC9310178 DOI: 10.1098/rstb.2021.0108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
The deep structural diversity of languages suggests that our language capacities are not based on any single template but rather on an underlying ability and motivation for infants to acquire a culturally transmitted system. The hypothesis is that this ability has an interactional base that has discernable precursors in other primates. In this paper, I explore a specific evolutionary route for the most puzzling aspect of this interactional base in humans, namely the development of an empathetic intentional stance. The route involves a generalization of mother-infant interaction patterns to all adults via a process (cuteness selection) analogous to, but distinct from, RA Fisher's runaway sexual selection. This provides a cornerstone for the carrying capacity for language. This article is part of the theme issue 'Revisiting the human 'interaction engine': comparative approaches to social action coordination'.
Collapse
Affiliation(s)
- Stephen C. Levinson
- Language and Cognition, Max Planck Institute for Psycholinguistics, Nijmegen, Gelderland, The Netherlands
| |
Collapse
|
45
|
Zollikofer CPE, Bienvenu T, Beyene Y, Suwa G, Asfaw B, White TD, Ponce de León MS. Endocranial ontogeny and evolution in early Homo sapiens: The evidence from Herto, Ethiopia. Proc Natl Acad Sci U S A 2022; 119:e2123553119. [PMID: 35914174 PMCID: PMC9371682 DOI: 10.1073/pnas.2123553119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/05/2022] [Indexed: 11/21/2022] Open
Abstract
Fossils and artifacts from Herto, Ethiopia, include the most complete child and adult crania of early Homo sapiens. The endocranial cavities of the Herto individuals show that by 160,000 y ago, brain size, inferred from endocranial size, was similar to that seen in modern human populations. However, endocranial shape differed from ours. This gave rise to the hypothesis that the brain itself evolved substantially during the past ∼200,000 y, possibly in tandem with the transition from Middle to Upper Paleolithic techno-cultures. However, it remains unclear whether evolutionary changes in endocranial shape mostly reflect changes in brain morphology rather than changes related to interaction with maxillofacial morphology. To discriminate between these effects, we make use of the ontogenetic fact that brain growth nearly ceases by the time the first permanent molars fully erupt, but the face and cranial base continue to grow until adulthood. Here we use morphometric data derived from digitally restored immature and adult H. sapiens fossils from Herto, Qafzeh, and Skhul (HQS) to track endocranial development in early H. sapiens. Until the completion of brain growth, endocasts of HQS children were similar in shape to those of modern human children. The similarly shaped endocasts of fossil and modern children indicate that our brains did not evolve substantially over the past 200,000 y. Differences between the endocranial shapes of modern and fossil H. sapiens adults developed only with continuing facial and basicranial growth, possibly reflecting substantial differences in masticatory and/or respiratory function.
Collapse
Affiliation(s)
| | - Thibault Bienvenu
- Department of Anthropology, University of Zurich, Zurich 8057, Switzerland
| | - Yonas Beyene
- French Center for Ethiopian Studies (CFEE), Addis Ababa, Ethiopia
| | - Gen Suwa
- University Museum, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Tim D. White
- Human Evolution Research Center, The University of California at Berkeley, Berkeley, CA 94720
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos 09002, Spain
- Department of Integrative Biology, The University of California at Berkeley, Berkeley, CA 94720
| | | |
Collapse
|
46
|
Miller JA, Weiner KS. Unfolding the evolution of human cognition. Trends Cogn Sci 2022; 26:735-737. [PMID: 35909020 DOI: 10.1016/j.tics.2022.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022]
Abstract
Recent findings spanning fields, from braincases in paleoneurobiology to invivo measurements in cognitive neuroscience, provide insights into the evolution of cognition. Here, we integrate these findings and propose that studying small, evolutionarily new cortical structures has significant implications for identifying new links between neuroanatomical substrates and human-specific aspects of cognition.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
47
|
Gingerich PD. Pattern and rate in the Plio-Pleistocene evolution of modern human brain size. Sci Rep 2022; 12:11216. [PMID: 35780143 PMCID: PMC9250492 DOI: 10.1038/s41598-022-15481-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/24/2022] [Indexed: 11/11/2022] Open
Abstract
Fourteen studies of brain size evolution in Plio-Pleistocene hominins published over the past fifty years show substantial long-term increase in endocranial volume (ECV) for the broad lineage leading to modern humans. The median generation-to-generation step rate for a consensus time series of ECV values, h0 = 0.15 standard deviations per generation, is almost identical to the median step rate observed in modern biological field studies. When specimens are aggregated in a series of 100 k.y. time bins to reflect the precision of their geological ages, temporal scaling identifies four successive phases of stasis and change that are significantly different from random. Phase I from about 3.2 to 2.0 million years before present is an initial phase of relative stasis. Phase II from 2.0 to 1.5 m.y. is a phase of directional brain size increase. Phase III from 1.5 to 0.7 m.y. is a second phase of stasis. Finally, Phase IV from about 0.7 m.y. to 10 k.y. is a second phase of directional increase. The tempo (rate) and the mode (stasis, random, or directional change) of an evolutionary time series are related to each other, and both are related to the time scale appropriate for analysis.
Collapse
Affiliation(s)
- Philip D Gingerich
- Museum of Paleontology, Research Museum Center, University of Michigan, 3600 Varsity Drive, Ann Arbor, MI, 48108-2228, USA.
| |
Collapse
|
48
|
de Jager EJ, Risser L, Mescam M, Fonta C, Beaudet A. Sulci 3D mapping from human cranial endocasts: A powerful tool to study hominin brain evolution. Hum Brain Mapp 2022; 43:4433-4443. [PMID: 35661328 PMCID: PMC9435008 DOI: 10.1002/hbm.25964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/14/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Key questions in paleoneurology concern the timing and emergence of derived cerebral features within the human lineage. Endocasts are replicas of the internal table of the bony braincase that are widely used in paleoneurology as a proxy for reconstructing a timeline for hominin brain evolution in the fossil record. The accurate identification of cerebral sulci imprints in endocasts is critical for assessing the topographic extension and structural organisation of cortical regions in fossil hominins. High‐resolution imaging techniques combined with established methods based on population‐specific brain atlases offer new opportunities for tracking detailed endocranial characteristics. This study provides the first documentation of sulcal pattern imprints from the superolateral surface of the cerebrum using a population‐based atlas technique on extant human endocasts. Human crania from the Pretoria Bone Collection (South Africa) were scanned using micro‐CT. Endocasts were virtually extracted, and sulci were automatically detected and manually labelled. A density map method was applied to project all the labels onto an averaged endocast to visualise the mean distribution of each identified sulcal imprint. This method allowed for the visualisation of inter‐individual variation of sulcal imprints, for example, frontal lobe sulci, correlating with previous brain‐MRI studies and for the first time the extensive overlapping of imprints in historically debated areas of the endocast (e.g. occipital lobe). In providing an innovative, non‐invasive, observer‐independent method to investigate human endocranial structural organisation, our analytical protocol introduces a promising perspective for future research in paleoneurology and for discussing critical hypotheses on the evolution of cognitive abilities among hominins.
Collapse
Affiliation(s)
- Edwin John de Jager
- Department of Archaeology, University of Cambridge, Cambridge, UK.,Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Laurent Risser
- Institute de Mathématiques de Toulouse, Université de Toulouse, UPS, Toulouse, France
| | - Muriel Mescam
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, UK.,School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Beaudet A, Dumoncel J, Heaton JL, Pickering TR, Clarke RJ, Carlson KJ, Bam L, Van Hoorebeke L, Stratford D. Shape analysis of the StW 578 calotte from Jacovec Cavern, Gauteng (South Africa). S AFR J SCI 2022. [DOI: 10.17159/sajs.2022/11743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The fossiliferous deposits within the lower-lying Jacovec Cavern in the locality of Sterkfontein yielded valuable hominin remains, including the StW 578 specimen. Because StW 578 mainly preserves the calotte, the taxonomic status of this specimen has been a matter of discussion. Within this context, here we employed high-resolution microtomography and a landmark-free registration method to explore taxonomically diagnostic features in the external surface of the StW 578 calotte. Our comparative sample included adult humans and common chimpanzees as well as one Australopithecus africanus specimen (Sts 5). We partially restored the StW 578 calotte digitally and compared it to extant specimens and Sts 5 using a landmark-free registration based on smooth and invertible surface deformation. Our comparative shape analysis reveals morphological differences with extant humans, especially in the frontal bones, and with extant chimpanzees, as well as intriguing specificities in the morphology of the StW 578 parietal bones. Lastly, our study suggests morphological proximity between StW 578 and Sts 5. Given the intimate relationship between the brain and the braincase, as well as the integration of the hominin face and neurocranium, we suggest that cranial vault shape differences between StW 578 and extant humans, if confirmed by further analyses, could be either explained by differences in brain surface morphology or in the face. Besides providing additional information about the morphology of the Jacovec calotte that will be useful in future taxonomic discussion, this study introduces a new protocol for the landmark-free analysis of fossil hominin cranial shape.
Collapse
Affiliation(s)
- Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
- Catalan Institute of Palaeontology Miquel Crusafont, Autonomous University of Barcelona, Barcelona, Spain
| | - Jean Dumoncel
- French National Centre for Scientific Research (CNRS), Paris, France
| | - Jason L. Heaton
- Department of Biology, Birmingham- Southern College, Birmingham, Alabama, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Travis R. Pickering
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History, Pretoria, South Africa
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ronald J. Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristian J. Carlson
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, California, USA
| | - Lunga Bam
- South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa
| | - Luc Van Hoorebeke
- UCGT Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
50
|
Risk Determination versus Risk Perception: A New Model of Reality for Human–Machine Autonomy. INFORMATICS 2022. [DOI: 10.3390/informatics9020030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We review the progress in developing a science of interdependence applied to the determinations and perceptions of risk for autonomous human–machine systems based on a case study of the Department of Defense’s (DoD) faulty determination of risk in a drone strike in Afghanistan; the DoD’s assessment was rushed, suppressing alternative risk perceptions. We begin by contrasting the lack of success found in a case study from the commercial sphere (Facebook’s use of machine intelligence to find and categorize “hate speech”). Then, after the DoD case study, we draw a comparison with the Department of Energy’s (DOE) mismanagement of its military nuclear wastes that created health risks to the public, DOE employees, and the environment. The DOE recovered by defending its risk determinations and challenging risk perceptions in public. We apply this process to autonomous human–machine systems. The result from this review is a major discovery about the costly suppression of risk perceptions to best determine actual risks, whether for the military, business, or politics. For autonomous systems, we conclude that the determinations of actual risks need to be limited in scope as much as feasible; and that a process of free and open debate needs to be adopted that challenges the risk perceptions arising in situations facing uncertainty as the best, and possibly the only, path forward to a solution.
Collapse
|