1
|
Faisal M, Lipi JA, Rima NN, Riya KK, Hossain MK, Paray BA, Arai T, Yu J, Hossain MB. Microplastic contamination and ecological risk assessment in sediments and waters of ship-dismantling yards along the Bay of Bengal. MARINE POLLUTION BULLETIN 2025; 217:118032. [PMID: 40300552 DOI: 10.1016/j.marpolbul.2025.118032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/11/2025] [Accepted: 04/20/2025] [Indexed: 05/01/2025]
Abstract
This study investigated the extent of microplastic (MP) contamination in sediment and surface water from one of the largest shipbreaking yards along the Bay of Bengal coast. A total of 48 samples (24 each from sediment and water) were collected and analyzed to assess MP abundance, polymer characteristics, sources, and the associated potential ecological risks. MPs were extracted, identified using microscopy and FTIR spectroscopy, and classified by type, color, and polymer composition. MP concentrations averaged 73.54 ± 8.61 items/kg in sediment and 218.56 ± 19.12 items/m3 in water, with fibers being the dominant morphology (87.8-92.1 % in sediment, 91.5-100 % in water). Stations in close to intensive shipbreaking operations exhibited significantly higher abundances. Polymer characterization revealed PET as the dominant type, comprising 37.5 % in water and 25 % in sediment, followed by PS (25 % in both matrices) and PP (12.5 % in water and 25 % in sediment). Ecological risk assessments revealed moderate to considerable contamination levels. Pollution Load Index (PLI) values ranged from 1.02 to 1.433 in sediment and 1.02-1.68 in water. Polymeric Hazard Index (PHI) values reached maximum at 254.37 (sediment) and 265.68 (water), with corresponding Ecological Risk Index (ERI) values reaching 312.88 and 433.06, respectively. Stations S6 and S3, located near areas of intensive shipbreaking activity, exhibited the highest ecological risks. These findings emphasized the urgent need for regulatory intervention and improved waste management.
Collapse
Affiliation(s)
- Md Faisal
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali -3814, Bangladesh
| | - Jahanara Akhter Lipi
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali -3814, Bangladesh
| | - Nazmun Naher Rima
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali -3814, Bangladesh
| | - Khadijatul Kubra Riya
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali -3814, Bangladesh
| | - Md Kamal Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka -1205, Bangladesh
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Mohammad Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali -3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia..
| |
Collapse
|
2
|
Secco S, Cesarini G, Gallitelli L, Suaria G, Paluselli A, Di Gioacchino M, Sodo A, Scalici M. Multi-matrix approach to microplastic pollution in the bivalve Donax trunculus, sediment and water along the Mediterranean coasts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126318. [PMID: 40288627 DOI: 10.1016/j.envpol.2025.126318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Plastic pollution is a widespread issue in marine ecosystems worldwide, and at the basin level, the Mediterranean represents one of the main hotspots for plastic debris. Here, we present MPs pollution levels in the bivalve Donax trunculus, commonly known as wedge clam, considering both young and adult individuals, as well as sediment and water matrices across a national scale, covering the Tyrrhenian, Ionian, and Adriatic coasts of Italy. The aim is to provide an overview of MPs pollution in coastal ecosystems and assess whether wedge clams can act as an early warning sentinel for sandy habitats. Results highlighted that the Adriatic and Ionian coasts exhibited higher MPs levels than the Tyrrhenian coast across all matrices, with MPs pollution predominantly consisting of blue acrylic fibers. D. trunculus proved to be an excellent sentinel for MPs pollution in sediment. The findings also revealed that young individuals had more MPs than adults, highlighting potentially severe harm to the growth of marine organisms. As a commercially valuable species, this study underscores the urgent need to further investigate this issue, especially given its critical implications for both marine ecosystem health and human well-being.
Collapse
Affiliation(s)
- Silvia Secco
- Department of Sciences, University of Roma Tre, Viale Guglielmo Marconi, 446, Rome, 00146, Italy; Department of Integrative Marine Ecology (EMI), Genoa Marine Centre (GMC), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Piazza del Principe 4, Genoa, 16126, Italy.
| | - Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale Guglielmo Marconi, 446, Rome, 00146, Italy; National Research Council - Water Research Institute (CNR-IRSA), Corso Tonolli 50, Verbania Pallanza, 28922, Italy
| | - Luca Gallitelli
- Department of Sciences, University of Roma Tre, Viale Guglielmo Marconi, 446, Rome, 00146, Italy
| | - Giuseppe Suaria
- Institute of Marine Sciences - National Research Council (CNR-ISMAR), Lerici, La Spezia, 19032, Italy
| | - Andrea Paluselli
- Institute of Marine Sciences - National Research Council (CNR-ISMAR), Lerici, La Spezia, 19032, Italy
| | - Michael Di Gioacchino
- Department of Sciences, University of Roma Tre, Viale Guglielmo Marconi, 446, Rome, 00146, Italy
| | - Armida Sodo
- Department of Sciences, University of Roma Tre, Viale Guglielmo Marconi, 446, Rome, 00146, Italy
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale Guglielmo Marconi, 446, Rome, 00146, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, Palermo, 90133, Italy
| |
Collapse
|
3
|
Yu F, Yu W, Zhao Y, Liang Y, Hu J, Liu R, Chen S, Chen Q, Liu Y, Zheng X, Li X. Correcting microplastic pollution and risk assessment in Chinese watersheds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126241. [PMID: 40222612 DOI: 10.1016/j.envpol.2025.126241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Microplastics (MPs) are emerging pollutants that are attracting attention because of their potential threats posed and their widespread presence in the environment. MP pollution in Chinese watersheds requires assessment; however, existing risk models face data-scale biases. By compiling 2,474 samples from 165 articles, we constructed a national dataset on MPs and propose a novel framework that integrates rescaled MP concentrations with MP characteristics to recalibrate MP pollution and ecological risks. The results showed that MP concentrations show substantial variability across seven orders of magnitude, and corrected data offered a more accurate representation of environmental concentrations. MP shapes, polymers, and colors differed among river basins, and population density and precipitation were important drivers of variations in MP concentrations. MP shapes, colors, and sizes that were not previously considered are now included in the risk assessment of MPs. Furthermore, 50 % of the sampling sites were in the dangerous and extremely dangerous ecological risk classes. The concentrations measured at 16.98 % of the sampling sites exceeded the risk threshold, therefore posing ecological and toxicological risks. The assessment framework may provide overall insights into the differences in MP pollution in river basins.
Collapse
Affiliation(s)
- Feng Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Yan Zhao
- Shanghai Municipal Engineering Design Institute (Group) Co. Ltd., Shanghai, 200003, China.
| | - Yue Liang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Jiang Hu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Rongqi Liu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shiling Chen
- School of Intelligent Manufacturing, Chongqing Jianzhu College, Chongqing, 400072, China
| | - Qinwei Chen
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuanxin Liu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Xiyin Zheng
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Xinyan Li
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
4
|
Jahedi F, Fard NJH, Khaksar MA, Rashidi P, Safdari F, Mansouri Z. Nano and Microplastics: Unveiling Their Profound Impact on Endocrine Health. Toxicol Mech Methods 2025:1-47. [PMID: 40432394 DOI: 10.1080/15376516.2025.2509745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 05/10/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Plastics are extensively used materials with a long environmental lifespan, posing significant risks to human health and the environment. Global plastic consumption has surged, with plastic waste expected to triple by 2060. The primary concern is the breakdown of plastics into nano and micro-sized particles, which can enter the body and have been detected in various organs and tissues.This review systematically examines the effects of micro and nanoplastics (MNPs) on the endocrine system using in vitro and in vivo experimental models. Following PRISMA guidelines, articles were sourced from databases like PubMed, Web of Science, and Scopus. After screening for relevance and removing duplicates and non-English articles, 103 articles focusing on the endocrine effects of MNPs were selected.MNPs can disrupt endocrine functions, altering reproductive hormones and gene expression patterns. In vivo exposure to MNPs increases inflammatory markers such as TNF-α, IL-6, IL-1β, and NF-κB, leading to apoptosis, inflammation, and oxidative stress. These disruptions impact the gonads, thyroid glands, and hormone secretion from the pituitary and hypothalamus. Most studies focus on terrestrial animals, with polystyrene being the most commonly used polymer.Future research should explore various plastic polymers, longer exposure durations, a broader range of concentrations, and human-level studies to better understand the toxicity of plastic particles. Reducing exposure to these pollutants requires legal changes, consumer behavior adjustments, and increased public awareness. Understanding the underlying processes can help propose methods to mitigate risks and protect human health.
Collapse
Affiliation(s)
- Faezeh Jahedi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neamatollah Jaafarzadeh Haghighi Fard
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ali Khaksar
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parisa Rashidi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhad Safdari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Mansouri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Zhang T, Wang Z, Wu Y, Zhu S, Su J. Interactions of Micro- and Nanoplastics with Biomolecules: From Public Health to Protein Corona Effect and Beyond. J Phys Chem B 2025. [PMID: 40413640 DOI: 10.1021/acs.jpcb.5c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Micro- and nanoplastics (M/NPs), as ubiquitous global environmental pollutants, have garnered increasing attention due to their pervasive presence. These particles can interact with biological molecules through various mechanisms, subsequently inducing potential toxic effects on living organisms. This review investigates the hazards of M/NPs and their interactions with biological membranes and proteins, focusing on their interaction mechanisms and potential effects on biomolecular structure and function. Specifically, we summarize the exposure pathways and potential harms of M/NPs, which can enter the human body through ingestion, inhalation, and skin contact, potentially causing toxicity, inflammation responses, oxidative stress, and endocrine disruption. Additionally, we highlight the interaction between M/NPs and biological membranes, which can induce structural changes, including membrane thickening, increased fluidity, and pore formation, thereby compromising membrane integrity and affecting cellular health. Besides, we emphasize the interaction between M/NPs and proteins, suggesting that protein structural changes and corona formation can influence oxidative stress responses and cytotoxicity, thereby impacting cellular functions and viability. Ultimately, suggestions and outlooks for further research are proposed. Overall, this review systematically summarizes current research on the interactions between M/NPs and biomolecules, including their mechanisms and biological effects, providing researchers with a comprehensive understanding of the field.
Collapse
Affiliation(s)
- Tao Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zi Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Wu
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sihao Zhu
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Hermabessiere L, Best C, Zaidi S, McIlwraith HK, Jeffries KM, Rochman CM. Understanding the contribution of plastic additive in microplastic toxicity from consumer products using fathead minnow (Pimephales promelas). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36523-z. [PMID: 40402372 DOI: 10.1007/s11356-025-36523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
Microplastics are ubiquitous in the environment. Once in the environment, these particles are ingested by organisms. The ingestion of microplastics can lead to various adverse effects. Still, what is driving the toxicity of microplastics is not well understood. Microplastics are a diverse suite of contaminants composed of several shapes, polymers, and chemical additives. The chemical additives in plastics are not always considered in toxicity studies despite their widespread presence in plastic products. We exposed fathead minnows (Pimephales promelas) for 60 days to four treatments: polyethylene microplastics with chemical additives, polyethylene microplastics without chemical additives, chemical additive leachates, and a control (no plastic, no additives). The main objective of this experiment was to understand what is driving the toxicity: the plastic itself (particles), the chemical additives, or both. We took samples at 12, 30, and 60 days to measure the accumulation of plastic and their additives, as well as to look for adverse effects via gene expression and measurements of weight, length, and condition index. Fish exposed to plastic with or without additives had plastic in their gastro-intestinal tract. We did not observe accumulation of Bismuth, a pigment we targeted chemically in the polyethylene. We observed no significant differences in weight, length, or condition between treatments at 12, 30, and 60 days. We also observed no differences in survival. We observed a significant difference in the expression of the following genes among treatments: sod1, sod2, gstp1, and esr2b. Significant differences were generally due to a lower relative expression in fish exposed to the plastics with additives and the chemical additives alone. In conclusion, we observed effects at the molecular level that appeared to be driven by plastic additives. Future studies should continue to try to understand the effects of plastics driven by additives and consider them in risk assessment frameworks.
Collapse
Affiliation(s)
- Ludovic Hermabessiere
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
| | - Carol Best
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| | - Sabrina Zaidi
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Hayley K McIlwraith
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Kenneth M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
7
|
Zhai K, Yin K, Lin Y, Chen S, Bi Y, Xing R, Ren C, Chen Z, Yu Z, Chen Z, Zhou S. Free Radicals on Aging Microplastics Regulated the Prevalence of Antibiotic Resistance Genes in the Aquatic Environment: New Insight into the Effect of Microplastics on the Spreading of Biofilm Resistomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40359213 DOI: 10.1021/acs.est.4c12699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The spread of antibiotic resistance genes (ARGs) by microplastics has received a great concern in coexisting "hotspots". Despite most microplastics suffering from natural aging, little is known about the effect of aging microplastics (A-MPs) on ARGs dissemination. Here, we demonstrated significant suppression of A-MPs on ARGs dissemination in natural rivers. Although ARGs and mobile genetic elements (MGEs) were effectively enriched on A-MPs, the relative abundance of ARGs and MGEs on A-MPs as well as in receiving water decreased by approximately 21.4% to 42.3% during a period of 30 days of dissemination. Further investigation revealed that •OH was consistently generated on A-MPs with a maximum value of 0.2 μmol/g. Importantly, scavenging of •OH significantly increased the relative abundance of ARGs and MGEs both on A-MPs and in receiving water 1.4-29.1 times, indicating the vital role of •OH in suppressing ARGs dissemination. Microbial analysis revealed that •OH inhibited the potential antibiotic-resistant bacteria in surface biofilms, such as Pseudomonas and Acinetobacter (with a decrease of 68.8% and 89.3%). These results demonstrated that •OH was extensively produced on A-MPs, which greatly reduced both the vertical and horizontal gene transfer of ARGs. This study provided new insights into the dissemination of ARGs through microplastics in natural systems.
Collapse
Affiliation(s)
- Kaipeng Zhai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Keke Yin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shu Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuzhang Bi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenjia Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziyu Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Schutten K, Morrill A, Lu Z, Chandrashekar A, Cunningham JT, Robertson GJ, Mallory ML, Jardine CM, Provencher JF. Accumulation of benzotriazole UV-stabilizers in relation to ingested plastics and associated health metrics in Larus gulls feeding at a landfill in Atlantic Canada. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137498. [PMID: 39914343 DOI: 10.1016/j.jhazmat.2025.137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Benzotriazole UV-Stabilizers (BZT-UVs), compounds added to plastics to reduce ultraviolet degradation, are considered contaminants of emerging concern given their environmental persistence and documented toxicity in humans and animals. UV328 is a BZT-UV that has been recently listed to Annex A of the Stockholm Convention; therefore, understanding species exposure is critical information to fulfill international and domestic regulatory obligations. We evaluated hepatic accumulation of 12 plastic additives (including nine BZT-UVs) in Larus gulls in Atlantic Canada. BZT-UV accumulation was assessed in relation to ingested plastics, hepatic heavy metal accumulation, and body condition. Ninety-six percent of gulls had at least one BZT-UV at detectable hepatic concentrations. The most frequently detected BZT-UVs were UVP (91.4 %) and UV328 (76 %), suggesting ubiquitous exposure across individuals. We demonstrated interspecific differences in the relationship between ingested plastics and accumulated contaminants, with a positive relationship detected between ingested plastics and both UVP and UV328 in American herring gulls (Larus argentatus smithsonianus), and a positive relationship between hepatic UV328 and Pb concentrations detected in great black-backed gulls (Larus marinus). We provide evidence that Larus gulls feeding at a coastal landfill are highly exposed to BZT-UVs, and that the relationship between ingested plastics and plastic-associated contaminants varies across sympatric species.
Collapse
Affiliation(s)
- Kerry Schutten
- Department of Pathobiology and Canadian Wildlife Health Cooperative, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G 2W1, Canada.
| | - André Morrill
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, Ontario K1A 0H3, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer (ISMER), Université du Québec a Rimouski (UQAR), 310, allée des Ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Akshaya Chandrashekar
- Department of Pathobiology and Canadian Wildlife Health Cooperative, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G 2W1, Canada
| | - Joshua T Cunningham
- Environment and Climate Change Canada, Wildlife and Landscape Science Directorate, 6 Bruce St., Mount Pearl, Newfoundland and Labrador A1N 4T3, Canada
| | - Gregory J Robertson
- Environment and Climate Change Canada, Wildlife and Landscape Science Directorate, 6 Bruce St., Mount Pearl, Newfoundland and Labrador A1N 4T3, Canada
| | - Mark L Mallory
- Acadia University, Department of Biology, 15 University Ave, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Claire M Jardine
- Department of Pathobiology and Canadian Wildlife Health Cooperative, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G 2W1, Canada
| | - Jennifer F Provencher
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, Ontario K1A 0H3, Canada
| |
Collapse
|
9
|
Li Y, Zhang J, Xu L, Li R, Zhang R, Li M, Ran C, Rao Z, Wei X, Chen M, Wang L, Li Z, Xue Y, Peng C, Liu C, Sun H, Xing B, Wang L. Leaf absorption contributes to accumulation of microplastics in plants. Nature 2025; 641:666-673. [PMID: 40205041 DOI: 10.1038/s41586-025-08831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025]
Abstract
Plant absorption is important for the entry of many pollutants into food chains. Although terrestrial microplastics (MPs) can be absorbed by the roots1,2, their upward translocation is slow1. Meanwhile, atmospheric MPs are widely present3,4, but strong evidence on their direct absorption by plants is still lacking. Here, analyses using mass spectrometry detection show the widespread occurrence of polyethylene terephthalate (PET) and polystyrene (PS) polymers and oligomers in plant leaves, and identify that their levels increase with atmospheric concentrations and the leaf growth duration. The concentrations of PET and PS polymers can reach up to 104 ng per g dry weight in leaves at the high-pollution areas studied, such as the Dacron factory and a landfill site, and 102-103 ng per g dry weight of PET and PS can be detected in the open-air-grown leafy vegetables. Nano-sized PET and PS particles in the leaves were visually detected by hyperspectral imaging and atomic force microscopy-infrared spectroscopy. Absorption of the proactively exposed non-labelled, fluorescently labelled or europium-labelled plastic particles by maize (Zea mays L.) leaves through stomatal pathways, as well as their translocation to the vascular tissue through the apoplastic pathway, and accumulation in trichomes was identified using hyperspectral imaging, confocal microscopy and laser-ablation inductively coupled plasma mass spectrometry. Our results demonstrate that the absorption and accumulation of atmospheric MPs by plant leaves occur widely in the environment, and this should not be neglected when assessing the exposure of humans and other organisms to environmental MPs.
Collapse
Affiliation(s)
- Ye Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Junjie Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - Ruoqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Rui Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Mengxi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Chunmei Ran
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Lu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Zhiwanxin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Yining Xue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
10
|
Levesque B, Hrapovic S, Berrué F, Vogt A, Ellis LD, Hermabessiere L. Evaluation of phenotypic and behavioral toxicity of micro- and nano-plastic polystyrene particles in larval zebrafish (Danio rerio). Toxicol Sci 2025; 205:154-165. [PMID: 39921884 PMCID: PMC12038248 DOI: 10.1093/toxsci/kfaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Plastic particles have been found in all environments and it is necessary to understand the risks these particles pose in, and to, the environment. The objectives of this work were to understand the toxic effects of varying size and concentration of polystyrene (PS) micro- and nano-plastics in zebrafish embryos and their fate within the larvae. In this work, larval zebrafish (Danio rerio) were exposed to six sizes (0.05, 0.25, 0.53, 2.1, 6.02, and 10.2 µm diameter) and concentrations (0.0005 to 0.2 µg/µL) of PS micro/nanoplastics particles. The zebrafish embryo toxicity (ZET) and the general and behavioral toxicity (GBT) assays were used to determine particle toxicity in embryos. Behavioral analysis was performed and micro/nanoplastics uptake and organ distribution were assessed. Phenotypic and behavioral toxicity was observed in all exposures with the exception of 0.25 µm particle-exposed larvae. Significant phenotypic toxicity was seen at the highest tested exposure concentration, with some sizes showing potential recovery as time increased in the assay. Behavioral analysis demonstrated a decrease in baseline activity across all micro- and nano-plastic sizes. Significant increases in light-dark responses were recorded in ZET assays of smaller-sized particles and no significant effects were observed at larger sizes. Significant decreases in this response were reported in the GBT assays of all tested sizes with the exception of the 0.05-µm particles. These assays demonstrate the general, developmental, and neurotoxicity of micro/nanoplastics to a model organism, which can be used to infer individual and population-level effects of exposure.
Collapse
Affiliation(s)
- Bailey Levesque
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Halifax, NS B3H 3Z1, Canada
| | - Sabahudin Hrapovic
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Montréal, QC H4P 2R2, Canada
| | - Fabrice Berrué
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Halifax, NS B3H 3Z1, Canada
| | - Anja Vogt
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Charlottetown, PEI C1A 4P3, Canada
| | - Lee D Ellis
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Halifax, NS B3H 3Z1, Canada
| | - Ludovic Hermabessiere
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
11
|
Amberg S, Mitrano DM. Exploring the Essential Use Concept for Primary Microplastics Regulation in the EU. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7799-7809. [PMID: 40245254 DOI: 10.1021/acs.est.4c10830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
With the increasing prevalence of plastic pollution, including microplastics (MPs, particles <5 mm), the pursuit of safer and more sustainable alternatives gains increasing traction. While a substantial portion of MPs in the environment arises from the degradation of plastic litter and the wear of polymer-containing materials (secondary MPs), deliberate incorporation of MPs in certain products (primary MPs) also represents a considerable source, and targeted measures can be implemented to minimize human exposure and environmental releases. Improved policies for managing macroplastic waste help mitigate secondary MPs, but addressing primary MPs requires distinct strategies. Globally, various approaches, such as bans or restrictions on primary MPs, have been proposed, including the recent EU regulation under REACH, which groups intentionally added MPs together based on their diverse uses and properties. However, applying the Essential Use Concept (EUC) provides a more refined regulatory approach; balancing environmental health, technical feasibility, and innovation. This perspective explores the potential, challenges, and limitations of implementing the EUC for primary MPs. By examining four use cases─controlled-release medicines, agricultural seed coatings, personal care products, and artificial turf infill─we highlight how the EUC can prioritize essential and beneficial applications while phasing out nonessential uses.
Collapse
Affiliation(s)
- Stefano Amberg
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
12
|
Zhang L, Zhao W, Yan R, Lyu S, Sui Q. Occurrence, sources, and ecological risk of microplastics in groundwater: Impacts by agricultural activities and atmospheric deposition. WATER RESEARCH 2025; 281:123585. [PMID: 40198953 DOI: 10.1016/j.watres.2025.123585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Although microplastic (MP) pollution in groundwater is a serious issue, its potential sources and environmental risks are poorly understood. This study identified the sources of MPs in groundwater from a megacity in China. It estimated the environmental risks of MPs using a combination of the pollution load index (PLI), the polymer hazard index (PHI), and the potential ecological risk index (PERI). The groundwater in Shanghai showed high MP abundances, ranging from 3 ± 3 particles/L to 99 ± 19 particles/L. A total of 43 polymer types were detected, of which polypropylene (PP) and polyethylene (PE) were the main polymer types. Groundwater in agricultural areas has the highest level of MP pollution, with >50 % of MPs being identified as PP. Plastic woven bags used in agricultural activities were the primary sources. Similar characteristics of MPs in groundwater from open wells and atmospheric deposition samples suggested that atmospheric deposition was a significant source of MPs in groundwater from open wells. Landfills and construction activities were also recognized as potential MP pollution sources in groundwater. Based on PLI, PHI and PERI analysis, the groundwater in Shanghai exhibited a high MP pollution load, a middle polymer hazard, and a high potential ecological risk level, respectively. The PERI analysis, a comprehensive assessment compared to the PLI and PHI analyses, indicated an overall high ecological risk of MPs in agricultural groundwater. This study advances the knowledge of MP sources and their ecological risks in groundwater, allowing for better MP pollution control in areas with high MP abundance and high risk levels.
Collapse
Affiliation(s)
- Lei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Ruiqi Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
13
|
Nava V, Dar JY, De Santis V, Fehlinger L, Pasqualini J, Adekolurejo OA, Burri B, Cabrerizo MJ, Chonova T, Cour M, Dory F, Drost AM, Figler A, Gionchetta G, Halabowski D, Harvey DR, Manzanares‐Vázquez V, Misteli B, Mori‐Bazzano L, Moser V, Rotta F, Schmid‐Paech B, Touchet CM, Gostyńska J. Zooming in the plastisphere: the ecological interface for phytoplankton-plastic interactions in aquatic ecosystems. Biol Rev Camb Philos Soc 2025; 100:834-854. [PMID: 39542439 PMCID: PMC11885710 DOI: 10.1111/brv.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Phytoplankton is an essential resource in aquatic ecosystems, situated at the base of aquatic food webs. Plastic pollution can impact these organisms, potentially affecting the functioning of aquatic ecosystems. The interaction between plastics and phytoplankton is multifaceted: while microplastics can exert toxic effects on phytoplankton, plastics can also act as a substrate for colonisation. By reviewing the existing literature, this study aims to address pivotal questions concerning the intricate interplay among plastics and phytoplankton/phytobenthos and analyse impacts on fundamental ecosystem processes (e.g. primary production, nutrient cycling). This investigation spans both marine and freshwater ecosystems, examining diverse organisational levels from subcellular processes to entire ecosystems. The diverse chemical composition of plastics, along with their variable properties and role in forming the "plastisphere", underscores the complexity of their influences on aquatic environments. Morphological changes, alterations in metabolic processes, defence and stress responses, including homoaggregation and extracellular polysaccharide biosynthesis, represent adaptive strategies employed by phytoplankton to cope with plastic-induced stress. Plastics also serve as potential habitats for harmful algae and invasive species, thereby influencing biodiversity and environmental conditions. Processes affected by phytoplankton-plastic interaction can have cascading effects throughout the aquatic food web via altered bottom-up and top-down processes. This review emphasises that our understanding of how these multiple interactions compare in impact on natural processes is far from complete, and uncertainty persists regarding whether they drive significant alterations in ecological variables. A lack of comprehensive investigation poses a risk of overlooking fundamental aspects in addressing the environmental challenges associated with widespread plastic pollution.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Jaffer Y. Dar
- ICAR‐Central Soil Salinity Research InstituteKarnal132001India
- Department of Experimental LimnologyLeibniz Institute of Freshwater Ecology and Inland FisheriesMüggelseedamm 310Berlin12587Germany
| | - Vanessa De Santis
- Water Research Institute, National Research CouncilCorso Tonolli 50Verbania‐PallanzaVerbania28922Italy
| | - Lena Fehlinger
- GEA Aquatic Ecology GroupUniversity of Vic ‐ Central University of CataloniaCarrer de la Laura 13Catalonia08500 VicSpain
| | - Julia Pasqualini
- Department of River EcologyHelmholtz Centre for Environmental Research‐UFZBrückstr. 3aMagdeburg39114Germany
| | - Oloyede A. Adekolurejo
- Ecology and Evolution, School of BiologyUniversity of LeedsLeedsLS2 9JTUK
- Department of BiologyAdeyemi Federal University of EducationOndo CityOndoPMB 520Nigeria
| | - Bryan Burri
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Marco J. Cabrerizo
- Department of Ecology & Institute of Water ResearchUniversity of GranadaCampus Fuentenueva s/nGranada18071Spain
- Estación de Fotobiología Playa Unióncasilla de correos 15RawsonChubut9103Argentina
| | - Teofana Chonova
- Department Environmental ChemistryEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstr. 133DübendorfCH‐8600Switzerland
| | | | - Flavia Dory
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Annemieke M. Drost
- Department of Aquatic EcologyNetherlands Institute of EcologyDroevendaalsesteeg 10Wageningen6708 PBThe Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamP.O. Box 94240Amsterdam1090 GEThe Netherlands
| | - Aida Figler
- Department of BioinformaticsSemmelweis UniversityTűzoltó utca 7‐9Budapest1094Hungary
| | - Giulia Gionchetta
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA)Spanish Council of Scientific Research (CSIC)Barcelona0803Spain
| | - Dariusz Halabowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental ProtectionUniversity of LodzBanacha 12/16Lodz90‐237Poland
| | - Daniel R. Harvey
- Lake Ecosystems Group, UK Centre for Ecology & HydrologyLancaster Environment CentreLibrary Avenue, BailriggLancasterLA1 4APUK
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Víctor Manzanares‐Vázquez
- Department of Research and DevelopmentCoccosphere Environmental AnalysisC/Cruz 39, 29120 Alhaurín el GrandeMálagaSpain
| | - Benjamin Misteli
- WasserCluster Lunz ‐ Biologische StationDr Carl Kupelwieser Promenade 5Lunz am See3293Austria
| | - Laureen Mori‐Bazzano
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Valentin Moser
- Community Ecology, Swiss Federal Institute for ForestSnow and Landscape Research WSLZürcherstrasse 111BirmensdorfCH‐8903Switzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 133DübendorfCH‐8600Switzerland
| | - Federica Rotta
- Department of Earth and Environmental SciencesUniversity of PaviaVia Ferrata 1Pavia27100Italy
- Institute of Earth ScienceUniversity of Applied Science and Arts of Southern SwitzerlandVia Flora Ruchat‐Roncati 15MendrisioCH‐6850Switzerland
| | - Bianca Schmid‐Paech
- University Weihenstephan‐Triesdorf of Applied ScienceAm Hofgarten 4Freising85354Germany
| | - Camille M. Touchet
- Université Claude Bernard ‐ Lyon 1, “LEHNA UMR 5023, CNRS, ENTPE3‐6, rue Raphaël DuboisVilleurbanneF‐69622France
| | - Julia Gostyńska
- Department of Hydrobiology, Faculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznanskiego 6Poznan61‐614Poland
| |
Collapse
|
14
|
Wu H, Peng T, Li X, Zhao Y, Huang F, Guo P, Lyu M, Yin J, Liu Q, Gouda S, Mohamed I, Huang Q, Wang X. Effects of Aging Biodegradable Agricultural Films on Soil Physicochemical Properties and Heavy Metal Speciation. TOXICS 2025; 13:245. [PMID: 40278561 PMCID: PMC12030900 DOI: 10.3390/toxics13040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
Through soil incubation experiments, the effects of aged PBAT + PLA (polybutylene adipate terephthalate + polylactic acid) film fragments were analyzed. Surface characteristics and chemical structures of the films changed significantly after one (T2) and two years (T1) of aging compared to new films (T3). Both new and aged fragments reduced soil pH, altered enzyme activities, and influenced dissolved organic matter (DOM) fluorescence. Alkaline phosphatase activity declined by 33.2%, 23.8%, and 11.6% for T1, T2, and T3, respectively, while urease and sucrase activities increased in a time-dependent manner. The degree of soil humification rose by 66.4%, 60.4%, 49.3%, and 88.6% for T1, T2, T3, and T4, respectively, compared to the control (CK). Aged films exhibited stronger DOM fluorescence intensity than new films. Tessier extraction analysis revealed a decrease in exchangeable Cd by 22.9%, 13.1%, and 10.2% for T1, T2, and T3, respectively, while organically bound Cu increased. Correlation analysis indicated a significant positive relationship between soil humification and heavy metal bioavailability. These findings provide insight into the ecological effects of biodegradable agricultural films, offering a theoretical foundation for assessing their environmental risks and safety.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Tianmu Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Xueya Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Yang Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Fengshuo Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Peng Guo
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (P.G.); (M.L.)
| | - Mingfu Lyu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (P.G.); (M.L.)
| | - Junhua Yin
- Shandong Qingtian Plastic Co., Ltd., Zibo 255410, China;
| | - Qin Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Shaban Gouda
- Agricultural and Biosystems Engineering Department, Benha University, Banha 13511, Al-Qalyubia Governorate, Egypt; (S.G.); (I.M.)
| | - Ibrahim Mohamed
- Agricultural and Biosystems Engineering Department, Benha University, Banha 13511, Al-Qalyubia Governorate, Egypt; (S.G.); (I.M.)
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Xu Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| |
Collapse
|
15
|
Zhuang QL, Yuan HY, Sun M, Deng HG, Zama EF, Tao BX, Zhang BH. Biochar-mediated remediation of low-density polyethylene microplastic-polluted soil-plant systems: Role of phosphorus and protist community responses. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137076. [PMID: 39787863 DOI: 10.1016/j.jhazmat.2024.137076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
While the prevalent utilization of plastic products has enabled social advancement, the concomitant microplastics (MPs) pollution presents a serious threat to environmental security and public health. Protists, as regulators of soil microorganisms, are also capable of responding most rapidly to changes in the soil environment. The amelioration mechanisms of biochar in the soil-plant systems polluted by low-density polyethylene microplastics (LDPE-MPs) and the response of protist communities in the soil-plant systems polluted by MPs remain unclear. In this field experiment, the same concentration of biochar (2 %) was applied to remediate different concentrations (1 % and 10 %) of LDPE-MPs pollution in cherry radish soil. The main results indicate that, when compared with the treatment of applying biochar to address high-level LDPE-MPs polluted soil (BP2), the remediation of low-level LDPE-MPs polluted soil by biochar (BP1) led to a 62.02 % reduction in soil available phosphorus. Meanwhile, the abundance of phoD and the activity of alkaline phosphatase increased by 127.75 % and 22.57 % respectively. Moreover, in contrast to BP2, the root biomass and phosphorus content of cherry radish in BP1 increased by 52.80 % and 42.86 % respectively. For protist communities, their structure, niche width, and assembly were altered. The interaction between biochar and LDPE-MPs influenced phosphorus cycling, and protists were closely associated with these processes. Therefore, soil phosphorus cycling indicators and protist community may be important indicators for biochar amelioration on soil MPs pollution. The study highlights the importance of considering these factors for better farmland management in the context of MPs pollution, which is significant for sustainable agriculture and environmental protection.
Collapse
Affiliation(s)
- Qi-Lu Zhuang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China; Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China
| | - Hai-Yan Yuan
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China; Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China.
| | - Min Sun
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Huan-Guang Deng
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Eric Fru Zama
- Department of Agricultural and Environmental Engineering, College of Technology, University of Bamenda, Bambili, Cameroon
| | - Bao-Xian Tao
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Bao-Hua Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
16
|
Li C, Zhang X, Chen H, Wang H, Huang J, Li T, Wang S, Dong W. Thermoformed, thermostable, waterproof and mechanically robust cellulose-based bioplastics enabled by dynamically reversible thia-Michael reaction. Int J Biol Macromol 2025; 295:139567. [PMID: 39778833 DOI: 10.1016/j.ijbiomac.2025.139567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/21/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Cellulose is a renewable biodegradable polymer derived from abundant natural resources. Substituting petroleum-based polymers with cellulose-based bioplastics is an effective way to alleviate environmental issues like resource depletion and white pollution. However, challenges such as poor thermostability, difficulty in thermoforming and water sensitivity seriously hinder the fabrication and use of cellulose-based bioplastics. Herein, a thermoformed, thermostable, waterproof and mechanically robust cellulose-based bioplastic (H-HEC) is fabricated by introducing thia-Michael-based reversible crosslinked structure into hydroxyethyl cellulose. This is the first instance of integrating thia-Michael-based crosslinked structure into cellulose derivatives. The resulting H-HEC can be thermoformed and remolded without adding any plasticizers. Besides, the obtained H-HEC exhibit excellent overall properties, such as a high thermal decomposition temperature of 366 °C, a high water contact angle of 108°, a high transmittance of 90 % and good mechanical properties. Additionally, H-HEC combines impressive transparency with effective UV-shielding properties. We envision that this work provides a novel method to prepare thermoformable cellulose-based bioplastics with good water resistance, thermostability, transparency and mechanical properties. The combined thermoformability and superior overall performances will promote the practical application of cellulose-based bioplastics and contribute to the replacement of petroleum-based polymer by cellulose-based bioplastics.
Collapse
Affiliation(s)
- Chongyang Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Hang Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haitang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
17
|
Zhang Z, Zhao J, Li K, Wang X, Xu H, Mao D, Liu S. "Tire plastisphere" in aquatic ecosystems: Biofilms colonizing on tire particles exhibiting a distinct community structure and assembly compared to conventional plastisphere. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136660. [PMID: 39603124 DOI: 10.1016/j.jhazmat.2024.136660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Tire particles (TPs) significantly contribute to microplastics in aquatic ecosystems, which has recently attracted ecological concerns worldwide. Numerous studies have shown that biofilms on microplastics harbor unique species and harmful functions, but it remains unclear whether TPs could offer distinct niches for biofilms compared to conventional microplastics (CP). This study investigated the succession and assembly of biofilms on TPs compared with CP over 60 days. Our results showed the community structures of biofilms on TPs and CP were distinct. Intriguingly, a greater structural dissimilarity was observed between TPs-associated communities and natural biofilms compared to that between CP-associated communities and natural biofilms. This dissimilarity became more pronounced as biofilms progressed through succession. Furthermore, the bacterial community on the TPs exhibits a network of greater complexity, more stable structure, and higher activity than that on the CP, but the pattern was reversed in the eukaryotic community. Deterministic processes had a more critical impact on bacterial communities on TPs, whereas distinct stochastic processes controlled eukaryotic communities on TPs (dispersal limitation) and CP (undominated processes). Altogether, this study tentatively introduced the term "tire plastisphere" (i.e., TP-attached biofilms), emphasizing TPs could serve as more artificial microbial habitats and pose potential risks in disturbing aquatic ecology.
Collapse
Affiliation(s)
- Zixuan Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jia Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hongzhe Xu
- Dept of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Deqiang Mao
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Sheng Liu
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
18
|
Xu H, Matsumura Y, Yamashita R, Nakano H, Ito SI. Heterogeneous seafloor deposition of heavy microplastics in the North Pacific estimated over 65 years. MARINE POLLUTION BULLETIN 2025; 211:117536. [PMID: 39884875 DOI: 10.1016/j.marpolbul.2025.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 02/01/2025]
Abstract
Marine plastic pollution has been a public concern for many decades; however, transport processes of heavy microplastics to the seafloor have long been overlooked given the difficulties in sampling and modeling. The distribution of heavy microplastic deposition on the seafloor in the North Pacific for 65 years since 1951, was estimated using a particle tracking model with 577,143,840 particles. The model revealed that 22 % of heavy microplastics were deposited over 100 km offshore from their release locations. Strong currents, including the Kuroshio Current and Equatorial Counter Current, advected the heavy microplastics offshore; however, the behaviors of different-sized microplastics with different sinking velocities made the seafloor deposition heterogeneous. The seafloor was separated into six (three) clusters based on the origins (composition of sinking velocity categories) of the deposited microplastics. Deposited microplastics showed a rapid increase since the 2000s even for the open ocean far from emission sources.
Collapse
Affiliation(s)
- Haodong Xu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.
| | - Yoshimasa Matsumura
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.
| | - Rei Yamashita
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.
| | - Hideyuki Nakano
- Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki, Japan.
| | - Shin-Ichi Ito
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.
| |
Collapse
|
19
|
Jamil A, Ahmad A, Moeen-Ud-Din M, Zhang Y, Zhao Y, Chen X, Cui X, Tong Y, Liu X. Unveiling the mechanism of micro-and-nano plastic phytotoxicity on terrestrial plants: A comprehensive review of omics approaches. ENVIRONMENT INTERNATIONAL 2025; 195:109257. [PMID: 39818003 DOI: 10.1016/j.envint.2025.109257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
Micro-and-nano plastics (MNPs) are pervasive in terrestrial ecosystems and represent an increasing threat to plant health; however, the mechanisms underlying their phytotoxicity remain inadequately understood. MNPs can infiltrate plants through roots or leaves, causing a range of toxic effects, including inhibiting water and nutrient uptake, reducing seed germination rates, and impeding photosynthesis, resulting in oxidative damage within the plant system. The effects of MNPs are complex and influenced by various factors including size, shape, functional groups, and concentration. Recent advancements in omics technologies such as proteomics, metabolomics, transcriptomics, and microbiomics, coupled with emerging technologies like 4D omics, phenomics, spatial transcriptomics, and single-cell omics, offer unprecedented insight into the physiological, molecular, and cellular responses of terrestrial plants to MNPs exposure. This literature review synthesizes current findings regarding MNPs-induced phytotoxicity, emphasizing alterations in gene expression, protein synthesis, metabolic pathways, and physiological disruptions as revealed through omics analyses. We summarize how MNPs interact with plant cellular structures, disrupt metabolic processes, and induce oxidative stress, ultimately affecting plant growth and productivity. Furthermore, we have identified critical knowledge gaps and proposed future research directions, highlighting the necessity for integrative omics studies to elucidate the complex pathways of MNPs toxicity in terrestrial plants. In conclusion, this review underscores the potential of omics approaches to elucidate the mechanisms of MNPs-phytotoxicity and to develop strategies for mitigating the environmental impact of MNPs on plant health.
Collapse
Affiliation(s)
- Asad Jamil
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Ambreen Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yuxuan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
20
|
Wang H, Wu Y, Deng Y, Wu X, Li X, Xu H, Zeng Y, Yan Y. Impacts of wind forcing on microplastics kinematic in a sensitive water area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177983. [PMID: 39647200 DOI: 10.1016/j.scitotenv.2024.177983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Microplastics (MPs) have been found in different environmental department globally, and the threat to organisms posed by MPs is also widely recognized. Kinematic characteristics of low-density fiber MPs in Poyang Lake under different due-south wind were calculated by combining hydrodynamic model with particle tracking model in this study. Poyang Lake is divided into north lake and south lake for study based on its topographic and hydrodynamic characteristics, and the results are as follows: the critical wind speeds causing vertical mixing of MPs in the water column ranges from 6 to 9 m·s-1 in the north lake, while it is >9 m·s-1 in the south lake, and the MPs beaching rate decreases by 7.08 %/(m·s-1) as the due-south wind speed increases. The MPs speed is mainly affected by surface current, while the direction of the velocity is more affected by wind. The MPs velocity in the south lake is only 27.10 % of that in the north lake, and the direction is more dispersed, so the due-south wind concentrates the direction of MPs velocity more to the north in the south lake. The northern wards movement of MPs resulted in a noticeable decrease in FS in the south lake, with FS decreasing by 0.10 for every 1 m·s-1 increase in wind speed, and therefore, the due-south wind reduces the ecological risk posed by MPs through reducing the range of movement and retention time. However, since the FS in the north lake has been close to the minimum value of 1, the reduction of the FS is not significant, and the wind reduces the risk mainly by shortening the retention time of the MPs. Therefore, the ecological risk caused by MPs in Poyang Lake under no or weak wind conditions should be taken into consideration.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yanqing Deng
- Jiangxi Hydrological Monitoring Center, Nanchang 330000, China; College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; Jiangxi Province Key Laboratory of Ecohydrological Monitoring Research in Poyang Lake Basin, Nanchang 330000, China
| | - Xiaomao Wu
- Jiangxi Poyang Lake water conservancy project construction office, Nanchang 330009, China
| | - Xiaoying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Haosen Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yichuan Zeng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yuting Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
21
|
Zhang S, Sun J, Zhou Q, Feng X, Yang J, Zhao K, Zhang A, Zhang S, Yao Y. Microplastic contamination in Chinese topsoil from 1980 to 2050. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176918. [PMID: 39447912 DOI: 10.1016/j.scitotenv.2024.176918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
China's soil is experiencing significant microplastic contamination. We developed a machine-learning model to assess microplastic pollution from 1980 to 2050. Our results showed that the average abundance of microplastics in topsoil increased from 45 items per kilogram of soil in 1980 to 1156 items by 2018, primarily due to industrial growth (39 %), agricultural film usage (30 %), tire wear (17 %), and domestic waste (14 %). During the same period, microplastic levels in cropland rose from 98 to 2401 items per kilogram of soil, and exposure levels for the Chinese population increased from 808 to 3168 items per kilogram. By 2050, a reduction in the use of agricultural films is expected to decrease cropland contamination by half. However, overall levels are anticipated to remain steady due to other persistent sources, indicating a continued spread of microplastics into subterranean environments, water bodies, and human systems. This study highlights China's microplastic challenges and suggests potential global trends, emphasizing the need for increased awareness and intervention worldwide.
Collapse
Affiliation(s)
- Shuyou Zhang
- College of Environment, Hohai University, Nanjing 210024, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Sun
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xudong Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kankan Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anping Zhang
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Songhe Zhang
- College of Environment, Hohai University, Nanjing 210024, China
| | - Yijun Yao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Yan F, Hermansen C, Zhou G, Knadel M, Norgaard T. Meta-analysis shows that microplastics affect ecosystem services in terrestrial environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136379. [PMID: 39500183 DOI: 10.1016/j.jhazmat.2024.136379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
To date, the understanding of the risks and impacts of microplastics (MPs) on terrestrial ecosystems remains limited, primarily due to most studies focusing on single ecosystem service. This study addressed this gap by conducting an integrative meta-analysis of 128 studies to explore the multifaceted impacts of MPs on various ecosystem services, including plant productivity, soil carbon (C) sequestration, microbial biodiversity, soil fertility, microbial biomass, and enzyme activity. We found that MPs reduced plant productivity service by 14.5 %, microbial biodiversity service by 3.4 %, and soil fertility service by 8.2 %, while soil C sequestration service increased by 12.2 %. No significant effects were observed on microbial biomass and enzyme activity services. Additionally, MPs of different types and shapes influenced the ecosystem services differently, with fiber, fragment, and round-shaped MPs decreasing the plant productivity service by 22.0 %, 14.6 %, and 12.7 %, respectively. Correlation analysis revealed intricate relationships between MPs properties and the ecosystem services. Our findings also revealed complex interdependencies among the ecosystem services induced by MPs application. We observed that the plant productivity service was negatively correlated with the soil C sequestration service, but positively correlated with microbial biodiversity, microbial biomass, and enzyme activity services. Together, our study emphasized the need for targeted research to develop mitigation strategies addressing the multifaceted effects of MPs to terrestrial ecosystems.
Collapse
Affiliation(s)
- Fulai Yan
- Department of Agroecology, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark.
| | - Cecilie Hermansen
- Department of Agroecology, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Guiyao Zhou
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, 41012 Seville, Spain
| | - Maria Knadel
- Department of Agroecology, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Trine Norgaard
- Department of Agroecology, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| |
Collapse
|
23
|
Xu L, Bai X, Li K, Zhang G, Zhang M, Wu Z, Huang Y, Hu M. Sandstorms contribute to the atmospheric microplastic pollution: Transport and accumulation from degraded lands to a megacity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136427. [PMID: 39522213 DOI: 10.1016/j.jhazmat.2024.136427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Surface dust from degraded lands is a major global aerosol source, mobilized by meteorological events like sandstorms. Microplastics (MPs) in dust can be enriched in the atmosphere and transported over long distances to sensitive regions during sandstorms. This study was conducted in a megacity frequently impacted by sandstorms in spring, exploring the influx, characteristics, enrichment mechanism, and transport pathway of sandstorm-derived MPs. The deposition rate of these MPs reached 1823.65 ± 892.53 items·m-2·d-1, predominantly consisting of low-density polymers and those mainly used in synthetic fiber, with an average size of 60.75 µm. Compared to MPs in annual atmospheric deposition, these MPs were smaller and contained a higher proportion of potentially harmful polymers. These factors could increase exposure risks for residents from sandstorm-derived MPs, along with distinct meteorological and ecological effects. Backward trajectory analysis suggested the observed sandstorms originated from the Mongolian Plateau, over 1000 km away. Comparisons of MPs from surface-collected dust on the Mongolian Plateau with sandstorms-delivered MPs revealed the transport was determined by MP shape, size, and density. This study highlights the critical role of sandstorms in the MP atmospheric cycling, emphasizing the extensive impacts of MPs and the need for coordinated mitigation efforts across regions.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China.
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
24
|
Gou Z, Wu H, Li S, Liu Z, Zhang Y. Airborne micro- and nanoplastics: emerging causes of respiratory diseases. Part Fibre Toxicol 2024; 21:50. [PMID: 39633457 PMCID: PMC11616207 DOI: 10.1186/s12989-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Airborne micro- and nanoplastics (AMNPs) are ubiquitously present in human living environments and pose significant threats to respiratory health. Currently, much research has been conducted on the relationship between micro- and nanoplastics (MNPs) and cardiovascular and gastrointestinal diseases, yet there is a clear lack of understanding regarding the link between AMNPs and respiratory diseases. Therefore, it is imperative to explore the relationship between the two. Recent extensive studies by numerous scholars on the characteristics of AMNPs and their relationship with respiratory diseases have robustly demonstrated that AMNPs from various sources significantly influence the onset and progression of respiratory conditions. Thus, investigating the intrinsic mechanisms involved and finding necessary preventive and therapeutic measures are crucial. In this review, we primarily describe the fundamental characteristics of AMNPs, their impact on the respiratory system, and the intrinsic toxic mechanisms that facilitate disease development. It is hoped that this article will provide new insights for further research and contribute to the advancement of human health.
Collapse
Affiliation(s)
- Zixuan Gou
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Haonan Wu
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Shanyu Li
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| | - Ying Zhang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
- Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
25
|
Wang B, Wu L, Pang K, Zhang G, Xu D, Sun H, Yin X. Transport of reduced PBAT microplastics in saturated porous media: Synergistic effects of enhanced surface energy and roughness. WATER RESEARCH 2024; 267:122514. [PMID: 39342712 DOI: 10.1016/j.watres.2024.122514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Microplastic (MP) pollution presents significant global environmental challenges, exacerbated by reduction aging processes in anoxic environments, thereby increasing environmental risks and potential threats to human health. However, the mechanisms underlying the transport of reduced MPs remain poorly understood. In this study, laboratory-scale column experiments were conducted to investigate the transport behavior of polybutylene adipate terephthalate (PBAT), a common biodegradable MPs, and its reduced products obtained through the aging process mediated by two typical reducing agents, NaBH4 and Na2S, under varying conditions (ionic strength (IS), divalent cations, and low molecular weight organic acids (LMWOAs)). The results indicated that reduction aging improved the hydrophilicity of PBAT by increasing the surface roughness (roughness factor increased from 1.300 to 1.642) and surface energy (from 51.80 to 107.03 mN m-1), thereby increasing the mobility of reduced PBAT (with recovery rate increased from 53.77 % to 63.18 %). Increased IS decreased the mobility of reduced PBAT by decreasing the surface negative charge density. Divalent cations inhibited the mobility of both pristine and reduced PBAT in porous media, with pristine PBAT, containing more oxygen functional groups, exhibiting stronger inhibition. Furthermore, LMWOAs promoted the retention of reduced PBAT in porous media, which was dependent on the type of LMWOAs. This study revealed the alterations in MPs properties caused by reduction aging and their effects on transport mechanisms, offering new insights into the transport behavior and environmental risks of reduced MPs.
Collapse
Affiliation(s)
- Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kejing Pang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Guangcai Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Duo Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
26
|
Jia Z, Wang H, Yu P, He H, Huang Q, Hong W, Liu C, Shi Y, Wang J, Xin Y, Jia X, Ma J, Yu B. Soft-Rigid Construction of Mechanically Robust, Thermally Stable, and Self-Healing Polyimine Networks with Strongly Recyclable Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406821. [PMID: 39392200 DOI: 10.1002/smll.202406821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/22/2024] [Indexed: 10/12/2024]
Abstract
Reversible and recyclable thermosets have garnered increasing attention for their smart functionality and sustainability. However, they still face challenges in balancing comprehensive performance and dynamic features. Herein, silicon (Si)─oxygen (O) and imidazole units covalent bonds are coupled to generate a new class of bio-polyimines (Bio-Si-PABZs), to endow them with high performance and excellent reprocessing capability and acid-degradability. By tailoring the molar content of diamines, this Bio-Si-PABZs displayed both a markedly high glass transition temperature (162 °C) and a high char yield at 800 °C in an oxygen atmosphere (73.1%). These Bio-Si-PABZs with their favorable properties outperformed various previously reported polyimines and competed effectively with commercial fossil-based polycarbonate. Moreover, the scratch (≈10 µm) on the surface of samples can be self-healing within only 2 min, and an effective "Bird Nest"-to-"Torch" recycling can also be achieved through free amines solution. Most importantly, a bio-based siloxane adhesive derived from the intermediate Bio-Si-PABZ-1 by acidic degradation demonstrated broad and robust adhesion in various substrates, with values reaching up to ≈3.5 MPa. For the first time, this study lays the scientific groundwork for designing robust and recyclable polyimine thermosets with Si─O and imidazole units, as well as converting plastic wastes into thermal-reversibility and renewable adhesives.
Collapse
Affiliation(s)
- Zichen Jia
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Haiyue Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Ping Yu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Hongfei He
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qirui Huang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Wei Hong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Cai Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Yanji Shi
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Jue Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yumeng Xin
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Xuemeng Jia
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Juanjuan Ma
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Bin Yu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
27
|
Tariq A, Okoffo ED, Fenti A, Fu H, Thomas KV. Unscrambling why plastics aren't detectable in chicken eggs. CHEMOSPHERE 2024; 367:143584. [PMID: 39454765 DOI: 10.1016/j.chemosphere.2024.143584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Several food groups have been reported to contain varying concentrations of plastics. This study was designed to quantitatively investigate for the first time in Australia the presence of plastics in store-bought chicken eggs. Three commonly consumed brands of free-range, free-range organic, barn-laid and backyard (home-laid) chicken egg samples were analyzed for seven common polymers (i.e., polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate, polystyrene, poly-(methylmethacrylate) and polycarbonate). Samples were extracted by enzyme digestion and pressurized liquid extraction, followed by quantitative analysis through double-shot microfurnace pyrolysis coupled to gas chromatography-mass spectrometry. No plastics were detected at concentrations > limit of detection (LOD) (from 0.04 μg/g for PS to 0.22 μg/g for PVC) in the egg samples analyzed, regardless of brand and category, suggesting limited exposure of Australians to plastics from consuming eggs This study provides valuable baseline data and underscores the importance of continued monitoring to ensure the safety and integrity of food supplies in the face of rising environmental plastic pollution.
Collapse
Affiliation(s)
- Anum Tariq
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; ARC Training Centre for Hyphenated Analytical Separation Technologies (HyTECH), Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| | - Angelo Fenti
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; Department of Engineering, University of Campania, "Luigi Vanvitelli", Via Roma 29, Aversa, 81031, Italy
| | - Hongrui Fu
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; ARC Training Centre for Hyphenated Analytical Separation Technologies (HyTECH), Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
28
|
Bai Z, He Y, Hu G, Cheng L, Wang M. Microplastics at an environmentally relevant dose enhance mercury toxicity in a marine copepod under multigenerational exposure: Multi-omics perspective. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135529. [PMID: 39154477 DOI: 10.1016/j.jhazmat.2024.135529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Here, we subjected the marine copepod Tigriopus japonicus to environmentally-relevant concentrations of microplastics (MPs) and mercury (Hg) for three generations (F0-F2) to investigate their physiological and molecular responses. Hg accumulation and phenotypic traits were measured in each generation, with multi-omics analysis conducted in F2. The results showed that MPs insignificantly impacted the copepod's development and reproduction, however, which were significantly compromised by Hg exposure. Interestingly, MPs significantly increased Hg accumulation and consequently aggravated this metal toxicity in T. japonicus, demonstrating their carrier role. Multi-omics analysis indicated that Hg pollution produced numerous toxic events, e.g., induction of apoptosis, damage to cell/organ morphogenesis, and disordered energy metabolism, ultimately resulting in retarded development and decreased fecundity. Importantly, MPs enhanced Hg toxicity mainly via increased oxidative apoptosis, compromised cell/organ morphogenesis, and energy depletion. Additionally, phosphoproteomic analysis revealed extensive regulation of the above processes, and also impaired neuron activity under combined MPs and Hg exposure. These alterations adversely affected development and reproduction of T. japonicus. Overall, our findings should offer novel molecular insights into the response of T. japonicus to long-term exposure to MPs and Hg, with a particular emphasis on the carrier role of MPs on Hg toxicity.
Collapse
Affiliation(s)
- Zhuoan Bai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yaohui He
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Guosheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Luman Cheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
29
|
Reppas-Chrysovitsinos E, Svanström M, Peters G. Estimating fossil carbon contributions from chemicals and microplastics in Sweden's urban wastewater systems: A model-based approach. Heliyon 2024; 10:e37665. [PMID: 39323797 PMCID: PMC11422550 DOI: 10.1016/j.heliyon.2024.e37665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024] Open
Abstract
The importance of including fossil carbon in greenhouse gas emission assessments from wastewater treatment plants (WWTPs) is highlighted in the 2019 Intergovernmental Panel for Climate Change (IPCC) guidelines revision and underpinned by an increasing number of experimental studies. The present study introduces a model-based approach to estimate fossil carbon flows within Sweden's urban wastewater system, employing data on chemical and polymeric material flows as a starting point. Our findings show that fossil carbon constitutes approximately 12-17 % of the total carbon emissions to sewer systems. This result aligns with experimental data, which shows fossil carbon contributions to WWTP influents ranging from 4 to 28 %. Our analysis further indicates that microplastics contribute about 13 % of the fossil carbon influx to Swedish WWTPs, while organic chemicals account for the remaining 83 %.
Collapse
Affiliation(s)
- Efstathios Reppas-Chrysovitsinos
- Division of Environmental Systems Analysis, Department of Technology Management and Economics, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
| | - Magdalena Svanström
- Division of Environmental Systems Analysis, Department of Technology Management and Economics, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
| | - Gregory Peters
- Division of Environmental Systems Analysis, Department of Technology Management and Economics, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
| |
Collapse
|
30
|
Gong K, Hu S, Zhang W, Peng C, Tan J. Topic modeling discovers trending topics in global research on the ecosystem impacts of microplastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:425. [PMID: 39316202 DOI: 10.1007/s10653-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
The ecological threats of microplastics (MPs) have sparked research worldwide. However, changes in the topics of MP research over time and space have not been evaluated quantitatively, making it difficult to identify the next frontiers. Here, we apply topic modeling to assess global spatiotemporal dynamics of MP research. We identified nine leading topics in current MP research. Over time, MP research topics have switched from aquatic to terrestrial ecosystems, from distribution to fate, from ingestion to toxicology, and from physiological toxicity to cytotoxicity and genotoxicity. In most of the nine leading topics, a disproportionate amount of independent and collaborative research activity was conducted in and between a few developed countries which is detrimental to understanding the environmental fates of MPs in a global context. This review recognizes the urgent need for more attention to emerging topics in MP research, particularly in regions that are heavily impacted but currently overlooked.
Collapse
Affiliation(s)
- Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
31
|
Yang WK, Gong Z, Wang BT, Hu S, Zhuo Y, Jin CZ, Jin L, Lee HG, Jin FJ. Biodegradation of low-density polyethylene by mixed fungi composed of Alternaria sp. and Trametes sp. isolated from landfill sites. BMC Microbiol 2024; 24:321. [PMID: 39232659 PMCID: PMC11373289 DOI: 10.1186/s12866-024-03477-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024] Open
Abstract
With the development of industry and modern manufacturing, nondegradable low-density polyethylene (LDPE) has been widely used, posing a rising environmental hazard to natural ecosystems and public health. In this study, we isolated a series of LDPE-degrading fungi from landfill sites and carried out LDPE degradation experiments by combining highly efficient degrading fungi in pairs. The results showed that the mixed microorganisms composed of Alternaria sp. CPEF-1 and Trametes sp. PE2F-4 (H-3 group) had a greater degradation effect on heat-treated LDPE (T-LDPE). After 30 days of inoculation with combination strain H-3, the weight loss rate of the T-LDPE film was approximately 154% higher than that of the untreated LDPE (U-LDPE) film, and the weight loss rate reached 0.66 ± 0.06%. Environmental scanning electron microscopy (ESEM) and Fourier transform infrared spectroscopy (FTIR) were used to further investigate the biodegradation impacts of T-LDPE, including the changes on the surface and depolymerization of the LDPE films during the fungal degradation process. Our findings revealed that the combined fungal treatment is more effective at degrading T-LDPE than the single strain treatment, and it is expected that properly altering the composition of the microbial community can help lessen the detrimental impact of plastics on the environment.
Collapse
Affiliation(s)
- Wei-Kang Yang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Zhu Gong
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Bao-Teng Wang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Shuang Hu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Ye Zhuo
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hyung-Gwan Lee
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
32
|
Emon FJ, Hasan J, Shahriar SIM, Islam N, Islam MS, Shahjahan M. Increased ingestion and toxicity of polyamide microplastics in Nile tilapia with increase of salinity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116730. [PMID: 39024944 DOI: 10.1016/j.ecoenv.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Microplastics pollution and salinity intrusion in freshwater ecosystem is one of the worldwide climate change consequences those have negative impacts on the physiology of aquatic organisms. Hence, a 15-day experiment was carried out where Nile tilapia (Oreochromis niloticus) was exposed to different salinity gradients i.e. 0 ‰, 3 ‰, 6 ‰, 9 ‰, and 12 ‰ alone and along with 10 mg/L polyamide microplastics (PA-MP) in order to measure its effects on the hematology, gill, and intestinal morphology. The results exhibited that all the fish treated with PA-MP ingested microplastics and the quantity of accumulation was significantly greater in higher salinity gradients (9 ‰ and 12 ‰). In addition, the PA-MP treated fish showed increased glucose level and at the same time reduced hemoglobin concentration with the increase of salinity. The percentages of abnormalities in erythrocytes both cellular (twin, teardrop and spindle shaped) and nuclear (notched nuclei, nuclear bridge and karyopyknosis) significantly enhanced with PA-MP exposure again in higher salinity treatments (9 ‰ and 12 ‰). The principal component analysis (PCA) exhibited that the addition of 10 mg/L PA-MP negatively affected the hematology of Nile tilapia than that of salinity treatments alone. Besides, the exposure of PA-MP in 9 ‰ and 12 ‰ salinity gradients escalated the severity of histological damages in gills and intestine. Overall, this experiment affirms that the increase of salinity enhanced the microplastics ingestion and toxicity in Nile tilapia, therefore, PA-MP possibly is addressed as additional physiological stressors along with increased salinity gradients in environment.
Collapse
Affiliation(s)
- Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sheik Istiak Md Shahriar
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Naimul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Sadiqul Islam
- Department of Marine Fisheries Sciences, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
33
|
Zhao W, Zheng X, Liu J, Sui Y, Wang Y, Luo P, Zhu X, Wu W, Gu W, Liu X. Ceratophyllum demersum alleviates microplastics uptake and physiological stress responses in aquatic organisms, an overlooked ability. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134573. [PMID: 38824779 DOI: 10.1016/j.jhazmat.2024.134573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
It has been demonstrated that microplastics (MPs) may be inadvertently ingested by aquatic animals, causing harm to their physiological functions and potentially entering the food chain, thereby posing risks to human food safety. To achieve an environmentally friendly and efficient reduction of MPs in freshwater environments, this experiment investigates the depuration effect of C. demersum on MPs using three common aquatic animals: Macrobrachium nipponense, Corbicula fluminea, and Bellamya aeruginosa as research subjects. The amounts of MPs, digestive enzyme activity, oxidative stress index, and energy metabolism enzyme activity in the digestive and non-digestive systems of three aquatic animals were measured on exposure days 1, 3, and 7 and on depuration days 1 and 3. The results indicated that the depuration effect of C. demersum and the species interaction were significant for the whole individual. Concerning digestive tissue, C. demersum was the most effective in purifying B. aeruginosa. When subjected to short-term exposure to MPs, C. demersum displayed a superior depuration effect. Among non-digestive tissues, C. demersum exhibited the earliest purifying effect on C. fluminea. Additionally, C. demersum alleviated physiological responses caused by MPs. In conclusion, this study underscores C. demersum as a promising new method for removing MPs from aquatic organisms.
Collapse
Affiliation(s)
- Weihong Zhao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Xirui Zheng
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jintao Liu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China.
| | - Yuning Wang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; Anhui Agricultural University, Hefei 230000, China
| | - Pan Luo
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; Dalian Ocean University, Dalian 116000, China
| | - Xi Zhu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Wenjing Wu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Wen Gu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Xingyu Liu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| |
Collapse
|
34
|
Han H, Song P, Jiang Y, Fan J, Khan A, Liu P, Mašek O, Li X. Biochar immobilized hydrolase degrades PET microplastics and alleviates the disturbance of soil microbial function via modulating nitrogen and phosphorus cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134838. [PMID: 38850944 DOI: 10.1016/j.jhazmat.2024.134838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Microplastics (MPs) pose an emerging threat to soil ecological function, yet effective solutions remain limited. This study introduces a novel approach using magnetic biochar immobilized PET hydrolase (MB-LCC-FDS) to degrade soil polyethylene terephthalate microplastics (PET-MPs). MB-LCC-FDS exhibited a 1.68-fold increase in relative activity in aquatic solutions and maintained 58.5 % residual activity after five consecutive cycles. Soil microcosm experiment amended with MB-LCC-FDS observed a 29.6 % weight loss of PET-MPs, converting PET into mono(2-hydroxyethyl) terephthalate (MHET). The generated MHET can subsequently be metabolized by soil microbiota to release terephthalic acid. The introduction of MB-LCC-FDS shifted the functional composition of soil microbiota, increasing the relative abundances of Microbacteriaceae and Skermanella while reducing Arthobacter and Vicinamibacteraceae. Metagenomic analysis revealed that MB-LCC-FDS enhanced nitrogen fixation, P-uptake and transport, and organic-P mineralization in PET-MPs contaminated soil, while weakening the denitrification and nitrification. Structural equation model indicated that changes in soil total carbon and Simpson index, induced by MB-LCC-FDS, were the driving factors for soil carbon and nitrogen transformation. Overall, this study highlights the synergistic role of magnetic biochar-immobilized PET hydrolase and soil microbiota in degrading soil PET-MPs, and enhances our understanding of the microbiome and functional gene responses to PET-MPs and MB-LCC-FDS in soil systems.
Collapse
Affiliation(s)
- Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Peizhi Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3FF, United Kingdom.
| | - Xiangkai Li
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
35
|
Li H, Lu H, Feng S, Xue Y, Sun T, Yan Y, Zhang X, Yan P. Environmental fate of microplastics in high-altitude basins: the insights into the Yarlung Tsangpo River Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121623. [PMID: 38943743 DOI: 10.1016/j.jenvman.2024.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Microplastics (MPs) have been found in remote high-altitude areas, but the main source and migration process remained unclear. This work explored the characteristics and potential sources of MPs in the Yarlung Tsangpo River Basin. The average abundances of MPs in water, sediment, and soil samples were 728.26 ± 100.53 items/m3, 43.16 ± 5.82 items/kg, and 61.92 ± 4.29 items/kg, respectively, with polypropylene and polyethylene as the main polymers. The conditional fragmentation model revealed that the major source of MPs lower than 4000 m was human activities, while that of higher than 4500 m was atmospheric deposition. Community analysis was further conducted to explore the migration process and key points of MPs among different compartments in the basin. It was found that Lhasa (3600 m) and Shigatse (4100 m) were vital sources of MPs inputs in the midstream and downstream, respectively. This work would provide new insights into the fate of MPs in high-altitude areas.
Collapse
Affiliation(s)
- Hengchen Li
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Sun
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 390354, China; Tianjin University, Tianjin, 390354, China
| | - Yiming Yan
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohan Zhang
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengdong Yan
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 390354, China; Tianjin University, Tianjin, 390354, China
| |
Collapse
|
36
|
Nava V, Leoni B, Arienzo MM, Hogan ZS, Gandolfi I, Tatangelo V, Carlson E, Chea S, Soum S, Kozloski R, Chandra S. Plastic pollution affects ecosystem processes including community structure and functional traits in large rivers. WATER RESEARCH 2024; 259:121849. [PMID: 38851112 DOI: 10.1016/j.watres.2024.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Plastics in aquatic ecosystems rapidly undergo biofouling, giving rise to a new ecosystem on their surface, the 'plastisphere.' Few studies quantify the impact of plastics and their associated community on ecosystem traits from biodiversity and functional traits to metabolic function. It has been suspected that impacts on ecosystems may depend on its state but comparative studies of ecosystem responses are rare in the published literature. We quantified algal biomass, bacterial and algal biodiversity (16S and 18S rRNA), and metabolic traits of the community growing on the surface of different plastic polymers incubated within rivers of the Lower Mekong Basin. The rivers selected have different ecological characteristics but are similar regarding their high degree of plastic pollution. We examined the effects of plastics colonized with biofilms on ecosystem production, community dark respiration, and the epiplastic community's capability to influence nitrogen, phosphorus, organic carbon, and oxygen in water. Finally, we present conceptual models to guide our understanding of plastic pollution within freshwaters. Our findings showed limited microalgal biomass and bacterial dominance, with potential pathogens present. The location significantly influenced community composition, highlighting the role of environmental conditions in shaping community development. When assessing the effects on ecosystem productivity, our experiments showed that biofouled plastics led to a significant drop in oxygen concentration within river water, leading to hypoxic/anoxic conditions with subsequent profound impacts on system metabolism and the capability of influencing biogeochemical cycles. Scaling our findings revealed that plastic pollution may exert a more substantial and ecosystem-altering impact than initially assumed, particularly in areas with poorly managed plastic waste. These results highlighted that the plastisphere functions as a habitat for biologically active organisms which play a pivotal role in essential ecosystem processes. This warrants dedicated attention and investigation, particularly in sensitive ecosystems like the Mekong River, which supports a rich biodiversity and the livelihoods of 65 million people.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Barbara Leoni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy.
| | - Monica M Arienzo
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV 89512, United States
| | - Zeb S Hogan
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Valeria Tatangelo
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Emily Carlson
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States
| | - Seila Chea
- Institute of Technology of Cambodia, PO Box 86, Russian Conf. Blvd. Phnom Penh, Cambodia
| | - Savoeurn Soum
- Royal University of Phnom Penh, Russian Federation Blvd (110), Phnom Penh, Cambodia
| | - Rachel Kozloski
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV 89512, United States
| | - Sudeep Chandra
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States.
| |
Collapse
|
37
|
Zhu Z, Cao X, Wang K, Guan Y, Ma Y, Li Z, Guan J. The environmental effects of microplastics and microplastic derived dissolved organic matter in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173163. [PMID: 38735318 DOI: 10.1016/j.scitotenv.2024.173163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Currently, microplastics (MPs) have ubiquitously distributed in different aquatic environments. Due to the unique physicochemical properties, MPs exhibit a variety of environmental effects with the coexisted contaminants. MPs can not only alter the migration of contaminants via vector effect, but also affect the transformation process and fate of contaminants via environmental persistent free radicals (EPFRs). The aging processes may enhance the interaction between MPs and co-existed contaminants. Thus, it is of great significance to review the aging mechanism of MPs and the influence of coexisted substances, the formation mechanism of EPFRs, environmental effects of MPs and relevant mechanism. Moreover, microplastic-derived dissolved organic matter (MP-DOM) may also influence the elemental biogeochemical cycles and the relevant environmental processes. However, the environmental implications of MP-DOM are rarely outlined. Finally, the knowledge gaps on environmental effects of MPs were proposed.
Collapse
Affiliation(s)
- Zhichao Zhu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xu Cao
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Kezhi Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yujie Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yuqi Ma
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zhuoyu Li
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
38
|
Chen C, Pagsuyoin SA, van Emmerik THM, Xu YY, He YQ, Guo ZF, Liu D, Xu YY. Significant regional disparities in riverine microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134571. [PMID: 38743976 DOI: 10.1016/j.jhazmat.2024.134571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Research on riverine microplastics has gradually increased, highlighting an area for further exploration: the lack of extensive, large-scale regional variations analysis due to methodological and spatiotemporal limitations. Herein, we constructed and applied a comprehensive framework for synthesizing and analyzing literature data on riverine microplastics to enable comparative research on the regional variations on a large scale. Research results showed that in 76 rivers primarily located in Asia, Europe, and North America, the microplastic abundance of surface water in Asian rivers was three times higher than that in Euro-America rivers, while sediment in Euro-American rivers was five times more microplastics than Asia rivers, indicating significant regional variations (p < 0.001). Additionally, based on the income levels of countries, rivers in lower-middle and upper-middle income countries had significantly (p < 0.001) higher abundance of microplastics in surface water compared to high-income countries, while the opposite was true for sediment. This phenomenon was preliminarily attributed to varying levels of urbanization across countries. Our proposed framework for synthesizing and analyzing microplastic literature data provides a holistic understanding of microplastic disparities in the environment, and can facilitate broader discussions on management and mitigation strategies.
Collapse
Affiliation(s)
- Cai Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Tim H M van Emmerik
- Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen 6700 AA, Netherlands
| | - Yu-Yao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Yu-Qin He
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhao-Feng Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Dong Liu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| |
Collapse
|
39
|
Hao F, Yan ZY, Wang Z, Yan XP. Persistent Luminescence Nanoplatform for Autofluorescence-Free Tracking of Submicrometer Plastic Particles in Plant. Anal Chem 2024; 96:10662-10668. [PMID: 38875183 DOI: 10.1021/acs.analchem.4c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The uptake of plastic particles by plants and their transport through the food chain make great risks to biota and human health. Therefore, it is important to trace plastic particles in the plant. Traditional fluorescence imaging in plants usually suffers significant autofluorescence background. Here, we report a persistent luminescence nanoplatform for autofluorescence-free imaging and quantitation of submicrometer plastic particles in plant. The nanoplatform was fabricated by doping persistent luminescence nanoparticles (PLNPs) onto polystyrene (PS) nanoparticles. Cr3+-doped zinc gallate PLNP was employed as the dopant for autofluorescence-free imaging due to its persistent luminescence nature. In addition, the Ga element in PLNP was used as a proxy to quantify the PS in the plant by inductively coupled plasma mass spectrometry (ICP-MS). Thus, the developed nanoplatform allows not only dual-mode autofluorescence-free imaging (persistent luminescence and laser-ablation ICP-MS) but also ICP-MS quantitation for tracking PS in plant. Application of this nanoplatform in a typical plant model Arabidopsis thaliana revealed that PS mainly distributed in the root (>99.45%) and translocated very limited (<0.55%) to the shoot. The developed nanoplatform has great potential for quantitative tracing of submicrometer plastic particles to investigate the environmental process and impact of plastic particles.
Collapse
Affiliation(s)
- Fang Hao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhu-Ying Yan
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
40
|
He YQ, McDonough LK, Zainab SM, Guo ZF, Chen C, Xu YY. Microplastic accumulation in groundwater: Data-scaled insights and future research. WATER RESEARCH 2024; 258:121808. [PMID: 38796912 DOI: 10.1016/j.watres.2024.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Given that microplastics (MPs) in groundwater have been concerned for risks to humans and ecosystems with increased publications, a Contrasting Analysis of Scales (CAS) approach is developed by this study to synthesize all existing data into a hierarchical understanding of MP accumulation in groundwater. Within the full data of 386 compiled samples, the median abundance of MPs in Open Groundwater (OG) and Closed Groundwater (CG) were 4.4 and 2.5 items/L respectively, with OG exhibiting a greater diversity of MP colors and larger particle sizes. The different pathways of MP entry (i.e., surface runoff and rock interstices) into OG and CG led to this difference. At the regional scale, median MP abundance in nature reserves and landfills were 17.5 and 13.4 items/L, respectively, all the sampling points showed high pollution load risk. MPs in agricultural areas exhibited a high coefficient of variation (716.7%), and a median abundance of 1.0 items/L. Anthropogenic activities at the regional scale are the drivers behind the differentiation in the morphological characteristics of MPs, where groundwater in residential areas with highly toxic polymers (e.g., polyvinylchloride) deserves prolonged attention. At the local scale, the transport of MPs is controlled by groundwater flow paths, with a higher abundance of MP particles downstream than upstream, and MPs with regular surfaces and lower resistance (e.g., pellets) are more likely to be transported over long distances. From the data-scaled insight this study provides on the accumulation of MPs, future research should be directed towards network-based observation for groundwater-rich regions covered with landfills, residences, and agricultural land.
Collapse
Affiliation(s)
- Yu-Qin He
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liza K McDonough
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Syeda Maria Zainab
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhao-Feng Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
41
|
Liu L, Liu X, Li X, Xu S, Wang YZ. An Integrative Chemical Recycling Approach for Catalytic Oxidation of Epoxy Resin and in situ Separation of Degraded Products. Angew Chem Int Ed Engl 2024; 63:e202405912. [PMID: 38655622 DOI: 10.1002/anie.202405912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Although many approaches have been proposed to recycling waste epoxy resin (EP), the separation of mixed degraded products remains a challenge due to their similar structures. To address this, we present a catalytic oxidation strategy that enables mild degradation of EP and in situ separation of degraded products through supramolecular interactions. The oxidative degradation relies on FeIV=O radicals with strong oxidizing properties, which are generated from the electron transfer of FeCl2 with reaction reagents. As the FeIV=O radicals attacked the C-N bonds of EP, EP was broken into fragments rich in active functional groups. Meanwhile, the FeIV=O radicals were reduced to iron ions that can coordinate with the carboxyl groups on the fragments. As a result, the degraded products with different carboxyl content can be effortlessly separated into liquid and solid phase by coordinating with the catalyst. The success of this work lays the foundation for high-value application of degraded products and provides new design ideas for recycling waste plastics with complex compositions.
Collapse
Affiliation(s)
- Lulu Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Xuehui Liu
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu, 610064, China
| | - Xiaohui Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
42
|
Lv M, Meng F, Man M, Lu S, Ren S, Yang X, Wang Q, Chen L, Ding J. Aging increases the particulate- and leachate-induced toxicity of tire wear particles to microalgae. WATER RESEARCH 2024; 256:121653. [PMID: 38678723 DOI: 10.1016/j.watres.2024.121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The toxic effects of tire wear particles (TWPs) on organisms have attracted widespread concerns over the past decade. However, the underlying toxicity mechanism of TWPs, especially aged TWPs to marine microalgae remains poorly understood. This study investigated the physiological and metabolic responses of Phaeodactylum tricornutum to different concentrations of TWPs (Experiment 1), virgin and differently aged TWPs (Experiment 2) as well as their leachates and leached particles (Experiment 3). Results demonstrated that TWPs promoted the growth of microalgae at low concentrations (0.6 and 3 mg L-1) and inhibited their growth at high concentrations (15 and 75 mg L-1). Moreover, aged TWPs induced more profound physiological effects on microalgae than virgin TWPs, including inhibiting microalgae growth, decreasing the content of Chla, promoting photosynthetic efficiency, and causing oxidative damage to algal cells. Untargeted metabolomics analysis confirmed that aged TWPs induced more pronounced metabolic changes than virgin TWPs. This study represented the first to demonstrate that both particulate- and leachate-induced toxicity of TWPs was increased after aging processes, which was confirmed by the changes in the surface morphology of TWPs and enhanced release of additives. Through the significant correlations between the additives and the microalgal metabolites, key additives responsible for the shift of microalgal metabolites were identified. These results broaden the understanding of the toxicity mechanism of aged TWPs to microalgae at the physiological and metabolic levels and appeal for considering the effects of long-term aging on TWP toxicity in risk assessment of TWPs.
Collapse
Affiliation(s)
- Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Fanyu Meng
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Suyu Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Qiaoning Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
43
|
Cen Z, Han X, Lin L, Yang S, Han W, Wen W, Yuan W, Dong M, Ma Z, Li F, Ke Y, Dong J, Zhang J, Liu S, Li J, Li Q, Wu N, Xiang J, Wu H, Cai L, Hou Y, Cheng Y, Daemen LL, Ramirez-Cuesta AJ, Ferrer P, Grinter DC, Held G, Liu Y, Han B. Upcycling of polyethylene to gasoline through a self-supplied hydrogen strategy in a layered self-pillared zeolite. Nat Chem 2024; 16:871-880. [PMID: 38594366 PMCID: PMC11164678 DOI: 10.1038/s41557-024-01506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Conversion of plastic wastes to valuable carbon resources without using noble metal catalysts or external hydrogen remains a challenging task. Here we report a layered self-pillared zeolite that enables the conversion of polyethylene to gasoline with a remarkable selectivity of 99% and yields of >80% in 4 h at 240 °C. The liquid product is primarily composed of branched alkanes (selectivity of 72%), affording a high research octane number of 88.0 that is comparable to commercial gasoline (86.6). In situ inelastic neutron scattering, small-angle neutron scattering, solid-state nuclear magnetic resonance, X-ray absorption spectroscopy and isotope-labelling experiments reveal that the activation of polyethylene is promoted by the open framework tri-coordinated Al sites of the zeolite, followed by β-scission and isomerization on Brönsted acids sites, accompanied by hydride transfer over open framework tri-coordinated Al sites through a self-supplied hydrogen pathway to yield selectivity to branched alkanes. This study shows the potential of layered zeolite materials in enabling the upcycling of plastic wastes.
Collapse
Affiliation(s)
- Ziyu Cen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Han
- College of Chemistry, Beijing Normal University, Beijing, China.
| | - Longfei Lin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Sihai Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China.
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Wanying Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Weilong Wen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Minghua Dong
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiye Ma
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yubin Ke
- China Spallation Neutron Source, Institute of High Energy Physics, Dongguan, China
| | - Juncai Dong
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jin Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Shuhu Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jialiang Li
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- Center for Physicochemical Analysis Measurements, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Ningning Wu
- Center for Physicochemical Analysis Measurements, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Xiang
- Center for Physicochemical Analysis Measurements, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Hao Wu
- SINOPEC Research Institute of Petroleum Processing, Beijing, China
| | - Lile Cai
- SINOPEC Research Institute of Petroleum Processing, Beijing, China
| | - Yanbo Hou
- SINOPEC Research Institute of Petroleum Processing, Beijing, China
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luke L Daemen
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - David C Grinter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Georg Held
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Yueming Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
44
|
Yang Z, Li Y, Zhang G. Degradation of microplastic in water by advanced oxidation processes. CHEMOSPHERE 2024; 357:141939. [PMID: 38621489 DOI: 10.1016/j.chemosphere.2024.141939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Plastic products have gained global popularity due to their lightweight, excellent ductility, high durability, and portability. However, out of the 8.3 billion tons of plastic waste generated by human activities, 80% of plastic waste is discarded due to improper disposal, and then transformed into microplastic pollution under the combined influence of environmental factors and microorganisms. In this comprehensive study, we present a thorough review of recent advancements in research on the source, distribution, and effect of microplastics. More importantly, we conducted deep research on the catalytic degradation technologies of microplastics in water, including advanced oxidation and photocatalytic technologies, and elaborated on the mechanisms of microplastics degradation in water. Besides, various strategies for mitigating microplastic pollution in aquatic ecosystems are discussed, ranging from policy interventions, the initiative for plastic recycling, the development of efficient catalytic materials, and the integration of multiple technological approaches. This review serves as a valuable resource for addressing the challenge of removing microplastic contaminants from water bodies, offering insights into effective and sustainable solutions.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
45
|
Rochman CM, Bucci K, Langenfeld D, McNamee R, Veneruzzo C, Covernton GA, Gao GHY, Ghosh M, Cable RN, Hermabessiere L, Lazcano R, Paterson MJ, Rennie MD, Rooney RC, Helm P, Duhaime MB, Hoellein T, Jeffries KM, Hoffman MJ, Orihel DM, Provencher JF. Informing the Exposure Landscape: The Fate of Microplastics in a Large Pelagic In-Lake Mesocosm Experiment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7998-8008. [PMID: 38629179 PMCID: PMC11080067 DOI: 10.1021/acs.est.3c08990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024]
Abstract
Understanding microplastic exposure and effects is critical to understanding risk. Here, we used large, in-lake closed-bottom mesocosms to investigate exposure and effects on pelagic freshwater ecosystems. This article provides details about the experimental design and results on the transport of microplastics and exposure to pelagic organisms. Our experiment included three polymers of microplastics (PE, PS, and PET) ranging in density and size. Nominal concentrations ranged from 0 to 29,240 microplastics per liter on a log scale. Mesocosms enclosed natural microbial, phytoplankton, and zooplankton communities and yellow perch (Perca flavescens). We quantified and characterized microplastics in the water column and in components of the food web (biofilm on the walls, zooplankton, and fish). The microplastics in the water stratified vertically according to size and density. After 10 weeks, about 1% of the microplastics added were in the water column, 0.4% attached to biofilm on the walls, 0.01% within zooplankton, and 0.0001% in fish. Visual observations suggest the remaining >98% were in a surface slick and on the bottom. Our study suggests organisms that feed at the surface and in the benthos are likely most at risk, and demonstrates the value of measuring exposure and transport to inform experimental designs and achieve target concentrations in different matrices within toxicity tests.
Collapse
Affiliation(s)
- Chelsea M. Rochman
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Kennedy Bucci
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Desiree Langenfeld
- International
Institute for Sustainable Development Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
- Department
of Entomology, University of Manitoba, Winnipeg, Manitoba MB R3T 2N2, Canada
| | - Rachel McNamee
- Biology
Department, University of Waterloo, Waterloo, Ontario ON N2L 3G1, Canada
| | - Cody Veneruzzo
- Department
of Biology, Lakehead University, Thunder Bay, Ontario ON P7B 5E1, Canada
| | - Garth A. Covernton
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Gloria H. Y. Gao
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Mira Ghosh
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Rachel N. Cable
- Department
of Ecology and Evolutionary Biology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ludovic Hermabessiere
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Raul Lazcano
- Department
of Biology, Loyola University Chicago, Chicago, Illinois 60611, United States
| | - Michael J. Paterson
- International
Institute for Sustainable Development Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
- Department
of Entomology, University of Manitoba, Winnipeg, Manitoba MB R3T 2N2, Canada
| | - Michael D. Rennie
- International
Institute for Sustainable Development Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
- Department
of Biology, Lakehead University, Thunder Bay, Ontario ON P7B 5E1, Canada
| | - Rebecca C. Rooney
- Biology
Department, University of Waterloo, Waterloo, Ontario ON N2L 3G1, Canada
| | - Paul Helm
- Environmental
Monitoring and Reporting Branch, Ontario
Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, Ontario M9P 3 V6, Canada
| | - Melissa B. Duhaime
- Department
of Ecology and Evolutionary Biology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy Hoellein
- Department
of Biology, Loyola University Chicago, Chicago, Illinois 60611, United States
| | - Kenneth M. Jeffries
- Department
of Biological Sciences, University of Manitoba, Winnipeg, Manitoba MB R3T 2N2, Canada
| | - Matthew J. Hoffman
- School
of Mathematics and Statistics, Rochester
Institute of Technology, Rochester, New York 14623, United States
| | - Diane M. Orihel
- Department
of Biology and School of Environmental Studies, Queen’s University; Kingston, Ontario K7L 3N6, Canada
| | - Jennifer F. Provencher
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa K1A 0H3, Canada
| |
Collapse
|
46
|
Vojnits K, de León A, Rathore H, Liao S, Zhao M, Gibon J, Pakpour S. ROS-dependent degeneration of human neurons induced by environmentally relevant levels of micro- and nanoplastics of diverse shapes and forms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134017. [PMID: 38518696 DOI: 10.1016/j.jhazmat.2024.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Our study explores the pressing issue of micro- and nanoplastics (MNPs) inhalation and their subsequent penetration into the brain, highlighting a significant environmental health concern. We demonstrate that MNPs can indeed penetrate murine brain, warranting further investigation into their neurotoxic effects in humans. We then proceed to test the impact of MNPs at environmentally relevant concentrations, with focusing on variations in size and shape. Our findings reveal that these MNPs induce oxidative stress, cytotoxicity, and neurodegeneration in human neurons, with cortical neurons being more susceptible than nociceptors. Furthermore, we examine the role of biofilms on MNPs, demonstrating that MNPs can serve as a vehicle for pathogenic biofilms that significantly exacerbate these neurotoxic effects. This sequence of investigations reveals that minimal MNPs accumulation can cause oxidative stress and neurodegeneration in human neurons, significantly risking brain health and highlights the need to understand the neurological consequences of inhaling MNPs. Overall, our developed in vitro testing battery has significance in elucidating the effects of environmental factors and their associated pathological mechanisms in human neurons.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Andrés de León
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Harneet Rathore
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Sophia Liao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Michael Zhao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia, Kelowna, BC, Canada; Office of Vice-Principal, Research and Innovation, McGill University, Montreal, Quebec, Canada
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
47
|
Shahriar SIM, Islam N, Emon FJ, Ashaf-Ud-Doulah M, Khan S, Shahjahan M. Size dependent ingestion and effects of microplastics on survivability, hematology and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). CHEMOSPHERE 2024; 356:141827. [PMID: 38583529 DOI: 10.1016/j.chemosphere.2024.141827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Microplastic pollution is drastically increasing in aquatic ecosystems and it is assumed that different sizes of microplastics have diverse impacts on the physiology of aquatic organisms. Therefore, this study was intended to examine the ingestion and size specific effects of polyamide microplastic (PA-MP) on different physiological aspects such as growth, feed utilization, survivability, blood parameters and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). In a 28-day exposure, the fish were fed with different sized PA-MP with a concentration of 500 mg per kg of feed in order to simulate highly microplastic contaminated environment. Three different treatments were set for this experiment i.e. T1, 25-50 μm (smaller microplastic); T2, 300 μm-2 mm (larger microplastic); T3, (mixed) including a control (C); each had three replicates. The highest ingestion was recorded in the gastrointestinal tract (GIT) of fish exposed to smaller PA-MP treatments (T1 followed by T3). The results also showed compromised weight gain (WG; g), specific growth rate (SGR; %/day) and feed conversion ratio (FCR) with the exposure of PA-MP. Besides, survivability significantly reduced among treatments with the ingestion of smaller sized microplastic and found lowest in T1 (65.0 ± 5.0). In addition, the presence of PA-MP in feed negatively affected the concentration of hemoglobin and blood glucose. Similarly, smaller PA-MP caused most erythrocytic cellular and nuclear abnormalities; found highest in T1 that significantly different from other treatments (p < 0.05). Various histopathological deformities were observed in fish fed with PA-MP incorporated feed. The principal component analysis (PCA) showed that the toxicity and stress imparted by smaller PA-MP affected the survivability and blood parameters where larger PA-MP caused mild to severe abnormalities. Based on eigenvector values, the major abnormalities in intestine included occurrence of epithelium columnar degeneration (ECD: 0.402; PC1), hyperplasia of internal mucosa (HISM: 0.411; PC1), beheading of villi (BV: 0.323; PC1), atrophy of mucosa (AM: 0.322; PC1), tiny vacuoles in apical villi (TV: 0.438. PC2), crypt degeneration (CD: 0.375: PC2) and atrophy of goblet cell (AGC: 0.375; PC2). Therefore, it has been speculated that the size based PA-MP ingestion in the GIT interfered with the digestion and absorption as well as caused deformities that reflected negatively in survivability and hemato-biochemical parameters of juvenile striped catfish.
Collapse
Affiliation(s)
- Sheik Istiak Md Shahriar
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Naimul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Saleha Khan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
48
|
Jieying S, Tingting L, Caie W, Dandan Z, Gongjian F, Xiaojing L. Paper-based material with hydrophobic and antimicrobial properties: Advanced packaging materials for food applications. Compr Rev Food Sci Food Saf 2024; 23:e13373. [PMID: 38778547 DOI: 10.1111/1541-4337.13373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The environmental challenges posed by plastic pollution have prompted the exploration of eco-friendly alternatives to disposable plastic packaging and utensils. Paper-based materials, derived from renewable resources such as wood pulp, non-wood pulp (bamboo pulp, straw pulp, reed pulp, etc.), and recycled paper fibers, are distinguished by their recyclability and biodegradability, making them promising substitutes in the field of plastic food packaging. Despite their merits, challenges like porosity, hydrophilicity, limited barrier properties, and a lack of functionality have restricted their packaging potential. To address these constraints, researchers have introduced antimicrobial agents, hydrophobic substances, and other functional components to improve both physical and functional properties. This enhancement has resulted in notable improvements in food preservation outcomes in real-world scenarios. This paper offers a comprehensive review of recent progress in hydrophobic antimicrobial paper-based materials. In addition to outlining the characteristics and functions of commonly used antimicrobial substances in food packaging, it consolidates the current research landscape and preparation techniques for hydrophobic paper. Furthermore, the paper explores the practical applications of hydrophobic antimicrobial paper-based materials in agricultural produce, meat, and seafood, as well as ready-to-eat food packaging. Finally, challenges in production, application, and recycling processes are outlined to ensure safety and efficacy, and prospects for the future development of antimicrobial hydrophobic paper-based materials are discussed. Overall, the emergence of hydrophobic antimicrobial paper-based materials stands out as a robust alternative to plastic food packaging, offering a compelling solution with superior food preservation capabilities. In the future, paper-based materials with antimicrobial and hydrophobic functionalities are expected to further enhance food safety as promising packaging materials.
Collapse
Affiliation(s)
- Shi Jieying
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Tingting
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Wu Caie
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhou Dandan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fan Gongjian
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Li Xiaojing
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Zhao JZ, Yue TJ, Ren BH, Lu XB, Ren WM. Closed-loop recycling of sulfur-rich polymers with tunable properties spanning thermoplastics, elastomers, and vitrimers. Nat Commun 2024; 15:3002. [PMID: 38589410 PMCID: PMC11001992 DOI: 10.1038/s41467-024-47382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
The development of closed-loop recycling polymers that exhibit excellent performance is of great significance. Sulfur-rich polymers possessing excellent optical, thermal, and mechanical properties are promising candidates for chemical recycling but lack efficient synthetic strategies for achieving diverse structures. Herein, we report a universal synthetic strategy for producing polytrithiocarbonates, a class of sulfur-rich polymers, via the polycondensation of dithiols and dimethyl trithiocarbonate. This strategy has excellent compatibility with a wide range of monomers, including aliphatic, heteroatomic, and aromatic dithiols enabling the synthesis of polytrithiocarbonates with diverse structures. The present synthesis strategy offers a versatile platform for the construction of thermoplastics, elastomers, and vitrimers. Notably, these polytrithiocarbonates can be easily depolymerized via solvolysis into the corresponding monomers, which can be repolymerized to virgin polymers without changing the material properties.
Collapse
Affiliation(s)
- Jin-Zhuo Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.
| |
Collapse
|
50
|
Avasthi I, Lerner H, Grings J, Gräber C, Schleheck D, Cölfen H. Biodegradable Mineral Plastics. SMALL METHODS 2024; 8:e2300575. [PMID: 37466247 DOI: 10.1002/smtd.202300575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 07/20/2023]
Abstract
Mineral plastics are a promising class of bio-inspired materials that offer exceptional properties, like self-heal ability, stretchability in the hydrogel state, and high hardness, toughness, transparency, and non-flammability in the dry state along with reversible transformation into the hydrogel by addition of water. This enables easy reshape-ability and recycling like the solubility in mild acids to subsequently form mineral plastics again by base addition. However, current mineral plastics rely on petrochemistry, are hardly biodegradable, and thus persistent in nature. This work presents the next generation of mineral plastics, which are bio-based and biodegradable, making them a promising, new class of polymers for the development of environmentally friendly materials. Physically cross-linked (poly)glutamic-acid (PGlu)-based mineral plastics are synthesized using various alcohol-water mixtures, metal ion ratios and molecular weights. The rheological properties are easily adjusted using these parameters. The general procedure involves addition of equimolar solution of CaCl2 to PGlu in equal volumes followed by addition of iPrOH (iPrOH:H2O = 1:1) under vigorous stirring conditions. The ready biodegradability of PGlu/CaFe mineral plastic is confirmed in this study where the elements N, Ca, and Fe present in it tend to act as additional nutrients, supporting the growth of microorganisms and consequently, promoting the biodegradation process.
Collapse
Affiliation(s)
- Ilesha Avasthi
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| | - Harry Lerner
- Microbial Ecology and Limnic Microbiology, Department of Biology, Limnological Institute, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| | - Jonas Grings
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| | - Carla Gräber
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| | - David Schleheck
- Microbial Ecology and Limnic Microbiology, Department of Biology, Limnological Institute, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätstr. 10, D-78457, Konstanz, Germany
| |
Collapse
|