1
|
Jeffries Hein R, Le Goff A, Landecker HL. Making and disposing of life's 'starting materials': A focus group study of attitudes concerning reproductive scarcity and abundance in in vitro gametogenesis. Soc Sci Med 2025; 379:118146. [PMID: 40381286 DOI: 10.1016/j.socscimed.2025.118146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
This paper explores stakeholder attitudes toward gametes and embryos in the context of in vitro gametogenesis (IVG), a new stem cell technology whose future clinical application would entail the production of eggs and sperm in vitro. A key concern raised by the prospect of making gametes from originally non-reproductive body cells has been its potential exacerbation of the issue of "surplus" cryopreserved embryos through the production of unprecedented numbers, with an allied devaluation of human reproductive materials. However, this concern has not been empirically investigated. In this study, focus groups composed of individuals representative of the constituency most likely to be impacted by IVG were asked to respond to scenarios in which the relative abundance and scarcity of gametes and embryos were changed by these new procedures. Respondents who had experienced involuntary childlessness and/or previously accessed in vitro fertilization (IVF) technology drew on these experiences to reason their way through future scenarios in which cells could be more fluidly exchanged over the somatic-reproductive boundary. Unfettered abundance was not found to be a key issue for these respondents. Rather, concerns focused on questions of technological control over outcomes in ARTs, cultural scripts about the preciousness of eggs moderated by concordance between the gender or the donor and the sex of the gamete, and in vitro gametes and embryos as embodiments of the often painful and costly process of attaining them.
Collapse
Affiliation(s)
- Robbin Jeffries Hein
- The Institute for Society and Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Anne Le Goff
- SupBiotech, L'école des ingénieurs en biotechnologies, 66, rue Guy Môquet, Villejuif, 94800, France; Paris Institute for Advanced Studies, 17 quai d'Anjou, 75014 Paris, France
| | - Hannah L Landecker
- The Institute for Society and Genetics, University of California, Los Angeles, CA, 90095, USA; Department of Sociology, University of California Los Angeles, Los Angeles, CA, 90095, USA; Center for Reproductive Science, Health, and Education, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Johnson J, Emerson JW, Smith A, Medina K, Telfer EE, Anderson RA, Lawley SD. Modeling the extension of ovarian function after therapeutic targeting of the primordial follicle reserve. Hum Reprod Update 2025:dmaf009. [PMID: 40324778 DOI: 10.1093/humupd/dmaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/20/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Women are increasingly choosing to delay childbirth, and those with low ovarian reserves indicative of primary ovarian insufficiency are at risk for sub- and infertility and also the early onset of menopause. Experimental strategies that promise to extend the duration of ovarian function in women are currently being developed. One strategy is to slow the rate of loss of existing primordial follicles (PFs), and a second is to increase, or 'boost', the number of autologous PFs in the human ovary. In both cases, the duration of ovarian function would be expected to be lengthened, and menopause would be delayed. This might be accompanied by an extended production of mature oocytes of sufficient quality to extend the fertile lifespan. OBJECTIVE AND RATIONALE In this work, we consider how slowing physiological ovarian aging might improve the health and well-being of patients, and summarize the current state-of-the-art of approaches being developed. We then use mathematical modeling to determine how interventions are likely to influence the duration of ovarian function quantitatively. Finally, we consider efficacy benchmarks that should be achieved so that individuals will benefit, and propose criteria that could be used to monitor ongoing efficacy in different patients as these strategies are being validated. SEARCH METHODS Current methods to estimate the size of the ovarian reserve and its relationship to the timing of the menopausal transition and menopause were compiled, and publications establishing methods designed to slow loss of the ovarian reserve or to deliver additional ovarian PFs to patients were identified. OUTCOMES We review our current understanding of the consequences of reproductive aging in women, and compare different approaches that may extend ovarian function in women at risk for POI. We also provide modeling of primordial reserve decay in the presence of therapies that slow PF loss or boost PF numbers. An interactive online tool is provided that estimates how different interventions would impact the duration of ovarian function across the natural population. Modeling output shows that treatments that slow PF loss would need to be applied as early as possible and for many years to achieve significant delay of menopause. In contrast, treatments that add additional PFs should occur as late as possible relative to the onset of menopause. Combined approaches slowing ovarian reserve loss while also boosting numbers of (new) PFs would likely offer some additional benefits in delaying menopause. WIDER IMPLICATIONS Extending ovarian function, and perhaps the fertile lifespan, is on the horizon for at least some patients. Modeling ovarian aging with and without such interventions complements and helps guide the clinical approaches that will achieve this goal. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Joshua Johnson
- Division of Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Denver (AMC), Aurora, CO, USA
| | - John W Emerson
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| | - Annika Smith
- Division of Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Denver (AMC), Aurora, CO, USA
| | - Kayla Medina
- Division of Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Denver (AMC), Aurora, CO, USA
| | - Evelyn E Telfer
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
- Centre for Reproductive Health, Institute of Regeneration and Repair, Edinburgh, UK
| | - Richard A Anderson
- Centre for Reproductive Health, Institute of Regeneration and Repair, Edinburgh, UK
| | - Sean D Lawley
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Bhattacharya I, Nalinan LK, Anusree KV, Saleel A, Khamamkar A, Dey S. Evolving Lessons on Metazoan Primordial Germ Cells in Diversity and Development. Mol Reprod Dev 2025; 92:e70027. [PMID: 40349219 PMCID: PMC12066098 DOI: 10.1002/mrd.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
Germ cells are pivotal for the continuation of biological species. The metazoan germline develops from primordial germ cells (PGCs) that undergo multiple rounds of mitotic divisions. The PGCs are specified by either maternal inheritance of asymmetrically polarized cytoplasmic mRNAs/proteins (found in roundworms, flies, fishes, frogs, and fowl) or via direct induction of epiblast cells from adjacent extraembryonic ectoderm in mammals. In all vertebrates, PGCs remain uncommitted to meiosis and migrate to colonize the developing gonadal ridge before sex determination. Multiple RNA-binding proteins (e.g., Vasa, Dnd, Dazl, etc.) play crucial roles in PGC identity, expansion, survival, and migration. Postsex determination in mouse embryos, Gata4, expressing nascent gonads, induces Dazl expression in newly arriving germ cells that supports retinoic acid-mediated induction of meiotic onset. This article briefly discusses the developmental events regulating the PGC specification and commitment in metazoans. We also highlight the recent progress towards the in vitro generation of functional PGC-like cells in rodents and humans.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Lakshmi K. Nalinan
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - K. V. Anusree
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Ahmed Saleel
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Aditi Khamamkar
- Manipal Centre for Biotherapeutics ResearchManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Souvik Dey
- Manipal Centre for Biotherapeutics ResearchManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
4
|
Chen Y, Liu B, Tao S, Liu L, Gao J, Liang Y, Dong W, Zhou D. CITED2 Binding to EP300 Regulates Human Spermatogonial Stem Cell Proliferation and Survival Through HSPA6. Stem Cells Int 2025; 2025:2362489. [PMID: 40313859 PMCID: PMC12045681 DOI: 10.1155/sci/2362489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/22/2025] [Indexed: 05/03/2025] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for the initiation and continuation of spermatogenesis, a process fundamental to male fertility. Despite extensive studies on mouse SSCs, the mechanisms governing self-renewal and differentiation in human SSCs remain to be elucidated. This study investigated the regulatory mechanisms of SSCs by analyzing single-cell sequencing data from the GEO dataset of human testis. Analysis revealed dominant expression of CITED2 in human SSCs. Reduction of CITED2 levels in hSSC lines significantly inhibited proliferation and increased apoptosis. Protein interaction prediction and immunoprecipitation identified interactions between CITED2 and EP300 in SSC lines. RNA sequencing results indicated that CITED2 knockdown significantly affected the MAPK pathway and the HSPA6 gene. Overexpression of HSPA6 mitigated the proliferative and apoptotic changes provoked by CITED2 downregulation. These findings provide novel insights into the regulatory and functional mechanisms of CITED2-mediated hSSC development.
Collapse
Affiliation(s)
- Yongzhe Chen
- Gynecology and Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Bang Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Sisi Tao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Lvjun Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Jianxin Gao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Ying Liang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Weilei Dong
- Gynecology and Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Dai Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, Hunan 410000, China
- Research Department, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410000, China
| |
Collapse
|
5
|
Adashi EY, Wessel GM. Reproduction (Re)defined. Reprod Sci 2025; 32:1287-1289. [PMID: 40074963 DOI: 10.1007/s43032-025-01829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
Somatic cell nuclear transfer (SCNT) and iPSCs are exciting new possibilities for making functional gametes. Each of these approaches utilize somatic cells, thereby violating the concept of the Weismann barrier.
Collapse
Affiliation(s)
- Eli Y Adashi
- Division of Biology and Medicine, Department of Molecular and Cellular Biology & Biochemistry, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Gary M Wessel
- Division of Biology and Medicine, Department of Molecular and Cellular Biology & Biochemistry, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
6
|
He W, Luo Q, Zhao J, Wang M, Zhao A, Feng L, Reda A, Lindgren E, Stukenborg J, Chen J, Deng Q. X-Linked Gene Dosage and SOX2 Act as Key Roadblocks for Human Germ Cell Specification in Klinefelter Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410533. [PMID: 39996497 PMCID: PMC12005746 DOI: 10.1002/advs.202410533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Indexed: 02/26/2025]
Abstract
Klinefelter syndrome (KS), characterized by the presence of at least one extra X-chromosome, is a common cause of male infertility. However, the mechanism underlying the failure of germline specification is not well studied. Intriguingly, the differentiation efficiency of female human pluripotent stem cells (hPSCs) is often lower than that of male. This study investigates how X-linked gene dosage affects human primordial germ cell-like cells (hPGCLCs) specification in both healthy and diseased conditions. This work reveals that X-linked genes play a multifaceted role against the fate competency to hPGCLCs, with escape genes IGSF1 and CHRDL1 inhibiting the TGF-beta/Activin A and BMP pathways, respectively. Notably, this work identifies a previously unrecognized role of SOX2, upregulated by the escape gene USP9X, elucidating a species-specific function in the mammalian germline. The USP9X-SOX2 regulatory axis profoundly influenced cellular metabolism, mitochondrial morphology, and progenitor competence in hPGCLCs specification. Furthermore, the inability to downregulate SOX2 and upregulate SOX17 in response to BMP signaling impedes downstream gene activation due to motif binding competition. These findings shed novel insights into the human germline specification by elucidating the divergent roles of SOX2 versus SOX17 in mammals, influenced by X-linked gene dosage effects. These results offer potential applications for improving the induction efficiency of hPGCLCs, facilitating disease mechanistic studies.
Collapse
Affiliation(s)
- Wenteng He
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Qing Luo
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Jian Zhao
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
- Department of Oncology‐PathologyKarolinska InstitutetStockholm171 77Sweden
| | - Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Allan Zhao
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Luohua Feng
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Ahmed Reda
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Eva Lindgren
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Jan‐Bernd Stukenborg
- NORDFERTIL Research Lab StockholmChildhood Cancer Research UnitDepartment of Women's and Children's HealthKarolinska InstitutetKarolinska University HospitalStockholm17 165Sweden
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
- Frontier Science Center for Stem Cell ResearchTongji UniversityShanghai200092China
| | - Qiaolin Deng
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm UnviersityStockholm11418Sweden
| |
Collapse
|
7
|
Maroto M, Torvisco SN, García-Merino C, Fernández-González R, Pericuesta E. Mechanisms of Hormonal, Genetic, and Temperature Regulation of Germ Cell Proliferation, Differentiation, and Death During Spermatogenesis. Biomolecules 2025; 15:500. [PMID: 40305231 PMCID: PMC12025078 DOI: 10.3390/biom15040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Spermatogenesis is a complex and highly regulated process involving the proliferation, differentiation, and apoptosis of germ cells. This process is controlled by various hormonal, genetic, and environmental factors, including temperature. In hormonal regulation, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) are essential for correct spermatogenesis development from the early stages and spermatogonia proliferation to germ cell maturation. Other hormones, like inhibin and activin, finely participate tuning the process of spermatogenesis. Genetic regulation involves various transcription factors, such as SOX9, SRY, and DMRT1, which are crucial for the development and maintenance of the testis and germ cells. MicroRNAs (miRNAs) play a significant role by regulating gene expression post-transcriptionally. Epigenetic modifications, including DNA methylation, histone modifications, and chromatin remodelling, are also vital. Temperature regulation is another critical aspect, with the testicular temperature maintained around 2-4 °C below body temperature, essential for efficient spermatogenesis. Heat shock proteins (HSPs) protect germ cells from heat-induced damage by acting as molecular chaperones, ensuring proper protein folding and preventing the aggregation of misfolded proteins during thermal stress. Elevated testicular temperature can impair spermatogenesis, increasing germ cell apoptosis and inducing oxidative stress, DNA damage, and the disruption of the blood-testis barrier, leading to germ cell death and impaired differentiation. The cellular mechanisms of germ cell proliferation, differentiation, and death include the mitotic divisions of spermatogonia to maintain the germ cell pool and produce spermatocytes. Spermatocytes undergo meiosis to produce haploid spermatids, which then differentiate into mature spermatozoa. Apoptosis, or programmed cell death, ensures the removal of defective germ cells and regulates the germ cell population. Hormonal imbalance, genetic defects, and environmental stress can trigger apoptosis during spermatogenesis. Understanding these mechanisms is crucial for addressing male infertility and developing therapeutic interventions. Advances in molecular biology and genetics continue to uncover the intricate details of how spermatogenesis is regulated at multiple levels, providing new insights and potential targets for treatment.
Collapse
Affiliation(s)
- María Maroto
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| | - Sara N. Torvisco
- School of Agriculture and Food Science, University College Dublin, D04 W6F6 Dublin, Ireland;
| | - Cristina García-Merino
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| | - Raúl Fernández-González
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| | - Eva Pericuesta
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| |
Collapse
|
8
|
Yu H, Wang Z, Ma J, Wang R, Yao S, Gu Z, Lin K, Li J, Young RS, Yu Y, Yu Y, Jin M, Chen D. The establishment and regulation of human germ cell lineage. Stem Cell Res Ther 2025; 16:139. [PMID: 40102947 PMCID: PMC11921702 DOI: 10.1186/s13287-025-04171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/23/2025] [Indexed: 03/20/2025] Open
Abstract
The specification of primordial germ cells (PGCs) during early embryogenesis initiates the development of the germ cell lineage that ensures the perpetuation of genetic and epigenetic information from parents to offspring. Defects in germ cell development may lead to infertility or birth defects. Historically, our understanding of human PGCs (hPGCs) regulation has primarily been derived from studies in mice, given the ethical restrictions and practical limitations of human embryos at the stage of PGC specification. However, recent studies have increasingly highlighted significant mechanistic differences for PGC development in humans and mice. The past decade has witnessed the establishment of human pluripotent stem cell (hPSC)-derived hPGC-like cells (hPGCLCs) as new models for studying hPGC fate specification and differentiation. In this review, we systematically summarize the current hPSC-derived models for hPGCLC induction, and how these studies uncover the regulatory machinery for human germ cell fate specification and differentiation, forming the basis for reconstituting gametogenesis in vitro from hPSCs for clinical applications and disease modeling.
Collapse
Affiliation(s)
- Honglin Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ziqi Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jiayue Ma
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ruoming Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Shuo Yao
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Zhaoyu Gu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Kexin Lin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jinlan Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Robert S Young
- Center for Global Health Research, Usher Institute, University of Edinburgh, 5-7 Little France Road, Edinburgh, EH16 4UX, UK
- Zhejiang University - University of Edinburgh Institute, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ya Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - You Yu
- Center for Infection Immunity, Cancer of Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Min Jin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, 314400, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Wilhelm D, Perea-Gomez A, Newton A, Chaboissier MC. Gonadal sex determination in vertebrates: rethinking established mechanisms. Development 2025; 152:dev204592. [PMID: 40162719 DOI: 10.1242/dev.204592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sex determination and differentiation are fundamental processes that are not only essential for fertility but also influence the development of many other organs, and hence, are important for species diversity and survival. In mammals, sex is determined by the inheritance of an X or a Y chromosome from the father. The Y chromosome harbours the testis-determining gene SRY, and it has long been thought that its absence is sufficient for ovarian development. Consequently, the ovarian pathway has been treated as a default pathway, in the sense that ovaries do not have or need a female-determining factor. Recently, a female-determining factor has been identified in mouse as the master regulator of ovarian development. Interestingly, this scenario was predicted as early as 1983. In this Review, we discuss the model predicted in 1983, how the mechanisms and genes currently known to be important for sex determination and differentiation in mammals have changed or supported this model, and finally, reflect on what these findings might mean for sex determination in other vertebrates.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Aitana Perea-Gomez
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Axel Newton
- TIGRR Lab, The School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | | |
Collapse
|
10
|
Campitelli LMM, Lopes KP, de Lima IL, Ferreira FB, Isidoro ND, Ferreira GM, Ponce MCF, Ferreira MCDO, Mendes LS, Marcelino PHR, Neves MM, Klein SG, Fonseca BB, Polveiro RC, da Silva MV. Methodological and Ethical Considerations in the Use of Chordate Embryos in Biomedical Research. Int J Mol Sci 2025; 26:2624. [PMID: 40141265 PMCID: PMC11941781 DOI: 10.3390/ijms26062624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Animal embryos are vital tools in scientific research, providing insights into biological processes and disease mechanisms. This paper explores their historical and contemporary significance, highlighting the shift towards the refinement of in vitro systems as alternatives to animal experimentation. We have conducted a data review of the relevant literature on the use of embryos in research and synthesized the data to highlight the importance of this model for scientific progress and the ethical considerations and regulations surrounding embryo research, emphasizing the importance of minimizing animal suffering while promoting scientific progress through the principles of replacement, reduction, and refinement. Embryos from a wide range of species, including mammals, fish, birds, amphibians, and reptiles, play a crucial experimental role in enabling us to understand factors such as substance toxicity, embryonic development, metabolic pathways, physiological processes, etc., that contribute to the advancement of the biological sciences. To apply this model effectively, it is essential to match the research objectives with the most appropriate methodology, ensuring that the chosen approach is appropriate for the scope of the study.
Collapse
Affiliation(s)
- Laura Maria Mendes Campitelli
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Karina Pereira Lopes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Isabela Lemos de Lima
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Flávia Batista Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Nayara Delfim Isidoro
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38410-337, MG, Brazil
| | - Giovana Magalhães Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Maria Clara Fioravanti Ponce
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Ludmilla Silva Mendes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Pedro Henrique Ribeiro Marcelino
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Sandra Gabriela Klein
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Richard Costa Polveiro
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Murilo Vieira da Silva
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
- Rodent Animal Facilities Complex, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| |
Collapse
|
11
|
Liu Y, Hao F, Liang H, Liu W, Guo Y. Exposure to polystyrene nanoplastics impairs sperm metabolism and pre-implantation embryo development in mice. Front Cell Dev Biol 2025; 13:1562331. [PMID: 40092630 PMCID: PMC11906707 DOI: 10.3389/fcell.2025.1562331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Microplastics and nanoplastics are prevalent environmental contaminants. Recent reports indicate that polystyrene nanoparticles may adversely impact male reproductive health. This study aims to examine the effects of polystyrene exposure on sperm metabolism and the development of pre-implantation embryos. Methods In this study, male C57BL/6 mice were orally gavage-administered polystyrene nanoplastics (60 nm, 20 mg/kg/day) for 35 days to assess their impact on male reproduction and early embryonic development. Experiments included testicular transcriptome analysis, sperm metabolomics, sperm motility and fertilization assays, embryonic ROS detection, and RNA sequencing of 2-cell embryos, revealing the adverse effects of polystyrene exposure on sperm metabolism and embryo development. Results The results revealed that oral gavage of polystyrene to male mice induced a pronounced immune-inflammatory response in testicular tissue, reduced sperm motility, and significantly lowered the fertilization rate. Notably, sperm from treated mice exhibited substantial metabolic disruptions, affecting key pathways, including glycerophospholipid biosynthesis and DNA repair. After fertilization, embryos at the 2-cell stage suffered damage in apoptotic and DNA repair pathways, subsequently impairing early embryo development. Discussion In conclusion, this study demonstrated that the oral gavage administration of polystyrene nanoplastics to male mice significantly affects male reproductive function, resulting in abnormalities in early embryonic development and alterations in associated gene expression profiles. These findings offer essential scientific insights for future research into sperm-mediated transgenerational effects and their impact on early embryonic development.
Collapse
Affiliation(s)
- Yingdong Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Centre for Assisted Reproduction of Shanghai First Maternity and Infant Hospital, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fengdan Hao
- Department of Pediatrics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haixin Liang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Centre for Assisted Reproduction of Shanghai First Maternity and Infant Hospital, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Centre for Assisted Reproduction of Shanghai First Maternity and Infant Hospital, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Guo
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Centre for Assisted Reproduction of Shanghai First Maternity and Infant Hospital, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Wu B, Neupane J, Zhou Y, Zhang J, Chen Y, Surani MA, Zhang Y, Bao S, Li X. Stem cell-based embryo models: a tool to study early human development. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2741-1. [PMID: 39969747 DOI: 10.1007/s11427-024-2741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 02/20/2025]
Abstract
How a mammalian fertilized egg acquires totipotency and develops into a full-term offspring is a fundamental scientific question. Human embryonic development is difficult to study due to limited resources, technical challenges and ethics. Moreover, the precise regulatory mechanism underlying early human embryonic development remains unknown. In recent years, the emergence of stem cell-based embryo models (SCBEM) provides the opportunity to reconstitute pre- to post-implantation development in vitro. These models to some extent mimic the embryo morphologically and transcriptionally, and thus may be used to study key events in mammalian pre- and post-implantation development. Many groups have successfully generated SCBEM of the mouse and human. Here, we provide a comparative review of the mouse and human SCBEM, discuss the capability of these models to mimic natural embryos and give a perspective on their potential future applications.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jitesh Neupane
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yang Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - M Azim Surani
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, 011517, China.
| |
Collapse
|
13
|
Pierson Smela M, Kramme CC, Fortuna PRJ, Wolf B, Goel S, Adams J, Ma C, Velychko S, Widocki U, Srikar Kavirayuni V, Chen T, Vincoff S, Dong E, Kohman RE, Kobayashi M, Shioda T, Church GM, Chatterjee P. Rapid human oogonia-like cell specification via transcription factor-directed differentiation. EMBO Rep 2025; 26:1114-1143. [PMID: 39849206 PMCID: PMC11850904 DOI: 10.1038/s44319-025-00371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs). We demonstrate that co-expression of five TFs - namely, ZNF281, LHX8, SOHLH1, ZGLP1, and ANHX, induces high efficiency DDX4-positive iOLCs in only four days in a feeder-free monolayer culture condition. We also show improved production of human primordial germ cell-like cells (hPGCLCs) from hiPSCs by expression of DLX5, HHEX, and FIGLA. We characterize these TF-based iOLCs and hPGCLCs via gene and protein expression analyses and demonstrate their similarity to in vivo and in vitro-derived oogonia and primordial germ cells. Together, these results identify new regulatory factors that enhance human germ cell specification in vitro, and further establish unique computational and experimental tools for human in vitro oogenesis research.
Collapse
Affiliation(s)
- Merrick Pierson Smela
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christian C Kramme
- Wyss Institute, Harvard Medical School, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Patrick R J Fortuna
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Bennett Wolf
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shrey Goel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jessica Adams
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Carl Ma
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sergiy Velychko
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | - Tianlai Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia Vincoff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Edward Dong
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Richie E Kohman
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mutsumi Kobayashi
- Department of Obstetrics and Gynaecology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshi Shioda
- Massachusetts General Hospital Krantz Family Center for Cancer Research, Harvard Medical School, Boston, MA, USA
| | - George M Church
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Gu Y, Chen J, Wang Z, Shao Q, Li Z, Ye Y, Xiao X, Xiao Y, Liu W, Xie S, Tong L, Jiang J, Xiao X, Yu Y, Jin M, Wei Y, Young RS, Hou L, Chen D. Integrated analysis and systematic characterization of the regulatory network for human germline development. J Genet Genomics 2025; 52:204-219. [PMID: 39571792 DOI: 10.1016/j.jgg.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/06/2025]
Abstract
Primordial germ cells (PGCs) are the precursors of germline that are specified at the embryonic stage. Recent studies reveal that humans employ different mechanisms for PGC specification compared with model organisms such as mice. Moreover, the specific regulatory machinery remains largely unexplored, mainly due to the inaccessible nature of this complex biological process in humans. Here, we curate and integrate multi-omics data, including 581 RNA-seq, 54 ATAC-seq, 45 ChIP-seq, and 69 single-cell RNA-seq samples from different stages of human PGC development to recapitulate the precisely controlled and stepwise process, presenting an atlas in the human PGC database (hPGCdb). With these uniformly processed data and integrated analyses, we characterize the potential key transcription factors and regulatory networks governing human germ cell fate. We validate the important roles of some of the key factors in germ cell development by CRISPRi knockdown. We also identify the soma-germline interaction network and discover the involvement of SDC2 and LAMA4 for PGC development, as well as soma-derived NOTCH2 signaling for germ cell differentiation. Taken together, we have built a database for human PGCs (http://43.131.248.15:6882) and demonstrate that hPGCdb enables the identification of the missing pieces of mechanisms governing germline development, including both intrinsic and extrinsic regulatory programs.
Collapse
Affiliation(s)
- Yashi Gu
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jiayao Chen
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ziqi Wang
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Qizhe Shao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhekai Li
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yaxuan Ye
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xia Xiao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yitian Xiao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Wenyang Liu
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Sisi Xie
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Lingling Tong
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jin Jiang
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaoying Xiao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ya Yu
- Center for Reproductive Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Min Jin
- Center for Reproductive Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yanxing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, M5T3H7, Canada.
| | - Robert S Young
- Center for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, 5-7 Little France Road, Edinburgh BioQuarter - Gate 3, Edinburgh, EH16 4UX, UK; Zhejiang University - University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang 314400, China.
| | - Lei Hou
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States.
| | - Di Chen
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK; State Key Laboratory of Biobased Transportation Fuel Technology, Haining, Zhejiang 314400, China.
| |
Collapse
|
15
|
Liu J, Zhang Y, Yu Y. Establishment of nasal and olfactory epithelium organoids for unveiling mechanism of tissue regeneration and pathogenesis of nasal diseases. Cell Mol Life Sci 2025; 82:33. [PMID: 39751829 PMCID: PMC11699091 DOI: 10.1007/s00018-024-05557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfactory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular mechanism underlying the regeneration of olfactory epithelium. A set of critical genes are identified to function in cell proliferation and neuronal differentiation in olfactory epithelium organoids. Besides, nasal epithelium organoids derived from chronic rhinosinusitis patients have been established to reveal the pathogenesis of this disease, potentially applied in drug responses in individual patient. The present article reviews recent research progresses of nasal and olfactory epithelium organoids in fundamental and preclinical researches, and proposes current advances and potential future direction in the field of organoid research and application.
Collapse
Affiliation(s)
- Jinxia Liu
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yunfeng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yiqun Yu
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China.
| |
Collapse
|
16
|
Aizawa E, Peters AHFM, Wutz A. In vitro gametogenesis: Towards competent oocytes: Limitations and future improvements for generating oocytes from pluripotent stem cells in culture. Bioessays 2025; 47:e2400106. [PMID: 39498732 DOI: 10.1002/bies.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Production of oocytes from pluripotent cell cultures in a dish represents a new paradigm in stem cell and developmental biology and has implications for how we think about life. The spark of life for the next generation occurs at fertilization when sperm and oocyte fuse. In animals, gametes are the only cells that transmit their genomes to the next generation. Oocytes contain in addition a large cytoplasm with factors that direct embryonic development. Reconstitution of mouse oocyte and embryonic development in culture provides experimental opportunities and facilitates an unprecedented understanding of molecular mechanisms. However, the application of in vitro gametogenesis to reproductive medicine or infertility treatment remains challenging. One significant concern is the quality of in vitro-derived oocytes. Here, we review the current understanding and identify limitations in generating oocytes in vitro. From this basis, we explore opportunities for future improvements of the in vitro approach to generating high-quality oocytes.
Collapse
Affiliation(s)
- Eishi Aizawa
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Roidor C, Chebli K, Borensztein M. [Epigenetic reprogramming, germline and genomic imprinting]. Med Sci (Paris) 2024; 40:892-903. [PMID: 39705560 DOI: 10.1051/medsci/2024177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
The memory of cellular identity is crucial for the correct development of an individual and is maintained throughout life by the epigenome. Chromatin marks, such as DNA methylation and histone modifications, ensure the stability of gene expression programmes over time and through cell division. Loss of these marks can lead to severe pathologies, including cancer and developmental syndromes. However, reprogramming of cellular identity is also a natural phenomenon that occurs early in mammalian development, particularly in the germ line, which enables the production of mature and functional gametes. The germ line transmits genetic and epigenetic information to the next generation, contributing to the survival of the species. Primordial germ cells (PGCs) undergo extensive chromatin remodelling, including global DNA demethylation and erasure of the parental imprints. This review introduces the concept of epigenetic reprogramming, its discovery and key steps, as well as the transcriptional and chromatin changes that accompany germ cell formation in mice. Finally, we discuss the epigenetic mechanisms of genomic imprinting, its discovery, regulation and relevance to human disease.
Collapse
Affiliation(s)
- Clara Roidor
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Karim Chebli
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
18
|
Lee SM, Surani MA. Epigenetic reprogramming in mouse and human primordial germ cells. Exp Mol Med 2024; 56:2578-2587. [PMID: 39672813 DOI: 10.1038/s12276-024-01359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 12/15/2024] Open
Abstract
Primordial germ cells (PGCs) are the precursors of sperm and eggs. They undergo genome-wide epigenetic reprogramming to erase epigenetic memory and reset the genomic potential for totipotency. Global DNA methylation erasure is a crucial part of epigenetic resetting when DNA methylation levels decrease across the genome to <5%. However, certain localized regions exhibit slower demethylation or resistance to reprogramming. Since DNA methylation plays a crucial role in transcriptional regulation, this depletion in PGCs requires mechanisms independent of DNA methylation to regulate transcriptional control during PGC reprogramming. Histone modifications are predicted to compensate for the loss of DNA methylation in gene regulation. Different histone modifications exhibit distinct patterns in PGCs undergoing epigenetic programming at the genomic level during PGC development in conjunction with changes in DNA methylation. Together, they contribute to PGC-specific genomic regulation. Recent findings related to these processes provide a comprehensive overview of germline epigenetic reprogramming and its importance in mouse and human PGC development. Additionally, we evaluated the extent to which in vitro culture techniques have replicated the development processes of human PGCs.
Collapse
Affiliation(s)
- Sun-Min Lee
- Department of Physics, Konkuk University, Seoul, Korea.
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Morales-Sánchez E, Campuzano-Caballero JC, Cervantes A, Martínez-Ibarra A, Cerbón M, Vital-Reyes VS. Which Side of the Coin Are You on Regarding Possible Postnatal Oogenesis? Arch Med Res 2024; 55:103071. [PMID: 39236439 DOI: 10.1016/j.arcmed.2024.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
It is well known that oocytes are produced during fetal development and that the total number of primary follicles is determined at birth. In humans, there is a constant loss of follicles after birth until about two years of age. The number of follicles is preserved until the resumption of meiosis at puberty and there is no renewal of the oocytes; this dogma was maintained in the last century because there were no suitable techniques to detect and obtain stem cells. However, following stem cell markers, several scientists have detected them in developing and adult human ovarian tissues, especially in the ovarian surface epithelial cells. Furthermore, many authors using different methodological strategies have indicated this possibility. This evidence has led many scientists to explore this hypothesis; there is no definitive consensus to accept this idea. Interestingly, oocyte retrieval from mature ovaries and other tissue sources of stem cells has contributed to the development of strategies for the retrieval of mature oocytes, useful for assisted reproductive technology. Here, we review the evidence and controversies on oocyte neooogenesis in adult women; in addition, we agree with the idea that this process may occur in adulthood and that its alteration may be related to various pathologies in women, such as polycystic ovary syndrome, premature ovarian insufficiency, diminished ovarian reserve and several infertility and genetic disorders.
Collapse
Affiliation(s)
- Elizabeth Morales-Sánchez
- Unidad de Histología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Campuzano-Caballero
- Departamento de Biología Comparada, Facultad de Ciencias, Laboratorio de Biología de la Reproducción Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Cervantes
- Servicio de Genética, Hospital General de México, Eduardo Liceaga, Mexico City, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Martínez-Ibarra
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Escolar, Mexico City, Coyoacán 04510, Mexico
| | - Marco Cerbón
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Escolar, Mexico City, Coyoacán 04510, Mexico.
| | | |
Collapse
|
20
|
Adashi EY, Wessel GM. In vitro gametogenesis in the ongoing quest to vanquish infertility: the role of epigenetics. F S Rep 2024; 5:342-343. [PMID: 39781069 PMCID: PMC11705579 DOI: 10.1016/j.xfre.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 01/12/2025] Open
Affiliation(s)
- Eli Y Adashi
- Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
| | - Gary M Wessel
- Division of Biology and Medicine, Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island
| |
Collapse
|
21
|
Chin AHB, Sun N. Do not overlook the possibility of genome-edited somatic cells ending up in the human germline. J Community Genet 2024; 15:749-752. [PMID: 39382831 PMCID: PMC11645330 DOI: 10.1007/s12687-024-00741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Most debates on human germline genome editing have limited discussions to just genetic modifications of sperm and eggs (gametes), their precursors within testicular or ovarian tissues, and preimplantation human embryos. What has largely been overlooked is that genome editing of somatic (non-reproductive) cells can also become heritable and can potentially be transmitted to future generations of human offspring under specific experimental conditions, due to the emergence of various new technology platforms. Most notably, the reprogramming of human somatic cells to a pluripotent "embryonic stem cell-like" state (i.e. induced pluripotent stem cells), has opened up the possibility that genome editing performed on human somatic cells can also be transmitted to future generations of human offspring when combined with other new technology platforms, such as in vitro gametogenesis, chimeric and synthetic embryos. Additionally, due to high levels of plasticity and extensive tissue remodeling within the human fetus during gestation, it is speculated that genome editing performed on fetal somatic cells intended for fetal gene therapy in utero may be unintentionally transmitted to the human germline. Hence, there should be strict regulatory oversight to ensure that any genome-edited somatic cell that ends up in the human germline via such aforementioned technology platforms does so in strict compliance with relevant legislation and ethical guidelines, especially that pertaining to safety issues with genome editing technology and its potential misuse in human enhancement and eugenics.
Collapse
Affiliation(s)
- Alexis Heng Boon Chin
- Singapore Fertility and IVF Consultancy Pvt Ltd., 531A Upper Cross Street, #04-95, Hong Lim Complex, Chinatown, 051531, Singapore.
| | - Ningyu Sun
- Center for Reproductive Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Winstanley YE, Stables JS, Gonzalez MB, Umehara T, Norman RJ, Robker RL. Emerging therapeutic strategies to mitigate female and male reproductive aging. NATURE AGING 2024; 4:1682-1696. [PMID: 39672895 DOI: 10.1038/s43587-024-00771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
People today are choosing to have children later in life, often in their thirties and forties, when their fertility is in decline. We sought to identify and compile effective methods for improving either male or female fertility in this context of advanced reproductive age. We found few clinical studies with strong evidence for therapeutics that mitigate reproductive aging or extend fertility; however, this Perspective summarizes the range of emerging experimental strategies under development. Preclinical studies, in mouse models of aging, have identified pharmaceutical candidates that improve egg and sperm quality. Further, a diverse array of medically assisted reproduction methodologies, including those that stimulate rare ovarian follicles and rejuvenate egg quality using mitochondria, may have future utility for older patients. Finally, we highlight the many knowledge gaps and possible future directions in the field of therapeutics to extend the age of healthy human reproduction.
Collapse
Affiliation(s)
- Yasmyn E Winstanley
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer S Stables
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Macarena B Gonzalez
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Takashi Umehara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Robert J Norman
- Robinson Research Institute, Adelaide Medical School; The University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
23
|
Chitnis MS, Gao X, Marlena J, Holle AW. The mechanical journey of primordial germ cells. Am J Physiol Cell Physiol 2024; 327:C1532-C1545. [PMID: 39466178 DOI: 10.1152/ajpcell.00404.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Primordial germ cells (PGCs) are the earliest progenitors of germline cells of the gonads in animals. The tissues that arise from primordial germ cells give rise to male and female gametes and are thus responsible for transmitting genetic information to subsequent generations. The development of gonads, from single cells to fully formed organs, is of great interest to the reproductive biology community. In most higher animals, PGCs are initially specified at a site away from the gonads. They then migrate across multiple tissue microenvironments to reach a mesodermal mass of cells called the genital ridge, where they associate with somatic cells to form sex-specific reproductive organs. Their migratory behavior has been studied extensively to identify which tissues they interact with and how this might affect gonad development. A crucial point overlooked by classical studies has been the physical environment experienced by PGCs as they migrate and the mechanical challenges they might encounter along the way. It has long been understood that migrating cells can sense and adapt to physical forces around them via a variety of mechanisms, and studies have shown that these mechanical signals can guide stem cell fate. In this review, we summarize the mechanical microenvironment of migrating PGCs in different organisms. We describe how cells can adapt to this environment and how this adaptation can influence cell fate. Finally, we propose that mechanical signals play a crucial role in the normal development of the germline and shed light on this unexplored area of developmental biology.
Collapse
Affiliation(s)
- Malhar S Chitnis
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xu Gao
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Jennifer Marlena
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Andrew W Holle
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| |
Collapse
|
24
|
Rose M, Adashi EY. Synthetic Embryo Models: A New Frontier in Assisted Reproduction? Reprod Sci 2024; 31:3609-3611. [PMID: 39317886 DOI: 10.1007/s43032-024-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Affiliation(s)
- Max Rose
- Weizmann Institute of Science, Herzl St 234, Rehovot, Israel.
| | - Eli Y Adashi
- Professor of Medical Science, Former Dean of Medicine and Biological Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
25
|
Jang Y, Tomasini L, Bae T, Szekely A, Vaccarino FM, Abyzov A. Transgenerational transmission of post-zygotic mutations suggests symmetric contribution of first two blastomeres to human germline. Nat Commun 2024; 15:9117. [PMID: 39438473 PMCID: PMC11496613 DOI: 10.1038/s41467-024-53485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Little is known about the origin of germ cells in humans. We previously leveraged post-zygotic mutations to reconstruct zygote-rooted cell lineage ancestry trees in a phenotypically normal woman, termed NC0. Here, by sequencing the genome of her children and their father, we analyze the transmission of early pre-gastrulation lineages and corresponding mutations across human generations. We find that the germline in NC0 is polyclonal and is founded by at least two cells likely descending from the two blastomeres arising from the first zygotic cleavage. Analyzes of public data from several multi-children families and from 1934 familial quads confirm this finding in larger cohorts, revealing that known imbalances of up to 90:10 in early lineages allocation in somatic tissues are not reflected in mutation transmission to offspring, establishing a fundamental difference in lineage allocation between the soma and the germline. Analyzes of all the data consistently suggest that the germline has a balanced 50:50 lineage allocation from the first two blastomeres.
Collapse
Affiliation(s)
- Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anna Szekely
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
- Yale Kavli Institute for Neuroscience, New Haven, CT, USA.
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
26
|
Hutchinson AM, Appeltant R, Burdon T, Bao Q, Bargaje R, Bodnar A, Chambers S, Comizzoli P, Cook L, Endo Y, Harman B, Hayashi K, Hildebrandt T, Korody ML, Lakshmipathy U, Loring JF, Munger C, Ng AHM, Novak B, Onuma M, Ord S, Paris M, Pask AJ, Pelegri F, Pera M, Phelan R, Rosental B, Ryder OA, Sukparangsi W, Sullivan G, Tay NL, Traylor-Knowles N, Walker S, Weberling A, Whitworth DJ, Williams SA, Wojtusik J, Wu J, Ying QL, Zwaka TP, Kohler TN. Advancing stem cell technologies for conservation of wildlife biodiversity. Development 2024; 151:dev203116. [PMID: 39382939 PMCID: PMC11491813 DOI: 10.1242/dev.203116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Wildlife biodiversity is essential for healthy, resilient and sustainable ecosystems. For biologists, this diversity also represents a treasure trove of genetic, molecular and developmental mechanisms that deepen our understanding of the origins and rules of life. However, the rapid decline in biodiversity reported recently foreshadows a potentially catastrophic collapse of many important ecosystems and the associated irreversible loss of many forms of life on our planet. Immediate action by conservationists of all stripes is required to avert this disaster. In this Spotlight, we draw together insights and proposals discussed at a recent workshop hosted by Revive & Restore, which gathered experts to discuss how stem cell technologies can support traditional conservation techniques and help protect animal biodiversity. We discuss reprogramming, in vitro gametogenesis, disease modelling and embryo modelling, and we highlight the prospects for leveraging stem cell technologies beyond mammalian species.
Collapse
Affiliation(s)
| | - Ruth Appeltant
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom Burdon
- The Roslin Institute, RDSVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Qiuye Bao
- IMCB-ESCAR, A*STAR, 61 Biopolis Drive, Proteos, 138673Singapore
| | | | - Andrea Bodnar
- Gloucester Marine Genomics Institute, 417 Main St, Gloucester, MA 01930, USA
| | - Stuart Chambers
- Brightfield Therapeutics, South San Francisco, CA 94080, USA
| | - Pierre Comizzoli
- Smithsonian National Zoo and Conservation Biology Institute, 3001 Connecticut Ave., NW Washington, DC 20008, USA
| | - Laura Cook
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Yoshinori Endo
- University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Bob Harman
- Vet-Stem Inc. & Personalized Stem Cells, Inc., 14261 Danielson Street, Poway, CA 92064, USA
| | | | - Thomas Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Marisa L. Korody
- San Diego Zoo Wildlife Alliance, 2920 Zoo Dr, San Diego, CA 92101, USA
| | - Uma Lakshmipathy
- Thermo Fisher Scientific, 168 Third Avenue, Waltham, MA 02451, USA
| | - Jeanne F. Loring
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Clara Munger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alex H. M. Ng
- GC Therapeutics, 610 Main St., North Cambridge, MA 02139, USA
| | - Ben Novak
- Revive & Restore, 1505 Bridgeway, Suite 203, Sausalito, CA 94965, USA
| | - Manabu Onuma
- National Institute for Environmental Studies, 16-2 Onogawa, City of Tsukuba, Ibaraki 305-8506, Japan
| | - Sara Ord
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, TX 78701, USA
| | - Monique Paris
- IBREAM (Institute for Breeding Rare and Endangered African Mammals), Edinburgh EH3 6AT, UK
| | | | - Francisco Pelegri
- University of Wisconsin-Madison, 500 Lincoln Dr, Madison, WI 53706, USA
| | - Martin Pera
- Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Ryan Phelan
- Revive & Restore, 1505 Bridgeway, Suite 203, Sausalito, CA 94965, USA
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Oliver A. Ryder
- San Diego Zoo Wildlife Alliance, 2920 Zoo Dr, San Diego, CA 92101, USA
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, 169 Long-Had Bangsaen Rd, Saen Suk, Chon Buri District, Chon Buri 20131, Thailand
| | - Gareth Sullivan
- Department of Pediatric Research, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, UK
| | | | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami,4600, Rickenbacker Cswy, Key Biscayne, FL 33149, USA
| | - Shawn Walker
- ViaGen Pets & Equine, PO Box 1119, Cedar Park, TX 78613, USA
| | | | - Deanne J. Whitworth
- University of Queensland, Sir Fred Schonell Drive, Brisbane, Queensland, 4072, Australia
| | | | - Jessye Wojtusik
- Omaha's Henry Doorly Zoo & Aquarium, 3701 S 10th St, Omaha, NE 68107, USA
| | - Jun Wu
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Qi-Long Ying
- Keck School of Medicine of University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Thomas P. Zwaka
- Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timo N. Kohler
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
27
|
Zhi M, Gao D, Yao Y, Zhao Z, Wang Y, He P, Feng Z, Zhang J, Huang Z, Gu W, Zhao J, Zhang H, Wang S, Li X, Zhang Q, Zhao Z, Chen X, Zhang X, Qin L, Liu J, Liu C, Cao S, Gao S, Yu W, Ma Z, Han J. Elucidation of the pluripotent potential of bovine embryonic lineages facilitates the establishment of formative stem cell lines. Cell Mol Life Sci 2024; 81:427. [PMID: 39377807 PMCID: PMC11461730 DOI: 10.1007/s00018-024-05457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
The establishment of epiblast-derived pluripotent stem cells (PSCs) from cattle, which are important domestic animals that provide humans with milk and meat while also serving as bioreactors for producing valuable proteins, poses a challenge due to the unclear molecular signaling required for embryonic epiblast development and maintenance of PSC self-renewal. Here, we selected six key stages of bovine embryo development (E5, E6, E7, E10, E12, and E14) to track changes in pluripotency and the dependence on signaling pathways via modified single-cell transcription sequencing technology. The remarkable similarity of the gene expression patterns between cattle and pigs during embryonic lineage development contributed to the successful establishment of bovine epiblast stem cells (bEpiSCs) using 3i/LAF (WNTi, GSK3βi, SRCi, LIF, Activin A, and FGF2) culture system. The generated bEpiSCs exhibited consistent expression patterns of formative epiblast pluripotency genes and maintained clonal morphology, normal karyotypes, and proliferative capacity for more than 112 passages. Moreover, these cells exhibited high-efficiency teratoma formation as well as the ability to differentiate into various cell lineages. The potential of bEpiSCs for myogenic differentiation, primordial germ cell like cells (PGCLCs) induction, and as donor cells for cell nuclear transfer was also assessed, indicating their promise in advancing cell-cultured meat production, gene editing, and animal breeding.
Collapse
Affiliation(s)
- Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Dengfeng Gao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zimo Zhao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Pengcheng He
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhiqiang Feng
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ziqi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Wenyuan Gu
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - He Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shunxin Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Li
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Qiang Zhang
- Key Laboratory of Animal Genetics, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zengyuan Zhao
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Xinze Chen
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lun Qin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chengjun Liu
- Beijing Dairy Cattle Center, Beijing, 100192, People's Republic of China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wenli Yu
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China.
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing, 100192, People's Republic of China.
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
28
|
Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, Persani L. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne) 2024; 15:1464803. [PMID: 39391877 PMCID: PMC11466302 DOI: 10.3389/fendo.2024.1464803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Primary ovarian insufficiency (POI) is a disorder of insufficient ovarian follicle function before the age of 40 years with an estimated prevalence of 3.7% worldwide. Its relevance is emerging due to the increasing number of women desiring conception late or beyond the third decade of their lives. POI clinical presentation is extremely heterogeneous with a possible exordium as primary amenorrhea due to ovarian dysgenesis or with a secondary amenorrhea due to different congenital or acquired abnormalities. POI significantly impacts non only on the fertility prospect of the affected women but also on their general, psychological, sexual quality of life, and, furthermore, on their long-term bone, cardiovascular, and cognitive health. In several cases the underlying cause of POI remains unknown and, thus, these forms are still classified as idiopathic. However, we now know the age of menopause is an inheritable trait and POI has a strong genetic background. This is confirmed by the existence of several candidate genes, experimental and natural models. The most common genetic contributors to POI are the X chromosome-linked defects. Moreover, the variable expressivity of POI defect suggests it can be considered as a multifactorial or oligogenic defect. Here, we present an updated review on clinical findings and on the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI. We also provide current information on the management of the premature hypoestrogenic state as well as on fertility preservation in subjects at risk of POI.
Collapse
Affiliation(s)
- Silvia Federici
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisabetta V. Munari
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Frixou
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
29
|
Singh V, Schimenti JC. Relevance, strategies, and added value of mouse models in androgenetics. Andrology 2024. [PMID: 39300831 DOI: 10.1111/andr.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Male Infertility is a prevalent condition worldwide, and a substantial fraction of cases are thought to have a genetic basis. Investigations into the responsible genes is limited experimentally, so mice have been used extensively to identify genes required for fertility and to understand their functions. OBJECTIVES To review the progress made in reproductive genetics based on experiments in mice, the impact upon clinical fertility genetics, and discuss how evolving technologies will continue to advance our understanding of human infertility genes. RESULTS AND DISCUSSION Gene knockout studies in mice have shown that several hundreds of genes are required for normal fertility and that this number is much higher in males than in females. In addition to gene discovery, the mouse is a powerful platform for functionally dissecting genetic pathways, modeling putative human infertility variants, identifying contraceptive targets, and developing in vitro gametogenesis. CONCLUSION These ongoing studies in mice have made an enormous contribution to our understanding of the genetics of human reproduction in the sense that the "parts list" of genes for mammalian gametogenesis is being elucidated. This would have been impossible to do in humans, and in vitro systems are not yet adequate to associate genes with andrological phenotypes, especially in the germline.
Collapse
Affiliation(s)
- Vertika Singh
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
30
|
Kubota K. Molecular approaches to mammalian uterine receptivity for conceptus implantation. J Reprod Dev 2024; 70:207-212. [PMID: 38763760 PMCID: PMC11310385 DOI: 10.1262/jrd.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
Mammalian reproduction is more inefficient than expected and embryo/conceptus implantation into the maternal endometrium is considered to be a rate-limiting process. Although extensive physiological and structural diversity exists among mammalian species, the basic molecular mechanisms underlying successful implantation are conserved. The extensive use of genetically engineered mouse models has provided considerable information on uterine receptivity for embryo implantation. The molecular mechanisms and cellular processes identified thus far require further validation in other mammalian species. In this review, representative ovarian steroid hormone-induced signaling pathways controlling uterine adaptation are presented based on the results of rodent studies. Selected examples of functional conservation in mammals, such as humans and cattle, are briefly described. To date, molecular therapeutic trials for fertility improvement have not been conducted. Considerable efforts are required to provide further understanding of these molecular mechanisms. Such understanding will contribute to the development of reliable clinical diagnostics and therapeutics for implantation failure, leading to reproductive success in a wide variety of mammals in the future.
Collapse
Affiliation(s)
- Kaiyu Kubota
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi 329-2793, Japan
- Present: Research Promotion Office, Core Technology Research Headquaters, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8517, Japan
| |
Collapse
|
31
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
32
|
Murase Y, Yokogawa R, Yabuta Y, Nagano M, Katou Y, Mizuyama M, Kitamura A, Puangsricharoen P, Yamashiro C, Hu B, Mizuta K, Tsujimura T, Yamamoto T, Ogata K, Ishihama Y, Saitou M. In vitro reconstitution of epigenetic reprogramming in the human germ line. Nature 2024; 631:170-178. [PMID: 38768632 PMCID: PMC11222161 DOI: 10.1038/s41586-024-07526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Epigenetic reprogramming resets parental epigenetic memories and differentiates primordial germ cells (PGCs) into mitotic pro-spermatogonia or oogonia. This process ensures sexually dimorphic germ cell development for totipotency1. In vitro reconstitution of epigenetic reprogramming in humans remains a fundamental challenge. Here we establish a strategy for inducing epigenetic reprogramming and differentiation of pluripotent stem-cell-derived human PGC-like cells (hPGCLCs) into mitotic pro-spermatogonia or oogonia, coupled with their extensive amplification (about >1010-fold). Bone morphogenetic protein (BMP) signalling is a key driver of these processes. BMP-driven hPGCLC differentiation involves attenuation of the MAPK (ERK) pathway and both de novo and maintenance DNA methyltransferase activities, which probably promote replication-coupled, passive DNA demethylation. hPGCLCs deficient in TET1, an active DNA demethylase abundant in human germ cells2,3, differentiate into extraembryonic cells, including amnion, with de-repression of key genes that bear bivalent promoters. These cells fail to fully activate genes vital for spermatogenesis and oogenesis, and their promoters remain methylated. Our study provides a framework for epigenetic reprogramming in humans and an important advance in human biology. Through the generation of abundant mitotic pro-spermatogonia and oogonia-like cells, our results also represent a milestone for human in vitro gametogenesis research and its potential translation into reproductive medicine.
Collapse
Affiliation(s)
- Yusuke Murase
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryuta Yokogawa
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Nagano
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Katou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manami Mizuyama
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayaka Kitamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Pimpitcha Puangsricharoen
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chika Yamashiro
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Bo Hu
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Mizuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taro Tsujimura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kosuke Ogata
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
33
|
Wan C, Huang Y, Xue X, Chang G, Wang M, Zhao X, Luo F, Tang Z. HELQ deficiency impairs the induction of primordial germ cell-like cells. FEBS Open Bio 2024; 14:1087-1100. [PMID: 38720471 PMCID: PMC11216937 DOI: 10.1002/2211-5463.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 07/03/2024] Open
Abstract
Helicase POLQ-like (HELQ) is a DNA helicase essential for the maintenance of genome stability. A recent study identified two HELQ missense mutations in some cases of infertile men. However, the functions of HELQ in the process of germline specification are not well known and whether its function is conserved between mouse and human remains unclear. Here, we revealed that Helq knockout (Helq-/-) could significantly reduce the efficiency of mouse primordial germ cell-like cell (PGCLC) induction. In addition, Helq-/- embryonic bodies exhibited a severe apoptotic phenotype on day 6 of mouse PGCLC induction. p53 inhibitor treatment could partially rescue the generation of mouse PGCLCs from Helq mutant mouse embryonic stem cells. Finally, the genetic ablation of HELQ could also significantly impede the induction of human PGCLCs. Collectively, our study sheds light on the involvement of HELQ in the induction of both mouse and human PGCLCs, providing new insights into the mechanisms underlying germline differentiation and the genetic studies of human fertility.
Collapse
Affiliation(s)
- Cong Wan
- Maoming People's HospitalChina
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yaping Huang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xingguo Xue
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Gang Chang
- Department of Biochemistry and Molecular BiologyShenzhen University Health Science CenterChina
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiao‐Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Guangdong Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH‐GDL)China
| | - Fang Luo
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | | |
Collapse
|
34
|
Jang Y, Tomasini L, Bae T, Szekely A, Vaccarino FM, Abyzov A. Transgenerational transmission of post-zygotic mutations suggests symmetric contribution of first two blastomeres to human germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599438. [PMID: 38948757 PMCID: PMC11213018 DOI: 10.1101/2024.06.18.599438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Little is known about the origin of germ cells in humans. We previously leveraged post-zygotic mutations to reconstruct zygote-rooted cell lineage ancestry trees in a phenotypically normal woman, termed NC0. Here, by sequencing the genome of her children and their father, we analyzed the transmission of early pregastrulation lineages and corresponding mutations across human generations. We found that the germline in NC0 is polyclonal and is founded by at least two cells likely descending from the two blastomeres arising from the first zygotic cleavage. Analyses of public data from several multi-children families and from 1,934 familial quads confirmed this finding in larger cohorts, revealing that known imbalances of up to 90:10 in early lineages allocation in somatic tissues are not reflected in transmission to offspring, establishing a fundamental difference in lineage allocation between the soma and the germline. Analyses of all the data consistently suggest that germline has a balanced 50:50 lineage allocation from the first two blastomeres.
Collapse
Affiliation(s)
- Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Livia Tomasini
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Anna Szekely
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
- Yale Kavli Institute for Neuroscience, New Haven, CT 06520, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Liu Y, Du M, Zhang L, Wang N, He Q, Cao J, Zhao B, Li X, Li B, Bou G, Zhao Y, Dugarjaviin M. Comparative Analysis of mRNA and lncRNA Expression Profiles in Testicular Tissue of Sexually Immature and Sexually Mature Mongolian Horses. Animals (Basel) 2024; 14:1717. [PMID: 38929336 PMCID: PMC11200857 DOI: 10.3390/ani14121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Testicular development and spermatogenesis are tightly regulated by both coding and non-coding genes, with mRNA and lncRNA playing crucial roles in post-transcriptional gene expression regulation. However, there are significant differences in regulatory mechanisms before and after sexual maturity. Nevertheless, the mRNAs and lncRNAs in the testes of Mongolian horses have not been systematically identified. In this study, we first identified the testicular tissues of sexually immature and sexually mature Mongolian horses at the tissue and protein levels, and comprehensively analyzed the expression profiles of mRNA and lncRNA in the testes of 1-year-old (12 months, n = 3) and 10-year-old (n = 3) Mongolian horses using RNA sequencing technology. Through gene expression analysis, we identified 16,582 mRNAs and 2128 unknown lncRNAs that are commonly expressed in both sexually immature and sexually mature Mongolian horses. Meanwhile, 9217 mRNAs (p < 0.05) and 2191 unknown lncRNAs (p < 0.05) were identified as differentially expressed between the two stages, which were further validated by real-time fluorescent quantitative PCR and analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The analysis results showed that genes in the sexually immature stage were mainly enriched in terms related to cellular infrastructure, while genes in the sexually mature stage were enriched in terms associated with hormones, metabolism, and spermatogenesis. In summary, the findings of this study provide valuable resources for a deeper understanding of the molecular mechanisms underlying testicular development and spermatogenesis in Mongolian horses and offer new perspectives for future related research.
Collapse
Affiliation(s)
- Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qianqian He
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jialong Cao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bei Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yiping Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
36
|
Nishimura T, Takebe T. Synthetic human gonadal tissues for toxicology. Reprod Toxicol 2024; 126:108598. [PMID: 38657700 DOI: 10.1016/j.reprotox.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The process of mammalian reproduction involves the development of fertile germ cells in the testis and ovary, supported by the surrounders. Fertilization leads to embryo development and ultimately the birth of offspring inheriting parental genome information. Any disruption in this process can result in disorders such as infertility and cancer. Chemical toxicity affecting the reproductive system and embryogenesis can impact birth rates, overall health, and fertility, highlighting the need for animal toxicity studies during drug development. However, the translation of animal data to human health remains challenging due to interspecies differences. In vitro culture systems offer a promising solution to bridge this gap, allowing the study of mammalian cells in an environment that mimics the physiology of the human body. Current advances on in vitro culture systems, such as organoids, enable the development of biomaterials that recapitulate the physiological state of reproductive organs. Application of these technologies to human gonadal cells would provide effective tools for drug screening and toxicity testing, and these models would be a powerful tool to study reproductive biology and pathology. This review focuses on the 2D/3D culture systems of human primary testicular and ovarian cells, highlighting the novel approaches for in vitro study of human reproductive toxicology, specifically in the context of testis and ovary.
Collapse
Affiliation(s)
- Toshiya Nishimura
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan.
| | - Takanori Takebe
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan; Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
37
|
He W, Tang H, Li Y, Wang M, Li Y, Chen J, Gao S, Han Z. Overexpression of Let-7a mitigates diploidization in mouse androgenetic haploid embryonic stem cells. iScience 2024; 27:109769. [PMID: 38711447 PMCID: PMC11070717 DOI: 10.1016/j.isci.2024.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Mouse androgenetic haploid embryonic stem cells (mAG-haESCs) can be utilized to uncover gene functions, especially those of genes with recessive effects, and to produce semicloned mice when injected into mature oocytes. However, mouse haploid cells undergo rapid diploidization during long-term culture in vitro and subsequently lose the advantages of haploidy, and the factors that drive diploidization are poorly understood. In this study, we compared the small RNAs (sRNAs) of mAG-haESCs, normal embryonic stem cells (ESCs), and mouse round spermatids by high-throughput sequencing and identified distinct sRNA profiles. Several let-7 family members and miR-290-295 cluster microRNAs (miRNAs) were found significantly differentially transcribed. Knockdown and overexpression experiments showed that let-7a and let-7g suppress diploidization while miR-290a facilitates diploidization. Our study revealed the unique sRNA profile of mAG-haESCs and demonstrated that let-7a overexpression can mitigate diploidization in mAG-haESCs. These findings will help us to better understand mAG-haESCs and utilize them as tools in the future.
Collapse
Affiliation(s)
- Wenteng He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Hongming Tang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yuanyuan Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Mingzhu Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yuanyuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
38
|
Rossant J. Why study human embryo development? Dev Biol 2024; 509:43-50. [PMID: 38325560 DOI: 10.1016/j.ydbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Understanding the processes and mechanisms underlying early human embryo development has become an increasingly active and important area of research. It has potential for insights into important clinical issues such as early pregnancy loss, origins of congenital anomalies and developmental origins of adult disease, as well as fundamental insights into human biology. Improved culture systems for preimplantation embryos, combined with the new tools of single cell genomics and live imaging, are providing new insights into the similarities and differences between human and mouse development. However, access to human embryo material is still restricted and extended culture of early embryos has regulatory and ethical concerns. Stem cell-derived models of different phases of human development can potentially overcome these limitations and provide a scalable source of material to explore the early postimplantation stages of human development. To date, such models are clearly incomplete replicas of normal development but future technological improvements can be envisaged. The ethical and regulatory environment for such studies remains to be fully resolved.
Collapse
Affiliation(s)
- Janet Rossant
- The Gairdner Foundation and the Hospital for Sick Children, University of Toronto, MaRS Centre, Heritage Building, 101 College Street, Suite 335, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
39
|
Shirasawa A, Hayashi M, Shono M, Ideta A, Yoshino T, Hayashi K. Efficient derivation of embryonic stem cells and primordial germ cell-like cells in cattle. J Reprod Dev 2024; 70:82-95. [PMID: 38355134 PMCID: PMC11017101 DOI: 10.1262/jrd.2023-087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024] Open
Abstract
The induction of the germ cell lineage from pluripotent stem cells (in vitro gametogenesis) will help understand the mechanisms underlying germ cell differentiation and provide an alternative source of gametes for reproduction. This technology is especially important for cattle, which are among the most important livestock species for milk and meat production. Here, we developed a new method for robust induction of primordial germ cell-like cells (PGCLCs) from newly established bovine embryonic stem (bES) cells. First, we refined the pluripotent culture conditions for pre-implantation embryos and ES cells. Inhibition of RHO increased the number of epiblast cells in the pre-implantation embryos and dramatically improved the efficiency of ES cell establishment. We then determined suitable culture conditions for PGCLC differentiation using bES cells harboring BLIMP1-tdTomato and TFAP2C-mNeonGreen (BTTN) reporter constructs. After a 24-h culture with bone morphogenetic protein 4 (BMP4), followed by three-dimensional culture with BMP4 and a chemical agonist and WNT signaling chemical antagonist, bES cells became positive for the reporters. A set of primordial germ cells (PGC) marker genes, including PRDM1/BLIMP1, TFAP2C, SOX17, and NANOS3, were expressed in BTTN-positive cells. These bovine PGCLCs (bPGCLCs) were isolated as KIT/CD117-positive and CD44-negative cell populations. We anticipate that this method for the efficient establishment of bES cells and induction of PGCLCs will be useful for stem cell-based reproductive technologies in cattle.
Collapse
Affiliation(s)
- Atsushi Shirasawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Masafumi Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mayumi Shono
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Ideta
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Takashi Yoshino
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Fujiwara Y, Hada M, Fukuda Y, Koga C, Inoue E, Okada Y. Isolation of stage-specific spermatogenic cells by dynamic histone incorporation and removal in spermatogenesis. Cytometry A 2024; 105:297-307. [PMID: 38087848 DOI: 10.1002/cyto.a.24812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 04/19/2024]
Abstract
Due to the lack of an efficient in vitro spermatogenesis system, studies on mammalian spermatogenesis require the isolation of specific germ cell populations for further analyses. BSA gradient and elutriation have been used for several decades to purify testicular germ cells; more recently, flow cytometric cell sorting has become popular. Although each method has its advantages and disadvantages and is used depending on the purpose of the experiment, reliance on flow cytometric cell sorting is expected to be more prevalent because fewer cells can be managed. However, the currently used flow cytometric cell sorting method for testicular germ cells relies on karyotypic differences via DNA staining. Thus, it remains challenging to separate post-meiotic haploid cells (spermatids) according to their differentiation stage despite significant variations in morphology and chromatin state. In this study, we developed a method for finely separating testicular germ cells using VC mice carrying fluorescently tagged histones. This method enables the separation of spermatogonia, spermatocytes, and spermatids based on the intensity of histone fluorescence and cell size. Combined with a DNA staining dye, this method separates spermatids after elongation according to each spermiogenic stage. Although the necessity for a specific transgenic mouse line is less versatile, this method is expected to be helpful for the isolation of testicular germ cell populations because it is highly reproducible and independent of complex cell sorter settings and staining conditions.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masashi Hada
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Fukuda
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Chizuko Koga
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Erina Inoue
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Okada
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Barton LJ, Roa-de la Cruz L, Lehmann R, Lin B. The journey of a generation: advances and promises in the study of primordial germ cell migration. Development 2024; 151:dev201102. [PMID: 38607588 PMCID: PMC11165723 DOI: 10.1242/dev.201102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The germline provides the genetic and non-genetic information that passes from one generation to the next. Given this important role in species propagation, egg and sperm precursors, called primordial germ cells (PGCs), are one of the first cell types specified during embryogenesis. In fact, PGCs form well before the bipotential somatic gonad is specified. This common feature of germline development necessitates that PGCs migrate through many tissues to reach the somatic gonad. During their journey, PGCs must respond to select environmental cues while ignoring others in a dynamically developing embryo. The complex multi-tissue, combinatorial nature of PGC migration is an excellent model for understanding how cells navigate complex environments in vivo. Here, we discuss recent findings on the migratory path, the somatic cells that shepherd PGCs, the guidance cues somatic cells provide, and the PGC response to these cues to reach the gonad and establish the germline pool for future generations. We end by discussing the fate of wayward PGCs that fail to reach the gonad in diverse species. Collectively, this field is poised to yield important insights into emerging reproductive technologies.
Collapse
Affiliation(s)
- Lacy J. Barton
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lorena Roa-de la Cruz
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ruth Lehmann
- Whitehead Institute and Department of Biology, MIT, 455 Main Street, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
42
|
Mikhalchenko A, Gutierrez NM, Frana D, Safaei Z, Van Dyken C, Li Y, Ma H, Koski A, Liang D, Lee SG, Amato P, Mitalipov S. Induction of somatic cell haploidy by premature cell division. SCIENCE ADVANCES 2024; 10:eadk9001. [PMID: 38457500 PMCID: PMC10923512 DOI: 10.1126/sciadv.adk9001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
Canonical mitotic and meiotic cell divisions commence with replicated chromosomes consisting of two sister chromatids. Here, we developed and explored a model of premature cell division, where nonreplicated, G0/G1-stage somatic cell nuclei are transplanted to the metaphase cytoplasm of mouse oocytes. Subsequent cell division generates daughter cells with reduced ploidy. Unexpectedly, genome sequencing analysis revealed proper segregation of homologous chromosomes, resulting in complete haploid genomes. We observed a high occurrence of somatic genome haploidization in nuclei from inbred genetic backgrounds but not in hybrids, emphasizing the importance of sequence homology between homologs. These findings suggest that premature cell division relies on mechanisms similar to meiosis I, where genome haploidization is facilitated by homologous chromosome interactions, recognition, and pairing. Unlike meiosis, no evidence of recombination between somatic cell homologs was detected. Our study offers an alternative in vitro gametogenesis approach by directly reprogramming diploid somatic cells into haploid oocytes.
Collapse
Affiliation(s)
- Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Frana
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Zahra Safaei
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022 Anhui, China
| | - Sang-Goo Lee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
43
|
Li Q, Hu Z, He J, Liu X, Liu Y, Wei J, Wu B, Lu X, He H, Zhang Y, He J, Li M, Wu C, Lv L, Wang Y, Zhou L, Zhang Q, Zhang J, Cheng X, Shao H, Lu X. Deciphering the comprehensive knowledgebase landscape featuring infertility with IDDB Xtra. Comput Biol Med 2024; 170:108105. [PMID: 38330823 DOI: 10.1016/j.compbiomed.2024.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Infertility affects ∼15% of couples globally and half of cases are related to genetic disorders. Despite growing data and unprecedented improvements in high-throughput sequencing technologies, accumulated fertility-related issues concerning genetic diagnosis and potential treatment are urgent to be solved. However, there is a lack of comprehensive platforms that characterise various infertility-related records to provide research applications for exploring infertility in-depth and genetic counselling of infertility couple. To solve this problem, we provide IDDB Xtra by further integrating phenotypic manifestations, genomic datasets, epigenetics, modulators in collaboration with numerous interactive tools into our previous infertility database, IDDB. IDDB Xtra houses manually-curated 2369 genes of human and nine model organisms, 273 chromosomal abnormalities, 884 phenotypes, 60 genomic datasets, 464 epigenetic records, 1144 modulators relevant to infertility diagnosis and treatment. Additionally, IDDB Xtra incorporated customized graphical applications for researchers and clinicians to decipher in-depth disease mechanisms from the perspectives of developmental atlas, mutation effects, and clinical manifestations. Users can browse genes across developmental stages of human and mouse, filter candidate genes, mine potential variants and retrieve infertility biomedical network in an intuitive web interface. In summary, IDDB Xtra not only captures valuable research and data, but also provides useful applications to facilitate the genetic counselling and drug discovery of infertility. IDDB Xtra is freely available at https://mdl.shsmu.edu.cn/IDDB/and http://www.allostery.net/IDDB.
Collapse
Affiliation(s)
- Qian Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200011, China; Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Zhijie Hu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200011, China
| | - Jiayin He
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200011, China; Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xinyi Liu
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yini Liu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200011, China; Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Jiale Wei
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Binjian Wu
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xun Lu
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Hongxi He
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200011, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Yuqi Zhang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200011, China
| | - Jixiao He
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mingyu Li
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Chengwei Wu
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Lijun Lv
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yang Wang
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Linxuan Zhou
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Quan Zhang
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Jian Zhang
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510000, China.
| | - Xiaoyue Cheng
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
| | - Hongfang Shao
- Center of Reproductive Medicine, Department of Gynecology and Obstetrics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200011, China.
| |
Collapse
|
44
|
Fang F, Li Z, Zhang X, Huang Q, Lu S, Wang X. Divergent Roles of KLF4 During Primordial Germ Cell Fate Induction from Human Embryonic Stem Cells. Reprod Sci 2024; 31:727-735. [PMID: 37884729 DOI: 10.1007/s43032-023-01360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
As a core transcriptional factor regulating pluripotency, Krüppel-like factor 4 (KLF4) has gained much attention in the field of stem cells during the past decades. However, few research have focused on the function of KLF4 during human primordial germ cell (PGC) specification. Here, we induced human PGC-like cells (hPGCLCs) from human embryonic stem cells (hESCs) and the derived hPGCLCs upregulated PGC-related genes, like SOX17, BLIMP1, TFAP2C, NANOS3, and the naïve pluripotency gene KLF4. The KLF4-knockout hESCs formed typical multicellular colonies with clear borders, expressed pluripotency genes, such as NANOG, OCT4, and SOX2, and exhibited no differences in proliferation capacity compared with wild type hESCs. Notably, KLF4 deletion in hESCs did not influence the induction of PGCLCs in vitro. In contrast, overexpression of KLF4 during PGC induction process inhibited the efficiency of PGCLC formation from hESCs in vitro. Overexpression of KLF4 may regenerate the naïve ground state in hESCs and results in repression for PGC specification. Thus, KLF4 could be a downstream target of human PGC program and the upregulation of KLF4 is prepared for late stage of germline development.
Collapse
Affiliation(s)
- Fang Fang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoke Zhang
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qi Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shi Lu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Xiao Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
45
|
Li L, Ding X, Sheft AP, Schimenti JC. A high throughput CRISPR perturbation screen identifies epigenetic regulators impacting primordial germ cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582097. [PMID: 38463983 PMCID: PMC10925113 DOI: 10.1101/2024.02.26.582097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Certain environmental factors can impact fertility and reproductive parameters such as the number and quality of sperm and eggs. One possible mechanism is the perturbation of epigenetic landscapes in the germline. To explore this possibility, we conducted a CRISPRi screen of epigenetic-related genes to identify those that specifically perturb the differentiation of embryonic stem cells (ESCs) into primordial germ cell-like cells (PGCLCs), exploiting a highly scalable cytokine-free platform. Of the 701 genes screened, inhibition of 53 decreased the efficiency of PGCLC formation. NCOR2, a transcriptional repressor that acts via recruitment of Class I and Class IIa histone deacetylases (HDACs) to gene targets, was particularly potent in suppressing PGCLC differentiation. Consistent with evidence that histone deacetylation is crucial for germline differentiation, we found that the HDAC inhibitors (HDACi) valproic acid (VPA; an anti-convulsant) and sodium butyrate (SB; a widely-used dietary supplement) also suppressed ESC>PGCLC differentiation. Furthermore, exposure of developing mouse embryos to SB or VPA caused hypospermatogenesis. Transcriptome analyses of HDACi-treated, differentiating ESC>PGCLC cultures revealed suppression of germline-associated pathways and enhancement of somatic pathways. This work demonstrates the feasibility of conducting large-scale functional screens of genes, chemicals, or other agents that may impact germline development.
Collapse
|
46
|
Ding X, Li L, Gao J, Yi D, Schimenti JC. Scalable and Efficient Generation of Mouse Primordial Germ Cell-like Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580543. [PMID: 38405756 PMCID: PMC10888945 DOI: 10.1101/2024.02.15.580543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Primordial germ cells (PGCs) are the founder cells of the germline. The ability to generate PGC-like cells (PGCLCs) from pluripotent stem cells has advanced our knowledge of gametogenesis and holds promise for developing infertility treatments. However, generating an ample supply of PGCLCs for demanding applications such as high-throughput genetic screens has been a limitation. Here, we demonstrated that simultaneous overexpressing 4 transcriptional factors - Nanog and three PGC master regulators Prdm1, Prdm14 and Tfap2c - in suspended mouse epiblast like cells (EpiLCs) and formative embryonic stem cells (ESCs) results in efficient and cost-effective production of PGCLCs. The overexpression of Nanog enhances the PGC regulatory network and suppresses differentiation of somatic lineages, enabling a significant improvement in the efficiency of PGCLC production. Transcriptomic analysis reveals that differentiated PGCLCs exhibit similarities to in vivo PGCs and are more advanced compared to cytokine-induced PGCLCs. These differentiated PGCLCs could be sustained over prolonged periods of culture and could differentiate into spermatogonia-like cells in vitro. Importantly, the ability to produce PGCLCs at scale, without using costly cytokines, enables biochemical and functional genomic screens to dissect mechanisms of germ cell development and infertility.
Collapse
Affiliation(s)
- Xinbao Ding
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853
| | - Liangdao Li
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853
| | - Jingyi Gao
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853
| | - Dain Yi
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853
| |
Collapse
|
47
|
Xiong YW, Zhu HL, Zhang J, Geng H, Tan LL, Zheng XM, Li H, Fan LL, Wang XR, Zhang XD, Wang KW, Chang W, Zhang YF, Yuan Z, Duan ZL, Cao YX, He XJ, Xu DX, Wang H. Multigenerational paternal obesity enhances the susceptibility to male subfertility in offspring via Wt1 N6-methyladenosine modification. Nat Commun 2024; 15:1353. [PMID: 38355624 PMCID: PMC10866985 DOI: 10.1038/s41467-024-45675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
There is strong evidence that obesity is a risk factor for poor semen quality. However, the effects of multigenerational paternal obesity on the susceptibility to cadmium (a reproductive toxicant)-induced spermatogenesis disorders in offspring remain unknown. Here, we show that, in mice, spermatogenesis and retinoic acid levels become progressively lower as the number of generations exposed to a high-fat diet increase. Furthermore, exposing several generations of mice to a high fat diet results in a decrease in the expression of Wt1, a transcription factor upstream of the enzymes that synthesize retinoic acid. These effects can be rescued by injecting adeno-associated virus 9-Wt1 into the mouse testes of the offspring. Additionally, multigenerational paternal high-fat diet progressively increases METTL3 and Wt1 N6-methyladenosine levels in the testes of offspring mice. Mechanistically, treating the fathers with STM2457, a METTL3 inhibitor, restores obesity-reduced sperm count, and decreases Wt1 N6-methyladenosine level in the mouse testes of the offspring. A case-controlled study shows that human donors who are overweight or obese exhibit elevated N6-methyladenosine levels in sperm and decreased sperm concentration. Collectively, these results indicate that multigenerational paternal obesity enhances the susceptibility of the offspring to spermatogenesis disorders by increasing METTL3-mediated Wt1 N6-methyladenosine modification.
Collapse
Affiliation(s)
- Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Long-Long Fan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xin-Run Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zong-Liu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Yun-Xia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiao-Jin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China.
| |
Collapse
|
48
|
Barton LJ, Sanny J, Packard Dawson E, Nouzova M, Noriega FG, Stadtfeld M, Lehmann R. Juvenile hormones direct primordial germ cell migration to the embryonic gonad. Curr Biol 2024; 34:505-518.e6. [PMID: 38215744 PMCID: PMC10872347 DOI: 10.1016/j.cub.2023.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Justina Sanny
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Emily Packard Dawson
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Marcela Nouzova
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Institute of Parasitology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - Fernando Gabriel Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Department of Parasitology, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Matthias Stadtfeld
- Sanford I. Weill Department of Medicine, Weill Cornell Medicine, 413 E 69th Street, New York, NY, USA
| | - Ruth Lehmann
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
49
|
Frost ER, Gilchrist RB. Making human eggs in a dish: are we close? Trends Biotechnol 2024; 42:168-178. [PMID: 37625913 DOI: 10.1016/j.tibtech.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
In the space of 50 years, we have seen incredible achievements in human reproductive medicine. With these leaps forward, it is no wonder that there is a major interest in women's reproductive health research, including extension of reproductive lifespan. Substantial effort is currently being made to address this challenge, including from the commercial sector. In vitro gametogenesis (IVG) in mice is a spectacular breakthrough and has the potential to offer hope to women with intractable infertility. However, with such lofty goals, some reflection may be called for: mastering all of the techniques required for complete and safe IVG in women is likely to be extraordinarily difficult.
Collapse
Affiliation(s)
- Emily R Frost
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
50
|
Adashi EY, Hayashi K, Cohen IG. Ethical and legal challenges in assisted same-sex conception through in vitro gametogenesis. Nat Med 2024; 30:322-323. [PMID: 38200259 DOI: 10.1038/s41591-023-02689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Affiliation(s)
| | - Katsuhiko Hayashi
- Department of Genome Biology, Osaka University, Osaka, Japan
- Department of Developmental Stem Cell Biology, Kyushu University, Fukuoka, Japan
| | - I Glenn Cohen
- Harvard Law School, Harvard University, Cambridge, MA, USA
- Petrie-Flom Center for Health Law Policy, Biotechnology, and Bioethics, Harvard University, Cambridge, MA, USA
| |
Collapse
|