1
|
Cao H, Shang L, Hu D, Huang J, Wang Y, Li M, Song Y, Yang Q, Luo Y, Wang Y, Cai X, Liu J. Neuromodulation techniques for modulating cognitive function: Enhancing stimulation precision and intervention effects. Neural Regen Res 2026; 21:491-501. [PMID: 39665818 DOI: 10.4103/nrr.nrr-d-24-00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Neuromodulation techniques effectively intervene in cognitive function, holding considerable scientific and practical value in fields such as aerospace, medicine, life sciences, and brain research. These techniques utilize electrical stimulation to directly or indirectly target specific brain regions, modulating neural activity and influencing broader brain networks, thereby regulating cognitive function. Regulating cognitive function involves an understanding of aspects such as perception, learning and memory, attention, spatial cognition, and physical function. To enhance the application of cognitive regulation in the general population, this paper reviews recent publications from the Web of Science to assess the advancements and challenges of invasive and non-invasive stimulation methods in modulating cognitive functions. This review covers various neuromodulation techniques for cognitive intervention, including deep brain stimulation, vagus nerve stimulation, and invasive methods using microelectrode arrays. The non-invasive techniques discussed include transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, transcutaneous electrical acupoint stimulation, and time interference stimulation for activating deep targets. Invasive stimulation methods, which are ideal for studying the pathogenesis of neurological diseases, tend to cause greater trauma and have been less researched in the context of cognitive function regulation. Non-invasive methods, particularly newer transcranial stimulation techniques, are gentler and more appropriate for regulating cognitive functions in the general population. These include transcutaneous acupoint electrical stimulation using acupoints and time interference methods for activating deep targets. This paper also discusses current technical challenges and potential future breakthroughs in neuromodulation technology. It is recommended that neuromodulation techniques be combined with neural detection methods to better assess their effects and improve the accuracy of non-invasive neuromodulation. Additionally, researching closed-loop feedback neuromodulation methods is identified as a promising direction for future development.
Collapse
Affiliation(s)
- Hanwen Cao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Li Shang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Deheng Hu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jianbing Huang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Qianzi Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Bjånes DA, Kellis S, Nickl R, Baker B, Aflalo T, Bashford L, Chivukula S, Fifer MS, Osborn LE, Christie B, Wester BA, Celnik PA, Kramer D, Pejsa K, Crone NE, Anderson WS, Pouratian N, Lee B, Liu CY, Tenore FV, Rieth L, Andersen RA. Quantifying physical degradation alongside recording and stimulation performance of 980 intracortical microelectrodes chronically implanted in three humans for 956-2130 days. Acta Biomater 2025; 198:188-206. [PMID: 40037510 DOI: 10.1016/j.actbio.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/06/2025]
Abstract
The clinical success of brain computer interfaces (BCI) depends on overcoming both biological and material challenges to ensure a long-term stable connection for neural recording and stimulation. This study systematically quantified damage that microelectrodes sustained during chronical implantation in three people with tetraplegia for 956-2130 days. Using scanning electron microscopy (SEM), we imaged 980 microelectrodes from eleven Neuroport arrays tipped with platinum (Pt, n = 8) and sputtered iridium oxide film (SIROF, n = 3). Arrays were implanted/explanted from posterior parietal, motor and somatosensory cortices across three clinical sites (Caltech/UCLA, Caltech/USC, APL/Johns Hopkins). From the electron micrographs, we quantified and correlated physical damage with functional outcomes measured in vivo, prior to explant (recording quality, noise, impedance and stimulation ability). Despite greater physical degradation, SIROF electrodes were twice as likely to record neural activity than Pt (measured by SNR). For SIROF, 1 kHz impedance significantly correlated with all physical damage metrics, recording metrics, and stimulation performance, suggesting a reliable measurement of in vivo degradation. We observed a new degradation type, primarily on stimulated electrodes ("pockmarked" vs "cracked") electrodes; however, no significant degradation due to stimulation or amount of charge delivered. We hypothesize erosion of the silicon shank accelerates damage to the electrode / tissue interface, following damage to the tip metal. These findings link quantitative measurements to the microelectrodes' physical condition and their capacity to record/stimulate. These data could lead to improved manufacturing processes or novel electrode designs to improve long-term performance of BCIs, making them vitally important as multi-year clinical trials of BCIs are becoming more common. STATEMENT OF SIGNIFICANCE: Long-term performance stability of the electrode-tissue interface is essential for clinical viability of brain computer interface (BCI) devices; currently, materials degradation is a critical component for performance loss. Across three human participants, ten micro-electrode arrays (plus one control) were implanted for 956-2130 days. Using scanning electron microscopy (SEM), we analyzed degradation of 980 electrodes, comparing two types of commonly implanted electrode tip metals: Platinum (Pt) and Sputtered Iridium Oxide Film (SIROF). We correlated observed degradation with in vivo electrode performance: recording (signal-to-noise ratio, noise, impedance) and stimulation (evoked somatosensory percepts). We hypothesize penetration of the electrode tip by biotic processes leads to erosion of the supporting silicon core, which then accelerates further tip metal damage. These data could lead to improved manufacturing processes or novel electrode designs towards the goal of a stable BCI electrical interface, spanning a multi-decade participant lifetime.
Collapse
Affiliation(s)
- David A Bjånes
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, CA, USA.
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Robert Nickl
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian Baker
- Electrical and Computer Engineering Univ. of Utah, Salt Lake City, UT, USA
| | - Tyson Aflalo
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Luke Bashford
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Srinivas Chivukula
- Department of Neurosurgery, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA 90027, USA
| | - Matthew S Fifer
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Luke E Osborn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Breanne Christie
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Brock A Wester
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | | | - Daniel Kramer
- Department of Neurological Surgery, University of Colorado Hospital, CO, 80045, USA
| | - Kelsie Pejsa
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Nadar Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Francesco V Tenore
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Loren Rieth
- Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Richard A Andersen
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, CA, USA
| |
Collapse
|
3
|
Kolibius LD, Josselyn SA, Hanslmayr S. On the origin of memory neurons in the human hippocampus. Trends Cogn Sci 2025; 29:421-433. [PMID: 40037964 DOI: 10.1016/j.tics.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
The hippocampus is essential for episodic memory, yet its coding mechanism remains debated. In humans, two main theories have been proposed: one suggests that concept neurons represent specific elements of an episode, while another posits a conjunctive code, where index neurons code the entire episode. Here, we integrate new findings of index neurons in humans and other animals with the concept-specific memory framework, proposing that concept neurons evolve from index neurons through overlapping memories. This process is supported by engram literature, which posits that neurons are allocated to a memory trace based on excitability and that reactivation induces excitability. By integrating these insights, we connect two historically disparate fields of neuroscience: engram research and human single neuron episodic memory research.
Collapse
Affiliation(s)
- Luca D Kolibius
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Simon Hanslmayr
- School of Psychology and Neuroscience and Centre for Neurotechnology, University of Glasgow, Glasgow, UK; Centre for Neurotechnology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
Trouillet A, Revol E, Coen FV, Fallegger F, Chanthany A, Delacombaz M, Kolly L, Furfaro I, Lanz F, Kanumuri V, Adenis V, Garcia-Chavez A, Brown MC, Anschuetz L, Bloch J, Lee DJ, Lacour SP. High-resolution prosthetic hearing with a soft auditory brainstem implant in macaques. Nat Biomed Eng 2025:10.1038/s41551-025-01378-9. [PMID: 40251249 DOI: 10.1038/s41551-025-01378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/17/2025] [Indexed: 04/20/2025]
Abstract
Individuals with compromised cochlear nerves are ineligible for cochlear implants and instead rely on auditory brainstem implants (ABIs). Most users of ABIs experience sound awareness, which aids in lip reading, yet not speech intelligibility. Here we engineered a dual-site (brainstem and cortex) implantable system, scaled to macaque anatomy, for the analysis of auditory perception evoked by electrical stimulation of the cochlear nucleus. A soft multichannel ABI, fabricated using thin-film processing, provided high-resolution auditory percepts, with spatially distinct stimulation sites eliciting cortical responses akin to frequency-specific tuning. Behavioural responses collected over several months were sufficiently precise to distinguish stimulations from adjacent channels. Soft multichannel ABIs may aid the rehabilitation of individuals with profound hearing loss who are ineligible for cochlear implants.
Collapse
Affiliation(s)
- Alix Trouillet
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland.
| | - Emilie Revol
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Florent-Valéry Coen
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Florian Fallegger
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Aurélie Chanthany
- Department of Neuroscience, Platform of Translational Neuroscience, University of Fribourg, Fribourg, Switzerland
| | - Maude Delacombaz
- Department of Neuroscience, Platform of Translational Neuroscience, University of Fribourg, Fribourg, Switzerland
| | - Laurine Kolly
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Ivan Furfaro
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Florian Lanz
- Department of Neuroscience, Platform of Translational Neuroscience, University of Fribourg, Fribourg, Switzerland
| | - Vivek Kanumuri
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Victor Adenis
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Alejandro Garcia-Chavez
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - M Christian Brown
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Lukas Anschuetz
- Department of Otorhinolaryngology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jocelyne Bloch
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Neuro X Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Daniel J Lee
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA.
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland.
| |
Collapse
|
5
|
Isis Yonza AK, Tao L, Zhang X, Postnov D, Kucharz K, Lind B, Asiminas A, Han A, Sonego V, Kim K, Cai C. Spatially and temporally mismatched blood flow and neuronal activity by high-intensity intracortical microstimulation. Brain Stimul 2025; 18:885-896. [PMID: 40246195 DOI: 10.1016/j.brs.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
INTRODUCTION Intracortial microstimulation (ICMS) is widely used in neuroprosthetic brain-machine interfacing, particularly in restoring lost sensory and motor functions. Spiking neuronal activity requires increased cerebral blood flow to meet local metabolic demands, a process conventionally denoted as neurovascular coupling (NVC). However, it is unknown precisely how and to what extent ICMS elicits NVC and how the neuronal and blood flow responses to ICMS correlate. Suboptimal NVC by ICMS may compromise oxygen and energy delivery to the activated neurons thus impair neuroprosthetic functionality. MATERIAL AND METHOD We used wide-field imaging (WFI), laser speckle imaging (LSI) and two-photon microscopy (TPM) to study living, transgenic mice expressing calcium (Ca2+) fluorescent indicators in either neurons or vascular mural cells (VMC), as well as to measure vascular inner lumen diameters. RESULT By testing a range of stimulation amplitudes and examining cortical tissue responses at different distances from the stimulating electrode tip, we found that high stimulation intensities (≥50 μA) elicited a spatial and temporal neurovascular decoupling in regions most adjacent to electrode tip (<200 μm), with significantly delayed onset times of blood flow responses to ICMS and compromised maximum blood flow increases. We attribute these effects respectively to delayed Ca2+ signalling and decreased Ca2+ sensitivity in VMCs. CONCLUSION Our study offers new insights into ICMS-associated neuronal and vascular physiology with potentially critical implications towards the optimal design of ICMS in neuroprosthetic therapies: low intensities preserve NVC; high intensities disrupt NVC responses and potentially precipitate blood supply deficits.
Collapse
Affiliation(s)
- Alexandra Katherine Isis Yonza
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Lechan Tao
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Xiao Zhang
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | | | - Krzysztof Kucharz
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Barbara Lind
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Antonios Asiminas
- Center for Translational Neuromedicine, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Anpan Han
- Department of Civil and Mechanical Engineering, Technical University of Denmark, DK2800, Kgs. Lyngby, Denmark
| | - Victor Sonego
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Kayeon Kim
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Changsi Cai
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
6
|
Matta R, Reato D, Lombardini A, Moreau D, O’Connor RP. Inkjet-printed transparent electrodes: Design, characterization, and initial in vivo evaluation for brain stimulation. PLoS One 2025; 20:e0320376. [PMID: 40168427 PMCID: PMC11960977 DOI: 10.1371/journal.pone.0320376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/17/2025] [Indexed: 04/03/2025] Open
Abstract
Electrical stimulation is a powerful tool for investigating and modulating brain activity, as well as for treating neurological disorders. However, understanding the precise effects of electrical stimulation on neural activity has been hindered by limitations in recording neuronal responses near the stimulating electrode, such as stimulation artifacts in electrophysiology or obstruction of the field of view in imaging. In this study, we introduce a novel stimulation device fabricated from conductive polymers that is transparent and therefore compatible with optical imaging techniques. The device is manufactured using a combination of microfabrication and inkjet printing techniques and is flexible, allowing better adherence to the brain's natural curvature. We characterized the electrical and optical properties of the electrodes, focusing on the trade-off between the maximum current that can be delivered and optical transmittance. We found that a 1 mm diameter, 350 nm thick PEDOT:PSS electrode could be used to apply a maximum current of 130 μA while maintaining 84% transmittance (approximately 50% under 2-photon imaging conditions). We then evaluated the electrode performance in the brain of an anesthetized mouse by measuring the electric field with a nearby recording electrode and found values up to 30 V/m. Finally, we combined experimental data with a finite-element model of the in vivo experimental setup to estimate the distribution of the electric field underneath the electrode in the mouse brain. Our findings indicate that the device can generate an electric field as high as 300 V/m directly beneath the electrode, demonstrating its potential for studying and manipulating neural activity using a range of electrical stimulation techniques relevant to human applications. Overall, this work presents a promising approach for developing versatile new tools to apply and study electrical brain stimulation.
Collapse
Affiliation(s)
- Rita Matta
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
| | - Davide Reato
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, 13005 Marseille, France
| | - Alberto Lombardini
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, 13005 Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
| | - Rodney P. O’Connor
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
| |
Collapse
|
7
|
Teichert T, Papp L, Vincze F, Burns N, Goodell B, Ahmed Z, Holmes A, Chamanzar M, Gurnsey K. Volumetric mesoscopic electrophysiology: a new imaging modality for the nonhuman primate. J Neurophysiol 2025; 133:1034-1053. [PMID: 40013657 DOI: 10.1152/jn.00399.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
The primate brain is a densely interconnected organ whose function is best understood by recording from the entire structure in parallel, rather than parts of it in sequence. However, available methods either have limited temporal resolution (functional magnetic resonance imaging; fMRI), limited spatial resolution (macroscopic electroencephalography), or a limited field of view (microscopic electrophysiology). To address this need, we developed a volumetric, mesoscopic recording approach (MePhys) by tessellating the volume of a monkey hemisphere with 992 electrode contacts that were distributed across 62 chronically implanted multielectrode shafts. We showcase the scientific promise of MePhys by describing the functional interactions of local field potentials between the more than 300,000 simultaneously recorded pairs of electrodes. We find that a subanesthetic dose of ketamine-believed to mimic certain aspects of psychosis-can create a pronounced state of functional disconnection and prevent the formation of stable large-scale intrinsic states. We conclude that MePhys provides a new and fundamentally distinct window into brain function whose unique profile of strengths and weaknesses complements existing approaches in synergistic ways.NEW & NOTEWORTHY We created a new imaging modality for the nonhuman primate, mesoscopic electrophysiology, or MePhys by sampling local field potentials (LFPs) in a dense three-dimensional grid from across the volume of one entire hemisphere. MePhys combines the millisecond temporal resolution of electrophysiology with the large field of view and millimeter spatial resolution of functional magnetic resonance imaging (fMRI). MePhys' unique profile of strengths and limitations makes it an ideal imaging method for the nonhuman primate brain observatories of the future.
Collapse
Affiliation(s)
- Tobias Teichert
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | | | | - Nioka Burns
- Plexon Inc.-Neuroscience Technology, Dallas, Texas, United States
| | | | - Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Andrew Holmes
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maysam Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Kate Gurnsey
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
9
|
van Hoof R, Lozano A, Wang F, Klink PC, Roelfsema PR, Goebel R. Optimal placement of high-channel visual prostheses in human retinotopic visual cortex. J Neural Eng 2025; 22:026016. [PMID: 39870040 DOI: 10.1088/1741-2552/adaeef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Objective.Recent strides in neurotechnology show potential to restore vision in individuals with visual impairments due to early visual pathway damage. As neuroprostheses mature and become available to a larger population, manual placement and evaluation of electrode designs become costly and impractical. An automatic method to simulate and optimize the implantation process of electrode arrays at large-scale is currently lacking.Approach.Here, we present a comprehensive method to automatically optimize electrode placement for visual prostheses, with the objective of matching predefined phosphene distributions. Our approach makes use of retinotopic predictions combined with individual anatomy data to minimize discrepancies between simulated and target phosphene patterns. While demonstrated with a 1000-channel 3D electrode array in V1, our simulation pipeline is versatile, potentially accommodating any electrode design and allowing for design evaluation.Main results.Notably, our results show that individually optimized placements in 362 brain hemispheres outperform average brain solutions, underscoring the significance of anatomical specificity. We further show how virtual implantation of multiple individual brains highlights the challenges of achieving full visual field coverage owing to single electrode constraints, which may be overcome by introducing multiple arrays of electrodes. Including additional surgical considerations, such as intracranial vasculature, in future iterations could refine the optimization process.Significance.Our open-source software streamlines the refinement of surgical procedures and facilitates simulation studies, offering a realistic exploration of electrode configuration possibilities.
Collapse
Affiliation(s)
- Rick van Hoof
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Antonio Lozano
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Feng Wang
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, VU University, Amsterdam, The Netherlands
- Department of Psychiatry, Academic Medical Centre, Amsterdam, The Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Papale P, Wang F, Self MW, Roelfsema PR. An extensive dataset of spiking activity to reveal the syntax of the ventral stream. Neuron 2025; 113:539-553.e5. [PMID: 39809277 DOI: 10.1016/j.neuron.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/16/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Visual neuroscience benefits from high-quality datasets with neuronal responses to many images. Several neuroimaging datasets have been published in recent years, but no comparable dataset with spiking activity exists. Here, we introduce the THINGS ventral stream spiking dataset (TVSD). We extensively sampled neuronal activity in response to >25,000 natural images from the THINGS database in macaques, using high-channel-count implants in three key cortical regions: primary visual cortex (V1), V4, and the inferotemporal cortex. We showcase the utility of TVSD by using an artificial neural network to visualize the tuning of neurons. We also characterize the correlated fluctuations in activity within and between areas and demonstrate that these noise correlations are strongest between neurons with similar tuning. The TVSD allows researchers to answer many questions about neuronal tuning, analyze the interactions within and between cortical regions, and compare spiking activity in monkeys to human neuroimaging data.
Collapse
Affiliation(s)
- Paolo Papale
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA Amsterdam, the Netherlands.
| | - Feng Wang
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA Amsterdam, the Netherlands
| | - Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA Amsterdam, the Netherlands; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academic Medical Centre, Postbus 22660, 1100 DD Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
| |
Collapse
|
11
|
Tian F, Liu Y, Chen M, Schriver KE, Roe AW. Selective activation of mesoscale functional circuits via multichannel infrared stimulation of cortical columns in ultra-high-field 7T MRI. CELL REPORTS METHODS 2025; 5:100961. [PMID: 39874948 PMCID: PMC11840946 DOI: 10.1016/j.crmeth.2024.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025]
Abstract
To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable. In addition, its magnetic resonance (MR) compatibility (INS-fMRI) permits systematic mapping of brain-wide circuits. In the MRI, we illustrate (1) the single-point activation of functionally specific networks, (2) shifting cortical networks activated via shifting points of stimulation, and (3) "moving dot" stimulation-evoked activation of higher-order motion-selective areas. We suggest that, by mimicking patterns of columnar activation normally activated by visual stimuli, a columnar VCP opens doors for the planned activation of feature-specific circuits and their associated visual percepts.
Collapse
Affiliation(s)
- Feiyan Tian
- Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yipeng Liu
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Meixuan Chen
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Kenneth Edward Schriver
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China.
| |
Collapse
|
12
|
Allison-Walker T, Hagan MA, Meikle SJ, Price NSC, Wong YT. Local field potential phase modulates the evoked response to electrical stimulation in visual cortex. J Neural Eng 2025; 22:016009. [PMID: 39787710 DOI: 10.1088/1741-2552/ada828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Objective.Development of cortical visual prostheses requires optimization of evoked responses to electrical stimulation to reduce charge requirements and improve safety, efficiency, and efficacy. One promising approach is timing stimulation to the local field potential (LFP), where action potentials have been found to occur preferentially at specific phases. To assess the relationship between electrical stimulation and the phase of the LFP, we recorded action potentials from primary (V1) and secondary (V2) visual cortex in marmosets while delivering single-pulse electrical microstimulation at different phases of the LFP.Approach.A 64-channel 4 shank probe was inserted into V1 and V2. Microstimulation (single biphasic pulse, 10µA and 200µs per phase) was applied to selected channels in V1, and action potentials recorded simultaneously in V1 and V2. Microstimulation pulses were jittered in time to randomize the phase of the LFP at the time of stimulation.Results.We found frequency-specific phase modulation in a subset of units, where microstimulation in V1 evokes a higher firing rate in both V1 and V2 when delivered at specific phases of the LFP. We characterize phase modulation in terms of the preferred phase and frequency of V1 stimulation for responses in both V1 and V2, and effect size as a function of phase estimation accuracy.Significance.Phase modulation could reduce charge requirements for neural activation, reducing the volume of activated tissue and improving the safety, efficacy, and specificity of cortical visual prostheses. Phase modulation could allow cortical visual prostheses to stimulate using more simultaneous electrodes, with improved neural specificity, and, potentially, targeting downstream cortical activation.
Collapse
Affiliation(s)
- Tim Allison-Walker
- School of Science, RMIT University, Melbourne, Australia
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Maureen A Hagan
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Sabrina J Meikle
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Australia
| | - Nicholas S C Price
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Yan T Wong
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Australia
| |
Collapse
|
13
|
Valle G, Alamri AH, Downey JE, Lienkämper R, Jordan PM, Sobinov AR, Endsley LJ, Prasad D, Boninger ML, Collinger JL, Warnke PC, Hatsopoulos NG, Miller LE, Gaunt RA, Greenspon CM, Bensmaia SJ. Tactile edges and motion via patterned microstimulation of the human somatosensory cortex. Science 2025; 387:315-322. [PMID: 39818881 PMCID: PMC11994950 DOI: 10.1126/science.adq5978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/01/2024] [Indexed: 01/19/2025]
Abstract
Intracortical microstimulation (ICMS) of somatosensory cortex evokes tactile sensations whose properties can be systematically manipulated by varying stimulation parameters. However, ICMS currently provides an imperfect sense of touch, limiting manual dexterity and tactile experience. Leveraging our understanding of how tactile features are encoded in the primary somatosensory cortex (S1), we sought to inform individuals with paralysis about local geometry and apparent motion of objects on their skin. We simultaneously delivered ICMS through electrodes with spatially patterned projected fields (PFs), evoking sensations of edges. We then created complex PFs that encode arbitrary tactile shapes and skin indentation patterns. By delivering spatiotemporally patterned ICMS, we evoked sensation of motion across the skin, the speed and direction of which could be controlled. Thus, we improved individuals' tactile experience and use of brain-controlled bionic hands.
Collapse
Affiliation(s)
- Giacomo Valle
- Department of Organismal Biology and Anatomy, University of Chicago, 60637 Chicago, IL
- Department of Electrical Engineering, Chalmers University of Technology, 41296 Goteborg, Sweden
| | - Ali H. Alamri
- Committee on Computational Neuroscience, University of Chicago, 60637 Chicago, IL
| | - John E. Downey
- Department of Organismal Biology and Anatomy, University of Chicago, 60637 Chicago, IL
| | - Robin Lienkämper
- Rehab Neural Engineering Labs, University of Pittsburgh, 15219 Pittsburgh, PA
| | - Patrick M. Jordan
- Department of Organismal Biology and Anatomy, University of Chicago, 60637 Chicago, IL
| | - Anton R. Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, 60637 Chicago, IL
| | - Linnea J. Endsley
- Department of Organismal Biology and Anatomy, University of Chicago, 60637 Chicago, IL
| | - Dillan Prasad
- Department of Organismal Biology and Anatomy, University of Chicago, 60637 Chicago, IL
| | - Michael L. Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, 15219 Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 15213 Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, 15260 Pittsburgh, PA
| | - Jennifer L. Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, 15219 Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 15213 Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, 15260 Pittsburgh, PA
| | - Peter C. Warnke
- Department of Neurological Surgery, University of Chicago, 60637 Chicago, IL
| | - Nicholas G. Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, 60637 Chicago, IL
- Committee on Computational Neuroscience, University of Chicago, 60637 Chicago, IL
- Neuroscience Institute, University of Chicago, 60637 Chicago, IL
| | - Lee E. Miller
- Department of Neuroscience, Northwestern University, 60611 Chicago, IL
- Department of Biomedical Engineering, Northwestern University, 60208 Evanston, IL
- Department of Physical Medicine and Rehabilitation, Northwestern University, 60611 Chicago, IL
- Shirley Ryan Ability Lab, 60611 Chicago, IL
| | - Robert A. Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, 15219 Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 15213 Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, 15260 Pittsburgh, PA
| | - Charles M. Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, 60637 Chicago, IL
| | - Sliman J. Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, 60637 Chicago, IL
- Committee on Computational Neuroscience, University of Chicago, 60637 Chicago, IL
- Neuroscience Institute, University of Chicago, 60637 Chicago, IL
| |
Collapse
|
14
|
Romeni S, De Luca D, Pierantoni L, Toni L, Marino G, Moccia S, Micera S. A computational model to design wide field-of-view optic nerve neuroprostheses. iScience 2024; 27:111321. [PMID: 39628568 PMCID: PMC11612796 DOI: 10.1016/j.isci.2024.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Retinal stimulation (RS) allows restoring vision in blind patients, but it covers only a narrow region of the visual field. Optic nerve stimulation (ONS) has the potential to produce visual perceptions spanning the whole visual field, but it produces very irregular phosphenes. We introduced a geometrical model converting retinal and optic nerve firing rates into visual perceptions and vice versa and a method to estimate the best perceptions elicitable through an electrode configuration. We then compared in silico ONS and RS through simulated prosthetic vision of static and dynamic visual scenes. Both simulations and SPV experiments showed that it might be possible to reconstruct natural visual scenes with ONS and RS, and that ONS wide field-of-view allows the perception of more detail in dynamic scenarios than RS. Our findings suggest that ONS could represent an interesting approach for vision restoration and that our model can be used to optimize it.
Collapse
Affiliation(s)
- Simone Romeni
- Modular Implantable Neurotechnologies Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant’Anna, Milan, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Daniela De Luca
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Luca Pierantoni
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Laura Toni
- Modular Implantable Neurotechnologies Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant’Anna, Milan, Italy
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Gabriele Marino
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Sara Moccia
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Innovative Technologies in Medicine and Dentistry, Università degli Studi “G. d’Annunzio”, Chieti-Pescara, Italy
| | - Silvestro Micera
- Modular Implantable Neurotechnologies Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant’Anna, Milan, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
15
|
Lee AH, Lee J, Leung V, Larson L, Nurmikko A. Patterned electrical brain stimulation by a wireless network of implantable microdevices. Nat Commun 2024; 15:10093. [PMID: 39572612 PMCID: PMC11582589 DOI: 10.1038/s41467-024-54542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Transmitting meaningful information into brain circuits by electronic means is a challenge facing brain-computer interfaces. A key goal is to find an approach to inject spatially structured local current stimuli across swaths of sensory areas of the cortex. Here, we introduce a wireless approach to multipoint patterned electrical microstimulation by a spatially distributed epicortically implanted network of silicon microchips to target specific areas of the cortex. Each sub-millimeter-sized microchip harvests energy from an external radio-frequency source and converts this into biphasic current injected focally into tissue by a pair of integrated microwires. The amplitude, period, and repetition rate of injected current from each chip are controlled across the implant network by implementing a pre-scheduled, collision-free bitmap wireless communication protocol featuring sub-millisecond latency. As a proof-of-concept technology demonstration, a network of 30 wireless stimulators was chronically implanted into motor and sensory areas of the cortex in a freely moving rat for three months. We explored the effects of patterned intracortical electrical stimulation on trained animal behavior at average RF powers well below regulatory safety limits.
Collapse
Affiliation(s)
- Ah-Hyoung Lee
- School of Engineering, Brown University, Providence, RI, USA
| | - Jihun Lee
- School of Engineering, Brown University, Providence, RI, USA
| | - Vincent Leung
- Electrical and Computer Engineering, Baylor University, Waco, TX, USA
| | - Lawrence Larson
- School of Engineering, Brown University, Providence, RI, USA
| | - Arto Nurmikko
- School of Engineering, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
16
|
Shah NP, Phillips AJ, Madugula S, Lotlikar A, Gogliettino AR, Hays MR, Grosberg L, Brown J, Dusi A, Tandon P, Hottowy P, Dabrowski W, Sher A, Litke AM, Mitra S, Chichilnisky EJ. Precise control of neural activity using dynamically optimized electrical stimulation. eLife 2024; 13:e83424. [PMID: 39508555 PMCID: PMC11542921 DOI: 10.7554/elife.83424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/15/2024] [Indexed: 11/15/2024] Open
Abstract
Neural implants have the potential to restore lost sensory function by electrically evoking the complex naturalistic activity patterns of neural populations. However, it can be difficult to predict and control evoked neural responses to simultaneous multi-electrode stimulation due to nonlinearity of the responses. We present a solution to this problem and demonstrate its utility in the context of a bidirectional retinal implant for restoring vision. A dynamically optimized stimulation approach encodes incoming visual stimuli into a rapid, greedily chosen, temporally dithered and spatially multiplexed sequence of simple stimulation patterns. Stimuli are selected to optimize the reconstruction of the visual stimulus from the evoked responses. Temporal dithering exploits the slow time scales of downstream neural processing, and spatial multiplexing exploits the independence of responses generated by distant electrodes. The approach was evaluated using an experimental laboratory prototype of a retinal implant: large-scale, high-resolution multi-electrode stimulation and recording of macaque and rat retinal ganglion cells ex vivo. The dynamically optimized stimulation approach substantially enhanced performance compared to existing approaches based on static mapping between visual stimulus intensity and current amplitude. The modular framework enabled parallel extensions to naturalistic viewing conditions, incorporation of perceptual similarity measures, and efficient implementation for an implantable device. A direct closed-loop test of the approach supported its potential use in vision restoration.
Collapse
Affiliation(s)
- Nishal Pradeepbhai Shah
- Department of Electrical EngineeringStanfordUnited States
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - AJ Phillips
- Department of Electrical EngineeringStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - Sasidhar Madugula
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | | | - Alex R Gogliettino
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Neurosciences PhD ProgramStanfordUnited States
| | - Madeline Rose Hays
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Department of BioengineeringStanfordUnited States
| | - Lauren Grosberg
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - Jeff Brown
- Department of Electrical EngineeringStanfordUnited States
| | - Aditya Dusi
- Department of Electrical EngineeringStanfordUnited States
| | - Pulkit Tandon
- Department of Electrical EngineeringStanfordUnited States
| | - Pawel Hottowy
- AGH University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakowPoland
| | - Wladyslaw Dabrowski
- AGH University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakowPoland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CASanta CruzUnited States
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CASanta CruzUnited States
| | | | - EJ Chichilnisky
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Department of OphthalmologyStanfordUnited States
| |
Collapse
|
17
|
Yang S, Yang S, Li P, Gou S, Cheng Y, Jia Q, Du Z. Advanced neuroprosthetic electrode design optimized by electromagnetic finite element simulation: innovations and applications. Front Bioeng Biotechnol 2024; 12:1476447. [PMID: 39574462 PMCID: PMC11579925 DOI: 10.3389/fbioe.2024.1476447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Based on electrophysiological activity, neuroprostheses can effectively monitor and control neural activity. Currently, electrophysiological neuroprostheses are widely utilized in treating neurological disorders, particularly in restoring motor, visual, auditory, and somatosensory functions after nervous system injuries. They also help alleviate inflammation, regulate blood pressure, provide analgesia, and treat conditions such as epilepsy and Alzheimer's disease, offering significant research, economic, and social value. Enhancing the targeting capabilities of neuroprostheses remains a key objective for researchers. Modeling and simulation techniques facilitate the theoretical analysis of interactions between neuroprostheses and the nervous system, allowing for quantitative assessments of targeting efficiency. Throughout the development of neuroprostheses, these modeling and simulation methods can save time, materials, and labor costs, thereby accelerating the rapid development of highly targeted neuroprostheses. This article introduces the fundamental principles of neuroprosthesis simulation technology and reviews how various simulation techniques assist in the design and performance enhancement of neuroprostheses. Finally, it discusses the limitations of modeling and simulation and outlines future directions for utilizing these approaches to guide neuroprosthesis design.
Collapse
Affiliation(s)
- Shu Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyi Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peixuan Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuchun Gou
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Cheng
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinggang Jia
- Institute of Applied Physics and Computational Mathematics, Beijing, China
| | - Zhanhong Du
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Peng Z, Tong L, Shi W, Xu L, Huang X, Li Z, Yu X, Meng X, He X, Lv S, Yang G, Hao H, Jiang T, Miao X, Ye L. Multifunctional human visual pathway-replicated hardware based on 2D materials. Nat Commun 2024; 15:8650. [PMID: 39369011 PMCID: PMC11455896 DOI: 10.1038/s41467-024-52982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
Artificial visual system empowered by 2D materials-based hardware simulates the functionalities of the human visual system, leading the forefront of artificial intelligence vision. However, retina-mimicked hardware that has not yet fully emulated the neural circuits of visual pathways is restricted from realizing more complex and special functions. In this work, we proposed a human visual pathway-replicated hardware that consists of crossbar arrays with split floating gate 2D tungsten diselenide (WSe2) unit devices that simulate the retina and visual cortex, and related connective peripheral circuits that replicate connectomics between the retina and visual cortex. This hardware experimentally displays advanced multi-functions of red-green color-blindness processing, low-power shape recognition, and self-driven motion tracking, promoting the development of machine vision, driverless technology, brain-computer interfaces, and intelligent robotics.
Collapse
Affiliation(s)
- Zhuiri Peng
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Tong
- Department of Electronic Engineering, Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenhao Shi
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Langlang Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangxiang Yu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Meng
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao He
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Shengjie Lv
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Gaochen Yang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Hao
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
| | - Tian Jiang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China.
| | - Xiangshui Miao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Yangtze Memory Laboratories, Wuhan, China.
| | - Lei Ye
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Yangtze Memory Laboratories, Wuhan, China.
| |
Collapse
|
19
|
Zhu Y, Liu X, Ma J, Wang Z, Jiang H, Sun C, Jeong DY, Guan H, Chu B. Wireless and Opto-Stimulated Flexible Implants: Artificial Retina Constructed by Ferroelectric BiFeO 3-BaTiO 3/P(VDF-TrFE) Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48395-48405. [PMID: 39223074 DOI: 10.1021/acsami.4c12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The degeneration of retinal photoreceptors is one of the primary causes of blindness, and the implantation of retinal prostheses offers hope for vision restoration in individuals who are completely blind. Flexible bioelectronic devices present a promising avenue for the next generation of retinal prostheses owing to their soft mechanical properties and tissue friendliness. In this study, we developed flexible composite films of ferroelectric BiFeO3-BaTiO3 (BFO-BTO) particles synthesized by the hydrothermal method and ferroelectric poly(vinyldene difluoride-trifluoroethylene) (P(VDF-TrFE)) polymer and investigated their applications in artificial retinas. Owing to the coupling of the photothermal effect of BFO-BTO particles and the pyroelectric effect of the P(VDF-TrFE) polymer, the composite films demonstrate a strong photoelectric response (a maximum peak-to-peak photovoltage > 80 V under blue light of 100 mW/cm2) in a wide wavelength range of light (from visible to infrared) with the inherent flexibility and ease of preparation, making it an attractive candidate for artificial retinal applications. Experimental results showed that blind rats implanted with artificial retinas of the composites display light-responsive behavior, showcasing the effectiveness of vision restoration. This study demonstrates a novel approach for employing ferroelectric materials in vision restoration and offers insights into future artificial retina design.
Collapse
Affiliation(s)
- Yuhong Zhu
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xi Liu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong 226001, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Zhaopeng Wang
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Haitao Jiang
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Dae-Yong Jeong
- Department of Materials Science & Engineering, Inha University, Incheon 22212, Korea
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong 226001, China
| | - Baojin Chu
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Kar K, DiCarlo JJ. The Quest for an Integrated Set of Neural Mechanisms Underlying Object Recognition in Primates. Annu Rev Vis Sci 2024; 10:91-121. [PMID: 38950431 DOI: 10.1146/annurev-vision-112823-030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Inferences made about objects via vision, such as rapid and accurate categorization, are core to primate cognition despite the algorithmic challenge posed by varying viewpoints and scenes. Until recently, the brain mechanisms that support these capabilities were deeply mysterious. However, over the past decade, this scientific mystery has been illuminated by the discovery and development of brain-inspired, image-computable, artificial neural network (ANN) systems that rival primates in these behavioral feats. Apart from fundamentally changing the landscape of artificial intelligence, modified versions of these ANN systems are the current leading scientific hypotheses of an integrated set of mechanisms in the primate ventral visual stream that support core object recognition. What separates brain-mapped versions of these systems from prior conceptual models is that they are sensory computable, mechanistic, anatomically referenced, and testable (SMART). In this article, we review and provide perspective on the brain mechanisms addressed by the current leading SMART models. We review their empirical brain and behavioral alignment successes and failures, discuss the next frontiers for an even more accurate mechanistic understanding, and outline the likely applications.
Collapse
Affiliation(s)
- Kohitij Kar
- Department of Biology, Centre for Vision Research, and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario, Canada;
| | - James J DiCarlo
- Department of Brain and Cognitive Sciences, MIT Quest for Intelligence, and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
21
|
Tian F, Zhang Y, Schriver KE, Hu JM, Roe AW. A novel interface for cortical columnar neuromodulation with multipoint infrared neural stimulation. Nat Commun 2024; 15:6528. [PMID: 39095351 PMCID: PMC11297274 DOI: 10.1038/s41467-024-50375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Cutting edge advances in electrical visual cortical prosthetics have evoked perception of shapes, motion, and letters in the blind. Here, we present an alternative optical approach using pulsed infrared neural stimulation. To interface with dense arrays of cortical columns with submillimeter spatial precision, both linear array and 100-fiber bundle array optical fiber interfaces were devised. We deliver infrared stimulation through these arrays in anesthetized cat visual cortex and monitor effects by optical imaging in contralateral visual cortex. Infrared neural stimulation modulation of response to ongoing visual oriented gratings produce enhanced responses in orientation-matched domains and suppressed responses in non-matched domains, consistent with a known higher order integration mediated by callosal inputs. Controls include dynamically applied speeds, directions and patterns of multipoint stimulation. This provides groundwork for a distinct type of prosthetic targeted to maps of visual cortical columns.
Collapse
Affiliation(s)
- Feiyan Tian
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Ying Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Kenneth E Schriver
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Jia Ming Hu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China.
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China.
- National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Wang F, Chen X, Roelfsema PR. Comparison of electrical microstimulation artifact removal methods for high-channel-count prostheses. J Neurosci Methods 2024; 408:110169. [PMID: 38782123 DOI: 10.1016/j.jneumeth.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Neuroprostheses are used to electrically stimulate the brain, modulate neural activity and restore sensory and motor function following injury or disease, such as blindness, paralysis, and other movement and psychiatric disorders. Recordings are often made simultaneously with stimulation, allowing the monitoring of neural signals and closed-loop control of devices. However, stimulation-evoked artifacts may obscure neural activity, particularly when stimulation and recording sites are nearby. Several methods have been developed to remove stimulation artifacts, but it remains challenging to validate and compare these methods because the 'ground-truth' of the neuronal signals may be contaminated by artifacts. NEW METHOD Here, we delivered stimulation to the visual cortex via a high-channel-count prosthesis while recording neuronal activity and stimulation artifacts. We quantified the waveforms and temporal properties of stimulation artifacts from the cortical visual prosthesis (CVP) and used them to build a dataset, in which we simulated the neuronal activity and the stimulation artifacts. We illustrate how to use the simulated data to evaluate the performance of six software-based artifact removal methods (Template subtraction, Linear interpolation, Polynomial fitting, Exponential fitting, SALPA and ERAASR) in a CVP application scenario. RESULTS We here focused on stimulation artifacts caused by electrical stimulation through a high-channel-count cortical prosthesis device. We find that the Polynomial fitting and Exponential fitting methods outperform the other methods in recovering spikes and multi-unit activity. Linear interpolation and Template subtraction recovered the local-field potentials. CONCLUSION Polynomial fitting and Exponential fitting provided a good trade-off between the quality of the recovery of spikes and multi-unit activity (MUA) and the computational complexity for a cortical prosthesis.
Collapse
Affiliation(s)
- Feng Wang
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam 1105 BA, the Netherlands.
| | - Xing Chen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, 203 Lothrop St, Pittsburgh, PA 15213, US.
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam 1105 BA, the Netherlands; Department of Ophthalmology, University of Pittsburgh School of Medicine, 203 Lothrop St, Pittsburgh, PA 15213, US; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Department of Neurosurgery, Academic Medical Centre, Postbus 22660, Amsterdam 1100 DD, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris F-75012, France.
| |
Collapse
|
23
|
Yang R, Zhao P, Wang L, Feng C, Peng C, Wang Z, Zhang Y, Shen M, Shi K, Weng S, Dong C, Zeng F, Zhang T, Chen X, Wang S, Wang Y, Luo Y, Chen Q, Chen Y, Jiang C, Jia S, Yu Z, Liu J, Wang F, Jiang S, Xu W, Li L, Wang G, Mo X, Zheng G, Chen A, Zhou X, Jiang C, Yuan Y, Yan B, Zhang J. Assessment of visual function in blind mice and monkeys with subretinally implanted nanowire arrays as artificial photoreceptors. Nat Biomed Eng 2024; 8:1018-1039. [PMID: 37996614 DOI: 10.1038/s41551-023-01137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Retinal prostheses could restore image-forming vision in conditions of photoreceptor degeneration. However, contrast sensitivity and visual acuity are often insufficient. Here we report the performance, in mice and monkeys with induced photoreceptor degeneration, of subretinally implanted gold-nanoparticle-coated titania nanowire arrays providing a spatial resolution of 77.5 μm and a temporal resolution of 3.92 Hz in ex vivo retinas (as determined by patch-clamp recording of retinal ganglion cells). In blind mice, the arrays allowed for the detection of drifting gratings and flashing objects at light-intensity thresholds of 15.70-18.09 μW mm-2, and offered visual acuities of 0.3-0.4 cycles per degree, as determined by recordings of visually evoked potentials and optomotor-response tests. In monkeys, the arrays were stable for 54 weeks, allowed for the detection of a 10-μW mm-2 beam of light (0.5° in beam angle) in visually guided saccade experiments, and induced plastic changes in the primary visual cortex, as indicated by long-term in vivo calcium imaging. Nanomaterials as artificial photoreceptors may ameliorate visual deficits in patients with photoreceptor degeneration.
Collapse
Affiliation(s)
- Ruyi Yang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Peng Zhao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Liyang Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chenli Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Zhexuan Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yingying Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Kaiwen Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunqiong Dong
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Fu Zeng
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Tianyun Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Xingdong Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, P. R. China
| | - Yiheng Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuanyuan Luo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Qingyuan Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuqing Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shanshan Jia
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Zhaofei Yu
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Jian Liu
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Fei Wang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Su Jiang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Wendong Xu
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, P.R. China
| | - Liang Li
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Gang Wang
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Xiaofen Mo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Xingtao Zhou
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunhui Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, P.R. China.
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
24
|
Morales-Gregorio A, Kurth AC, Ito J, Kleinjohann A, Barthélemy FV, Brochier T, Grün S, van Albada SJ. Neural manifolds in V1 change with top-down signals from V4 targeting the foveal region. Cell Rep 2024; 43:114371. [PMID: 38923458 DOI: 10.1016/j.celrep.2024.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
High-dimensional brain activity is often organized into lower-dimensional neural manifolds. However, the neural manifolds of the visual cortex remain understudied. Here, we study large-scale multi-electrode electrophysiological recordings of macaque (Macaca mulatta) areas V1, V4, and DP with a high spatiotemporal resolution. We find that the population activity of V1 contains two separate neural manifolds, which correlate strongly with eye closure (eyes open/closed) and have distinct dimensionalities. Moreover, we find strong top-down signals from V4 to V1, particularly to the foveal region of V1, which are significantly stronger during the eyes-open periods. Finally, in silico simulations of a balanced spiking neuron network qualitatively reproduce the experimental findings. Taken together, our analyses and simulations suggest that top-down signals modulate the population activity of V1. We postulate that the top-down modulation during the eyes-open periods prepares V1 for fast and efficient visual responses, resulting in a type of visual stand-by state.
Collapse
Affiliation(s)
- Aitor Morales-Gregorio
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Institute of Zoology, University of Cologne, Cologne, Germany.
| | - Anno C Kurth
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; RWTH Aachen University, Aachen, Germany
| | - Junji Ito
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany
| | - Alexander Kleinjohann
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Frédéric V Barthélemy
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille Université, Marseille, France
| | - Thomas Brochier
- Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille Université, Marseille, France
| | - Sonja Grün
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany; JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Fukuda S, Nomoto T, Yagi T, Hayashida Y. On the spatial synaptic propagation of excitations induced by repetitive microstimulation pulses in the mouse visual cortex. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039503 DOI: 10.1109/embc53108.2024.10782304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The spatial synaptic propagation of membrane excitation in response to the trains of microstimulation pulses applied to the cortical layer II/III in the mouse cerebral tissue slices was analyzed by means of the voltage-sensitive dye imaging and the numerical simulation with a one-dimensional network model. The present model was able to simulate the spatial dynamics of the post-synaptic component of response induced by the repetitive current pulses.
Collapse
|
26
|
Orlemann C, Boehler C, Kooijmans RN, Li B, Asplund M, Roelfsema PR. Flexible Polymer Electrodes for Stable Prosthetic Visual Perception in Mice. Adv Healthc Mater 2024; 13:e2304169. [PMID: 38324245 PMCID: PMC11468866 DOI: 10.1002/adhm.202304169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Brain interfaces that can stimulate neurons, cause minimal damage, and work for a long time will be central for future neuroprosthetics. Here, the long-term performance of highly flexible, thin polyimide shanks with several small (<15 µm) electrodes during electrical microstimulation of the visual cortex, is reported. The electrodes exhibit a remarkable stability when several billions of electrical pulses are applied in vitro. When the devices are implanted in the primary visual cortex (area V1) of mice and the animals are trained to detect electrical microstimulation, it is found that the perceptual thresholds are 2-20 microamperes (µA), which is far below the maximal currents that the electrodes can withstand. The long-term functionality of the devices in vivo is excellent, with stable performance for up to more than a year and little damage to the brain tissue. These results demonstrate the potential of thin floating electrodes for the long-term restoration of lost sensory functions.
Collapse
Affiliation(s)
- Corinne Orlemann
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
- BrainLinks‐BrainTools CenterUniversity of Freiburg79110FreiburgGermany
| | - Roxana N. Kooijmans
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
- Institute for Neuroscience and Medicine (INM‐1)Forschungszentrum Jülich52428JülichGermany
| | - Bingshuo Li
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
- BrainLinks‐BrainTools CenterUniversity of Freiburg79110FreiburgGermany
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburg412 96Sweden
| | - Pieter R. Roelfsema
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
- Laboratory of Visual Brain TherapySorbonne UniversitéInstitut National de la Santé et de la Recherche MédicaleCentre National de la Recherche ScientifiqueInstitut de la VisionParisF‐75012France
- Department of Integrative NeurophysiologyCentre for Neurogenomics and Cognitive ResearchVU UniversityAmsterdam1081 HVThe Netherlands
- Department of NeurosurgeryAmsterdam University Medical CenterUniversity of AmsterdamAmsterdam1105 AZThe Netherlands
| |
Collapse
|
27
|
Lu G, Gong C, Sun Y, Qian X, Rajendran Nair DS, Li R, Zeng Y, Ji J, Zhang J, Kang H, Jiang L, Chen J, Chang CF, Thomas BB, Humayun MS, Zhou Q. Noninvasive imaging-guided ultrasonic neurostimulation with arbitrary 2D patterns and its application for high-quality vision restoration. Nat Commun 2024; 15:4481. [PMID: 38802397 PMCID: PMC11130148 DOI: 10.1038/s41467-024-48683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Retinal degeneration, a leading cause of irreversible low vision and blindness globally, can be partially addressed by retina prostheses which stimulate remaining neurons in the retina. However, existing electrode-based treatments are invasive, posing substantial risks to patients and healthcare providers. Here, we introduce a completely noninvasive ultrasonic retina prosthesis, featuring a customized ultrasound two-dimensional array which allows for simultaneous imaging and stimulation. With synchronous three-dimensional imaging guidance and auto-alignment technology, ultrasonic retina prosthesis can generate programmed ultrasound waves to dynamically and precisely form arbitrary wave patterns on the retina. Neuron responses in the brain's visual center mirrored these patterns, evidencing successful artificial vision creation, which was further corroborated in behavior experiments. Quantitative analysis of the spatial-temporal resolution and field of view demonstrated advanced performance of ultrasonic retina prosthesis and elucidated the biophysical mechanism of retinal stimulation. As a noninvasive blindness prosthesis, ultrasonic retina prosthesis could lead to a more effective, widely acceptable treatment for blind patients. Its real-time imaging-guided stimulation strategy with a single ultrasound array, could also benefit ultrasound neurostimulation in other diseases.
Collapse
Affiliation(s)
- Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chen Gong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yizhe Sun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Deepthi S Rajendran Nair
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yushun Zeng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jie Ji
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haochen Kang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jiawen Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Chi-Feng Chang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Biju B Thomas
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Teichert T, Papp L, Vincze F, Burns N, Goodell B, Ahmed Z, Holmes A, Gray CM, Chamanzar M, Gurnsey K. Volumetric mesoscopic electrophysiology: a new imaging modality for the non-human primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593946. [PMID: 38798595 PMCID: PMC11118515 DOI: 10.1101/2024.05.13.593946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The primate brain is a densely interconnected organ whose function is best understood by recording from the entire structure in parallel, rather than parts of it in sequence. However, available methods either have limited temporal resolution (functional magnetic resonance imaging), limited spatial resolution (macroscopic electroencephalography), or a limited field of view (microscopic electrophysiology). To address this need, we developed a volumetric, mesoscopic recording approach ( MePhys ) by tessellating the volume of a monkey hemisphere with 992 electrode contacts that were distributed across 62 chronically implanted multi-electrode shafts. We showcase the scientific promise of MePhys by describing the functional interactions of local field potentials between the more than 300,000 simultaneously recorded pairs of electrodes. We find that a subanesthetic dose of ketamine -believed to mimic certain aspects of psychosis- can create a pronounced state of functional disconnection and prevent the formation of stable large-scale intrinsic states. We conclude that MePhys provides a new and fundamentally distinct window into brain function whose unique profile of strengths and weaknesses complements existing approaches in synergistic ways.
Collapse
|
29
|
Raghuram V, Datye AD, Fried SI, Timko BP. Transparent and Conformal Microcoil Arrays for Spatially Selective Neuronal Activation. DEVICE 2024; 2:100290. [PMID: 39184953 PMCID: PMC11343507 DOI: 10.1016/j.device.2024.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Micromagnetic stimulation (μMS) using small, implantable microcoils is a promising method for achieving neuronal activation with high spatial resolution and low toxicity. Herein, we report a microcoil array for localized activation of cortical neurons and retinal ganglion cells. We developed a computational model to relate the electric field gradient (activating function) to the geometry and arrangement of microcoils, and selected a design that produced an anisotropic region of activation <50 μm wide. The device was comprised of an SU-8/Cu/SU-8 tri-layer structure, which was flexible, transparent and conformal and featured four individually-addressable microcoils. Interfaced with cortex or retina explants from GCaMP6-expressing mice, we observed that individual neurons localized within 40 μm of a microcoil tip could be activated repeatedly and in a dose- (power-) dependent fashion. These results demonstrate the potential of μMS devices for brain-machine interfaces and could enable routes toward bioelectronic therapies including prosthetic vision devices.
Collapse
Affiliation(s)
- Vineeth Raghuram
- Dept. of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Boston Veterans Affairs Healthcare System, Boston, MA 02130, USA
- Dept. of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Aditya D. Datye
- Dept. of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Shelley I. Fried
- Dept. of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Boston Veterans Affairs Healthcare System, Boston, MA 02130, USA
- Dept. of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Brian P. Timko
- Dept. of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Lead Contact
| |
Collapse
|
30
|
de Ruyter van Steveninck J, Nipshagen M, van Gerven M, Güçlü U, Güçlüturk Y, van Wezel R. Gaze-contingent processing improves mobility, scene recognition and visual search in simulated head-steered prosthetic vision. J Neural Eng 2024; 21:026037. [PMID: 38502957 DOI: 10.1088/1741-2552/ad357d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Objective.The enabling technology of visual prosthetics for the blind is making rapid progress. However, there are still uncertainties regarding the functional outcomes, which can depend on many design choices in the development. In visual prostheses with a head-mounted camera, a particularly challenging question is how to deal with the gaze-locked visual percept associated with spatial updating conflicts in the brain. The current study investigates a recently proposed compensation strategy based on gaze-contingent image processing with eye-tracking. Gaze-contingent processing is expected to reinforce natural-like visual scanning and reestablished spatial updating based on eye movements. The beneficial effects remain to be investigated for daily life activities in complex visual environments.Approach.The current study evaluates the benefits of gaze-contingent processing versus gaze-locked and gaze-ignored simulations in the context of mobility, scene recognition and visual search, using a virtual reality simulated prosthetic vision paradigm with sighted subjects.Main results.Compared to gaze-locked vision, gaze-contingent processing was consistently found to improve the speed in all experimental tasks, as well as the subjective quality of vision. Similar or further improvements were found in a control condition that ignores gaze-dependent effects, a simulation that is unattainable in the clinical reality.Significance.Our results suggest that gaze-locked vision and spatial updating conflicts can be debilitating for complex visually-guided activities of daily living such as mobility and orientation. Therefore, for prospective users of head-steered prostheses with an unimpaired oculomotor system, the inclusion of a compensatory eye-tracking system is strongly endorsed.
Collapse
Affiliation(s)
| | - Mo Nipshagen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Marcel van Gerven
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Umut Güçlü
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Yağmur Güçlüturk
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Richard van Wezel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Biomedical Signals and Systems Group, University of Twente, Enschede, The Netherlands
| |
Collapse
|
31
|
Suematsu N, Vazquez AL, Kozai TDY. Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. J Neural Eng 2024; 21:026033. [PMID: 38537268 PMCID: PMC11002944 DOI: 10.1088/1741-2552/ad3853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Objective. Intracortical microstimulation (ICMS) can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site.Approach. Different microstimulation frequencies were investigatedin vivoon Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging.Main results. Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies.Significance. These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by ICMS and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.
Collapse
Affiliation(s)
- Naofumi Suematsu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Alberto L Vazquez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
32
|
Hou Y, Nanduri D, Granley J, Weiland JD, Beyeler M. Axonal stimulation affects the linear summation of single-point perception in three Argus II users. J Neural Eng 2024; 21:026031. [PMID: 38457841 PMCID: PMC11003296 DOI: 10.1088/1741-2552/ad31c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
Objective.Retinal implants use electrical stimulation to elicit perceived flashes of light ('phosphenes'). Single-electrode phosphene shape has been shown to vary systematically with stimulus parameters and the retinal location of the stimulating electrode, due to incidental activation of passing nerve fiber bundles. However, this knowledge has yet to be extended to paired-electrode stimulation.Approach.We retrospectively analyzed 3548 phosphene drawings made by three blind participants implanted with an Argus II Retinal Prosthesis. Phosphene shape (characterized by area, perimeter, major and minor axis length) and number of perceived phosphenes were averaged across trials and correlated with the corresponding single-electrode parameters. In addition, the number of phosphenes was correlated with stimulus amplitude and neuroanatomical parameters: electrode-retina and electrode-fovea distance as well as the electrode-electrode distance to ('between-axon') and along axon bundles ('along-axon'). Statistical analyses were conducted using linear regression and partial correlation analysis.Main results.Simple regression revealed that each paired-electrode shape descriptor could be predicted by the sum of the two corresponding single-electrode shape descriptors (p < .001). Multiple regression revealed that paired-electrode phosphene shape was primarily predicted by stimulus amplitude and electrode-fovea distance (p < .05). Interestingly, the number of elicited phosphenes tended to increase with between-axon distance (p < .05), but not with along-axon distance, in two out of three participants.Significance.The shape of phosphenes elicited by paired-electrode stimulation was well predicted by the shape of their corresponding single-electrode phosphenes, suggesting that two-point perception can be expressed as the linear summation of single-point perception. The impact of the between-axon distance on the perceived number of phosphenes provides further evidence in support of the axon map model for epiretinal stimulation. These findings contribute to the growing literature on phosphene perception and have important implications for the design of future retinal prostheses.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Computer Science, University of California, Santa Barbara, CA, United States of America
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, United States of America
| | - Devyani Nanduri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Jacob Granley
- Department of Computer Science, University of California, Santa Barbara, CA, United States of America
| | - James D Weiland
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael Beyeler
- Department of Computer Science, University of California, Santa Barbara, CA, United States of America
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, United States of America
| |
Collapse
|
33
|
van der Grinten M, de Ruyter van Steveninck J, Lozano A, Pijnacker L, Rueckauer B, Roelfsema P, van Gerven M, van Wezel R, Güçlü U, Güçlütürk Y. Towards biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses. eLife 2024; 13:e85812. [PMID: 38386406 PMCID: PMC10883675 DOI: 10.7554/elife.85812] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/21/2024] [Indexed: 02/23/2024] Open
Abstract
Blindness affects millions of people around the world. A promising solution to restoring a form of vision for some individuals are cortical visual prostheses, which bypass part of the impaired visual pathway by converting camera input to electrical stimulation of the visual system. The artificially induced visual percept (a pattern of localized light flashes, or 'phosphenes') has limited resolution, and a great portion of the field's research is devoted to optimizing the efficacy, efficiency, and practical usefulness of the encoding of visual information. A commonly exploited method is non-invasive functional evaluation in sighted subjects or with computational models by using simulated prosthetic vision (SPV) pipelines. An important challenge in this approach is to balance enhanced perceptual realism, biologically plausibility, and real-time performance in the simulation of cortical prosthetic vision. We present a biologically plausible, PyTorch-based phosphene simulator that can run in real-time and uses differentiable operations to allow for gradient-based computational optimization of phosphene encoding models. The simulator integrates a wide range of clinical results with neurophysiological evidence in humans and non-human primates. The pipeline includes a model of the retinotopic organization and cortical magnification of the visual cortex. Moreover, the quantitative effects of stimulation parameters and temporal dynamics on phosphene characteristics are incorporated. Our results demonstrate the simulator's suitability for both computational applications such as end-to-end deep learning-based prosthetic vision optimization as well as behavioral experiments. The modular and open-source software provides a flexible simulation framework for computational, clinical, and behavioral neuroscientists working on visual neuroprosthetics.
Collapse
Affiliation(s)
| | | | - Antonio Lozano
- Netherlands Institute for Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Laura Pijnacker
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Bodo Rueckauer
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Pieter Roelfsema
- Netherlands Institute for Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Marcel van Gerven
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Richard van Wezel
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Biomedical Signals and Systems Group, University of Twente, Enschede, Netherlands
| | - Umut Güçlü
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Yağmur Güçlütürk
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
34
|
Leong F, Rahmani B, Psaltis D, Moser C, Ghezzi D. An actor-model framework for visual sensory encoding. Nat Commun 2024; 15:808. [PMID: 38280912 PMCID: PMC10821921 DOI: 10.1038/s41467-024-45105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
A fundamental challenge in neuroengineering is determining a proper artificial input to a sensory system that yields the desired perception. In neuroprosthetics, this process is known as artificial sensory encoding, and it holds a crucial role in prosthetic devices restoring sensory perception in individuals with disabilities. For example, in visual prostheses, one key aspect of artificial image encoding is to downsample images captured by a camera to a size matching the number of inputs and resolution of the prosthesis. Here, we show that downsampling an image using the inherent computation of the retinal network yields better performance compared to learning-free downsampling methods. We have validated a learning-based approach (actor-model framework) that exploits the signal transformation from photoreceptors to retinal ganglion cells measured in explanted mouse retinas. The actor-model framework generates downsampled images eliciting a neuronal response in-silico and ex-vivo with higher neuronal reliability than the one produced by a learning-free approach. During the learning process, the actor network learns to optimize contrast and the kernel's weights. This methodological approach might guide future artificial image encoding strategies for visual prostheses. Ultimately, this framework could be applicable for encoding strategies in other sensory prostheses such as cochlear or limb.
Collapse
Affiliation(s)
- Franklin Leong
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Babak Rahmani
- Laboratory of Applied Photonics Devices, Institute of Electrical and Micro Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Microsoft Research, Cambridge, UK
| | - Demetri Psaltis
- Optics Laboratory, Institute of Electrical and Micro Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, Institute of Electrical and Micro Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Ophthalmic and Neural Technologies Laboratory, Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Fondation Asile des Aveugles, Lausanne, Switzerland.
| |
Collapse
|
35
|
Suematsu N, Vazquez AL, Kozai TD. Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573814. [PMID: 38260671 PMCID: PMC10802282 DOI: 10.1101/2024.01.01.573814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Objective . Intracortical microstimulation can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site. Approach . Different microstimulation frequencies were investigated in vivo on Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging. Main results . Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies. Significance . These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by intracortical microstimulation and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.
Collapse
|
36
|
Hou Y, Nanduri D, Granley J, Weiland JD, Beyeler M. Axonal stimulation affects the linear summation of single-point perception in three Argus II users. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.21.23292908. [PMID: 37546858 PMCID: PMC10402233 DOI: 10.1101/2023.07.21.23292908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Purpose Retinal implants use electrical stimulation to elicit perceived flashes of light ("phosphenes"). Single-electrode phosphene shape has been shown to vary systematically with stimulus parameters and the retinal location of the stimulating electrode, due to incidental activation of passing nerve fiber bundles. However, this knowledge has yet to be extended to paired-electrode stimulation. Methods We retrospectively analyzed 3548 phosphene drawings made by three blind participants implanted with an Argus II Retinal Prosthesis. Phosphene shape (characterized by area, perimeter, major and minor axis length) and number of perceived phosphenes were averaged across trials and correlated with the corresponding single-electrode parameters. In addition, the number of phosphenes was correlated with stimulus amplitude and neuroanatomical parameters: electrode-retina and electrode-fovea distance as well as the electrode-electrode distance to ("between-axon") and along axon bundles ("along-axon"). Statistical analyses were conducted using linear regression and partial correlation analysis. Results Simple regression revealed that each paired-electrode shape descriptor could be predicted by the sum of the two corresponding single-electrode shape descriptors (p < .001). Multiple regression revealed that paired-electrode phosphene shape was primarily predicted by stimulus amplitude and electrode-fovea distance (p < .05). Interestingly, the number of elicited phosphenes tended to increase with between-axon distance (p < .05), but not with along-axon distance, in two out of three participants. Conclusions The shape of phosphenes elicited by paired-electrode stimulation was well predicted by the shape of their corresponding single-electrode phosphenes, suggesting that two-point perception can be expressed as the linear summation of single-point perception. The notable impact of the between-axon distance on the perceived number of phosphenes provides further evidence in support of the axon map model for epiretinal stimulation. These findings contribute to the growing literature on phosphene perception and have important implications for the design of future retinal prostheses.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Computer Science, University of California, Santa Barbara, CA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA
| | - Devyani Nanduri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Jacob Granley
- Department of Computer Science, University of California, Santa Barbara, CA
| | - James D Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Michael Beyeler
- Department of Computer Science, University of California, Santa Barbara, CA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA
| |
Collapse
|
37
|
Kim YH, Koo H, Kim MS, Jung SD. Fabrication of a photo-crosslinkable fluoropolymer-passivated flexible neural probe and acute recording and stimulation performances in vivo. BIOMATERIALS ADVANCES 2023; 154:213629. [PMID: 37742557 DOI: 10.1016/j.bioadv.2023.213629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/25/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Herein, we fabricated fluorine-containing, polymer-based, flexible neural probes with fluorinated ethylene propylene (FEP) films as the substrates and photo-crosslinkable fluoropolymers as the passivation material. For fabrication, metal-free Au layer formation on the FEP film, the simultaneous photo-adhesion and photo-patterning technique, and the pulsed-laser scanning probe shaping technique were combined, followed by Au electrode surface modification. The resultant probes achieved a charge injection limit equal to 5.18 mC cm-2 by implementing iridium oxide-modified nanoporous Au (IrOx/NPG) structures. We performed simultaneous in vivo micro-stimulations of the Schaffer collateral fibres and recorded the evoked field excitatory postsynaptic potentials (fEPSPs) in the stratum radiatum layer of the hippocampal Cornu Ammonis 1 region using a single probe. Inducing the fEPSP at very low charge per pulse settings (3.2-3.6 nC/pulse) indicates the efficient charge injection capability of the IrOx/NPG electrode, thereby enabling safe, prolonged, and thrifty micro-stimulations. Furthermore, the single probe-induced and recorded long-term potentiation persisted for periods longer than 60 min following theta-burst stimulation. The materials used in this study are all biocompatible and chemically robust. The fabricated neural probes can be applied in chronic clinical trials in vivo.
Collapse
Affiliation(s)
- Yong Hee Kim
- Cybre Brain Research Section, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700, Republic of Korea
| | - Ho Koo
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Min Sun Kim
- Department of Physiology, Wonkwang University School of Medicine, 895 Munwang-ro, Iksan 570-711, Jeollabuk-do, Republic of Korea
| | - Sang-Don Jung
- Cybre Brain Research Section, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700, Republic of Korea.
| |
Collapse
|
38
|
Wang J, Azimi H, Zhao Y, Kaeser M, Vaca Sánchez P, Vazquez-Guardado A, Rogers JA, Harvey M, Rainer G. Optogenetic activation of visual thalamus generates artificial visual percepts. eLife 2023; 12:e90431. [PMID: 37791662 PMCID: PMC10593406 DOI: 10.7554/elife.90431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023] Open
Abstract
The lateral geniculate nucleus (LGN), a retinotopic relay center where visual inputs from the retina are processed and relayed to the visual cortex, has been proposed as a potential target for artificial vision. At present, it is unknown whether optogenetic LGN stimulation is sufficient to elicit behaviorally relevant percepts, and the properties of LGN neural responses relevant for artificial vision have not been thoroughly characterized. Here, we demonstrate that tree shrews pretrained on a visual detection task can detect optogenetic LGN activation using an AAV2-CamKIIα-ChR2 construct and readily generalize from visual to optogenetic detection. Simultaneous recordings of LGN spiking activity and primary visual cortex (V1) local field potentials (LFPs) during optogenetic LGN stimulation show that LGN neurons reliably follow optogenetic stimulation at frequencies up to 60 Hz and uncovered a striking phase locking between the V1 LFP and the evoked spiking activity in LGN. These phase relationships were maintained over a broad range of LGN stimulation frequencies, up to 80 Hz, with spike field coherence values favoring higher frequencies, indicating the ability to relay temporally precise information to V1 using light activation of the LGN. Finally, V1 LFP responses showed sensitivity values to LGN optogenetic activation that were similar to the animal's behavioral performance. Taken together, our findings confirm the LGN as a potential target for visual prosthetics in a highly visual mammal closely related to primates.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, University of FribourgFribourgSwitzerland
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical UniversityNanjingChina
| | - Hamid Azimi
- Department of Medicine, University of FribourgFribourgSwitzerland
| | - Yilei Zhao
- Department of Medicine, University of FribourgFribourgSwitzerland
| | - Melanie Kaeser
- Department of Medicine, University of FribourgFribourgSwitzerland
| | | | | | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern UniversityEvanstonUnited States
| | - Michael Harvey
- Department of Medicine, University of FribourgFribourgSwitzerland
| | - Gregor Rainer
- Department of Medicine, University of FribourgFribourgSwitzerland
| |
Collapse
|
39
|
Wang HZ, Wong YT. A novel simulation paradigm utilising MRI-derived phosphene maps for cortical prosthetic vision. J Neural Eng 2023; 20:046027. [PMID: 37531948 PMCID: PMC10594539 DOI: 10.1088/1741-2552/aceca2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Objective.We developed a realistic simulation paradigm for cortical prosthetic vision and investigated whether we can improve visual performance using a novel clustering algorithm.Approach.Cortical visual prostheses have been developed to restore sight by stimulating the visual cortex. To investigate the visual experience, previous studies have used uniform phosphene maps, which may not accurately capture generated phosphene map distributions of implant recipients. The current simulation paradigm was based on the Human Connectome Project retinotopy dataset and the placement of implants on the cortices from magnetic resonance imaging scans. Five unique retinotopic maps were derived using this method. To improve performance on these retinotopic maps, we enabled head scanning and a density-based clustering algorithm was then used to relocate centroids of visual stimuli. The impact of these improvements on visual detection performance was tested. Using spatially evenly distributed maps as a control, we recruited ten subjects and evaluated their performance across five sessions on the Berkeley Rudimentary Visual Acuity test and the object recognition task.Main results.Performance on control maps is significantly better than on retinotopic maps in both tasks. Both head scanning and the clustering algorithm showed the potential of improving visual ability across multiple sessions in the object recognition task.Significance.The current paradigm is the first that simulates the experience of cortical prosthetic vision based on brain scans and implant placement, which captures the spatial distribution of phosphenes more realistically. Utilisation of evenly distributed maps may overestimate the performance that visual prosthetics can restore. This simulation paradigm could be used in clinical practice when making plans for where best to implant cortical visual prostheses.
Collapse
Affiliation(s)
- Haozhe Zac Wang
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Australia
| | - Yan Tat Wong
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Australia
- Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
40
|
|
41
|
Karadima V, Pezaris EA, Pezaris JS. Attitudes of potential recipients toward emerging visual prosthesis technologies. Sci Rep 2023; 13:10963. [PMID: 37414798 PMCID: PMC10325978 DOI: 10.1038/s41598-023-36913-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
With the advent of multiple visual prosthesis devices to treat blindness, the question of how potential patients view such interventions becomes important in order to understand the levels of expectation and acceptance, and the perceived risk-reward balance across the different device approaches. Building on previous work on single device approaches done with blind individuals in Chicago and Detroit, USA, Melbourne, Australia, and Bejing, China, we investigated attitudes in blind individuals in Athens, Greece with coverage expanded to three of the contemporary approaches, Retinal, Thalamic, and Cortical. We presented an informational lecture on the approaches, had potential participants fill out a preliminary Questionnaire 1, then organized selected subjects into focus groups for guided discussion on visual prostheses, and finally had these subjects fill out a more detailed Questionnaire 2. We report here the first quantitative data that compares multiple prosthesis approaches. Our primary findings are that for these potential patients, perceived risk continues to outweigh perceived benefits, with the Retinal approach having the least negative overall impression and the Cortical approach the most negative. Concerns about the quality of restored vision were primary. Factors that drove the choice of hypothetical participation in a clinical trial were age and years of blindness. Secondary factors focused on positive clinical outcomes. The focus groups served to swing the impressions of each approach from neutrality toward the extremes of a Likert scale, and shifted the overall willingness to participate in a clinical trial from neutral to negative. These results, coupled with informal assessment of audience questions after the informational lecture, suggest that a substantial improvement in performance over currently available devices will be necessary before visual prostheses gain wide acceptance.
Collapse
Affiliation(s)
- Vicky Karadima
- Multisensory and Temporal Processing Lab (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, Athens, Greece
| | | | - John S Pezaris
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Meikle SJ, Allison-Walker TJ, Hagan MA, Price NSC, Wong YT. Electrical stimulation thresholds differ between V1 and V2. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082908 DOI: 10.1109/embc40787.2023.10340103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Cortical visual prostheses are designed to treat blindness by restoring visual perceptions through artificial electrical stimulation of the primary visual cortex (V1). Intracortical microelectrodes produce the smallest visual percepts and thus higher resolution vision - like a higher density of pixels on a monitor. However, intracortical microelectrodes must maintain a minimum spacing to preserve tissue integrity. One solution to increase the density of percepts is to implant and stimulate multiple visual areas, such as V1 and V2, although the properties of microstimulation in V2 remain largely unexplored. We provide a direct comparison of V1 and V2 microstimulation in two common marmoset monkeys. We find similarities in response trends between V1 and V2 but differences in threshold, neural activity duration, and spread of activity at the threshold current. This has implications for using multi-area stimulation to increase the resolution of cortical visual prostheses.
Collapse
|
43
|
Wang HZ, Wong YT. Utilization of brain scans to create realistic phosphene maps for cortical visual prosthesis simulation studies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083444 DOI: 10.1109/embc40787.2023.10341189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
It has been shown that we can restore sensations of light by stimulating the visual cortex. Cortical prosthetic vision consists of light perception in the visual field named phosphenes. Phosphenes are like pixels on a monitor which we can control to form the desired perception. However, the locations of phosphenes evoked vary between individuals. One of the biggest challenges is how to utilize phosphenes to present recognizable patterns that represent real-world scenes. Because of the difficulties of recruiting participants, and the risks of neurosurgery, researchers have used computer simulations to investigate the outcome of cortical visual prostheses. Previous simulations used regular phosphene maps, which may overestimate the visual ability cortical visual prosthesis can provide. This study aims to develop a more realistic simulation for cortical visual prostheses. We derived realistic phosphene maps using an existing cortical retinotopy dataset and decided implant placement by considering neurosurgery restrictions. We rendered some visual stimuli to evaluate the usability of those phosphene maps. The results indicate that presenting information on phosphenes maps may be more challenging than previously estimated.
Collapse
|
44
|
Chen X, Wang F, Kooijmans R, Klink PC, Boehler C, Asplund M, Roelfsema PR. Chronic stability of a neuroprosthesis comprising multiple adjacent Utah arrays in monkeys. J Neural Eng 2023; 20:036039. [PMID: 37386891 PMCID: PMC7617000 DOI: 10.1088/1741-2552/ace07e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Objective. Electrical stimulation of visual cortex via a neuroprosthesis induces the perception of dots of light ('phosphenes'), potentially allowing recognition of simple shapes even after decades of blindness. However, restoration of functional vision requires large numbers of electrodes, and chronic, clinical implantation of intracortical electrodes in the visual cortex has only been achieved using devices of up to 96 channels. We evaluated the efficacy and stability of a 1024-channel neuroprosthesis system in non-human primates (NHPs) over more than 3 years to assess its suitability for long-term vision restoration.Approach.We implanted 16 microelectrode arrays (Utah arrays) consisting of 8 × 8 electrodes with iridium oxide tips in the primary visual cortex (V1) and visual area 4 (V4) of two sighted macaques. We monitored the animals' health and measured electrode impedances and neuronal signal quality by calculating signal-to-noise ratios of visually driven neuronal activity, peak-to-peak voltages of the waveforms of action potentials, and the number of channels with high-amplitude signals. We delivered cortical microstimulation and determined the minimum current that could be perceived, monitoring the number of channels that successfully yielded phosphenes. We also examined the influence of the implant on a visual task after 2-3 years of implantation and determined the integrity of the brain tissue with a histological analysis 3-3.5 years post-implantation.Main results. The monkeys remained healthy throughout the implantation period and the device retained its mechanical integrity and electrical conductivity. However, we observed decreasing signal quality with time, declining numbers of phosphene-evoking electrodes, decreases in electrode impedances, and impaired performance on a visual task at visual field locations corresponding to implanted cortical regions. Current thresholds increased with time in one of the two animals. The histological analysis revealed encapsulation of arrays and cortical degeneration. Scanning electron microscopy on one array revealed degradation of IrOxcoating and higher impedances for electrodes with broken tips.Significance. Long-term implantation of a high-channel-count device in NHP visual cortex was accompanied by deformation of cortical tissue and decreased stimulation efficacy and signal quality over time. We conclude that improvements in device biocompatibility and/or refinement of implantation techniques are needed before future clinical use is feasible.
Collapse
Affiliation(s)
- Xing Chen
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47,1105 BA Amsterdam, The Netherlands
- Department of Ophthalmology, University of Pittsburgh School of Medicine, 1622 Locust St, Pittsburgh, PA 15219, United States of America
| | - Feng Wang
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47,1105 BA Amsterdam, The Netherlands
| | - Roxana Kooijmans
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47,1105 BA Amsterdam, The Netherlands
| | - Peter Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47,1105 BA Amsterdam, The Netherlands
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris F-75012, France
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
- Chalmers University of Technology, Chalmersplatsen 4, 412 96 Gothenburg, Sweden
| | - Pieter Roelf Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47,1105 BA Amsterdam, The Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris F-75012, France
- Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Department of Psychiatry, Academic Medical Center, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
45
|
Pancholi R, Ryan L, Peron S. Learning in a sensory cortical microstimulation task is associated with elevated representational stability. Nat Commun 2023; 14:3860. [PMID: 37385989 PMCID: PMC10310840 DOI: 10.1038/s41467-023-39542-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Sensory cortical representations can be highly dynamic, raising the question of how representational stability impacts learning. We train mice to discriminate the number of photostimulation pulses delivered to opsin-expressing pyramidal neurons in layer 2/3 of primary vibrissal somatosensory cortex. We simultaneously track evoked neural activity across learning using volumetric two-photon calcium imaging. In well-trained animals, trial-to-trial fluctuations in the amount of photostimulus-evoked activity predicted animal choice. Population activity levels declined rapidly across training, with the most active neurons showing the largest declines in responsiveness. Mice learned at varied rates, with some failing to learn the task in the time provided. The photoresponsive population showed greater instability both within and across behavioral sessions among animals that failed to learn. Animals that failed to learn also exhibited a faster deterioration in stimulus decoding. Thus, greater stability in the stimulus response is associated with learning in a sensory cortical microstimulation task.
Collapse
Affiliation(s)
- Ravi Pancholi
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA
| | - Lauren Ryan
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA.
| |
Collapse
|
46
|
Lycke R, Kim R, Zolotavin P, Montes J, Sun Y, Koszeghy A, Altun E, Noble B, Yin R, He F, Totah N, Xie C, Luan L. Low-threshold, high-resolution, chronically stable intracortical microstimulation by ultraflexible electrodes. Cell Rep 2023; 42:112554. [PMID: 37235473 PMCID: PMC10592461 DOI: 10.1016/j.celrep.2023.112554] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Intracortical microstimulation (ICMS) enables applications ranging from neuroprosthetics to causal circuit manipulations. However, the resolution, efficacy, and chronic stability of neuromodulation are often compromised by adverse tissue responses to the indwelling electrodes. Here we engineer ultraflexible stim-nanoelectronic threads (StimNETs) and demonstrate low activation threshold, high resolution, and chronically stable ICMS in awake, behaving mouse models. In vivo two-photon imaging reveals that StimNETs remain seamlessly integrated with the nervous tissue throughout chronic stimulation periods and elicit stable, focal neuronal activation at low currents of 2 μA. Importantly, StimNETs evoke longitudinally stable behavioral responses for over 8 months at a markedly low charge injection of 0.25 nC/phase. Quantified histological analyses show that chronic ICMS by StimNETs induces no neuronal degeneration or glial scarring. These results suggest that tissue-integrated electrodes provide a path for robust, long-lasting, spatially selective neuromodulation at low currents, which lessens risk of tissue damage or exacerbation of off-target side effects.
Collapse
Affiliation(s)
- Roy Lycke
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Robin Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Pavlo Zolotavin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Jon Montes
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Yingchu Sun
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Aron Koszeghy
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790 Helsinki, Finland
| | - Esra Altun
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Material Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Brian Noble
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Applied Physics Program, Rice University, Houston, TX 77005, USA
| | - Rongkang Yin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Fei He
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Nelson Totah
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790 Helsinki, Finland; Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
47
|
Luan L, Yin R, Zhu H, Xie C. Emerging Penetrating Neural Electrodes: In Pursuit of Large Scale and Longevity. Annu Rev Biomed Eng 2023; 25:185-205. [PMID: 37289556 PMCID: PMC11078330 DOI: 10.1146/annurev-bioeng-090622-050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Penetrating neural electrodes provide a powerful approach to decipher brain circuitry by allowing for time-resolved electrical detections of individual action potentials. This unique capability has contributed tremendously to basic and translational neuroscience, enabling both fundamental understandings of brain functions and applications of human prosthetic devices that restore crucial sensations and movements. However, conventional approaches are limited by the scarce number of available sensing channels and compromised efficacy over long-term implantations. Recording longevity and scalability have become the most sought-after improvements in emerging technologies. In this review, we discuss the technological advances in the past 5-10 years that have enabled larger-scale, more detailed, and longer-lasting recordings of neural circuits at work than ever before. We present snapshots of the latest advances in penetration electrode technology, showcase their applications in animal models and humans, and outline the underlying design principles and considerations to fuel future technological development.
Collapse
Affiliation(s)
- Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Rongkang Yin
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
| | - Hanlin Zhu
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
48
|
Roe AW. BMI 2.0: Toward a technological interface with brainwide networks. Neuron 2023; 111:1687-1688. [PMID: 37290398 DOI: 10.1016/j.neuron.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023]
Abstract
The field of brain machine interface has long sought a technology for brainwide interaction. In this issue of Neuron, Kim et al.1 present a novel method for dynamic, patterned, and precise optogenetic stimulation of mouse cortex in ultra-high-field MRI that portends such an interface.
Collapse
Affiliation(s)
- Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
49
|
Eisenkolb VM, Held LM, Utzschmid A, Lin XX, Krieg SM, Meyer B, Gempt J, Jacob SN. Human acute microelectrode array recordings with broad cortical access, single-unit resolution, and parallel behavioral monitoring. Cell Rep 2023; 42:112467. [PMID: 37141095 DOI: 10.1016/j.celrep.2023.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
There are vast gaps in our understanding of the organization and operation of the human nervous system at the level of individual neurons and their networks. Here, we report reliable and robust acute multichannel recordings using planar microelectrode arrays (MEAs) implanted intracortically in awake brain surgery with open craniotomies that grant access to large parts of the cortical hemisphere. We obtained high-quality extracellular neuronal activity at the microcircuit, local field potential level and at the cellular, single-unit level. Recording from the parietal association cortex, a region rarely explored in human single-unit studies, we demonstrate applications on these complementary spatial scales and describe traveling waves of oscillatory activity as well as single-neuron and neuronal population responses during numerical cognition, including operations with uniquely human number symbols. Intraoperative MEA recordings are practicable and can be scaled up to explore cellular and microcircuit mechanisms of a wide range of human brain functions.
Collapse
Affiliation(s)
- Viktor M Eisenkolb
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Lisa M Held
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Alexander Utzschmid
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Xiao-Xiong Lin
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
50
|
Hughes C, Kozai T. Dynamic amplitude modulation of microstimulation evokes biomimetic onset and offset transients and reduces depression of evoked calcium responses in sensory cortices. Brain Stimul 2023; 16:939-965. [PMID: 37244370 PMCID: PMC10330928 DOI: 10.1016/j.brs.2023.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Intracortical microstimulation (ICMS) is an emerging approach to restore sensation to people with neurological injury or disease. Biomimetic microstimulation, or stimulus trains that mimic neural activity in the brain through encoding of onset and offset transients, could improve the utility of ICMS for brain-computer interface (BCI) applications, but how biomimetic microstimulation affects neural activation is not understood. Current "biomimetic" ICMS trains aim to reproduce the strong onset and offset transients evoked in the brain by sensory input through dynamic modulation of stimulus parameters. Stimulus induced depression of neural activity (decreases in evoked intensity over time) is also a potential barrier to clinical implementation of sensory feedback, and dynamic microstimulation may reduce this effect. OBJECTIVE We evaluated how bio-inspired ICMS trains with dynamic modulation of amplitude and/or frequency change the calcium response, spatial distribution, and depression of neurons in the somatosensory and visual cortices. METHODS Calcium responses of neurons were measured in Layer 2/3 of visual and somatosensory cortices of anesthetized GCaMP6s mice in response to ICMS trains with fixed amplitude and frequency (Fixed) and three dynamic ICMS trains that increased the stimulation intensity during the onset and offset of stimulation by modulating the amplitude (DynAmp), frequency (DynFreq), or amplitude and frequency (DynBoth). ICMS was provided for either 1-s with 4-s breaks (Short) or for 30-s with 15-s breaks (Long). RESULTS DynAmp and DynBoth trains evoked distinct onset and offset transients in recruited neural populations, while DynFreq trains evoked population activity similar to Fixed trains. Individual neurons had heterogeneous responses primarily based on how quickly they depressed to ICMS, where neurons farther from the electrode depressed faster and a small subpopulation (1-5%) were modulated by DynFreq trains. Neurons that depressed to Short trains were also more likely to depress to Long trains, but Long trains induced more depression overall due to the increased stimulation length. Increasing the amplitude during the hold phase resulted in an increase in recruitment and intensity which resulted in more depression and reduced offset responses. Dynamic amplitude modulation reduced stimulation induced depression by 14.6 ± 0.3% for Short and 36.1 ± 0.6% for Long trains. Ideal observers were 0.031 ± 0.009 s faster for onset detection and 1.33 ± 0.21 s faster for offset detection with dynamic amplitude encoding. CONCLUSIONS Dynamic amplitude modulation evokes distinct onset and offset transients, reduces depression of neural calcium activity, and decreases total charge injection for sensory feedback in BCIs by lowering recruitment of neurons during long maintained periods of ICMS. In contrast, dynamic frequency modulation evokes distinct onset and offset transients in a small subpopulation of neurons but also reduces depression in recruited neurons by reducing the rate of activation.
Collapse
Affiliation(s)
- Christopher Hughes
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, USA
| | - Takashi Kozai
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, USA; Department of Neuroscience, University of Pittsburgh, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|