1
|
Paschoal D, Cazetta L, Mendes JVO, Dias NCF, Ometto V, Carrera E, Rossi ML, Aricetti JA, Mieczkowski P, Carvalho GG, Cesarino I, da Silva SF, Ribeiro RV, Teixeira PJPL, da Silva EM, Figueira A. Root Development of Tomato Plants Infected by the Cacao Pathogen Moniliophthora perniciosa Is Affected by Limited Sugar Availability. PLANT, CELL & ENVIRONMENT 2025; 48:3603-3619. [PMID: 39806925 DOI: 10.1111/pce.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Moniliophthora perniciosa is the causal agent of the witches' broom disease of cacao (Theobroma cacao), and it can infect the tomato (Solanum lycopersicum) 'Micro-Tom' (MT) cultivar. Typical symptoms of infection are stem swelling and axillary shoot outgrowth, whereas reduction in root biomass is another side effect. Using infected MT, we investigated whether impaired root growth derives from hormonal imbalance or sink competition. Intense stem swelling coincided with a reduction in root biomass, predominantly affecting lateral roots. RNA-seq analyses of root samples identified only a few differentially expressed genes involved in hormone metabolism, and root hormone levels were not expressively altered. Inoculation of the auxin highly-sensitive entire mutant genotype maintained the impaired root phenotype; in contrast, the low-cytokinin MT transgenic line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2) with fewer symptoms did not exhibit root growth impairment. Genes involved in cell wall, carbohydrate, and amino acid metabolism were downregulated, accompanied by lower levels of carbohydrate and amino acid in roots, suggesting a reduction in metabolite availability. 13CO2 was supplied to MT plants, and less 13C was detected in the roots of infected MT but not in those of 35S::AtCKX2 line plants, suggesting that cytokinin-mediated sugar sink establishment at the infection site may contribute to impaired root growth. Exogenous sucrose application to roots of infected MT plants partially restored root growth. We propose that the impairment of lateral root development is likely attributed to disrupted sugar signalling and photoassimilate supply by establishing a strong sugar sink at the infected stem.
Collapse
Affiliation(s)
- Daniele Paschoal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Laura Cazetta
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - João V O Mendes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Nathália C F Dias
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Vitor Ometto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Esther Carrera
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Juliana A Aricetti
- Laboratório Nacional de Biorrenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Campinas, São Paulo, Brazil
| | - Piotr Mieczkowski
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Igor Cesarino
- Instituto de Biociências, USP, São Paulo, São Paulo, Brazil
- Synthetic and System Biology Center, Inova USP, São Paulo, São Paulo, Brazil
| | - Simone F da Silva
- Instituto de Biologia, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Rafael V Ribeiro
- Instituto de Biologia, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Paulo J P L Teixeira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Eder M da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
2
|
Zhang L, Gao C, Gao Y, Yang H, Jia M, Wang X, Zhang B, Zhou Y. New insights into plant cell wall functions. J Genet Genomics 2025:S1673-8527(25)00122-5. [PMID: 40287129 DOI: 10.1016/j.jgg.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The plant cell wall is an extremely complicated natural nanoscale structure composed of cellulose microfibrils embedded in a matrix of noncellulosic polysaccharides, further reinforced by the phenolic compound lignins in some cell types. Such network formed by the interactions of multiscale polymers actually reflects functional form of cell wall to meet the requirements of plant cell functionalization. Therefore, how plants assemble cell wall functional structure is fundamental in plant biology and critical for crop trait formation and domestication as well. Due to the lack of effective analytical techniques to characterize this fundamental but complex network, it remains difficult to establish direct links between cell-wall genes and phenotypes. The roles of plant cell walls are often underestimated as indirect. Over the past decades, many genes involved in cell wall biosynthesis, modification, and remodeling have been identified. The application of a variety of state-of-the-art techniques has made it possible to reveal the fine cell wall networks and polymer interactions. Hence, many exciting advances in cell wall biology have been achieved in recent years. This review provides an updated overview of the mechanistic and conceptual insights in cell wall functionality, and prospects the opportunities and challenges in this field.
Collapse
Affiliation(s)
- Lanjun Zhang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengxu Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihong Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanlei Yang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiru Jia
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohong Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yihua Zhou
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Bellande K, Roujol D, Chourré J, Le Gall S, Martinez Y, Jauneau A, Arico D, Mithöfer A, Burlat V, Jamet E, Canut H. Receptor kinase LecRK-I.9 regulates cell wall remodelling during lateral root formation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1718-1734. [PMID: 39724305 DOI: 10.1093/jxb/erae520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Assembling and remodelling the cell wall is essential for plant development. Cell wall dynamics are controlled by cell wall proteins, polysaccharide biosynthesis, and a variety of sensor and receptor systems. LecRK-I.9, an Arabidopsis thaliana plasma membrane-localized lectin receptor kinase, was previously shown to be involved in cell wall-plasma membrane contacts and to play roles in plant-pathogen interactions, but until now its role in development was not known. LecRK-I.9 is transcribed at a high level in root tissues including the pericycle. Comparative transcript profiling of a loss-of-function mutant versus the wild type identified LecRK-I.9 as a regulator of cell wall metabolism. Consistently, lecrk-I.9 mutants displayed an increased pectin methylesterification level correlated with decreased pectin methylesterase and increased polygalacturonase activities. Also, LecRK-I.9 negatively impacted lateral root development through the direct or indirect regulation of genes encoding (i) cell wall remodelling proteins during early events of lateral root initiation, and (ii) cell wall signalling peptides (CLE2 and CLE4) repressing lateral root emergence and growth. Furthermore, low nitrate reduced LecRK-I.9 expression in roots, particularly in the lateral root emergence zone: even in these conditions, the control of CLE2 and CLE4 expression is maintained. Altogether, the results show that LecRK-I.9 is a key player in negatively regulating both pre-branch site formation and lateral root emergence.
Collapse
Affiliation(s)
- Kevin Bellande
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland and IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - David Roujol
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
| | - Josiane Chourré
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
| | - Sophie Le Gall
- INRAE, UR1268 BIA, F-44300 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, F-44300 Nantes, France
| | - Yves Martinez
- Plateforme Imagerie FRAIB-TRI, CNRS, Université de Toulouse, UPS, F-31320, Auzeville-Tolosane, France
| | - Alain Jauneau
- Plateforme Imagerie FRAIB-TRI, CNRS, Université de Toulouse, UPS, F-31320, Auzeville-Tolosane, France
| | - Denise Arico
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
| | - Axel Mithöfer
- Research Group Plant Defense Physiology; Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
| |
Collapse
|
4
|
Zhang G, Zhai N, Zhu M, Zheng K, Sang Y, Li X, Xu L. Cell wall remodeling during plant regeneration. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1060-1076. [PMID: 40213916 DOI: 10.1111/jipb.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Plant regeneration is the process during which differentiated tissues or cells can reverse or alter their developmental trajectory to repair damaged tissues or form new organs. In the plant regeneration process, the cell wall not only functions as a foundational barrier and scaffold supporting plant cells but also influences cell fates and identities. Cell wall remodeling involves the selective degradation of certain cell wall components or the integration of new components. Recently, accumulating evidence has underscored the importance of cell wall remodeling in plant regeneration. Wounding signals, transmitted by transcription factors, trigger the expressions of genes responsible for cell wall loosening, which is essential for tissue repair. In de novo organ regeneration and somatic embryogenesis, phytohormones orchestrate a transcriptional regulatory network to induce cell wall remodeling, which promotes cell fate reprogramming and organ formation. This review summarizes the effects of cell wall remodeling on various regenerative processes and provides novel insights into the future research of uncharacterized roles of cell wall in plant regeneration.
Collapse
Affiliation(s)
- Guifang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Ning Zhai
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mulan Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Keyuan Zheng
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yalin Sang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaojuan Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Lin Xu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
5
|
Shang E, Tu Q, Yu Z, Ding Z. Cell wall dynamic changes and signaling during plant lateral root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:632-648. [PMID: 39878232 DOI: 10.1111/jipb.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025]
Abstract
Lateral roots (LRs), are an important component of plant roots, playing a crucial role in anchoring the plant in the soil and facilitating the uptake of water and nutrients. As post-embryonic organs, LRs originate from the pericycle cells of the primary root, and their formation is characterized by precise regulation of cell division and complex intercellular interactions, both of which are closely tied to cell wall regulation. Considering the rapid advances in molecular techniques over the past three decades, we reframe the understanding of the dynamic change in cell wall during LR development by summarizing the factors that precipitate these changes and their effects, as well as the regulated signals involved. Additionally, we discuss current challenges in this field and propose potential solutions.
Collapse
Affiliation(s)
- Erlei Shang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
6
|
Choudhary P, Aggarwal PR, Salvi P, Muthamilarasan M. Molecular insight into auxin signaling and associated network modulating stress responses in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109452. [PMID: 39733728 DOI: 10.1016/j.plaphy.2024.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Phytohormones are vital regulators of various signaling networks in plants. Among different phytohormones, auxin has been thoroughly studied for its role in regulating plants' growth, development, and stress response. One major function of auxin is modulating the developmental processes in response to environmental cues. Although extensive studies on Arabidopsis have advanced the knowledge of auxin biology, several studies on rice have uncovered key players regulated by auxin that play critical roles in coordinating auxin homeostasis and signaling involved in defense response. The emerging knowledge on auxin biology, auxin-regulated gene expression, and auxin-signaling in rice during various environmental stresses has provided insights into the possible mechanism of rice susceptibility or resistance to different abiotic and biotic stresses. The current review enumerates the possible mechanisms of stress-induced auxin homeostasis in rice. In addition, we provide an overview of the state of knowledge on auxin-mediated defense signaling in rice, highlighting its pivotal role in stress response. In particular, we discuss the auxin pathways and the dynamic regulation in response to biotic and abiotic stress. We highlight the novel findings in the diversity of auxin signaling in the model plant Arabidopsis with an aim to emphasize the need to translate these findings into agronomically and economically important cereals like rice. Addressing the complexity of auxin induction, signaling, and its associated molecular network, an in-depth investigation in rice is required to comprehend auxin-mediated spatial-temporal regulation of developmental processes during stress.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, Uttar Pradesh, India.
| | - Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Praful Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
7
|
Di Fino LM, Anjam MS, Besten M, Mentzelopoulou A, Papadakis V, Zahid N, Baez LA, Trozzi N, Majda M, Ma X, Hamann T, Sprakel J, Moschou PN, Smith RS, Marhavý P. Cellular damage triggers mechano-chemical control of cell wall dynamics and patterned cell divisions in plant healing. Dev Cell 2025:S1534-5807(24)00771-8. [PMID: 39809282 DOI: 10.1016/j.devcel.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/15/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Reactivation of cell division is crucial for the regeneration of damaged tissues, which is a fundamental process across all multicellular organisms. However, the mechanisms underlying the activation of cell division in plants during regeneration remain poorly understood. Here, we show that single-cell endodermal ablation generates a transient change in the local mechanical pressure on neighboring pericycle cells to activate patterned cell division that is crucial for tissue regeneration in Arabidopsis roots. Moreover, we provide strong evidence that this process relies on the phytohormone ethylene. Thus, our results highlight a previously unrecognized role of mechano-chemical control in patterned cell division during regeneration in plants.
Collapse
Affiliation(s)
- Luciano Martín Di Fino
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Muhammad Shahzad Anjam
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Maarten Besten
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Andriani Mentzelopoulou
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden; Department of Biology, University of Crete, Heraklion, Greece
| | - Vassilis Papadakis
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Nageena Zahid
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Luis Alonso Baez
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
| | - Nicola Trozzi
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Xuemin Ma
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Peter Marhavý
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|
8
|
Zhu X, Yan X, Li W, Zhang M, Leng J, Yu Q, Liu L, Xue D, Zhang D, Ding Z. GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean. Nat Commun 2025; 16:435. [PMID: 39762229 PMCID: PMC11704284 DOI: 10.1038/s41467-024-55495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of GmERF13 function increases nodule density, while its overexpression suppresses nodulation. Moreover, salt stress-inhibited nodule formation is greatly attenuated in GmERF13 loss-of-function mutants, whereas it becomes more pronounced when GmERF13 is overexpressed. Furthermore, GmERF13s can interact with Lateral Organ Boundaries Domain 16 (GmLBD16a), which attenuates GmLBD16a's binding capacity on Expansin17c (GmEXP17c) promoter. Additionally, salt-induced GmERF13s expression relies on abscisic acid signaling, with direct promotion facilitated by GmABI5, illustrating their direct involvement in enhancing GmERF13s expression. Collectively, our study reveals a molecular mechanism by which salt stress impedes nodulation through the GmERF13-GmLBD16a-GmEXP17 module in soybean.
Collapse
Affiliation(s)
- Xinfang Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xifeng Yan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Weijun Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Mengyue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Junchen Leng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Qianqian Yu
- College of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Like Liu
- College of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Dajian Zhang
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Taian, Shandong, China.
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Beckers A, Mamiya A, Furutani M, Bennett MJ, Fukaki H, Sawa S, Gantet P, Laplaze L, Guyomarc'h S. Multiple layers of regulators emerge in the network controlling lateral root organogenesis. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00268-1. [PMID: 39455398 DOI: 10.1016/j.tplants.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Lateral root (LR) formation is a postembryonic organogenesis process that is crucial for plant root system development and adaptation to heterogenous soil environments. Since the early 1990s, a wealth of experimental data on arabidopsis (Arabidopsis thaliana) has helped reveal the LR formation regulatory network, in which dynamic auxin distribution and transcriptional cascades direct root cells through their organogenesis pathway. Some parts of this network appear conserved across diverse plant species or distinct developmental contexts. Recently, our knowledge of this process dramatically expanded thanks to technical advances, from single cell profiling to whole-root system phenotyping. Interestingly, new players are now emerging in this network, such as fatty acids and reactive oxygen species (ROS), transforming our knowledge of this hidden half of plant biology.
Collapse
Affiliation(s)
- Antoine Beckers
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Akihito Mamiya
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masahiko Furutani
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan; Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shinichiro Sawa
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan; International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, Kumamoto, Japan; Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Pascal Gantet
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Laurent Laplaze
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Soazig Guyomarc'h
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France.
| |
Collapse
|
10
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. Improvement of plant quality by amino acid transporters: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109084. [PMID: 39217823 DOI: 10.1016/j.plaphy.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Amino acids serve as the primary means of transport and organic nitrogen carrier in plants, playing an essential role in plant growth and development. Amino acid transporters (AATs) facilitate the movement of amino acids within plants and have been identified and characterised in a number of species. It has been demonstrated that these amino acid transporters exert an influence on the quality attributes of plants, in addition to their primary function of transporting amino acid transport. This paper presents a summary of the role of AATs in plant quality improvement. This encompasses the enhancement of nitrogen utilization efficiency, root development, tiller number and fruit yield. Concurrently, AATs can bolster the resilience of plants to pests, diseases and abiotic stresses, thereby further enhancing the yield and quality of fruit. AATs exhibit a wide range of substrate specificity, which greatly optimizes the use of pesticides and significantly reduces pesticide residues, and reduces the risk of environmental pollution while increasing the safety of fruit. The discovery of AATs function provides new ideas and ways to cultivate high-quality crop and promote changes in agricultural development, and has great potential in the application of plant quality improvement.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
11
|
Xia Y, Sun G, Xiao J, He X, Jiang H, Zhang Z, Zhang Q, Li K, Zhang S, Shi X, Wang Z, Liu L, Zhao Y, Yang Y, Duan K, Ye W, Wang Y, Dong S, Wang Y, Ma Z, Wang Y. AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance. MOLECULAR PLANT 2024; 17:1344-1368. [PMID: 39030909 DOI: 10.1016/j.molp.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A pectin methylesterase (PsPME1) secreted by Phytophthora sojae decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the trade-off between host growth and defense responses. We therefore used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) that specifically targets and inhibits pectin methylesterases secreted from pathogens but not from plants. Transient expression of GmPMI1R enhanced plant resistance to oomycete and fungal pathogens. In summary, our work highlights the biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between hosts and microbes, providing an important proof of concept that AI-driven structure-based tools can accelerate the development of new strategies for plant protection.
Collapse
Affiliation(s)
- Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinyi He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuechao Shi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Lin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuheng Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
12
|
Liu J, Zhang M, Xu J, Yao X, Lou L, Hou Q, Zhu L, Yang X, Liu G, Xu J. A Transcriptomic Analysis of Bottle Gourd-Type Rootstock Roots Identifies Novel Transcription Factors Responsive to Low Root Zone Temperature Stress. Int J Mol Sci 2024; 25:8288. [PMID: 39125858 PMCID: PMC11313094 DOI: 10.3390/ijms25158288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The bottle gourd [Lagenaria siceraria (Molina) Standl.] is often utilized as a rootstock for watermelon grafting. This practice effectively mitigates the challenges associated with continuous cropping obstacles in watermelon cultivation. The lower ground temperature has a direct impact on the rootstocks' root development and nutrient absorption, ultimately leading to slower growth and even the onset of yellowing. However, the mechanisms underlying the bottle gourd's regulation of root growth in response to low root zone temperature (LRT) remain elusive. Understanding the dynamic response of bottle gourd roots to LRT stress is crucial for advancing research regarding its tolerance to low temperatures. In this study, we compared the physiological traits of bottle gourd roots under control and LRT treatments; root sample transcriptomic profiles were monitored after 0 h, 48 h and 72 h of LRT treatment. LRT stress increased the malondialdehyde (MDA) content, relative electrolyte permeability and reactive oxygen species (ROS) levels, especially H2O2 and O2-. Concurrently, LRT treatment enhanced the activities of antioxidant enzymes like superoxide dismutase (SOD) and peroxidase (POD). RNA-Seq analysis revealed the presence of 2507 and 1326 differentially expressed genes (DEGs) after 48 h and 72 h of LRT treatment, respectively. Notably, 174 and 271 transcription factors (TFs) were identified as DEGs compared to the 0 h control. We utilized quantitative real-time polymerase chain reaction (qRT-PCR) to confirm the expression patterns of DEGs belonging to the WRKY, NAC, bHLH, AP2/ERF and MYB families. Collectively, our study provides a robust foundation for the functional characterization of LRT-responsive TFs in bottle gourd roots. Furthermore, these insights may contribute to the enhancement in cold tolerance in bottle gourd-type rootstocks, thereby advancing molecular breeding efforts.
Collapse
Affiliation(s)
- Jinqiu Liu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Man Zhang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jian Xu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Xiefeng Yao
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Lina Lou
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Qian Hou
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Lingli Zhu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Xingping Yang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Guang Liu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jinhua Xu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| |
Collapse
|
13
|
Liao HS, Lee KT, Chung YH, Chen SZ, Hung YJ, Hsieh MH. Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2289-2308. [PMID: 38466723 DOI: 10.1093/plphys/kiae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Jie Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
14
|
Ebstrup E, Ansbøl J, Paez-Garcia A, Culp H, Chevalier J, Clemmens P, Coll NS, Moreno-Risueno MA, Rodriguez E. NBR1-mediated selective autophagy of ARF7 modulates root branching. EMBO Rep 2024; 25:2571-2591. [PMID: 38684906 PMCID: PMC11169494 DOI: 10.1038/s44319-024-00142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Auxin dictates root architecture via the Auxin Response Factor (ARF) family of transcription factors, which control lateral root (LR) formation. In Arabidopsis, ARF7 regulates the specification of prebranch sites (PBS) generating LRs through gene expression oscillations and plays a pivotal role during LR initiation. Despite the importance of ARF7 in this process, there is a surprising lack of knowledge about how ARF7 turnover is regulated and how this impacts root architecture. Here, we show that ARF7 accumulates in autophagy mutants and is degraded through NBR1-dependent selective autophagy. We demonstrate that the previously reported rhythmic changes to ARF7 abundance in roots are modulated via autophagy and might occur in other tissues. In addition, we show that the level of co-localization between ARF7 and autophagy markers oscillates and can be modulated by auxin to trigger ARF7 turnover. Furthermore, we observe that autophagy impairment prevents ARF7 oscillation and reduces both PBS establishment and LR formation. In conclusion, we report a novel role for autophagy during development, namely by enacting auxin-induced selective degradation of ARF7 to optimize periodic root branching.
Collapse
Affiliation(s)
- Elise Ebstrup
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jeppe Ansbøl
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ana Paez-Garcia
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC)). Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Henry Culp
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jonathan Chevalier
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Pauline Clemmens
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08001, Spain
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC)). Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Eleazar Rodriguez
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
15
|
Yu G, Zhang L, Xue H, Chen Y, Liu X, Del Pozo JC, Zhao C, Lozano-Duran R, Macho AP. Cell wall-mediated root development is targeted by a soil-borne bacterial pathogen to promote infection. Cell Rep 2024; 43:114179. [PMID: 38691455 DOI: 10.1016/j.celrep.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Plant pathogens manipulate host development, facilitating colonization and proliferation. Ralstonia solanacearum is a soil-borne bacterial pathogen that penetrates roots and colonizes plants through the vascular system, causing wilting and death. Here, we find that RipAC, an effector protein from R. solanacearum, alters root development in Arabidopsis, promoting the formation of lateral roots and root hairs. RipAC interacts with CELLULOSE SYNTHASE (CESA)-INTERACTIVE PROTEIN 1 (CSI1), which regulates the activity of CESA complexes at the plasma membrane. RipAC disrupts CESA-CSI1 interaction, leading to a reduction in cellulose content, root developmental alterations, and a promotion of bacterial pathogenicity. We find that CSI1 also associates with the receptor kinase FERONIA, forming a complex that negatively regulates immunity in roots; this interaction, however, is not affected by RipAC. Our work reveals a bacterial virulence strategy that selectively affects the activities of a host target, promoting anatomical alterations that facilitate infection without causing activation of immunity.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Yujiao Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
16
|
Zhang Y, Li Y, de Zeeuw T, Duijts K, Kawa D, Lamers J, Munzert KS, Li H, Zou Y, Meyer AJ, Yan J, Verstappen F, Wang Y, Gijsberts T, Wang J, Gigli-Bisceglia N, Engelsdorf T, van Dijk ADJ, Testerink C. Root branching under high salinity requires auxin-independent modulation of LATERAL ORGAN BOUNDARY DOMAIN 16 function. THE PLANT CELL 2024; 36:899-918. [PMID: 38142228 PMCID: PMC10980347 DOI: 10.1093/plcell/koad317] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/17/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
Salinity stress constrains lateral root (LR) growth and severely affects plant growth. Auxin signaling regulates LR formation, but the molecular mechanism by which salinity affects root auxin signaling and whether salt induces other pathways that regulate LR development remains unknown. In Arabidopsis thaliana, the auxin-regulated transcription factor LATERAL ORGAN BOUNDARY DOMAIN 16 (LBD16) is an essential player in LR development under control conditions. Here, we show that under high-salt conditions, an alternative pathway regulates LBD16 expression. Salt represses auxin signaling but, in parallel, activates ZINC FINGER OF ARABIDOPSIS THALIANA 6 (ZAT6), a transcriptional activator of LBD16. ZAT6 activates LBD16 expression, thus contributing to downstream cell wall remodeling and promoting LR development under high-salt conditions. Our study thus shows that the integration of auxin-dependent repressive and salt-activated auxin-independent pathways converging on LBD16 modulates root branching under high-salt conditions.
Collapse
Affiliation(s)
- Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
- Plant Cell Biology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
- College of Agriculture, South China Agricultural University, 510642 Guangzhou, China
| | - Yiyun Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Kilian Duijts
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Dorota Kawa
- Plant Cell Biology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Kristina S Munzert
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Hongfei Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Yutao Zou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - A Jessica Meyer
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jinxuan Yan
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Francel Verstappen
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Yixuan Wang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Tom Gijsberts
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jielin Wang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Timo Engelsdorf
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
17
|
Wu X, Wang Z, Du A, Gao H, Liang J, Yu W, Yu H, Fan S, Chen Q, Guo J, Xiao Y, Peng F. Transcription factor LBD16 targets cell wall modification/ion transport genes in peach lateral root formation. PLANT PHYSIOLOGY 2024; 194:2472-2490. [PMID: 38217865 DOI: 10.1093/plphys/kiae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKEs (LBDs/ASLs) are plant-specific transcription factors that function downstream of auxin-regulated lateral root (LR) formation. Our previous research found that PpLBD16 positively regulates peach (Prunus persica) LR formation. However, the downstream regulatory network and target genes of PpLBD16 are still largely unknown. Here, we constructed a PpLBD16 homologous overexpression line and a PpLBD16 silenced line. We found that overexpressing PpLBD16 promoted peach root initiation, while silencing PpLBD16 inhibited peach root formation. Through RNA sequencing (RNA-seq) analysis of roots from PpLBD16 overexpression and silenced lines, we discovered that genes positively regulated by PpLBD16 were closely related to cell wall synthesis and degradation, ion/substance transport, and ion binding and homeostasis. To further detect the binding motifs and potential target genes of PpLBD16, we performed DNA-affinity purification sequencing (DAP-seq) analysis in vitro. PpLBD16 preferentially bound to CCNGAAANNNNGG (MEME-1), [C/T]TTCT[C/T][T/C] (MEME-2), and GCGGCGG (ABR1) motifs. By combined analysis of RNA-seq and DAP-seq data, we screened candidate target genes for PpLBD16. We demonstrated that PpLBD16 bound and activated the cell wall modification-related genes EXPANSIN-B2 (PpEXPB2) and SUBTILISIN-LIKE PROTEASE 1.7 (PpSBT1.7), the ion transport-related gene CYCLIC NUCLEOTIDE-GATED ION CHANNEL 1 (PpCNGC1) and the polyphenol oxidase (PPO)-encoding gene PpPPO, thereby controlling peach root organogenesis and promoting LR formation. Moreover, our results displayed that PpLBD16 and its target genes are involved in peach LR primordia development. Overall, this work reveals the downstream regulatory network and target genes of PpLBD16, providing insights into the molecular network of LBD16-mediated LR development.
Collapse
Affiliation(s)
- Xuelian Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Zhe Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Anqi Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Huaifeng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Jiahui Liang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Wenying Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Haixiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Shihao Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Qiuju Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yuansong Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| |
Collapse
|
18
|
Dai Y, Yuan H, Cao X, Liu Y, Xu Z, Jiang Z, White JC, Zhao J, Wang Z, Xing B. La 2O 3 Nanoparticles Can Cause Cracking of Tomato Fruit through Genetic Reconstruction. ACS NANO 2024; 18:7379-7390. [PMID: 38411928 DOI: 10.1021/acsnano.3c09083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
La2O3 nanoparticles (NPs) have shown great potential in agriculture, but cracking of plant sensitive tissue could occur during application, resulting in a poor appearance, facilitating entry for insects and fungi, and increasing economic losses. Herein, exocarp cracking mechanisms of tomato (Solanum lycopersicum L.) fruit in response to La2O3 NPs were investigated. Tomato plants were exposed to La2O3 NPs (0-40 mg/L, 90 days) by a split-root system under greenhouse condition. La2O3 NPs with high concentrations (25 and 40 mg/L) increased the obvious cracking of the fruit exocarp by 20.0 and 22.7%, respectively. After exposure to 25 mg/L La2O3 NPs, decreased thickness of the cuticle and cell wall and lower wax crystallization patterns of tomato fruit exocarp were observed. Biomechanical properties (e.g., firmness and stiffness) of fruit exocarp were decreased by 34.7 and 25.9%, respectively. RNA-sequencing revealed that the thinner cuticle was caused by the downregulation of cuticle biosynthesis related genes; pectin remodeling, including the reduction in homogalacturonan (e.g., LOC101264880) and rhamnose (e.g., LOC101248505), was responsible for the thinner cell wall. Additionally, genes related to water and abscisic acid homeostasis were significantly upregulated, causing the increases of water and soluble solid content of fruit and elevated fruit inner pressure. Therefore, the thinner fruit cuticle and cell wall combined with the higher inner pressure caused fruit cracking. This study improves our understanding of nanomaterials on important agricultural crops, including the structural reconstruction of fruit exocarp contributing to NPs-induced cracking at the molecular level.
Collapse
Affiliation(s)
- Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Hanyu Yuan
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Yinglin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zefeng Xu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Zhixiang Jiang
- School of Environmental Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, 161 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
19
|
Yu B, Chao DY, Zhao Y. How plants sense and respond to osmotic stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:394-423. [PMID: 38329193 DOI: 10.1111/jipb.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.
Collapse
Affiliation(s)
- Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Adamowski M, Matijević I, Friml J. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife 2024; 13:e68993. [PMID: 38381485 PMCID: PMC10881123 DOI: 10.7554/elife.68993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.
Collapse
Affiliation(s)
- Maciek Adamowski
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Plant Breeding and Acclimatization Institute – National Research InstituteBłoniePoland
| | - Ivana Matijević
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jiří Friml
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
21
|
Hocq L, Habrylo O, Sénéchal F, Voxeur A, Pau-Roblot C, Safran J, Fournet F, Bassard S, Battu V, Demailly H, Tovar JC, Pilard S, Marcelo P, Savary BJ, Mercadante D, Njo MF, Beeckman T, Boudaoud A, Gutierrez L, Pelloux J, Lefebvre V. Mutation of AtPME2, a pH-Dependent Pectin Methylesterase, Affects Cell Wall Structure and Hypocotyl Elongation. PLANT & CELL PHYSIOLOGY 2024; 65:301-318. [PMID: 38190549 DOI: 10.1093/pcp/pcad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.
Collapse
Affiliation(s)
- Ludivine Hocq
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Olivier Habrylo
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Fabien Sénéchal
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Aline Voxeur
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Josip Safran
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Françoise Fournet
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Virginie Battu
- Plant Reproduction and Development Laboratory, ENS de Lyon UMR 5667, BP 7000, Lyon cedex 07 69342, France
| | - Hervé Demailly
- Molecular Biology Platform (CRRBM), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - José C Tovar
- Arkansas Biosciences Institute, Arkansas State University, PO Box 600, Jonesboro, AR 72467, USA
| | - Serge Pilard
- Analytical Platform (PFA), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Paulo Marcelo
- Cellular imaging and protein analysis platform (ICAP), University of Picardie, Avenue Laënnec,CHU Sud, CURS, Amiens cedex 1 80054, France
| | - Brett J Savary
- Arkansas Biosciences Institute, Arkansas State University, PO Box 600, Jonesboro, AR 72467, USA
| | - Davide Mercadante
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Maria Fransiska Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Arezki Boudaoud
- Hydrodynamics Laboratory, Ecole Polytechnique, Route de Saclay, Palaiseau 91128, France
| | - Laurent Gutierrez
- Molecular Biology Platform (CRRBM), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Valérie Lefebvre
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| |
Collapse
|
22
|
Hu F, Fang D, Zhang W, Dong K, Ye Z, Cao J. Lateral root primordium: Formation, influencing factors and regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108429. [PMID: 38359556 DOI: 10.1016/j.plaphy.2024.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Roots are the primary determinants of water and nutrient uptake by plants. The structure of roots is largely determined by the repeated formation of new lateral roots (LR). A new lateral root primordium (LRP) is formed between the beginning and appearance of LR, which defines the organization and function of LR. Therefore, proper LRP morphogenesis is a crucial process for lateral root formation. The development of LRP is regulated by multiple factors, including hormone and environmental signals. Roots integrate signals and regulate growth and development. At the molecular level, many genes regulate the growth and development of root organs to ensure stable development plans, while also being influenced by various environmental factors. To gain a better understanding of the LRP formation and its influencing factors, this study summarizes previous research. The cell cycle involved in LRP formation, as well as the roles of ROS, auxin, other auxin-related plant hormones, and genetic regulation, are discussed in detail. Additionally, the effects of gravity, mechanical stress, and cell death on LRP formation are explored. Throughout the text unanswered or poorly understood questions are identified to guide future research in this area.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
23
|
Shao M, Jin X, Chen S, Yang N, Feng G. Plant-derived extracellular vesicles -a novel clinical anti-inflammatory drug carrier worthy of investigation. Biomed Pharmacother 2023; 169:115904. [PMID: 37984307 DOI: 10.1016/j.biopha.2023.115904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Plant-derived extracellular vesicles (PDEVs) have shown remarkable potential as sustainable, green, and efficient drug delivery nanocarriers. As natural nanoparticles containing lipids, protein, nucleic acids and secondary metabolites, they have received widespread attention as a replacement for mammalian exosomes in recent years. In this review, the advances in isolation, identification, composition, therapeutic effect, and clinical application prospect were comprehensively reviewed, respectively. In addition, the specific modification strategies have been listed focusing on the inherent drawbacks of the raw PDEVs like low targeting efficiency and poor homogeneity. With emphasis on their biology mechanism in terms of immune regulation, regulating oxidative stress and promoting regeneration in the anti-inflammatory field and application value demonstrated by citing some typical examples, this review about PDEVs would provide a broad and fundamental vision for the in-depth exploration and development of plant-derived extracellular vesicles in the in-vivo anti-inflammation and even other biomedical applications.
Collapse
Affiliation(s)
- Mingyue Shao
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiao Jin
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Sixi Chen
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Ning Yang
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Ganzhu Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China.
| |
Collapse
|
24
|
Leso M, Kokla A, Feng M, Melnyk CW. Pectin modifications promote haustoria development in the parasitic plant Phtheirospermum japonicum. PLANT PHYSIOLOGY 2023; 194:229-242. [PMID: 37311199 PMCID: PMC10762509 DOI: 10.1093/plphys/kiad343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
Parasitic plants are globally prevalent pathogens with important ecological functions but also potentially devastating agricultural consequences. Common to all parasites is the formation of the haustorium which requires parasite organ development and tissue invasion into the host. Both processes involve cell wall modifications. Here, we investigated a role for pectins during haustorium development in the facultative parasitic plant Phtheirospermum japonicum. Using transcriptomics data from infected Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), we identified genes for multiple P. japonicum pectin methylesterases (PMEs) and their inhibitors (PMEIs) whose expression was upregulated by haustoria formation. Changes in PME and PMEI expression were associated with tissue-specific modifications in pectin methylesterification. While de-methylesterified pectins were present in outer haustorial cells, highly methylesterified pectins were present in inner vascular tissues, including the xylem bridge that connects parasite to host. Specifically blocking xylem bridge formation in the haustoria inhibited several PME and PMEI genes from activating. Similarly, inhibiting PME activity using chemicals or by overexpressing PMEI genes delayed haustoria development. Our results suggest a dynamic and tissue-specific regulation of pectin contributes to haustoria initiation and to the establishment of xylem connections between parasite and host.
Collapse
Affiliation(s)
- Martina Leso
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Anna Kokla
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Ming Feng
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| |
Collapse
|
25
|
Donde R, Kohli PS, Pandey M, Sirohi U, Singh B, Giri J. Dissecting chickpea genomic loci associated with the root penetration responsive traits in compacted soil. PLANTA 2023; 259:17. [PMID: 38078944 DOI: 10.1007/s00425-023-04294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Soil compaction reduces root exploration in chickpea. We found genes related to root architectural traits in chickpea that can help understand and improve root growth in compacted soils. Soil compaction is a major concern for modern agriculture, as it constrains plant root growth, leading to reduced resource acquisition. Phenotypic variation for root system architecture (RSA) traits in compacted soils is present for various crops; however, studies on genetic associations with these traits are lacking. Therefore, we investigated RSA traits in different soil compaction levels and identified significant genomic associations in chickpea. We conducted a Genome-Wide Association Study (GWAS) of 210 chickpea accessions for 13 RSA traits under three bulk densities (BD) (1.1BD, 1.6BD, and 1.8BD). Soil compaction decreases root exploration by reducing 12 RSA traits, except average diameter (AD). Further, AD is negatively correlated with lateral root traits, and this correlation increases in 1.8BD, suggesting the negative effect of AD on lateral root traits. Interestingly, we identified probable candidate genes such as GLP3 and LRX for lateral root traits and CRF1-like for total length (TL) in 1.6BD soil. In heavy soil compaction, DGK2 is associated with lateral root traits. Reduction in laterals during soil compaction is mainly due to delayed seedling establishment, thus making lateral root number a critical trait. Interestingly, we also found a higher contribution of the GxE component of the number of root tips (Tips) to the total variation than the other lateral traits. We also identified a pectin esterase, PPE8B, associated with Tips in high soil compaction and a significantly associated SNP with the relative change in Tips depicting a trade-off between Tips and AD. Identified genes and loci would help develop soil-compaction-resistant chickpea varieties.
Collapse
Affiliation(s)
- Ravindra Donde
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pawandeep Singh Kohli
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mandavi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Bhagat Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
26
|
Jobert F, Yadav S, Robert S. Auxin as an architect of the pectin matrix. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6933-6949. [PMID: 37166384 PMCID: PMC10690733 DOI: 10.1093/jxb/erad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Auxin is a versatile plant growth regulator that triggers multiple signalling pathways at different spatial and temporal resolutions. A plant cell is surrounded by the cell wall, a complex and dynamic network of polysaccharides. The cell wall needs to be rigid to provide mechanical support and protection and highly flexible to allow cell growth and shape acquisition. The modification of the pectin components, among other processes, is a mechanism by which auxin activity alters the mechanical properties of the cell wall. Auxin signalling precisely controls the transcriptional output of several genes encoding pectin remodelling enzymes, their local activity, pectin deposition, and modulation in different developmental contexts. This review examines the mechanism of auxin activity in regulating pectin chemistry at organ, cellular, and subcellular levels across diverse plant species. Moreover, we ask questions that remain to be addressed to fully understand the interplay between auxin and pectin in plant growth and development.
Collapse
Affiliation(s)
- François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- CRRBM, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Sandeep Yadav
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| |
Collapse
|
27
|
Reyes-Hernández BJ, Maizel A. Tunable recurrent priming of lateral roots in Arabidopsis: More than just a clock? CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102479. [PMID: 37857036 DOI: 10.1016/j.pbi.2023.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
Lateral root (LR) formation in Arabidopsis is a continuous, repetitive, post-embryonic process regulated by a series of coordinated events and tuned by the environment. It shapes the root system, enabling plants to efficiently explore soil resources and adapt to changing environmental conditions. Although the auxin-regulated modules responsible for LR morphogenesis and emergence are well documented, less is known about the initial priming. Priming is characterised by recurring peaks of auxin signalling, which, once memorised, earmark cells to form the new LR. We review the recent experimental and modelling approaches to understand the molecular processes underlying the recurring LR formation. We argue that the intermittent priming of LR results from interweaving the pattern of auxin flow and root growth together with an oscillatory auxin-modulated transcriptional mechanism and illustrate its long-range sugar-mediated tuning by light.
Collapse
Affiliation(s)
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Goto C, Ikegami A, Goh T, Maruyama K, Kasahara H, Takebayashi Y, Kamiya Y, Toyokura K, Kondo Y, Ishizaki K, Mimura T, Fukaki H. Genetic Interaction between Arabidopsis SUR2/CYP83B1 and GNOM Indicates the Importance of Stabilizing Local Auxin Accumulation in Lateral Root Initiation. PLANT & CELL PHYSIOLOGY 2023; 64:1178-1188. [PMID: 37522618 DOI: 10.1093/pcp/pcad084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Lateral root (LR) formation is an important developmental event for the establishment of the root system in most vascular plants. In Arabidopsis thaliana, the fewer roots (fwr) mutation in the GNOM gene, encoding a guanine nucleotide exchange factor of ADP ribosylation factor that regulates vesicle trafficking, severely inhibits LR formation. Local accumulation of auxin response for LR initiation is severely affected in fwr. To better understand how local accumulation of auxin response for LR initiation is regulated, we identified a mutation, fewer roots suppressor1 (fsp1), that partially restores LR formation in fwr. The gene responsible for fsp1 was identified as SUPERROOT2 (SUR2), encoding CYP83B1 that positions at the metabolic branch point in the biosynthesis of auxin/indole-3-acetic acid (IAA) and indole glucosinolate. The fsp1 mutation increases both endogenous IAA levels and the number of the sites where auxin response locally accumulates prior to LR formation in fwr. SUR2 is expressed in the pericycle of the differentiation zone and in the apical meristem in roots. Time-lapse imaging of the auxin response revealed that local accumulation of auxin response is more stable in fsp1. These results suggest that SUR2/CYP83B1 affects LR founder cell formation at the xylem pole pericycle cells where auxin accumulates. Analysis of the genetic interaction between SUR2 and GNOM indicates the importance of stabilization of local auxin accumulation sites for LR initiation.
Collapse
Affiliation(s)
| | - Akira Ikegami
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Kaisei Maruyama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, 183-8509 Japan
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, 183-8509 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-3 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Yuki Kondo
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657 Japan
- College of Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
29
|
Wang HQ, Zhao XY, Xuan W, Wang P, Zhao FJ. Rice roots avoid asymmetric heavy metal and salinity stress via an RBOH-ROS-auxin signaling cascade. MOLECULAR PLANT 2023; 16:1678-1694. [PMID: 37735869 DOI: 10.1016/j.molp.2023.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Root developmental plasticity is crucial for plants to adapt to a changing soil environment, where nutrients and abiotic stress factors are distributed heterogeneously. How plant roots sense and avoid heterogeneous abiotic stress in soil remains unclear. Here, we show that, in response to asymmetric stress of heavy metals (cadmium, copper, or lead) and salt, rice roots rapidly proliferate lateral roots (LRs) in the stress-free area, thereby remodeling root architecture to avoid localized stress. Imaging and quantitative analyses of reactive oxygen species (ROS) showed that asymmetric stress induces a ROS burst in the tips of the exposed roots and simultaneously triggers rapid systemic ROS signaling to the unexposed roots. Addition of a ROS scavenger to either the stressed or stress-free area abolished systemic ROS signaling and LR proliferation induced by asymmetric stress. Asymmetric stress also enhanced cytosolic calcium (Ca2+) signaling; blocking Ca2+signaling inhibited systemic ROS propagation and LR branching in the stress-free area. We identified two plasma-membrane-localized respiratory burst oxidase homologs, OsRBOHA and OsRBOHI, as key players in systemic ROS signaling under asymmetric stress. Expression of OsRBOHA and OsRBOHI in roots was upregulated by Cd stress, and knockout of either gene reduced systemic ROS signaling and LR proliferation under asymmetric stress. Furthermore, we demonstrated that auxin signaling and cell wall remodeling act downstream of the systemic ROS signaling to promote LR development. Collectively, our study reveals an RBOH-ROS-auxin signaling cascade that enables rice roots to avoid localized stress of heavy metals and salt and provides new insight into root system plasticity in heterogenous soil.
Collapse
Affiliation(s)
- Han-Qing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing-Yu Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
30
|
Zheng L, Chen Y, Ding L, Zhou Y, Xue S, Li B, Wei J, Wang H. The transcription factor MYB156 controls the polar stiffening of guard cell walls in poplar. THE PLANT CELL 2023; 35:3757-3781. [PMID: 37437118 PMCID: PMC10533337 DOI: 10.1093/plcell/koad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
The mechanical properties of guard cells have major effects on stomatal functioning. Reinforced stiffness in the stomatal polar regions was recently proposed to play an important role in stomatal function, but the underlying molecular mechanisms remain elusive. Here, we used genetic and biochemical approaches in poplar (Populus spp.) to show that the transcription factor MYB156 controls pectic homogalacturonan-based polar stiffening through the downregulation of the gene encoding pectin methylesterase 6 (PME6). Loss of MYB156 increased the polar stiffness of stomata, thereby enhancing stomatal dynamics and response speed to various stimuli. In contrast, overexpression of MYB156 resulted in decreased polar stiffness and impaired stomatal dynamics, accompanied by smaller leaves. Polar stiffening functions in guard cell dynamics in response to changing environmental conditions by maintaining normal stomatal morphology during stomatal movement. Our study revealed the structure-function relationship of the cell wall of guard cells in stomatal dynamics, providing an important means for improving the stomatal performance and drought tolerance of plants.
Collapse
Affiliation(s)
- Lin Zheng
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yajuan Chen
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Liping Ding
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ying Zhou
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shanshan Xue
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Biying Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongzhi Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
31
|
Winter Z, Bellande K, Vermeer JEM. Divided by fate: The interplay between division orientation and cell shape underlying lateral root initiation in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102370. [PMID: 37121154 DOI: 10.1016/j.pbi.2023.102370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The development of lateral roots starts with a round of anticlinal, asymmetric cell divisions in lateral root founder cells in the pericycle, deep within the root. The reorientation of the cell division plane occurs in parallel with changes in cell shape and needs to be coordinated with its direct neighbor, the endodermis. This accommodation response requires the integration of biochemical and mechanical signals in both cell types. Recently, it was reported that dynamic changes in the cytoskeleton and possibly the cell wall are part of the molecular mechanism required to correctly orient and position the cell division plane. Here we discuss the latest progress made towards our understanding of the regulation of cell shape and division plane orientation underlying lateral root initiation in Arabidopsis.
Collapse
Affiliation(s)
- Zsófia Winter
- Laboratory of Molecular and Cellular Biology, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000, Neuchâtel, Switzerland
| | - Kevin Bellande
- Laboratory of Molecular and Cellular Biology, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000, Neuchâtel, Switzerland
| | - Joop E M Vermeer
- Laboratory of Molecular and Cellular Biology, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
32
|
Zhang X, Guo H, Xiao C, Yan Z, Ning N, Chen G, Zhang J, Hu H. PECTIN METHYLESTERASE INHIBITOR18 functions in stomatal dynamics and stomatal dimension. PLANT PHYSIOLOGY 2023; 192:1603-1620. [PMID: 36879425 PMCID: PMC10231589 DOI: 10.1093/plphys/kiad145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/01/2023]
Abstract
Pectin methylesterification in guard cell (GC) walls plays an important role in stomatal development and stomatal response to external stimuli, and pectin methylesterase inhibitors (PMEIs) modulate pectin methylesterification by inhibition of pectin methylesterase (PME). However, the function of PMEIs has not been reported in stomata. Here, we report the role of Arabidopsis (Arabidopsis thaliana) PECTIN METHYLESTERASE INHIBITOR18 in stomatal dynamic responses to environmental changes. PMEI18 mutation increased pectin demethylesterification and reduced pectin degradation, resulting in increased stomatal pore size, impaired stomatal dynamics, and hypersensitivity to drought stresses. In contrast, overexpression of PMEI18 reduced pectin demethylesterification and increased pectin degradation, causing more rapid stomatal dynamics. PMEI18 interacted with PME31 in plants, and in vitro enzymatic assays demonstrated that PMEI18 directly inhibits the PME activity of PME31 on pectins. Genetic interaction analyses suggested that PMEI18 modulates stomatal dynamics mainly through inhibition of PME31 on pectin methylesterification in cell walls. Our results provide insight into the molecular mechanism of the PMEI18-PME31 module in stomatal dynamics and highlight the role of PMEI18 and PME31 in stomatal dynamics through modulation of pectin methylesterification and distribution in GC walls.
Collapse
Affiliation(s)
- Xianwen Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Nina Ning
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jumei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Grube Andersen T, Vermeer JEM. Bacterial gas-lighting of lateral root formation. Proc Natl Acad Sci U S A 2023; 120:e2303919120. [PMID: 37068246 PMCID: PMC10151553 DOI: 10.1073/pnas.2303919120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Affiliation(s)
| | - Joop E. M. Vermeer
- Laboratory of Molecular and Cellular Biology, University of Neuchâtel, Neuchâtel2000, Switzerland
| |
Collapse
|
34
|
Tiwari M, Kumar R, Subramanian S, Doherty CJ, Jagadish SVK. Auxin-cytokinin interplay shapes root functionality under low-temperature stress. TRENDS IN PLANT SCIENCE 2023; 28:447-459. [PMID: 36599768 DOI: 10.1016/j.tplants.2022.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Low-temperature stress alters root system architecture. In particular, changes in the levels and response to auxin and cytokinin determine the fate of root architecture and function under stress because of their vital roles in regulating root cell division, differentiation, and elongation. An intricate nexus of genes encoding components of auxin and cytokinin biosynthesis, signaling, and transport components operate to counteract stress and facilitate optimum development. We review the role of auxin transport and signaling and its regulation by cytokinin during root development and stem cell maintenance under low-temperature stress. We highlight intricate mechanisms operating in root stem cells to minimize DNA damage by altering phytohormone levels, and discuss a working model for cytokinin in low-temperatures stress response.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KA 66506, USA.
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KA 66506, USA
| | - Senthil Subramanian
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57006, USA
| | - Colleen J Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - S V Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KA 66506, USA; Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79410, USA.
| |
Collapse
|
35
|
Lakehal A, Dob A, Beeckman T. Specification and evolution of lateral roots. Curr Biol 2023; 33:R170-R175. [PMID: 36917935 DOI: 10.1016/j.cub.2022.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plants have evolved a remarkable capacity to develop new organs post-embryonically throughout their lifespan. A prime example of this is root branching. Root branching occurs in two ways: dichotomous and lateral branching. The dichotomous branching is the result of the division of the root apical meristem into two daughter meristems, likely through symmetric cell divisions of the root apical cell, as has recently been illustrated in the extant lycophyte Selaginella moellendorffii (Figure 1). Lateral root branching relies on the de novo specification of a subset of founder cells (hereinafter referred to as lateral root stem cells) located in the internal tissues of an existing root. This step is followed by initiation, in which the specified cells re-enter the cell cycle, and subsequently by primordium formation and emergence. In this primer, we summarize recent advances describing the molecular bases underlying lateral root stem cell specification in angiosperms and highlight the important positional signals that fine tune this process. By delving into the evolutionary origins of root branching, we point out that positional control of lateral root stem cell specification has not been the prevailing mechanism among all plants and discuss the process in ferns (i.e., a sister group of seed plants), where it seems to be under the control of lineage-dependent mechanisms.
Collapse
Affiliation(s)
- Abdellah Lakehal
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Asma Dob
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
36
|
Du J, Du C, Ge X, Wen S, Zhou X, Zhang L, Hu J. Genome-Wide Analysis of the AAAP Gene Family in Populus and Functional Analysis of PsAAAP21 in Root Growth and Amino Acid Transport. Int J Mol Sci 2022; 24:ijms24010624. [PMID: 36614067 PMCID: PMC9820651 DOI: 10.3390/ijms24010624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The adventitious root (AR) is the basis for successful propagation by plant cuttings and tissue culture and is essential for maintaining the positive traits of a variety. Members of the amino acid/auxin permease (AAAP) gene family play indispensable roles in various plant metabolisms and have few studies on root growth and amino acid transport. In this study, with a systematic bioinformatics analysis of the Populus AAAP family, 83 PtrAAAPs were identified from Populus trichocarpa and grouped into 8 subfamilies. Subsequently, chromosomal distribution, genetic structure, cis-elements analysis, and expression pattern analysis of the AAAP family were performed and the potential gene AAAP21 regulating root development was screened by combining the results of RNA-Seq and QTL mapping. PsAAAP21 was proven as promoting root development by enhancing AR formation. Differentially expressed genes (DEGs) from RNA-seq results of overexpressing lines were enriched to multiple amino acid-related pathways, and the amino acid treatment to transgenic lines indicated that PsAAAP21 regulated amino acid transport, including tyrosine, methionine, and arginine. Analysis of the AAAP gene family provided a theoretical basis for uncovering the functions of AAAP genes. The identification of PsAAAP21 on root promotion and amino acid transport in Populus will help with breeding new woody plant species with strong rooting ability.
Collapse
Affiliation(s)
- Jiujun Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaolan Ge
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shuangshuang Wen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (L.Z.); (J.H.); Tel.: +86-10-62889642 (L.Z.); +86-10-62888862 (J.H.)
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (L.Z.); (J.H.); Tel.: +86-10-62889642 (L.Z.); +86-10-62888862 (J.H.)
| |
Collapse
|
37
|
Jobert F, Soriano A, Brottier L, Casset C, Divol F, Safran J, Lefebvre V, Pelloux J, Robert S, Péret B. Auxin triggers pectin modification during rootlet emergence in white lupin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1127-1140. [PMID: 36178138 DOI: 10.1111/tpj.15993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Emergence of secondary roots through parental tissue is a highly controlled developmental process. Although the model plant Arabidopsis has been useful to uncover the predominant role of auxin in this process, its simple root structure is not representative of how emergence takes place in most plants, which display more complex root anatomy. White lupin is a legume crop producing structures called cluster roots, where closely spaced rootlets emerge synchronously. Rootlet primordia push their way through several cortical cell layers while maintaining the parent root integrity, reflecting more generally the lateral root emergence process in most multilayered species. In this study, we showed that lupin rootlet emergence is associated with an upregulation of cell wall pectin modifying and degrading genes under the active control of auxin. Among them, we identified LaPG3, a polygalacturonase gene typically expressed in cells surrounding the rootlet primordium and we showed that its downregulation delays emergence. Immunolabeling of pectin epitopes and their quantification uncovered a gradual pectin demethylesterification in the emergence zone, which was further enhanced by auxin treatment, revealing a direct hormonal control of cell wall properties. We also report rhamnogalacturonan-I modifications affecting cortical cells that undergo separation as a consequence of primordium outgrowth. In conclusion, we describe a model of how external tissues in front of rootlet primordia display cell wall modifications to allow for the passage of newly formed rootlets.
Collapse
Affiliation(s)
- François Jobert
- IPSiM, Univ Montpellier, CNRS, INRAE, Supagro, 34060, Montpellier, France
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Alexandre Soriano
- IPSiM, Univ Montpellier, CNRS, INRAE, Supagro, 34060, Montpellier, France
| | - Laurent Brottier
- IPSiM, Univ Montpellier, CNRS, INRAE, Supagro, 34060, Montpellier, France
| | - Célia Casset
- IPSiM, Univ Montpellier, CNRS, INRAE, Supagro, 34060, Montpellier, France
| | - Fanchon Divol
- IPSiM, Univ Montpellier, CNRS, INRAE, Supagro, 34060, Montpellier, France
| | - Josip Safran
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 80039, Amiens, France
| | - Valérie Lefebvre
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 80039, Amiens, France
| | - Jérôme Pelloux
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 80039, Amiens, France
| | - Stéphanie Robert
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Benjamin Péret
- IPSiM, Univ Montpellier, CNRS, INRAE, Supagro, 34060, Montpellier, France
| |
Collapse
|
38
|
Xu F, Gonneau M, Faucher E, Habrylo O, Lefebvre V, Domon JM, Martin M, Sénéchal F, Peaucelle A, Pelloux J, Höfte H. Biochemical characterization of Pectin Methylesterase Inhibitor 3 from Arabidopsis thaliana. Cell Surf 2022; 8:100080. [PMID: 36147700 PMCID: PMC9486134 DOI: 10.1016/j.tcsw.2022.100080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
The de-methylesterification of the pectic polysaccharide homogalacturonan (HG) by pectin methylesterases (PMEs) is a critical step in the control of plant cell expansion and morphogenesis. Plants have large gene families encoding PMEs but also PME inhibitors (PMEIs) with differ in their biochemical properties. The Arabidopsis thaliana PECTIN METHYLESTERASE INHIBITOR 3 (PMEI3) gene is frequently used as a tool to manipulate pectin methylesterase activity in studies assessing its role in the control of morphogenesis. One limitation of these studies is that the exact biochemical activity of this protein has not yet been determined. In this manuscript we produced the protein in Pichia pastoris and characterized its activity in vitro. Like other PMEIs, PMEI3 inhibits PME activity at acidic pH in a variety of cell wall extracts and in purified PME preparations, but does not affect the much stronger PME activity at neutral pH. The protein is remarkable heat stable and shows higher activity against PME3 than against PME2, illustrating how different members of the large PMEI family can differ in their specificities towards PME targets. Finally, growing Arabidopsis thaliana seedlings in the presence of purified PMEI3 caused a dose-dependent inhibition of root growth associated with the overall inhibition of HG de-methylesterification of the root surface. This suggests an essential in vivo role for PME activity at acidic pH in HG de-methylesterification and growth control. These results show that purified recombinant PMEI3 is a powerful tool to study the connection between pectin de-methylesterification and cell expansion.
Collapse
Affiliation(s)
- Fan Xu
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Martine Gonneau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Elvina Faucher
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Olivier Habrylo
- UMRT INRAE 1158 BioEcoAgro – BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Valérie Lefebvre
- UMRT INRAE 1158 BioEcoAgro – BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Jean-Marc Domon
- UMRT INRAE 1158 BioEcoAgro – BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Marjolaine Martin
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
- Laboratoire de Reproduction et Développement des Plantes, UMR INRA-CNRS-ENSL-UCB Lyon I, France
| | - Fabien Sénéchal
- UMRT INRAE 1158 BioEcoAgro – BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Alexis Peaucelle
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro – BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Herman Höfte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| |
Collapse
|
39
|
Xin P, Schier J, Šefrnová Y, Kulich I, Dubrovsky JG, Vielle-Calzada JP, Soukup A. The Arabidopsis TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE (TTL) family members are involved in root system formation via their interaction with cytoskeleton and cell wall remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:946-965. [PMID: 36270031 DOI: 10.1111/tpj.15980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 05/21/2023]
Abstract
Lateral roots (LR) are essential components of the plant edaphic interface; contributing to water and nutrient uptake, biotic and abiotic interactions, stress survival, and plant anchorage. We have identified the TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 3 (TTL3) gene as being related to LR emergence and later development. Loss of function of TTL3 leads to a reduced number of emerged LR due to delayed development of lateral root primordia (LRP). This trait is further enhanced in the triple mutant ttl1ttl3ttl4. TTL3 interacts with microtubules and endomembranes, and is known to participate in the brassinosteroid (BR) signaling pathway. Both ttl3 and ttl1ttl3ttl4 mutants are less sensitive to BR treatment in terms of LR formation and primary root growth. The ability of TTL3 to modulate biophysical properties of the cell wall was established under restrictive conditions of hyperosmotic stress and loss of root growth recovery, which was enhanced in ttl1ttl3ttl4. Timing and spatial distribution of TTL3 expression is consistent with its role in development of LRP before their emergence and subsequent growth of LR. TTL3 emerged as a component of the root system morphogenesis regulatory network.
Collapse
Affiliation(s)
- Pengfei Xin
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Jakub Schier
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Yvetta Šefrnová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca, 62250, Morelos, Mexico
| | - Jean-Philippe Vielle-Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, Mexico
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| |
Collapse
|
40
|
Guo S, Wang M, Song X, Zhou G, Kong Y. The evolving views of the simplest pectic polysaccharides: homogalacturonan. PLANT CELL REPORTS 2022; 41:2111-2123. [PMID: 35986766 DOI: 10.1007/s00299-022-02909-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Pectin is an important component of cell wall polysaccharides and is important for normal plant growth and development. As a major component of pectin in the primary cell wall, homogalacturonan (HG) is a long-chain macromolecular polysaccharide composed of repeated α-1,4-D-GalA sugar units. At the same time, HG is synthesized in the Golgi apparatus in the form of methyl esterification and acetylation. It is then secreted into the plasmodesmata, where it is usually demethylated by pectin methyl esterase (PME) and deacetylated by pectin acetylase (PAE). The synthesis and modification of HG are involved in polysaccharide metabolism in the cell wall, which affects the structure and function of the cell wall and plays an important role in plant growth and development. This paper mainly summarizes the recent research on the biosynthesis, modification and the roles of HG in plant cell wall.
Collapse
Affiliation(s)
- Shuaiqiang Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Xinxin Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- Academy of Dongying Efficient Agricultural Technology and Industry On Saline and Alkaline Land in Collaboration With Qingdao Agricultural University, Dongying, 257092, People's Republic of China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
41
|
Perez-Garcia P, Serrano-Ron L, Moreno-Risueno MA. The nature of the root clock at single cell resolution: Principles of communication and similarities with plant and animal pulsatile and circadian mechanisms. Curr Opin Cell Biol 2022; 77:102102. [DOI: 10.1016/j.ceb.2022.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/14/2022] [Accepted: 04/24/2022] [Indexed: 11/30/2022]
|
42
|
Yi P, Goshima G. Division site determination during asymmetric cell division in plants. THE PLANT CELL 2022; 34:2120-2139. [PMID: 35201345 PMCID: PMC9134084 DOI: 10.1093/plcell/koac069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/20/2022] [Indexed: 05/19/2023]
Abstract
During development, both animals and plants exploit asymmetric cell division (ACD) to increase tissue complexity, a process that usually generates cells dissimilar in size, morphology, and fate. Plants lack the key regulators that control ACD in animals. Instead, plants have evolved two unique cytoskeletal structures to tackle this problem: the preprophase band (PPB) and phragmoplast. The assembly of the PPB and phragmoplast and their contributions to division plane orientation have been extensively studied. However, how the division plane is positioned off the cell center during asymmetric division is poorly understood. Over the past 20 years, emerging evidence points to a critical role for polarly localized membrane proteins in this process. Although many of these proteins are species- or cell type specific, and the molecular mechanism underlying division asymmetry is not fully understood, common features such as morphological changes in cells, cytoskeletal dynamics, and nuclear positioning have been observed. In this review, we provide updates on polarity establishment and nuclear positioning during ACD in plants. Together with previous findings about symmetrically dividing cells and the emerging roles of developmental cues, we aim to offer evolutionary insight into a common framework for asymmetric division-site determination and highlight directions for future work.
Collapse
Affiliation(s)
- Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba 517-0004, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya Aichi 464-8602, Japan
| |
Collapse
|
43
|
Bustillo-Avendaño E, Serrano-Ron L, Moreno-Risueno MA. The Root Clock as a Signal Integrator System: Ensuring Balance for Survival. FRONTIERS IN PLANT SCIENCE 2022; 13:886700. [PMID: 35665188 PMCID: PMC9161171 DOI: 10.3389/fpls.2022.886700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The root system is essential for the survival of terrestrial plants, plant development, and adaptation to changing environments. The development of the root system relies on post-embryonic organogenesis and more specifically on the formation and growth of lateral roots (LR). The spacing of LR along the main root is underpinned by a precise prepatterning mechanism called the Root Clock. In Arabidopsis, the primary output of this mechanism involves the generation of periodic gene expression oscillations in a zone close to the root tip called the Oscillation Zone (OZ). Because of these oscillations, pre-branch sites (PBS) are established in the positions from which LR will emerge, although the oscillations can also possibly regulate the root wavy pattern and growth. Furthermore, we show that the Root Clock is present in LR. In this review, we describe the recent advances unraveling the inner machinery of Root Clock as well as the new tools to track the Root Clock activity. Moreover, we discuss the basis of how Arabidopsis can balance the creation of a repetitive pattern while integrating both endogenous and exogenous signals to adapt to changing environmental conditions. These signals can work as entrainment signals, but in occasions they also affect the periodicity and amplitude of the oscillatory dynamics in gene expression. Finally, we identify similarities with the Segmentation Clock of vertebrates and postulate the existence of a determination front delimiting the end of the oscillations in gene expression and initiating LR organogenesis through the activation of PBS in an ARF7 dependent-manner.
Collapse
Affiliation(s)
| | | | - Miguel A. Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| |
Collapse
|
44
|
Du J, Anderson CT, Xiao C. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. NATURE PLANTS 2022; 8:332-340. [PMID: 35411046 DOI: 10.1038/s41477-022-01120-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Homogalacturonan (HG) is the most abundant pectin subtype in plant cell walls. Although it is a linear homopolymer, its modification states allow for complex molecular encoding. HG metabolism affects its structure, chemical properties, mobility and binding capacity, allowing it to interact dynamically with other polymers during wall assembly and remodelling and to facilitate anisotropic cell growth, cell adhesion and separation, and organ morphogenesis. HGs have also recently been found to function as signalling molecules that transmit information about wall integrity to the cell. Here we highlight recent advances in our understanding of the dual functions of HG as a dynamic structural component of the cell wall and an initiator of intrinsic and environmental signalling. We also predict how HG might interconnect the cell wall, plasma membrane and intracellular components with transcriptional networks to regulate plant growth and development.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
45
|
Coculo D, Lionetti V. The Plant Invertase/Pectin Methylesterase Inhibitor Superfamily. FRONTIERS IN PLANT SCIENCE 2022; 13:863892. [PMID: 35401607 PMCID: PMC8990755 DOI: 10.3389/fpls.2022.863892] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Invertases (INVs) and pectin methylesterases (PMEs) are essential enzymes coordinating carbohydrate metabolism, stress responses, and sugar signaling. INVs catalyzes the cleavage of sucrose into glucose and fructose, exerting a pivotal role in sucrose metabolism, cellulose biosynthesis, nitrogen uptake, reactive oxygen species scavenging as well as osmotic stress adaptation. PMEs exert a dynamic control of pectin methylesterification to manage cell adhesion, cell wall porosity, and elasticity, as well as perception and signaling of stresses. INV and PME activities can be regulated by specific proteinaceous inhibitors, named INV inhibitors (INVIs) and PME Inhibitors (PMEIs). Despite targeting different enzymes, INVIs and PMEIs belong to the same large protein family named "Plant Invertase/Pectin Methylesterase Inhibitor Superfamily." INVIs and PMEIs, while showing a low aa sequence identity, they share several structural properties. The two inhibitors showed mainly alpha-helices in their secondary structure and both form a non-covalent 1:1 complex with their enzymatic counterpart. Some PMEI members are organized in a gene cluster with specific PMEs. Although the most important physiological information was obtained in Arabidopsis thaliana, there are now several characterized INVI/PMEIs in different plant species. This review provides an integrated and updated overview of this fascinating superfamily, from the specific activity of characterized isoforms to their specific functions in plant physiology. We also highlight INVI/PMEIs as biotechnological tools to control different aspects of plant growth and defense. Some isoforms are discussed in view of their potential applications to improve industrial processes. A review of the nomenclature of some isoforms is carried out to eliminate confusion about the identity and the names of some INVI/PMEI member. Open questions, shortcoming, and opportunities for future research are also presented.
Collapse
Affiliation(s)
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
46
|
Zhang Y, Umeda M, Kakimoto T. Pericycle cell division competence underlies various developmental programs. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:29-36. [PMID: 35800961 PMCID: PMC9200087 DOI: 10.5511/plantbiotechnology.21.1202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 05/08/2023]
Abstract
Pericycle cells possess proliferative activity long after leaving the root apical meristem. Depending on the developmental stage and external stimuli, pericycle cell division leads to the production of lateral roots, vascular cambium and periderm, and callus. Therefore, pericycle cell division competence underlies root branching and secondary growth, as well as plant regeneration capacity. In this review, we first briefly present an overview of the molecular pathways of the four developmental programs originated, exclusively or partly, from pericycle cells. Then, we provide a review of up-to-date knowledge in the mechanisms determining pericycle cells' competence to undergo cell division. Furthermore, we discuss directions of future research to further our understanding of the pericycle's characteristics and functions.
Collapse
Affiliation(s)
- Ye Zhang
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
- E-mail: Tel: +81-743-72-5592 Fax: +81-743-72-5599
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Tatsuo Kakimoto
- Department of Biology, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
47
|
Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, Efroni I. A conserved superlocus regulates above- and belowground root initiation. Science 2022; 375:eabf4368. [PMID: 35239373 DOI: 10.1126/science.abf4368] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plants continuously form new organs in different developmental contexts in response to environmental cues. Underground lateral roots initiate from prepatterned cells in the main root, but cells can also bypass the root-shoot trajectory separation and generate shoot-borne roots through an unknown mechanism. We mapped tomato (Solanum lycopersicum) shoot-borne root development at single-cell resolution and showed that these roots initiate from phloem-associated cells through a unique transition state. This state requires the activity of a transcription factor that we named SHOOTBORNE ROOTLESS (SBRL). Evolutionary analysis reveals that SBRL's function and cis regulation are conserved in angiosperms and that it arose as an ancient duplication, with paralogs controlling wound-induced and lateral root initiation. We propose that the activation of a common transition state by context-specific regulators underlies the plasticity of plant root systems.
Collapse
Affiliation(s)
- Moutasem Omary
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Gil-Yarom
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Chen Yahav
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Evyatar Steiner
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Idan Efroni
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
48
|
Zhao W, Wang K, Chang Y, Zhang B, Li F, Meng Y, Li M, Zhao Q, An S. OsHyPRP06/R3L1 regulates root system development and salt tolerance via apoplastic ROS homeostasis in rice (Oryza sativa L.). PLANT, CELL & ENVIRONMENT 2022; 45:900-914. [PMID: 34490900 DOI: 10.1111/pce.14180] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 05/03/2023]
Abstract
Plant root morphology is constantly reshaped in response to triggers from the soil environment. Such modifications in root system architecture involve changes in the abundance of reactive oxygen species (ROS) in the apoplast and in cell wall (CW) composition. The hybrid proline-rich proteins (HyPRPs) gene family in higher plants is considered important in the regulation of CW structure. However, the functions of HyPRPs remain to be characterized. We therefore analysed the functions of OsR3L1 (Os04g0554500) in rice. qRT-PCR and GUS staining revealed that OsR3L1 is expressed in roots. While the r3l1 mutants had a defective root system with fewer adventitious roots (ARs) and lateral roots (LRs) than the wild type, lines overexpressing OsR3L1 (R3L1-OE) showed more extensive LR formation but with a shorter root length. The expression of OsR3L1 was initiated by the OsMADS25 transcription factor. Moreover, the abundance of OsR3L1 transcripts was increased by NaCl. The R3L1-OE-3 line exhibited enhanced salt tolerance, whereas the r3l1-2 mutant showed greater salt sensitivity. The addition of H2 O2 increased the levels of OsR3L1 transcripts. Data are presented indicating that OsR3L1 modulates H2 O2 accumulation in the apoplast. We conclude that OsR3L1 regulates salt tolerance through regulation of peroxidases and apoplastic H2 O2 metabolism.
Collapse
Affiliation(s)
- Wenli Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Kun Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanpeng Chang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bo Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Fei Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yuxuan Meng
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Mengqi Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Quanzhi Zhao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
49
|
Li Y, Shao J, Fu Y, Chen Y, Wang H, Xu Z, Feng H, Xun W, Liu Y, Zhang N, Shen Q, Xuan W, Zhang R. The volatile cedrene from Trichoderma guizhouense modulates Arabidopsis root development through auxin transport and signalling. PLANT, CELL & ENVIRONMENT 2022; 45:969-984. [PMID: 34800291 DOI: 10.1111/pce.14230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Rhizosphere microorganisms interact with plant roots by producing chemical signals that regulate root development. However, the distinct bioactive compounds and signal transduction pathways remain to be identified. Here, we showed that sesquiterpenes are the main volatile compounds produced by plant-beneficial Trichoderma guizhouense NJAU4742. Inhibition of sesquiterpene biosynthesis eliminated the promoting effect of this strain on root growth, indicating its involvement in plant-fungus cross-kingdom signalling. Sesquiterpene component analysis identified cedrene, a highly abundant sesquiterpene in strain NJAU4742, to stimulate plant growth and root development. Genetic analysis and auxin transport inhibition showed that the TIR1 and AFB2 auxin receptors, IAA14 auxin-responsive protein, and ARF7 and ARF19 transcription factors affected the response of lateral roots to cedrene. Moreover, the AUX1 auxin influx carrier and PIN2 efflux carrier were also found to be indispensable for cedrene-induced lateral root formation. Confocal imaging showed that cedrene affected the expression of pPIN2:PIN2:GFP and pPIN3:PIN3:GFP, which might be related to the effect of cedrene on root morphology. These results suggested that a novel sesquiterpene molecule from plant-beneficial T. guizhouense regulates plant root development through the transport and signalling of auxin.
Collapse
Affiliation(s)
- Yucong Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yansong Fu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Hongzhe Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Haichao Feng
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
50
|
Hernández-Herrera P, Ugartechea-Chirino Y, Torres-Martínez HH, Arzola AV, Chairez-Veloz JE, García-Ponce B, Sánchez MDLP, Garay-Arroyo A, Álvarez-Buylla ER, Dubrovsky JG, Corkidi G. Live Plant Cell Tracking: Fiji plugin to analyze cell proliferation dynamics and understand morphogenesis. PLANT PHYSIOLOGY 2022; 188:846-860. [PMID: 34791452 PMCID: PMC8825436 DOI: 10.1093/plphys/kiab530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/19/2021] [Indexed: 05/13/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) primary and lateral roots (LRs) are well suited for 3D and 4D microscopy, and their development provides an ideal system for studying morphogenesis and cell proliferation dynamics. With fast-advancing microscopy techniques used for live-imaging, whole tissue data are increasingly available, yet present the great challenge of analyzing complex interactions within cell populations. We developed a plugin "Live Plant Cell Tracking" (LiPlaCeT) coupled to the publicly available ImageJ image analysis program and generated a pipeline that allows, with the aid of LiPlaCeT, 4D cell tracking and lineage analysis of populations of dividing and growing cells. The LiPlaCeT plugin contains ad hoc ergonomic curating tools, making it very simple to use for manual cell tracking, especially when the signal-to-noise ratio of images is low or variable in time or 3D space and when automated methods may fail. Performing time-lapse experiments and using cell-tracking data extracted with the assistance of LiPlaCeT, we accomplished deep analyses of cell proliferation and clonal relations in the whole developing LR primordia and constructed genealogical trees. We also used cell-tracking data for endodermis cells of the root apical meristem (RAM) and performed automated analyses of cell population dynamics using ParaView software (also publicly available). Using the RAM as an example, we also showed how LiPlaCeT can be used to generate information at the whole-tissue level regarding cell length, cell position, cell growth rate, cell displacement rate, and proliferation activity. The pipeline will be useful in live-imaging studies of roots and other plant organs to understand complex interactions within proliferating and growing cell populations. The plugin includes a step-by-step user manual and a dataset example that are available at https://www.ibt.unam.mx/documentos/diversos/LiPlaCeT.zip.
Collapse
Affiliation(s)
- Paul Hernández-Herrera
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Yamel Ugartechea-Chirino
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Héctor H Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Alejandro V Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - José Eduardo Chairez-Veloz
- Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Cd. de México, C.P. 07350, Mexico
| | - Berenice García-Ponce
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - María de la Paz Sánchez
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Adriana Garay-Arroyo
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Elena R Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| |
Collapse
|