1
|
Lin S, Li H, Tian P, Wei Y, Ye M, Liu Z. Methanol to Olefins (MTO): Understanding and Regulating Dynamic Complex Catalysis. J Am Chem Soc 2025; 147:11585-11607. [PMID: 40138698 DOI: 10.1021/jacs.4c12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The research and development of methanol conversion into hydrocarbons have spanned more than 40 years. The past four decades have witnessed mutual promotion and successive breakthroughs in both fundamental research and industrial process development of methanol to olefins (MTO), demonstrating that MTO is an extremely dynamic, complex catalytic system. This Perspective summarizes the endeavors and achievements of the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, in the continuous study of reaction mechanisms and process engineering of the dynamic, complex MTO reaction system. It elucidates fundamental chemical issues concerning the essence of the dynamic evolution of the MTO reaction and the cross-talk mechanisms among diffusion, reaction, and catalyst (coke modification), which are crucial for technology development and process optimization. By integrating the chemical principles, the reaction-diffusion model, and coke formation kinetics of MTO, a mechanism- and model-driven modulation of industrial processes has been achieved. The acquisition of a deepening understanding in chemistry and engineering has facilitated the continuous optimization and upgrading of MTO catalysts and processes.
Collapse
Affiliation(s)
- Shanfan Lin
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Hua Li
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Peng Tian
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yingxu Wei
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Mao Ye
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Pan D, Yu J, Du K, Yan K, Ding L, Zhang Y, Tang Y. Evaluation of the collaboration between intrinsic activity and diffusion: a descriptor for alkene epoxidation catalyzed by TS-1. Chem Sci 2025; 16:5931-5941. [PMID: 40060097 PMCID: PMC11884413 DOI: 10.1039/d5sc00987a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
The systemic evaluation of the collaboration between intrinsic activity of active sites and the substrate/product diffusion rate is a key challenge for rational optimization of reaction performance in alkene epoxidation. Herein, we constructed a series of TS-1 catalysts with adjustable local microenvironments around active sites to explore their performance in alkene epoxidation. This was achieved by controlling the contributions of classical and non-classical routines during the crystallization process. Based on the characterization of active sites, product diffusion and their alkene epoxidation activity, we proposed a descriptor, R a/d, for quantitative evaluation of the collaboration between intrinsic activity and product diffusion in TS-1 catalysts. This descriptor successfully explains the catalytic performance of various TS-1 catalysts including commercial TS-1 and guides further improvement of TS-1 in different alkene epoxidations. The optimal R a/d is found in various epoxidations, corresponding to peak epoxidation performance across different substrates due to the well-balanced intrinsic activity and diffusion rate.
Collapse
Affiliation(s)
- Di Pan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Jiayu Yu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Ke Du
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Kexin Yan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Ling Ding
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
3
|
Liu F, Yi X, Liu T, Chen W, Yang J, Xiao Y, Qin Y, Song L, Zheng A. Microenvironment perturbations driving methanol low-temperature conversion over zeolite. SCIENCE ADVANCES 2025; 11:eads4018. [PMID: 39970221 PMCID: PMC11837997 DOI: 10.1126/sciadv.ads4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
Compared to methanol, dimethyl ether (DME) is a more ideal and attractive raw material for industrial applications. Typically, the industrially zeolite-catalyzed methanol dehydration to DME occurs at temperatures above 423 kelvin. Improving catalytic reactivity and reducing energy consumption are urgently needed but remain challenging. Here, we report an unexplored associative strategy to realize DME formation at room temperature and the generation of olefins even at 413 kelvin, which is achieved by coinjecting basic acetone to manipulate the local chemical microenvironment of the methanol reactant inside the H-ZSM-5 zeolite. The crucial role of acetone in accelerating methanol direct dehydration to DME is highlighted as the obvious destabilization effect for the adsorbed methanol cluster with strong hydrogen bonds and the subsequent traction of water during DME formation. These findings offer more insights into the rational design of reaction systems by manipulating the local surroundings to regulate catalytic performances and should represent a large step forward in methanol conversion technology.
Collapse
Affiliation(s)
- Fengqing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Tangkang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jiabao Yang
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
4
|
Wu X, Bal M, Zhang Q, Bai ST, Scodeller I, Vermandel W, Yu J, Maes BUW, Sels BF. Spatial Scale Matters: Hydrolysis of Aryl Methyl Ethers over Zeolites. J Am Chem Soc 2025; 147:4915-4929. [PMID: 39874302 DOI: 10.1021/jacs.4c13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The local environment of the active site, such as the confinement of hydronium ions within zeolite pores, significantly influences catalytic turnover, similar to enzyme functionality. This study explores these effects in the hydrolysis of guaiacols─lignin-derived compounds─over zeolites in water. In addition to the interesting catechol products, this reaction is advantageous for study due to its bimolecular hydrolysis pathway, which involves a single energy barrier and no intermediates, simplifying kinetic studies and result interpretation. As in alcohol dehydration, hydronium ions show enhanced activity in ether hydrolysis due to undercoordination and increased electrophilicity when confined within zeolite pores, compared to bulk water. In addition, a volcano-shaped relationship between hydronium ion activity and Brønsted acid density was observed. However, unlike alcohol dehydration, this activity distribution cannot be attributed to variations in ionic strength within the pores, as the rate-determining step in the hydrolysis of guaiacols involves the attack of a neutral water molecule, unaffected by ionic strength. Instead, a detailed transition state analysis revealed a significant thermodynamic energy compensation effect, driven by the spatial organization of the transition state. This organization is influenced by the available reaction space, the interaction between the reacting species and the zeolite environment, leading to the volcano-shaped dependence. This phenomenon also explains the unusual reactivity order of the 4-R-guaiacol derivatives (R = H, Me, Et, Pr) with zeolite catalysis, extending beyond the traditional steric and electronic effects to provide a deeper understanding of reactant reactivity. The work concludes that the critical spatial parameters for fast ether hydrolysis─resulting in the highest hydronium activity─are determined by a combination of zeolite properties (topology and acid density) and reactant size.
Collapse
Affiliation(s)
- Xian Wu
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Mathias Bal
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Shao-Tao Bai
- Center for Carbon-Neutral Catalysis Engineering and Institute for Carbon-Neutral Technology, Shenzhen Polytechnic University, Shenzhen, 518055, P. R. China
| | - Ivan Scodeller
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Walter Vermandel
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| |
Collapse
|
5
|
Yang Y, Xiong H, Wu Z, Luo Z, Chen X, Wang X, Wei F. Deep Learning-Enabled STEM Imaging for Precise Single-Molecule Identification in Zeolite Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408629. [PMID: 39703985 PMCID: PMC11809325 DOI: 10.1002/advs.202408629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/14/2024] [Indexed: 12/21/2024]
Abstract
Observing chemical reactions in complex structures such as zeolites involves a major challenge in precisely capturing single-molecule behavior at ultra-high spatial resolutions. To address this, a sophisticated deep learning framework tailored has been developed for integrated Differential Phase Contrast Scanning Transmission Electron Microscopy (iDPC-STEM) imaging under low-dose conditions. The framework utilizes a denoising super-resolution model (Denoising Inference Variational Autoencoder Super-Resolution (DIVAESR)) to effectively mitigate shot noise and thereby obtain substantially clearer atomic-resolved iDPC-STEM images. It supports advanced single-molecule detection and analysis, such as conformation matching and elemental clustering, by incorporating object detection and Density Functional Theory (DFT) configurational matching for precise molecular analysis. the model's performance is demonstrated with a significant improvement in standard image quality evaluation metrics including Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). The test conducted using synthetic datasets shows its robustness and extended applicability to real iDPC-STEM images, highlighting its potential in elucidating dynamic behaviors of single molecules in real space. This study lays a critical groundwork for the advancement of deep learning applications within electron microscopy, particularly in unraveling chemical dynamics through precise material characterization and analysis.
Collapse
Affiliation(s)
- Yaotian Yang
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Hao Xiong
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zirong Wu
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zhiyao Luo
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Xiao Chen
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
- Ordos LaboratoryOrdosInner Mongolia017000China
| | - Xiaonan Wang
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
- Ordos LaboratoryOrdosInner Mongolia017000China
| | - Fei Wei
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
- Ordos LaboratoryOrdosInner Mongolia017000China
| |
Collapse
|
6
|
Sonobe K, Tominaka S, Machida A. Experimental Elucidation of a Cubane Water Cluster in the Hydrophobic Cavity of UiO-66. Chemphyschem 2024; 25:e202400583. [PMID: 39183457 PMCID: PMC11614365 DOI: 10.1002/cphc.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Nanoscale water plays a pivotal role in determining the properties and functionalities of materials, and the precise control of its quantity and atomic-scale ordered structure is a focal point in nanotechnology and chemistry. Several studies have theoretically discussed the nano-ordered ice within one- or two-dimensional space and without confinement through hydrogen bonds. In particular, the water cluster has been predicted to play a significant role in biomolecules or functional nanomaterials; however, there has been little experimental evidence for their presence in hydrophobic cavities. In this study, the cubane water octamer - the most stable isomer among small water clusters - was detected within the hydrophobic cavities of UiO-66 metal-organic frameworks, revealing the presence of the smallest ice in their hydrophobic cavity, in the absence of hydrogen bonding. This observation contrasts earlier examples of water clusters confined within nanocavities through hydrogen bonds and provides experimental evidence for water-cluster capturing within hydrophobic cavities. Consequently, our renewed understanding of hydrophilicity and hydrophobicity warrants a design re-evaluation of materials for chemical applications, including fuel cells, water harvesting, catalysts, and batteries.
Collapse
Affiliation(s)
- Kazutaka Sonobe
- Center for Basic Research on MaterialsNational Institute for Materials ScienceTsukubaIbaraki305–0044Japan
| | - Satoshi Tominaka
- Center for Basic Research on MaterialsNational Institute for Materials ScienceTsukubaIbaraki305–0044Japan
| | - Akihiko Machida
- Synchrotron Radiation Research CenterNational Institutes for Quantum Science and Technology (QST)SPring-8Sayo, Hyogo679-5148Japan
| |
Collapse
|
7
|
Zhang W, Khare R, Kim S, Hale L, Hu W, Yuan C, Sheng Y, Zhang P, Wahl L, Mai J, Yang B, Gutiérrez OY, Ray D, Fulton J, Camaioni DM, Hu J, Wang H, Lee MS, Lercher JA. Active species in chloroaluminate ionic liquids catalyzing low-temperature polyolefin deconstruction. Nat Commun 2024; 15:5785. [PMID: 38987244 PMCID: PMC11237162 DOI: 10.1038/s41467-024-49827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
Chloroaluminate ionic liquids selectively transform (waste) polyolefins into gasoline-range alkanes through tandem cracking-alkylation at temperatures below 100 °C. Further improvement of this process necessitates a deep understanding of the nature of the catalytically active species and the correlated performance in the catalyzing critical reactions for the tandem polyolefin deconstruction with isoalkanes at low temperatures. Here, we address this requirement by determining the nuclearity of the chloroaluminate ions and their interactions with reaction intermediates, combining in situ 27Al magic-angle spinning nuclear magnetic resonance spectroscopy, in situ Raman spectroscopy, Al K-edge X-ray absorption near edge structure spectroscopy, and catalytic activity measurement. Cracking and alkylation are facilitated by carbenium ions initiated by AlCl3-tert-butyl chloride (TBC) adducts, which are formed by the dissociation of Al2Cl7- in the presence of TBC. The carbenium ions activate the alkane polymer strands and advance the alkylation cycle through multiple hydride transfer reactions. In situ 1H NMR and operando infrared spectroscopy demonstrate that the cracking and alkylation processes occur synchronously; alkenes formed during cracking are rapidly incorporated into the carbenium ion-mediated alkylation cycle. The conclusions are further supported by ab initio molecular dynamics simulations coupled with an enhanced sampling method, and model experiments using n-hexadecane as a feed.
Collapse
Affiliation(s)
- Wei Zhang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA.
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany.
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| | - Sungmin Kim
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Lillian Hale
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Wenda Hu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Chunlin Yuan
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| | - Yaoci Sheng
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| | - Peiran Zhang
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| | - Lennart Wahl
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| | - Jiande Mai
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Boda Yang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Debmalya Ray
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - John Fulton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Donald M Camaioni
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Jianzhi Hu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA.
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany.
| |
Collapse
|
8
|
Kim S, Chen F, Camaioni DM, Derewinski MA, Gutiérrez OY, Liu Y, Lercher JA. Confined Ionic Environments Tailoring the Reactivity of Molecules in the Micropores of BEA-Type Zeolite. J Am Chem Soc 2024; 146:17847-17853. [PMID: 38888888 PMCID: PMC11228971 DOI: 10.1021/jacs.4c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
In the presence of water, hydronium ions formed within the micropores of zeolite H-BEA significantly influence the surrounding environment and the reactivity of organic substrates. The positive charge of these ions, coupled with the zeolite's negatively charged framework, results in an ionic environment that causes a strongly nonideal solvation behavior of cyclohexanol. This leads to a significantly higher excess chemical potential in the initial state and stabilizes at the same time the charged transition state in the dehydration of cyclohexanol. As a result, the free-energy barrier of the reaction is lowered, leading to a marked increase in the reaction rates. Nonetheless, there is a limit to the reaction rate enhancement by the hydronium ion concentration. Experiments conducted with low concentrations of reactants show that beyond an optimal concentration, the required spatial rearrangement between hydronium ions and cyclohexanols inhibits further increases in the reaction rate, leading to a peak in the intrinsic activity of hydronium ions. The quantification of excess chemical potential in both initial and transition states for zeolites H-BEA, along with findings from HMFI, provides a basis to generalize and predict rates for hydronium-ion-catalyzed dehydration reactions in Brønsted zeolites.
Collapse
Affiliation(s)
- Sungmin Kim
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Feng Chen
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Donald M Camaioni
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Miroslaw A Derewinski
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yue Liu
- Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Johannes A Lercher
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4, Garching 85748, Germany
| |
Collapse
|
9
|
Wang C, Chu Y, Lei Q, Hu M, Deng F, Xu J, Dai W. In Situ Observation of Solvent-Mediated Cyclic Intermediates during the Alkene Epoxidation/Hydration over a Ti-Beta/H 2O 2 System. Angew Chem Int Ed Engl 2024; 63:e202404633. [PMID: 38509004 DOI: 10.1002/anie.202404633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Solvent effects in catalytic reactions have received widespread attention as they can promote reaction rates and product selectivities by orders of magnitude. It is well accepted that the stable five-membered cyclic intermediates formed between the solvent molecules and Ti species are crucial to the alkene epoxidation in a heterogeneous Ti(IV)-H2O2 system. However, the direct spectroscopic evidence of these intermediates is still missing and the corresponding reaction pathway for the alkene epoxidation remains unclear. By combining in situ 13C MAS NMR, two-dimensional (2D) 1H-13C heteronuclear correlation (HETCOR) NMR spectroscopy and theoretical calculations, the five-membered ring structures, where the protic solvents (ROH), and aprotic solvent (acetone), coordinate and stabilize the active Ti species, are identified for the first time over Ti-Beta/H2O2 system. Moreover, the role of these cyclic intermediates in the alkene epoxidation/hydration conversion is clarified. These results provide new insights into the solvent effect in liquid-phase epoxidation/hydration reactions over Ti(IV)-H2O2 system.
Collapse
Affiliation(s)
- Chang Wang
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Qifeng Lei
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Weili Dai
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
10
|
Erlebach A, Šípka M, Saha I, Nachtigall P, Heard CJ, Grajciar L. A reactive neural network framework for water-loaded acidic zeolites. Nat Commun 2024; 15:4215. [PMID: 38760371 PMCID: PMC11101627 DOI: 10.1038/s41467-024-48609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Under operating conditions, the dynamics of water and ions confined within protonic aluminosilicate zeolite micropores are responsible for many of their properties, including hydrothermal stability, acidity and catalytic activity. However, due to high computational cost, operando studies of acidic zeolites are currently rare and limited to specific cases and simplified models. In this work, we have developed a reactive neural network potential (NNP) attempting to cover the entire class of acidic zeolites, including the full range of experimentally relevant water concentrations and Si/Al ratios. This NNP has the potential to dramatically improve sampling, retaining the (meta)GGA DFT level accuracy, with the capacity for discovery of new chemistry, such as collective defect formation mechanisms at the zeolite surface. Furthermore, we exemplify how the NNP can be used as a basis for further extensions/improvements which include data-efficient adoption of higher-level (hybrid) references via Δ-learning and the acceleration of rare event sampling via automatic construction of collective variables. These developments represent a significant step towards accurate simulations of realistic catalysts under operando conditions.
Collapse
Affiliation(s)
- Andreas Erlebach
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| | - Martin Šípka
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
- Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75, Prague, Czech Republic
| | - Indranil Saha
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Christopher J Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| |
Collapse
|
11
|
Chen Y, Ma X, Hack JH, Zhang S, Peng A, Dombrowski JP, Voth GA, Tokmakoff A, Kung MC, Kung HH. Molecular Tuning of Reactivity of Zeolite Protons in HZSM-5. J Am Chem Soc 2024; 146:10342-10356. [PMID: 38574341 DOI: 10.1021/jacs.3c12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In acidic HZSM-5 zeolite, the reactivity of a methanol molecule interacting with the zeolite proton is amenable to modification via coadsorbing a stochiometric amount of an electron density donor E to form the [(E)(CH3OH)(HZ)] complex. The rate of the methanol in this complex undergoing dehydration to dimethyl ether was determined for a series of E with proton affinity (PA) ranging from 659 kJ mol-1 for C6F6 to 825 kJ mol-1 for C4H8O and was found to follow the expression: Ln(Rate) - Ln(RateN2) = β(PA - PAN2)γ, where E = N2 is the reference and β and γ are constants. This trend is probably due to the increased stability of the solvated proton in the [(E)(CH3OH)(HZ)] complex with increasing PA. Importantly, this is also observed in steady-state flow reactions when stoichiometric quantities of E are preadsorbed on the zeolite. As demonstrated with E being D2O, the effect on methanol reactivity diminishes when E is present in excess of the [(E)(CH3OH)(HZ)] complex. It is proposed that the methanol dehydration reaction involves [(E)(CH3OH)(CH3OH)(HZ)] as the transition state, which is supported by the isotopologue distribution of the initial dimethyl ether formed when a flow of CH3OH was passed over ZSM-5 containing one CD3OH per zeolite proton. The implication of this on the mechanism of catalytic methanol dehydration on HZSM-5 is discussed.
Collapse
Affiliation(s)
- Yaxin Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Xinyou Ma
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John H Hack
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shuhao Zhang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Anyang Peng
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - James P Dombrowski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Mayfair C Kung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Harold H Kung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| |
Collapse
|
12
|
Wang C, Zheng M, Hu M, Cai W, Chu Y, Wang Q, Xu J, Deng F. Unraveling Spatially Dependent Hydrophilicity and Reactivity of Confined Carbocation Intermediates during Methanol Conversion over ZSM-5 Zeolite. J Am Chem Soc 2024; 146:8688-8696. [PMID: 38482699 DOI: 10.1021/jacs.4c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Carbocations play a pivotal role as reactive intermediates in zeolite-catalyzed methanol-to-hydrocarbon (MTH) transformations. However, the interaction between carbocations and water vapor and its subsequent effects on catalytic performance remain poorly understood. Using micro-magnetic resonance imaging (μMRI) and solid-state NMR techniques, this work investigates the hydrophilic behavior of cyclopentenyl cations within ZSM-5 pores under vapor conditions. We show that the polar cationic center of cyclopentenyl cations readily initiates water nucleus formation through water molecule capture. This leads to an inhomogeneous water adsorption gradient along the axial positions of zeolite, correlating with the spatial distribution of carbocation concentrations. The adsorbed water promotes deprotonation and aromatization of cyclopentenyl cations, significantly enhancing the aromatic product selectivity in MTH catalysis. These results reveal the important influence of adsorbed water in modulating the carbocation reactivity within confined zeolite pores.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingji Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Liu Q, van Bokhoven JA. Water structures on acidic zeolites and their roles in catalysis. Chem Soc Rev 2024; 53:3065-3095. [PMID: 38369933 DOI: 10.1039/d3cs00404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The local reaction environment of catalytic active sites can be manipulated to modify the kinetics and thermodynamic properties of heterogeneous catalysis. Because of the unique physical-chemical nature of water, heterogeneously catalyzed reactions involving specific interactions between water molecules and active sites on catalysts exhibit distinct outcomes that are different from those performed in the absence of water. Zeolitic materials are being applied with the presence of water for heterogeneous catalytic reactions in the chemical industry and our transition to sustainable energy. Mechanistic investigation and in-depth understanding about the behaviors and the roles of water are essentially required for zeolite chemistry and catalysis. In this review, we focus on the discussions of the nature and structures of water adsorbed/stabilized on Brønsted and Lewis acidic zeolites based on experimental observations as well as theoretical calculation results. The unveiled functions of water structures in determining the catalytic efficacy of zeolite-catalyzed reactions have been overviewed and the strategies frequently developed for enhancing the stabilization of zeolite catalysts are highlighted. Recent advancement will contribute to the development of innovative catalytic reactions and the rationalization of catalytic performances in terms of activity, selectivity and stability with the presence of water vapor or in condensed aqueous phase.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
14
|
Wang C, Chu Y, Xiong D, Wang H, Hu M, Wang Q, Xu J, Deng F. Water-Induced Micro-Hydrophobic Effect Regulates Benzene Methylation in Zeolite. Angew Chem Int Ed Engl 2024; 63:e202313974. [PMID: 37934010 DOI: 10.1002/anie.202313974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Water is a ubiquitous component in heterogeneous catalysis over zeolites and can significantly influence the catalyst performance. However, the detailed mechanism insights into zeolite-catalyzed reactions under microscale aqueous environment remain elusive. Here, using multiple dimensional solid-state NMR experiments coupled with ultrahigh magic angle spinning technique and theoretical simulations, we establish a fundamental understanding of the role of water in benzene methylation over ZSM-5 zeolite under water vapor conditions. We show that water competes with benzene for the active sites of zeolite and facilitates the bimolecular reaction mechanism. The growth of water clusters induces a micro-hydrophobic effect in zeolite pores, which reorients benzene molecules and drives their interactions with surface methoxy species (SMS) on zeolite. We identify the formation and evolution of active SMS-Benzene complexes in a microscale aqueous environment and demonstrate that their accumulation in zeolite pores boosts benzene conversion and methylation.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Danfeng Xiong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China) + These authors contributed equally to this work
| | - Haifeng Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China) + These authors contributed equally to this work
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
15
|
Yi X, Chen W, Xiao Y, Liu F, Yu X, Zheng A. Spectroscopically Visualizing the Evolution of Hydrogen-Bonding Interactions. J Am Chem Soc 2023; 145:27471-27479. [PMID: 37993784 DOI: 10.1021/jacs.3c08723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Understanding chemical bond variations is the soul of chemistry as it is essential for any chemical process. The evolution of hydrogen bonds is one of the most fundamental and emblematic events during proton transfer; however, its experimental visualization remains a formidable challenge because of the transient timescales. Herein, by subtly regulating the proton-donating ability of distinct proton donors (zeolites or tungstophosphoric acid), a series of different hydrogen-bonding configurations were precisely manipulated. Then, an advanced two-dimensional (2D) heteronuclear correlation nuclear magnetic resonance (NMR) spectroscopic technique was utilized to simultaneously monitor the electronic properties of proton donors and acceptors (2-13C-acetone or trimethylphosphine oxide) through chemical shifts. Parabolic 1H-13C NMR relationships combined with single-well and double-well potential energy surfaces derived from theoretical simulations quantitatively identified the hydrogen bond types and allowed the evolution of hydrogen bonds to be visualized in diverse acid-base interaction complexes during proton transfer. Our findings provide a new perspective to reveal the nature and evolution of hydrogen bonds and confirm the superiority of 2D NMR techniques in identifying the subtle distinctions of various hydrogen-bonding configurations.
Collapse
Affiliation(s)
- Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Fengqing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
16
|
Wang H, Chen X, Xiong H, Cui C, Qian W, Wei F. Imaging of Single Molecular Behaviors Under Bifurcated Three-Centered Hydrogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202308675. [PMID: 37795545 DOI: 10.1002/anie.202308675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
The mechanism for interaction and bonding of single guest molecules with active sites fundamentally determines the sorption and subsequent catalytic processes occurring in host zeolitic frameworks. However, no real-space studies on these significant issues have been reported thus far, since atomically visualizing guest molecules and recognizing single Al T-sites in zeolites remain challenging. Here, we atomically resolved single thiophene probes interacting with acid T-sites in the ZSM-5 framework to study the bonding behaviors between them. The synergy of bifurcated three-centered hydrogen bonds and van der Waals interactions can "freeze" the near-horizontal thiophene and make it stable enough to be imaged. By combining the imaging results with simulations, direct atomic observations enabled us to precisely locate the single Al T-sites in individual straight channels. Then, we statistically found that the thiophene bonding probability of the T11 site is 15 times higher than that of the T6 site. For different acid T-sites, the variation in the interaction synergy changes the inner angle of the host-guest O-H⋅⋅⋅S hydrogen bond, thereby affecting the stability of the near-horizontal thiophene and leading to considerable bonding inhomogeneities.
Collapse
Affiliation(s)
- Huiqiu Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
- Ordos Laboratory, 017000 100084, Ordos, Inner Mongolia, P. R. China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaojie Cui
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
- Ordos Laboratory, 017000 100084, Ordos, Inner Mongolia, P. R. China
| | - Weizhong Qian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
- Ordos Laboratory, 017000 100084, Ordos, Inner Mongolia, P. R. China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
- Ordos Laboratory, 017000 100084, Ordos, Inner Mongolia, P. R. China
| |
Collapse
|
17
|
Kim S, Lee MS, Camaioni DM, Gutiérrez OY, Glezakou VA, Govind N, Huthwelker T, Zhao R, Rousseau R, Fulton JL, Lercher JA. Self-Organization of 1-Propanol at H-ZSM-5 Brønsted Acid Sites. JACS AU 2023; 3:2487-2497. [PMID: 37772176 PMCID: PMC10523365 DOI: 10.1021/jacsau.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023]
Abstract
In situ Al K-edge X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS) spectroscopy in conjunction with ab initio molecular dynamics (AIMD) simulations show that adsorption of 1-propanol alters the structure of the Brønsted acid site through changes in the associated aluminum-oxygen tetrahedron in zeolite H-MFI. The decreasing intensity of the pre-edge signal of the in situ Al K-edge XANES spectra with increasing 1-propanol coverage shows that Al T-sites become more symmetric as the sorbed alcohol molecules form monomers, dimers, and trimers. The adsorption of monomeric 1-propanol on Brønsted acid sites reduces the distortion of the associated Al T-site, shortens the Al-O distance, and causes the formation of a Zundel-like structure. With dimeric and trimeric alcohol clusters, the zeolite proton is fully transferred to the alcohols and the aluminum-oxygen tetrahedron becomes fully symmetric. The subtle changes in Al-K-edge XANES in the presence of sorbate structures, with the use of theory, are used to probe the local zeolite structures and provide a basis to predict the population and chemical state of the sorbed species.
Collapse
Affiliation(s)
- Sungmin Kim
- Institute
for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mal-Soon Lee
- Institute
for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Donald M. Camaioni
- Institute
for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Oliver Y. Gutiérrez
- Institute
for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vassiliki-Alexandra Glezakou
- Institute
for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Niranjan Govind
- Institute
for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Thomas Huthwelker
- Swiss
Light Source, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Ruixue Zhao
- Department
of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Roger Rousseau
- Institute
for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - John L. Fulton
- Institute
for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Johannes A. Lercher
- Institute
for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department
of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4, 85748 Garching, Germany
| |
Collapse
|
18
|
Li G. Methane dehydroaromatization catalyzed by Mo/ZSM-5: location-steered activity and mechanism. Chem Commun (Camb) 2023; 59:10932-10935. [PMID: 37605970 DOI: 10.1039/d3cc03517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
This work examined the location-steered catalytic behavior of Mo/ZSM-5 catalyst for one-step methane dehydroaromatization to benzene reaction. The results indicated that α-site is the preferred location for the formation of ethylene, the main intermediate for aromatics production via the propagation pathway, while δ-site is favorable for the hydrocarbon pool aggregation reaction pathway.
Collapse
Affiliation(s)
- Guanna Li
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
19
|
Van Speybroeck V, Bocus M, Cnudde P, Vanduyfhuys L. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. ACS Catal 2023; 13:11455-11493. [PMID: 37671178 PMCID: PMC10476167 DOI: 10.1021/acscatal.3c01945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Indexed: 09/07/2023]
Abstract
Within this Perspective, we critically reflect on the role of first-principles molecular dynamics (MD) simulations in unraveling the catalytic function within zeolites under operating conditions. First-principles MD simulations refer to methods where the dynamics of the nuclei is followed in time by integrating the Newtonian equations of motion on a potential energy surface that is determined by solving the quantum-mechanical many-body problem for the electrons. Catalytic solids used in industrial applications show an intriguing high degree of complexity, with phenomena taking place at a broad range of length and time scales. Additionally, the state and function of a catalyst critically depend on the operating conditions, such as temperature, moisture, presence of water, etc. Herein we show by means of a series of exemplary cases how first-principles MD simulations are instrumental to unravel the catalyst complexity at the molecular scale. Examples show how the nature of reactive species at higher catalytic temperatures may drastically change compared to species at lower temperatures and how the nature of active sites may dynamically change upon exposure to water. To simulate rare events, first-principles MD simulations need to be used in combination with enhanced sampling techniques to efficiently sample low-probability regions of phase space. Using these techniques, it is shown how competitive pathways at operating conditions can be discovered and how broad transition state regions can be explored. Interestingly, such simulations can also be used to study hindered diffusion under operating conditions. The cases shown clearly illustrate how first-principles MD simulations reveal insights into the catalytic function at operating conditions, which could not be discovered using static or local approaches where only a few points are considered on the potential energy surface (PES). Despite these advantages, some major hurdles still exist to fully integrate first-principles MD methods in a standard computational catalytic workflow or to use the output of MD simulations as input for multiple length/time scale methods that aim to bridge to the reactor scale. First of all, methods are needed that allow us to evaluate the interatomic forces with quantum-mechanical accuracy, albeit at a much lower computational cost compared to currently used density functional theory (DFT) methods. The use of DFT limits the currently attainable length/time scales to hundreds of picoseconds and a few nanometers, which are much smaller than realistic catalyst particle dimensions and time scales encountered in the catalysis process. One solution could be to construct machine learning potentials (MLPs), where a numerical potential is derived from underlying quantum-mechanical data, which could be used in subsequent MD simulations. As such, much longer length and time scales could be reached; however, quite some research is still necessary to construct MLPs for the complex systems encountered in industrially used catalysts. Second, most currently used enhanced sampling techniques in catalysis make use of collective variables (CVs), which are mostly determined based on chemical intuition. To explore complex reactive networks with MD simulations, methods are needed that allow the automatic discovery of CVs or methods that do not rely on a priori definition of CVs. Recently, various data-driven methods have been proposed, which could be explored for complex catalytic systems. Lastly, first-principles MD methods are currently mostly used to investigate local reactive events. We hope that with the rise of data-driven methods and more efficient methods to describe the PES, first-principles MD methods will in the future also be able to describe longer length/time scale processes in catalysis. This might lead to a consistent dynamic description of all steps-diffusion, adsorption, and reaction-as they take place at the catalyst particle level.
Collapse
Affiliation(s)
| | - Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
20
|
Chai Y, Qin B, Li B, Dai W, Wu G, Guan N, Li L. Zeolite-encaged mononuclear copper centers catalyze CO 2 selective hydrogenation to methanol. Natl Sci Rev 2023; 10:nwad043. [PMID: 37547060 PMCID: PMC10401316 DOI: 10.1093/nsr/nwad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/12/2022] [Accepted: 01/14/2023] [Indexed: 08/08/2023] Open
Abstract
The selective hydrogenation of CO2 to methanol by renewable hydrogen source represents an attractive route for CO2 recycling and is carbon neutral. Stable catalysts with high activity and methanol selectivity are being vigorously pursued, and current debates on the active site and reaction pathway need to be clarified. Here, we report a design of faujasite-encaged mononuclear Cu centers, namely Cu@FAU, for this challenging reaction. Stable methanol space-time-yield (STY) of 12.8 mmol gcat-1 h-1 and methanol selectivity of 89.5% are simultaneously achieved at a relatively low reaction temperature of 513 K, making Cu@FAU a potential methanol synthesis catalyst from CO2 hydrogenation. With zeolite-encaged mononuclear Cu centers as the destined active sites, the unique reaction pathway of stepwise CO2 hydrogenation over Cu@FAU is illustrated. This work provides a clear example of catalytic reaction with explicit structure-activity relationship and highlights the power of zeolite catalysis in complex chemical transformations.
Collapse
Affiliation(s)
| | | | - Bonan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weili Dai
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guangjun Wu
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Naijia Guan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | | |
Collapse
|
21
|
Co-processing of fossil feedstock with lignin-derived model compound isoeugenol over Fe-Ni/H-Y-5.1 catalysts. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
22
|
He Z, Lei Q, Dai W, Zhang H. Solvent Tunes the Selectivity of Alkenes Epoxidation over Ti-Beta Zeolite: A Systematic Kinetic Assessment on Elementary Steps, Kinetically Relevant and Reaction Barriers. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
23
|
Liu Q, Pfriem N, Cheng G, Baráth E, Liu Y, Lercher JA. Maximum Impact of Ionic Strength on Acid-Catalyzed Reaction Rates Induced by a Zeolite Microporous Environment. Angew Chem Int Ed Engl 2023; 62:e202208693. [PMID: 36317985 PMCID: PMC10107796 DOI: 10.1002/anie.202208693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/14/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
The intracrystalline ionic environment in microporous zeolite can remarkably modify the excess chemical potential of adsorbed reactants and transition states, thereby influencing the catalytic turnover rates. However, a limit of the rate enhancement for aqueous-phase dehydration of alcohols appears to exist for zeolites with high ionic strength. The origin of such limitation has been hypothesized to be caused by the spatial constraints in the pores via, e.g., size exclusion effects. It is demonstrated here that the increase in turnover rate as well as the formation of a maximum and the rate drop are intrinsic consequences of the increasingly dense ionic environment in zeolite. The molecularly sized confines of zeolite create a unique ionic environment that monotonically favors the formation of alcohol-hydronium ion complexes in the micropores. The zeolite microporous environment determines the kinetics of catalytic steps and tailors the impact of ionic strength on catalytic rates.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Niklas Pfriem
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Guanhua Cheng
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Yue Liu
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University200062ShanghaiP. R. China
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA 99352USA
| |
Collapse
|
24
|
Chau HK, Nguyen QP, Jerdy AC, Bui DP, Lobban LL, Wang B, Crossley SP. Role of Water on Zeolite-Catalyzed Dehydration of Polyalcohols and EVOH Polymer. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Han K. Chau
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Quy P. Nguyen
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Ana Carolina Jerdy
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Dai-Phat Bui
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Lance L. Lobban
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Steven P. Crossley
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| |
Collapse
|
25
|
Kinetics of Heterogeneous Single‐Site Catalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202201082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Potts DS, Jeyaraj VS, Kwon O, Ghosh R, Mironenko AV, Flaherty DW. Effect of Interactions between Alkyl Chains and Solvent Structures on Lewis Acid Catalyzed Epoxidations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David S. Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Vijaya Sundar Jeyaraj
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ohsung Kwon
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Richa Ghosh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Alexander V. Mironenko
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
27
|
A critical assessment of the roles of water molecules and solvated ions in acid-base-catalyzed reactions at solid-water interfaces. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Tang Y, Qi G, Wang S, Meng X, Xiao FS. Recent Development of Bio-inspired Porous Materials for Catalytic Applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Chen W, Yi X, Liu Z, Tang X, Zheng A. Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations. Chem Soc Rev 2022; 51:4337-4385. [PMID: 35536126 DOI: 10.1039/d1cs00966d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acid-catalyzed reactions inside zeolites are one type of broadly applied industrial reactions, where carbocations are the most common intermediates of these reaction processes, including methanol to olefins, alkene/aromatic alkylation, and hydrocarbon cracking/isomerization. The fundamental research on these acid-catalyzed reactions is focused on the stability, evolution, and lifetime of carbocations under the zeolite confinement effect, which greatly affects the efficiency, selectivity and deactivation of zeolite catalysts. Therefore, a profound understanding of the carbocations confined in zeolites is not only beneficial to explain the reaction mechanism but also drive the design of new zeolite catalysts with ideal acidity and cages/channels. In this review, we provide both an in-depth understanding of the stabilization of carbocations by the pore confinement effect and summary of the advanced characterization methods to capture carbocations in zeolites, including UV-vis spectroscopy, solid-state NMR, fluorescence microscopy, IR spectroscopy and Raman spectroscopy. Also, we clarify the relationship between the activity and stability of carbocations in zeolite-catalyzed reactions, and further highlight the role of carbocations in various hydrocarbon conversion reactions inside zeolites with diverse frameworks and varying acidic properties.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
30
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
31
|
Zeynep Ayla E, Patel D, Harris A, Flaherty DW. Identity of the Metal Oxide Support Controls Outer Sphere Interactions that Change Rates and Barriers for Alkene Epoxidations at Isolated Ti Atoms. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Yang W, Kalavalapalli TY, Krieger AM, Khvorost TA, Chernyshov IY, Weber M, Uslamin EA, Pidko EA, Filonenko GA. Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation. J Am Chem Soc 2022; 144:8129-8137. [PMID: 35476423 PMCID: PMC9100671 DOI: 10.1021/jacs.2c00548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Homogeneously catalyzed
reactions often make use of additives and
promotors that affect reactivity patterns and improve catalytic performance.
While the role of reaction promotors is often discussed in view of
their chemical reactivity, we demonstrate that they can be involved
in catalysis indirectly. In particular, we demonstrate that promotors
can adjust the thermodynamics of key transformations in homogeneous
hydrogenation catalysis and enable reactions that would be unfavorable
otherwise. We identified this phenomenon in a set of well-established
and new Mn pincer catalysts that suffer from persistent product inhibition
in ester hydrogenation. Although alkoxide base additives do not directly
participate in inhibitory transformations, they can affect the equilibrium
constants of these processes. Experimentally, we confirm that by varying
the base promotor concentration one can control catalyst speciation
and inflict substantial changes to the standard free energies of the
key steps in the catalytic cycle. Despite the fact that the latter
are universally assumed to be constant, we demonstrate that reaction
thermodynamics and catalyst state are subject to external control.
These results suggest that reaction promotors can be viewed as an
integral component of the reaction medium, on its own capable of improving
the catalytic performance and reshaping the seemingly rigid thermodynamic
landscape of the catalytic transformation.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tejas Y Kalavalapalli
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Annika M Krieger
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Taras A Khvorost
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Ivan Yu Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, Berlin D-14195, Germany
| | - Evgeny A Uslamin
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
33
|
Site-specific scaling relations observed during methanol-to-olefin conversion over ZSM-5 catalysts. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Ding M, Shan BQ, Peng B, Zhou JF, Zhang K. Dynamic Pt-OH -·H 2O-Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface. Phys Chem Chem Phys 2022; 24:7923-7936. [PMID: 35311880 DOI: 10.1039/d2cp00673a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir-Hinshelwood (L-H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt-Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L-H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag-Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.
Collapse
Affiliation(s)
- Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Jia-Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,Laboratoire de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, 69364 Lyon cedex 07, France.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, P. R. China.,Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
35
|
Zeolite-encaged palladium catalysts for heterogeneous Suzuki-Miyaura cross-coupling reactions. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Molecular Insights into Adsorption and Diffusion Mechanism of N-Hexane in MFI Zeolites with Different Si-to-Al Ratios and Counterions. Catalysts 2022. [DOI: 10.3390/catal12020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effect of the silicon to aluminum ratio (SAR) and alkali metal cations on adsorption and diffusion properties of ZSM-5 and silicate-1 zeolites was investigated using n-hexane as the model probe via giant canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. A wide range of SAR was considered in this study to explore the possible adsorption sites in the zeolites. The findings show that, at 298 K and 423 K, adsorption and diffusion of n-hexane on/in low SAR (≤50) H-ZSM-5 models were promoted due to the preferable distribution of n-hexane in straight channels and enhanced interaction between protons and n-hexane molecules (about 24 kcal·mol−1). In alkali metal cation (i.e., Na+ and K+) exchanged ZSM-5, the alkali metal cations affected transport of molecules, which led to significant differences in their adsorption and diffusion properties compared to HZSM-5. In the Na+ and K+ systems, lower saturated adsorption capacities were predicted compared to that of silicate-1, which could be attributed to the decrease in effective void size posed by alkali–metal cations. In addition, simulation results also suggested that the T9 and T3 are the most likely sites for n-hexane adsorption, followed by T2, T5, and T10. Findings of the work can be beneficial to the rational design of high-performance zeolite catalysts for n-hexane conversion.
Collapse
|
37
|
Yang J, He Y, He J, Liu Y, Geng H, Chen S, Lin L, Liu M, Chen T, Jiang Q, Weckhuysen BM, Luo W, Wu Z. Enhanced Catalytic Performance through In Situ Encapsulation of Ultrafine Ru Clusters within a High-Aluminum Zeolite. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiangqian Yang
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Ying He
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Jiang He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanshuai Liu
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584CG, The Netherlands
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Huawei Geng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Shaohua Chen
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lu Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Meng Liu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Tiehong Chen
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584CG, The Netherlands
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| |
Collapse
|
38
|
Ma H, Liao J, Wei Z, Tian X, Li J, Chen YY, Wang S, Wang H, Dong M, Qin Z, Wang J, Fan W. Trimethyloxonium ion – a zeolite confined mobile and efficient methyl carrier at low temperatures: a DFT study coupled with microkinetic analysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00207h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction network of ethene methylation over H-ZSM-5, including methanol dehydration, ethene methylation, and C3H7+ conversion, is investigated by employing a multiscale approach combining DFT calculations and microkinetic modeling.
Collapse
Affiliation(s)
- Hong Ma
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Jian Liao
- School of Computer & Information Technology, Shanxi University, Taiyuan 030006, China
| | - Zhihong Wei
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xinxin Tian
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Junfen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yan-Yan Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Hao Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
39
|
Piccini G, Lee MS, Yuk SF, Zhang D, Collinge G, Kollias L, Nguyen MT, Glezakou VA, Rousseau R. Ab initio molecular dynamics with enhanced sampling in heterogeneous catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01329g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enhanced sampling ab initio simulations enable to study chemical phenomena in catalytic systems including thermal effects & anharmonicity, & collective dynamics describing enthalpic & entropic contributions, which can significantly impact on reaction free energy landscapes.
Collapse
Affiliation(s)
- GiovanniMaria Piccini
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Istituto Eulero, Università della Svizzera italiana, Via Giuseppe Buffi 13, Lugano, Ticino, Switzerland
| | - Mal-Soon Lee
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Simuck F. Yuk
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Difan Zhang
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Greg Collinge
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Loukas Kollias
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Manh-Thuong Nguyen
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Vassiliki-Alexandra Glezakou
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Roger Rousseau
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
40
|
Wang C, Chu Y, Hu M, Cai W, Wang Q, Qi G, Li S, Xu J, Deng F. Insight into Carbocation‐Induced Noncovalent Interactions in the Methanol‐to‐Olefins Reaction over ZSM‐5 Zeolite by Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
41
|
Wang C, Chu Y, Hu M, Cai W, Wang Q, Qi G, Li S, Xu J, Deng F. Insight into Carbocation-Induced Noncovalent Interactions in the Methanol-to-Olefins Reaction over ZSM-5 Zeolite by Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:26847-26854. [PMID: 34636120 DOI: 10.1002/anie.202112948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/06/2022]
Abstract
Carbocations such as cyclic carbenium ions are important intermediates in the zeolite-catalyzed methanol-to-olefins (MTO) reaction. The MTO reaction propagates through a complex hydrocarbon pool process. Understanding the carbocation-involved hydrocarbon pool reaction on a molecular level still remains challenging. Here we show that electron-deficient cyclopentenyl cations stabilized in ZSM-5 zeolite are able to capture the alkanes, methanol, and olefins produced during MTO reaction via noncovalent interactions. Intermolecular spatial proximities/interactions are identified by using two-dimensional 13 C-13 C correlation solid-state NMR spectroscopy. Combined NMR experiments and theoretical analysis suggests that in addition to the dispersion and CH/π interactions, the multiple functional groups in the cyclopentenyl cations produce strong attractive force via cation-induced dipole, cation-dipole and cation-π interactions. These carbocation-induced noncovalent interactions modulate the product selectivity of hydrocarbon pool reaction.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
42
|
Pfriem N, Liu Y, Zahn F, Shi H, Haller GL, Lercher JA. Impact of the Local Concentration of Hydronium Ions at Tungstate Surfaces for Acid-Catalyzed Alcohol Dehydration. J Am Chem Soc 2021; 143:20133-20143. [PMID: 34813324 DOI: 10.1021/jacs.1c07203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tungstate domains supported on ZrO2, Al2O3, TiO2, and activated carbon drastically influence the hydronium-ion-catalyzed aqueous-phase dehydration of alcohols. For all catalysts, the rate of cyclohexanol dehydration normalized to the concentration of Brønsted acid sites (turnover frequencies, TOFs) was lower for monotungstates than for polytungstates and larger crystallites of WO3. TOFs were constant when reaching or exceeding the monolayer coverage of tungstate, irrespective of the specific nature of surface structures that continuously evolve with the surface W loading. However, the TOFs with polytungstates and large WO3 crystallites depend strongly on the underlying support (e.g., WOx/C catalysts are 10-50-fold more active than WOx/Al2O3 catalysts). The electrical double layer (EDL) surrounding the negatively charged WOx domains contains hydrated hydronium ions, whose local concentrations change with the support. This varying concentration of interfacial hydronium ions ("local ionic strength") impacts the excess chemical potential of the reacting alcohols and induces the marked differences in the TOFs. Primary H/D kinetic isotope effects (∼3), together with the substantially positive entropy of activation (111-195 J mol-1 K-1), indicate that C-H(D) bond cleavage is involved in the kinetically relevant step of an E1-type mechanistic sequence, regardless of the support identity. The remarkable support dependence of the catalytic activity observed here for the aqueous-phase dehydration of cycloalkanols likely applies to a broad set of hydronium-ion-catalyzed organic reactions sensitive to ionic strength.
Collapse
Affiliation(s)
- Niklas Pfriem
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching 85747, Germany
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching 85747, Germany
| | - Florian Zahn
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching 85747, Germany
| | - Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Gary L Haller
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching 85747, Germany.,Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8682, United States
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching 85747, Germany.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
43
|
|
44
|
Shangguan J, Hensley AJ, Morgenstern L, Li Z, McEwen JS, Ma W, Cathy China YH. Brønsted Acidity of H-adatoms at Protic Solvent-Transition Metal Interfaces and its Kinetic Consequences in Electrophilic Addition Reactions. J Catal 2021. [DOI: 10.1016/j.jcat.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Schwartz TJ, Bond JQ. Leveraging De Donder relations for a thermodynamically rigorous analysis of reaction kinetics in liquid media. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Li G, Zhao Z, Mou T, Tan Q, Wang B, Resasco D. Experimental and computational kinetics study of the liquid-phase hydrogenation of C C and C O bonds. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Milaković L, Hintermeier PH, Liu Y, Baráth E, Lercher JA. Influence of Intracrystalline Ionic Strength in MFI Zeolites on Aqueous Phase Dehydration of Methylcyclohexanols. Angew Chem Int Ed Engl 2021; 60:24806-24810. [PMID: 34384139 PMCID: PMC9290721 DOI: 10.1002/anie.202107947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The impact of the concentration of hydrated hydronium ions and in turn of the local ionic strength in MFI zeolites has been investigated for the aqueous phase dehydration of 4‐methylcyclohexanol (E1 mechanism) and cis‐2‐methylcyclohexanol (E2 mechanism). The E2 pathway with the latter alcohol led to a 2.5‐fold higher activity. The catalytic activity normalized to the hydronium ions (turnover frequency, TOF) passed through a pronounced maximum, which is attributed to the increasing excess chemical potential of the alcohols in the pores, increasing in parallel with the ionic strength and the additional work caused by repulsive interactions and charge separation induced by the bulky alcohols. While the maximum in rate observed is invariant with the mechanism or substitution, the reaction pathway is influencing the activation parameters differently.
Collapse
Affiliation(s)
- Lara Milaković
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraβe 4, 85748, Garching, Germany
| | - Peter H Hintermeier
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraβe 4, 85748, Garching, Germany.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraβe 4, 85748, Garching, Germany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraβe 4, 85748, Garching, Germany
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraβe 4, 85748, Garching, Germany.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| |
Collapse
|
48
|
Milaković L, Hintermeier PH, Liu Y, Baráth E, Lercher JA. Influence of Intracrystalline Ionic Strength in MFI Zeolites on Aqueous Phase Dehydration of Methylcyclohexanols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lara Milaković
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraβe 4 85748 Garching Germany
| | - Peter H. Hintermeier
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraβe 4 85748 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraβe 4 85748 Garching Germany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraβe 4 85748 Garching Germany
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraβe 4 85748 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| |
Collapse
|
49
|
Bian C, Yang Y, Luo X, Zhang W, Zhang J, Zhu L, Qiu J. Advances in the Synthesis of Crystalline Metallosilicate Zeolites via Interlayer Expansion. Molecules 2021; 26:5916. [PMID: 34641458 PMCID: PMC8512749 DOI: 10.3390/molecules26195916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/04/2022] Open
Abstract
Given the numerous industrial applications of zeolites as adsorbents, catalysts, and ion-exchangers, the development of new zeolite structures is highly desired to expand their practical applications. Currently, a general route to develop new zeolite structures is to use interlayer expansion agents to connect layered silicates. In this review, we briefly summarize the novel zeolite structures constructed from the lamellar precursor zeolites MWW, RUB-36, PREFER, Nu-6(1), COK-5, and PLS-1 via interlayer expansion. The contents of the summary contain detailed experiments, physicochemical characterizations, possible expansion mechanisms, and catalytic properties. In addition, the insertion of metal heteroatoms (such as Ti, Fe, Sn) into the layered zeolite precursor through interlayer expansion, which could be helpful to modify the catalytic function, is discussed.
Collapse
Affiliation(s)
- Chaoqun Bian
- Pharmaceutical and Material Engineering School, Jinhua Polytechnic, Jinhua 321000, China; (X.L.); (W.Z.); (J.Z.)
| | - Yichang Yang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China;
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaohui Luo
- Pharmaceutical and Material Engineering School, Jinhua Polytechnic, Jinhua 321000, China; (X.L.); (W.Z.); (J.Z.)
| | - Wenxia Zhang
- Pharmaceutical and Material Engineering School, Jinhua Polytechnic, Jinhua 321000, China; (X.L.); (W.Z.); (J.Z.)
| | - Jie Zhang
- Pharmaceutical and Material Engineering School, Jinhua Polytechnic, Jinhua 321000, China; (X.L.); (W.Z.); (J.Z.)
| | - Longfeng Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China;
| | - Jianping Qiu
- Xingzhi College, Zhejiang Normal University, Jinhua 321004, China;
| |
Collapse
|