1
|
Feng X, Shi Y, Sun Z, Li L, Imran M, Zhang G, Zhang G, Li C. Control of Fusarium graminearum Infection in Wheat by dsRNA-Based Spray-Induced Gene Silencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12146-12155. [PMID: 40179250 DOI: 10.1021/acs.jafc.4c12665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Spray-induced gene silencing (SIGS) has become a new technology for pest and disease control in plants. This study synthesized three double-strand RNAs (dsRNAs) targeting Fusarium graminearum (F. graminearum), the major pathogen causing Fusarium head blight (FHB). Co-incubation showed weak uptake of dsRNA by F. graminearum, and some dsRNAs influence spore germination and hyphae growth. In contrast, exogenous dsRNA quickly and efficiently penetrates wheat leaves. Treatment of wheat leaves and detached wheat heads with these dsRNAs has a negative effect on the pathogenicity of F. graminearum. Foliar spraying of dsCHS3b or dsMGV1 decreased the amount of artificially inoculated F. graminearum, the incidence rate, and disease severity in the field. Under natural conditions, spraying dsRNAs significantly decreased the FHB disease index and deoxynivalenol content. Twice spray achieved more than 90% control of FHB. In conclusion, SIGS effectively prevents the infection of F. graminearum in wheat, providing a green way for FHB control.
Collapse
Affiliation(s)
- Xianyang Feng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yini Shi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Linyan Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mahammad Imran
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Gaoyang Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guoyan Zhang
- Plant Protection and Quarantine Station of Henan Province, Zhengzhou 450002, China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- College of Life Science, Henan Agriculture University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Rahman MM, Keya SS, Bulle M, Ahsan SM, Rahman MA, Roni MS, Al Noor MM, Hasan M. Past trauma, better future: how stress memory shapes plant adaptation to drought. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24355. [PMID: 40373187 DOI: 10.1071/fp24355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/23/2025] [Indexed: 05/17/2025]
Abstract
Can plants remember drought? Emerging evidence suggests that prior stress exposure leaves an epigenetic imprint, reprogramming plants for enhanced resilience. However, the stability and functional relevance of drought memory remain unresolved. This review synthesizes recent advances in epigenetic modifications, transcriptional reprogramming, and metabolic priming, critically assessing their roles in plant stress adaptation. DNA methylation dynamically reshapes chromatin landscapes, yet its transient nature questions its long-term inheritance. Histone modifications, particularly H3K9ac and H2Bub1, may encode stress signatures, enabling rapid transcriptional responses, whereas small RNAs fine-tune chromatin states to reinforce memory. Beyond epigenetics, physiological priming, including osmotic adjustments, antioxidant defenses, and hormonal crosstalk, introduces further complexity, yet its evolutionary advantage remains unclear. Root system plasticity may enhance drought resilience, but its metabolic trade-offs and epigenetic underpinnings are largely unexplored. A critical challenge is disentangling stable adaptive mechanisms from transient acclimatory shifts. We propose a framework for evaluating drought memory across temporal and generational scales and highlight the potential of precision genome editing to establish causality. By integrating multi-omics, gene editing, and field-based validation, this review aims to unlock the molecular blueprint of drought memory. Understanding these mechanisms is key to engineering climate-resilient crops, ensuring global food security in an era of increasing environmental uncertainty.
Collapse
Affiliation(s)
- Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; and Department of Agroforestry and Environment, Gazipur Agricultural University, Gazipur 1706, Bangladesh
| | - Sanjida Sultana Keya
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Mallesham Bulle
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - S M Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; and Department of Agriculture, Gopalganj Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Abiar Rahman
- Department of Agroforestry and Environment, Gazipur Agricultural University, Gazipur 1706, Bangladesh; and CIFOR-ICRAF Bangladesh, GAU Campus, Gazipur 1706, Bangladesh
| | - Md Shyduzzaman Roni
- Department of Horticulture, Gazipur Agricultural University, Gazipur 1706, Bangladesh
| | - Md Mahmud Al Noor
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, 2202, Bangladesh
| | - Mehedi Hasan
- Department of Agriculture, Gopalganj Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
3
|
Xie G, Du X, Hu H, Du J. Molecular Mechanisms Underlying the Establishment, Maintenance, and Removal of DNA Methylation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:143-170. [PMID: 40030153 DOI: 10.1146/annurev-arplant-083123-054357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Methylation at the fifth position of the cytosine base (5mC) is a critical DNA modification with important functions in gene silencing, genome imprinting, and suppression of transposable elements in eukaryotes. Biochemically, DNA methylation is dynamically regulated by three critical processes: the de novo establishment of DNA methylation, the maintenance of DNA methylation by preexisting methylation patterns, and the removal of DNA methylation. In plants, DNA methylation is very complex with unique features. In past decades, a series of biochemical and structural studies, especially empowered by the recent breakthroughs of high-resolution cryogenic electron microscopy, have helped uncover the molecular mechanisms underlying the establishment, maintenance, and removal of DNA methylation in plants. This review summarizes recent research advances in these three aspects of DNA methylation and lays out a molecular view of plant DNA methylation from biochemical and structural perspectives.
Collapse
Affiliation(s)
- Guohui Xie
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China;
| | - Xuan Du
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Jiamu Du
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China;
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Kim H, Lee YY, Kim VN. The biogenesis and regulation of animal microRNAs. Nat Rev Mol Cell Biol 2025; 26:276-296. [PMID: 39702526 DOI: 10.1038/s41580-024-00805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/21/2024]
Abstract
MicroRNAs (miRNAs) are small, yet profoundly influential, non-coding RNAs that base-pair with mRNAs to induce RNA silencing. Although the basic principles of miRNA biogenesis and function have been established, recent breakthroughs have yielded important new insights into the molecular mechanisms of miRNA biogenesis. In this Review, we discuss the metazoan miRNA biogenesis pathway step-by-step, focusing on the key biogenesis machinery, including the Drosha-DGCR8 complex (Microprocessor), exportin-5, Dicer and Argonaute. We also highlight newly identified cis-acting elements and their impact on miRNA maturation, informed by advanced high-throughput and structural studies, and discuss recently discovered mechanisms of clustered miRNA processing, target recognition and target-directed miRNA decay (TDMD). Lastly, we explore multiple regulatory layers of miRNA biogenesis, mediated by RNA-protein interactions, miRNA tailing (uridylation or adenylation) and RNA modifications.
Collapse
Affiliation(s)
- Haedong Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Young-Yoon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Knoblich M, Gursinsky T, Gago-Zachert S, Weinholdt C, Grau J, Behrens SE. A new level of RNA-based plant protection: dsRNAs designed from functionally characterized siRNAs highly effective against Cucumber mosaic virus. Nucleic Acids Res 2025; 53:gkaf136. [PMID: 40103224 PMCID: PMC11904787 DOI: 10.1093/nar/gkaf136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/05/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
RNA-mediated crop protection increasingly becomes a viable alternative to agrochemicals that threaten biodiversity and human health. Pathogen-derived double-stranded RNAs (dsRNAs) are processed into small interfering RNAs (siRNAs), which can then induce silencing of target RNAs, e.g. viral genomes. However, with currently used dsRNAs, which largely consist of undefined regions of the target RNAs, silencing is often ineffective: processing in the plant generates siRNA pools that contain only a few functionally effective siRNAs (esiRNAs). Using an in vitro screen that reliably identifies esiRNAs from siRNA pools, we identified esiRNAs against Cucumber mosaic virus (CMV), a devastating plant pathogen. Topical application of esiRNAs to plants resulted in highly effective protection against massive CMV infection. However, optimal protection was achieved with newly designed multivalent 'effective dsRNAs' (edsRNAs), which contain the sequences of several esiRNAs and are preferentially processed into these esiRNAs. The esiRNA components can attack one or more target RNAs at different sites, be active in different silencing complexes, and provide cross-protection against different viral variants-important properties for combating rapidly mutating pathogens such as CMV. esiRNAs and edsRNAs have thus been established as a new class of 'RNA actives' that significantly increase the efficacy and specificity of RNA-mediated plant protection.
Collapse
Affiliation(s)
- Marie Knoblich
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3A, 06120 Halle (Saale), Germany
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3A, 06120 Halle (Saale), Germany
| | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3A, 06120 Halle (Saale), Germany
| | - Claus Weinholdt
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
| | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3A, 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Wu Y, Wu Y, Wang C, Xiong N, Ji W, Fu M, Zhu J, Li Z, Lin J, Yang Q. A double-edged sword in antiviral defence: ATG7 binding dicer to promote virus replication. Cell Mol Life Sci 2025; 82:89. [PMID: 39985575 PMCID: PMC11846821 DOI: 10.1007/s00018-025-05603-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/24/2025]
Abstract
RNA interference (RNAi) and autophagy are two pivotal biological processes that regulate virus replication. This study explored the complex relationship between autophagy and RNAi in controlling influenza virus replication. Initially, we reported that influenza virus (H9N2) infection increases the viral load and the expression of autophagy markers while inhibiting the RNAi pathway. Subsequent studies employing autophagy enhancer and inhibitor treatments confirmed that avian influenza virus (AIV, H9N2) promotes viral replication by enhancing autophagy pathways. Further analysis revealed that ATG7, an autophagy protein, can interact with dicer to affect its antiviral functions. Finally, we discovered that infection with other avian RNA viruses, including infectious bursal disease virus (IBDV) and infectious bronchitis virus (IBV), induced the upregulation of ATG7, which blocked the RNAi pathway to facilitate virus replication. Our findings suggested that virus infection might trigger the upregulation of autophagy and downregulation of the RNAi pathway, revealing a complex interaction between these two biological processes in the defence against viral replication.
Collapse
Affiliation(s)
- Yaotang Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Yang Wu
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Chenlu Wang
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Ningna Xiong
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Wenxin Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Mei Fu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Junpeng Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Zhixin Li
- Ningxia Animal Disease Prevention and Control Center, Yinchuan Ningxia, 750000, China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
7
|
Puchta-Jasińska M, Bolc P, Pietrusińska-Radzio A, Motor A, Boczkowska M. Small Interfering RNAs as Critical Regulators of Plant Life Process: New Perspectives on Regulating the Transcriptomic Machinery. Int J Mol Sci 2025; 26:1624. [PMID: 40004087 PMCID: PMC11855876 DOI: 10.3390/ijms26041624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Small interfering RNAs (siRNAs) are a distinct class of regulatory RNAs in plants and animals. Gene silencing by small interfering RNAs is one of the fundamental mechanisms for regulating gene expression. siRNAs are critical regulators during developmental processes. siRNAs have similar structures and functions to small RNAs but are derived from double-stranded RNA and may be involved in directing DNA methylation of target sequences. siRNAs are a less well-studied class than the miRNA group, and researchers continue to identify new classes of siRNAs that appear at specific developmental stages and in particular tissues, revealing a more complex mode of siRNA action than previously thought. This review characterizes the siRNA classes and their biogenesis process and focuses on presenting their known functions in the regulation of plant development and responses to biotic and abiotic stresses. The review also highlights the exciting potential for future research in this field, proposing methods for detecting plant siRNAs and a bioinformatic pathway for identifying siRNAs and their functions.
Collapse
Affiliation(s)
- Marta Puchta-Jasińska
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | - Paulina Bolc
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | | | | | | |
Collapse
|
8
|
Cao N, Wang J, Deng T, Fan B, Su S, Ma J, Wang HW. Structural basis of endo-siRNA processing by Drosophila Dicer-2 and Loqs-PD. Nucleic Acids Res 2025; 53:gkaf102. [PMID: 39988314 PMCID: PMC11840564 DOI: 10.1093/nar/gkaf102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
Endogenous small interfering RNAs (endo-siRNAs or esiRNAs) originate from either elongated endogenous transcripts capable of forming complex fold-back structures or from double-stranded regions generated through intermolecular base pairing of convergently transcribed mRNAs. The mechanism of maturation and functionality of esiRNAs exhibit significant variation across diverse species. In Drosophila melanogaster, esiRNAs reside in both somatic and germline cells, where they serve as post-transcriptional modulators for specific target RNAs. Their maturation process critically relies on Dicer-2 (Dcr-2), with the assistance of its cofactor Loqs-PD. In this study, we have successfully elucidated the cryo-EM structures of Dcr-2/Loqs-PD complex bound to esiRNA precursors (pre-esiRNAs) in various states. Our structural and biochemical results reveal that ATP is essential for the cleavage of esiRNAs by the Dcr-2/Loqs-PD complex, a process analogous to the cleavage of double-stranded RNA (dsRNA). When Loqs-PD is present, pre-esiRNAs are preferentially loaded onto the Helicase domain of Dcr-2. Moreover, as the Helicase domain exhibits a preference for binding to the rigid end of double-stranded RNA, Dcr-2 tends to cleave pre-esiRNA from the small closed loop end, rather than the loose and flexible open end.
Collapse
Affiliation(s)
- Na Cao
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ting Deng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Boming Fan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Jia Y, Wei K, Qin J, Zhai W, Li Q, Li Y. The Roles of MicroRNAs in the Regulation of Rice-Pathogen Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:136. [PMID: 39795396 PMCID: PMC11722856 DOI: 10.3390/plants14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
Rice is exposed to attacks by the three most destructive pathogens, Magnaporthe oryzae (M. oryzae), Xanthomonas oryzae pv. oryzae (Xoo), and Rhizoctonia solani (R. solani), which cause substantial yield losses and severely threaten food security. To cope with pathogenic infections, rice has evolved diverse molecular mechanisms to respond to a wide range of pathogens. Among these strategies, plant microRNAs (miRNAs), endogenous single-stranded short non-coding RNA molecules, have emerged as promising candidates in coordinating plant-pathogen interactions. MiRNAs can modulate target gene expression at the post-transcriptional level through mRNA cleavage and/or translational inhibition. In rare instances, they also influence gene expression at the transcriptional level through DNA methylation. In recent years, substantial advancements have been achieved in the investigation of microRNA-mediated molecular mechanisms in rice immunity. Therefore, we attempt to summarize the current advances of immune signaling mechanisms in rice-pathogen interactions that are regulated by osa-miRNAs, including their functions and molecular mechanisms. We also focus on recent findings concerning the role of osa-miRNAs that respond to M. oryzae, Xoo, and R. solani, respectively. These insights enhance our understanding of how the mechanisms of osa-miRNAs mediate rice immunity and may facilitate the development of improved strategies for breeding pathogen-resistant rice varieties.
Collapse
Affiliation(s)
- Yanfeng Jia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Kai Wei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Jiawang Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Quanlin Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yalan Li
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
10
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
11
|
Du X. The cellular RNA-dependent RNA polymerases in plants. THE NEW PHYTOLOGIST 2024; 244:2150-2155. [PMID: 39136154 DOI: 10.1111/nph.20046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/27/2024] [Indexed: 11/22/2024]
Abstract
RNA-dependent RNA Polymerases (RdRPs) synthesize double-stranded RNA (dsRNA) from a single-stranded RNA (ssRNA) template. In plants, dsRNAs produced by RdRPs can be further processed into small interfering RNA (siRNAs) with different lengths, ranging from 21 to 24 nucleotides (nt). These siRNAs play a pivotal role in various biological processes, including antiviral responses, transposable elements silencing, DNA methylation, and the regulation of plant reproduction and development. Recent research has reported significant progress in uncovering the molecular mechanisms of plant RNA-DEPENDENT RNA POLYMERASE 2 (RDR2), a representative RdRP involved in the RNA-directed DNA methylation (RdDM) pathway. These discoveries provide a molecular basis underlying the principles of RdRP function and offer insights into potential advancements in crop breeding and antiviral defense strategies.
Collapse
Affiliation(s)
- Xuan Du
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
12
|
Dale R, Mosher R. Mathematical model of RNA-directed DNA methylation predicts tuning of negative feedback required for stable maintenance. Open Biol 2024; 14:240159. [PMID: 39532148 PMCID: PMC11557233 DOI: 10.1098/rsob.240159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
RNA-directed DNA methylation (RdDM) is a plant-specific de novo methylation pathway that is responsible for maintenance of asymmetric methylation (CHH, H = A, T or G) in euchromatin. Loci with CHH methylation produce 24 nucleotide (nt) short interfering (si) RNAs. These siRNAs direct additional CHH methylation to the locus, maintaining methylation states through DNA replication. To understand the necessary conditions to produce stable methylation, we developed a stochastic mathematical model of RdDM. The model describes DNA target search by siRNAs derived from CHH methylated loci bound by an Argonaute. Methylation reinforcement occurs either throughout the cell cycle (steady) or immediately following replication (bursty). We compare initial and final methylation distributions to determine simulation conditions that produce stable methylation. We apply this method to the low CHH methylation case. The resulting model predicts that siRNA production must be linearly proportional to methylation levels, that bursty reinforcement is more stable and that slightly higher levels of siRNA production are required for searching DNA, compared to RNA. Unlike CG methylation, which typically exhibits bi-modality with loci having either 100% or 0% methylation, CHH methylation exists across a range. Our model predicts that careful tuning of the negative feedback in the system is required to enable stable maintenance.
Collapse
Affiliation(s)
- Renee Dale
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - Rebecca Mosher
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
- Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
13
|
Yuan Y, Liu Y, Han L, Li Y, Qi Y. An RdDM-independent function of Pol V transcripts in gene regulation and plant defence. NATURE PLANTS 2024; 10:1562-1575. [PMID: 39187700 DOI: 10.1038/s41477-024-01774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024]
Abstract
RNA polymerase V (Pol V) and Pol IV are known to be specialized for RNA-directed DNA methylation (RdDM). Here we report that Pol V, but not Pol IV, regulates hundreds of genes including jasmonic acid-responsive genes and confers plant defence to Botrytis cinerea and Spodoptera exigua. About half of the Pol V-regulated genes are associated with Pol V transcripts (PVTs). We thus hypothesized that some PVTs could regulate gene expression in an RdDM-independent manner. To test this hypothesis, we studied three PVTs, PVT-ERF5a/b and PVT-ERF6, as models. PVT-ERF5a/b and PVT-ERF6 are transcribed from the upstream regions of ERF5 and ERF6 and positively regulate their transcription, thereby regulating plant defence. Such regulation involves PVT-dependent H3K4me3 deposition and requires the DRD1-DMS3-RDM1 complex that mediates Pol V recruitment to the target loci. These findings highlight an unprecedented role for PVTs in regulating gene transcription, apart from serving as scaffold RNAs to direct DNA methylation.
Collapse
Affiliation(s)
- Yuxiang Yuan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lu Han
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- New Cornerstone Science Laboratory, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Choi J, Browning S, Schmitt-Keichinger C, Fuchs M. Mutations in the WG and GW motifs of the three RNA silencing suppressors of grapevine fanleaf virus alter their systemic suppression ability and affect virus infectivity. Front Microbiol 2024; 15:1451285. [PMID: 39188317 PMCID: PMC11345138 DOI: 10.3389/fmicb.2024.1451285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine (Vitis spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1BHel, as well as their fused form (1ABHel). Key characteristics underlying the suppression function of the GFLV VSRs are unknown. In this study, we explored the role of the conserved tryptophan-glycine (WG) motif in protein 1A and glycine-tryptophan (GW) motif in protein 1BHel in their systemic RNA silencing suppression ability by co-infiltrating Nicotiana benthamiana 16c line plants with a GFP silencing construct and a wildtype or a mutant GFLV VSR. We analyzed and compared wildtype and mutant GFLV VSRs for their (i) efficiency at suppressing RNA silencing, (ii) ability to limit siRNA accumulation, (iii) modulation of the expression of six host genes involved in RNA silencing, (iv) impact on virus infectivity in planta, and (v) variations in predicted protein structures using molecular and biochemical assays, as well as bioinformatics tools such as AlphaFold2. Mutating W to alanine (A) in WG of proteins 1A and 1ABHel abolished their ability to induce systemic RNA silencing suppression, limit siRNA accumulation, and downregulate NbAGO2 expression by 1ABHel. This mutation in the GFLV genome resulted in a non-infectious virus. Mutating W to A in GW of proteins 1BHel and 1ABHel reduced their ability to suppress systemic RNA silencing and abolished the downregulation of NbDCL2, NbDCL4,, and NbRDR6 expression by 1BHel. This mutation in the GFLV genome delayed infection at the local level and inhibited systemic infection in planta. Double mutations of W to A in WG and GW of protein 1ABHel abolished its ability to induce RNA silencing suppression, limit siRNA accumulation, and downregulate NbDCL2 and NbRDR6 expression. Finally, in silico protein structure prediction indicated that a W to A substitution potentially modifies the structure and physicochemical properties of the three GFLV VSRs. Together, this study provided insights into the specific roles of WG/GW not only in GFLV VSR functions but also in GFLV biology.
Collapse
Affiliation(s)
- Jiyeong Choi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science College of Agriculture and Life Sciences, Cornell University, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY, United States
| | - Scottie Browning
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science College of Agriculture and Life Sciences, Cornell University, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY, United States
| | - Corinne Schmitt-Keichinger
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, France
- INRAE, SVQV UMR 1131, Université de Strasbourg, Colmar, France
| | - Marc Fuchs
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science College of Agriculture and Life Sciences, Cornell University, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY, United States
| |
Collapse
|
15
|
Kulikova DA, Bespalova AV, Zelentsova ES, Evgen'ev MB, Funikov SY. Epigenetic Phenomenon of Paramutation in Plants and Animals. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1429-1450. [PMID: 39245454 DOI: 10.1134/s0006297924080054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.
Collapse
Affiliation(s)
- Dina A Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alina V Bespalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena S Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
16
|
Li Q, Wang Y, Sun Z, Li H, Liu H. The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development. Int J Mol Sci 2024; 25:7680. [PMID: 39062923 PMCID: PMC11276867 DOI: 10.3390/ijms25147680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In the realm of plant biology, small RNAs (sRNAs) are imperative in the orchestration of gene expression, playing pivotal roles across a spectrum of developmental sequences and responses to environmental stressors. The biosynthetic cascade of sRNAs is characterized by an elaborate network of enzymatic pathways that meticulously process double-stranded RNA (dsRNA) precursors into sRNA molecules, typically 20 to 30 nucleotides in length. These sRNAs, chiefly microRNAs (miRNAs) and small interfering RNAs (siRNAs), are integral in guiding the RNA-induced silencing complex (RISC) to selectively target messenger RNAs (mRNAs) for post-transcriptional modulation. This regulation is achieved either through the targeted cleavage or the suppression of translational efficiency of the mRNAs. In plant development, sRNAs are integral to the modulation of key pathways that govern growth patterns, organ differentiation, and developmental timing. The biogenesis of sRNA itself is a fine-tuned process, beginning with transcription and proceeding through a series of processing steps involving Dicer-like enzymes and RNA-binding proteins. Recent advances in the field have illuminated the complex processes underlying the generation and function of small RNAs (sRNAs), including the identification of new sRNA categories and the clarification of their involvement in the intercommunication among diverse regulatory pathways. This review endeavors to evaluate the contemporary comprehension of sRNA biosynthesis and to underscore the pivotal role these molecules play in directing the intricate performance of plant developmental processes.
Collapse
Affiliation(s)
| | | | | | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| | - Huan Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| |
Collapse
|
17
|
Lee H, Roh SH. Cryo-EM structures of human DICER dicing a pre-miRNA substrate. FEBS J 2024; 291:3072-3079. [PMID: 38151772 DOI: 10.1111/febs.17048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Dicer, a multi-domain ribonuclease III (RNase III) protein, is crucial for gene regulation via RNA interference. It processes hairpin-like precursors into microRNAs (miRNAs) and long double-stranded RNAs (dsRNAs) into small interfering RNAs (siRNAs). During the "dicing" process, the miRNA or siRNA substrate is stably anchored and cleaved by Dicer's RNase III domain. Although numerous studies have investigated long dsRNA cleavage by Dicer, the specific mechanism by which human Dicer (hDICER) processes pre-miRNA remains unelucidated. This review introduces the recently revealed hDICER structure bound to pre-miRNA uncovered through cryo-electron microscopy and compares it with previous reports describing Dicer. The domain-wise movements of the helicase and dsRNA-binding domain (dsRBD) and specific residues involved in substrate sequence recognition have been identified. During RNA substrate binding, the hDICER apical domains and dsRBD recognize the pre-miRNA termini and cleavage site, respectively. Residue rearrangements in positively charged pockets within the apical domain influence substrate recognition and cleavage site determination. The specific interactions between dsRBD positively charged residues and nucleotide bases near the cleavage site emphasize the significance of cis-acting elements in the hDICER processing mechanism. These findings provide valuable insights for understanding hDICER-related diseases.
Collapse
Affiliation(s)
- Hansol Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Dew-Budd KJ, Chow HT, Kendall T, David BC, Rozelle JA, Mosher RA, Beilstein MA. Mating system is associated with seed phenotypes upon loss of RNA-directed DNA methylation in Brassicaceae. PLANT PHYSIOLOGY 2024; 194:2136-2148. [PMID: 37987565 DOI: 10.1093/plphys/kiad622] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
In plants, de novo DNA methylation is guided by 24-nt short interfering (si)RNAs in a process called RNA-directed DNA methylation (RdDM). Primarily targeted at transposons, RdDM causes transcriptional silencing and can indirectly influence expression of neighboring genes. During reproduction, a small number of siRNA loci are dramatically upregulated in the maternally derived seed coat, suggesting that RdDM might have a special function during reproduction. However, the developmental consequence of RdDM has been difficult to dissect because disruption of RdDM does not result in overt phenotypes in Arabidopsis (Arabidopsis thaliana), where the pathway has been most thoroughly studied. In contrast, Brassica rapa mutants lacking RdDM have a severe seed production defect, which is determined by the maternal sporophytic genotype. To explore the factors that underlie the different phenotypes of these species, we produced RdDM mutations in 3 additional members of the Brassicaceae family: Camelina sativa, Capsella rubella, and Capsella grandiflora. Among these 3 species, only mutations in the obligate outcrosser, C. grandiflora, displayed a seed production defect similar to Brassica rapa mutants, suggesting that mating system is a key determinant for reproductive phenotypes in RdDM mutants.
Collapse
Affiliation(s)
- Kelly J Dew-Budd
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Hiu Tung Chow
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Timmy Kendall
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Brandon C David
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - James A Rozelle
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Mark A Beilstein
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
19
|
Zhou H, Ning Y, Jian Y, Zhang M, Klakong M, Guo F, Shao Q, Li Y, Yang P, Li Z, Yang L, Li S, Ding W. Functional analysis of a down-regulated transcription factor-SoxNeuroA gene involved in the acaricidal mechanism of scopoletin against spider mites. PEST MANAGEMENT SCIENCE 2024; 80:1593-1606. [PMID: 37986233 DOI: 10.1002/ps.7892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Insight into the mode of action of plant-derived acaricides will help in the development of sustainable control strategies for mite pests. Scopoletin, a promising plant-derived bioactive compound, displays prominent acaricidal activity against Tetranychus cinnabarinus. The transcription factor SoxNeuroA plays a vital role in maintaining calcium ion (Ca2+ ) homeostasis. Down-regulation of SoxNeuroA gene expression occurs in scopoletin-exposed mites, but the functional role of this gene remains unknown. RESULTS A SoxNeuroA gene from T. cinnabarinus (TcSoxNeuroA) was first cloned and identified. Reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time polymerase chain reaction (qPCR), and Western blotting assays all confirmed that the gene expression and protein levels of TcSoxNeuroA were significantly reduced under scopoletin exposure. Furthermore, RNA interference silencing of the weakly expressed SoxNeuroA gene significantly enhanced the susceptibility of mites to scopoletin, suggesting that the acaricidal mechanism of scopoletin was mediated by the weakly expressed SoxNeuroA gene. Additionally, yeast one-hybrid (Y1H) and dual-luciferase reporter assays revealed that TcSoxNeuroA was a repressor of Orai1 Ca2+ channel gene transcription, and the key binding sequence was ATCAAAG (positions -361 to -368 of the Orai1 promoter). Importantly, site-directed mutagenesis and microscale thermophoresis assays further indicated that ASP185, ARG189, and LYS217, which were key predicted hydrogen-bonding sites in the molecular docking model, may be the vital binding sites for scopoletin in TcSoxNeuroA. CONCLUSION These results demonstrate that the acaricidal mechanism of scopoletin involves inhibition of the transcription factor SoxNeuroA, thus inducing the activation of the Orai1 Ca2+ channel, eventually leading to Ca2+ overload and lethality. Elucidation of the transcription factor-targeted mechanism for this potent plant-derived acaricide has vital implications for the design of next-generation green acaricides with novel targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yeshuang Ning
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yufan Jian
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Matthana Klakong
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Qingyi Shao
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yanhong Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Pinglong Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Zongquan Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| |
Collapse
|
20
|
Xie G, Du X, Hu H, Du J. Molecular mechanisms of the RNA polymerases in plant RNA-directed DNA methylation. Trends Biochem Sci 2024; 49:247-256. [PMID: 38072749 DOI: 10.1016/j.tibs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 03/10/2024]
Abstract
In plants, two atypical DNA-dependent RNA polymerases, RNA polymerase IV (Pol IV) and Pol V, and an RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) together produce noncoding RNAs (ncRNAs) to guide the plant-specific RNA-directed DNA methylation (RdDM). Although both Pol IV and Pol V have evolved from the canonical Pol II, they have adapted to different roles in RdDM. The mechanisms of their adaptation are key to understanding plant DNA methylation and the divergent evolution of polymerases. In this review, we summarize insights that have emerged from recent structural studies of Pol IV, Pol V, and RDR2 and discuss their structural features critical for efficient ncRNA production in RdDM.
Collapse
Affiliation(s)
- Guohui Xie
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuan Du
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
21
|
Li J, Zhang BS, Wu HW, Liu CL, Guo HS, Zhao JH. The RNA-binding domain of DCL3 is required for long-distance RNAi signaling. ABIOTECH 2024; 5:17-28. [PMID: 38576436 PMCID: PMC10987413 DOI: 10.1007/s42994-023-00124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/27/2023] [Indexed: 04/06/2024]
Abstract
Small RNA (sRNA)-mediated RNA silencing (also known as RNA interference, or RNAi) is a conserved mechanism in eukaryotes that includes RNA degradation, DNA methylation, heterochromatin formation and protein translation repression. In plants, sRNAs can move either cell-to-cell or systemically, thereby acting as mobile silencing signals to trigger noncell autonomous silencing. However, whether and what proteins are also involved in noncell autonomous silencing have not been elucidated. In this study, we utilized a previously reported inducible RNAi plant, PDSi, which can induce systemic silencing of the endogenous PDS gene, and we demonstrated that DCL3 is involved in systemic PDS silencing through its RNA binding activity. We confirmed that the C-terminus of DCL3, including the predicted RNA-binding domain, is capable of binding short RNAs. Mutations affecting RNA binding, but not processing activity, reduced systemic PDS silencing, indicating that DCL3 binding to RNAs is required for the induction of systemic silencing. Cucumber mosaic virus infection assays showed that the RNA-binding activity of DCL3 is required for antiviral RNAi in systemically noninoculated leaves. Our findings demonstrate that DCL3 acts as a signaling agent involved in noncell autonomous silencing and an antiviral effect in addition to its previously known function in the generation of 24-nucleotide sRNAs. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00124-6.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Bo-Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Hua-Wei Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Cheng-Lan Liu
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250022 China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
22
|
Shang B, Li C, Zhang X. How intrinsically disordered proteins order plant gene silencing. Trends Genet 2024; 40:260-275. [PMID: 38296708 PMCID: PMC10932933 DOI: 10.1016/j.tig.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) possess low sequence complexity of amino acids and display non-globular tertiary structures. They can act as scaffolds, form regulatory hubs, or trigger biomolecular condensation to control diverse aspects of biology. Emerging evidence has recently implicated critical roles of IDPs and IDR-contained proteins in nuclear transcription and cytoplasmic post-transcriptional processes, among other molecular functions. We here summarize the concepts and organizing principles of IDPs. We then illustrate recent progress in understanding the roles of key IDPs in machineries that regulate transcriptional and post-transcriptional gene silencing (PTGS) in plants, aiming at highlighting new modes of action of IDPs in controlling biological processes.
Collapse
Affiliation(s)
- Baoshuan Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
23
|
Zhou H, Wan F, Jian Y, Guo F, Zhang M, Shi S, Yang L, Li S, Liu Y, Ding W. Chitosan/dsRNA polyplex nanoparticles advance environmental RNA interference efficiency through activating clathrin-dependent endocytosis. Int J Biol Macromol 2023; 253:127021. [PMID: 37741481 DOI: 10.1016/j.ijbiomac.2023.127021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Chitosan, as a promising gene nanocarrier for enhancing RNA interference (RNAi) efficiency, displays tremendous application prospects in addressing dsRNA delivery concerns. However, the molecular mechanism of chitosan/dsRNA polyplex nanoparticles (PNs) for advancing dsRNA delivery efficiency remains largely unknown. Here, chitosan/dsRNA PNs were prepared by an electrostatic attraction method. The results showed that the chitosan/dsRNA PNs significantly advance stability, and cellular uptake efficiency of dsRNA, and RNAi efficiency. RNA-Seq and qPCR assays further revealed that chitosan/dsRNA PNs upregulated the key clathrin heavy chain (CHC) gene for activating clathrin-dependent endocytosis (CDE) pathway. Additionally, inhibition of CDE hindered the robust RNAi responses of chitosan/dsRNA PNs using an inhibitor (chlorpromazine) and an RNAi-of-RNAi strategy. Ultimately, microscale thermophoresis assay confirmed that chitosan/dsRNA PNs directly bound to CHC protein, which was a core component in CDE, to advance RNAi efficiency. To our knowledge, our findings firstly illuminate the molecular mechanism how chitosan nanoparticles-based RNAi deliver dsRNA for enhancing RNAi efficiency. Above mechanism will advance the extensive utilization of nanocarrier-based RNAi in pest management and gene delivery.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Yufan Jian
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Shiyao Shi
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Ying Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
24
|
Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023; 24:816-833. [PMID: 37380761 PMCID: PMC11087887 DOI: 10.1038/s41576-023-00611-y] [Citation(s) in RCA: 326] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Gayan Senavirathne
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
25
|
Fu K, Wu Q, Jiang N, Hu S, Ye H, Hu Y, Li L, Li T, Sun Z. Identification and Expressional Analysis of siRNAs Responsive to Fusarium graminearum Infection in Wheat. Int J Mol Sci 2023; 24:16005. [PMID: 37958988 PMCID: PMC10650599 DOI: 10.3390/ijms242116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The outbreak of Fusarium head blight (FHB) poses a serious threat to wheat production as it leads to both significant yield losses and accumulation of several mycotoxins including deoxynivalenol (DON) in the grains, which are harmful to human and livestock. To date, hundreds of FHB-resistance-related quantitative trait loci (QTLs) have been reported, but only a few of them have been cloned and used for breeding. Small interfering RNAs (siRNA) have been reported in plants to mediate host defense against pathogens, but they have rarely been reported in wheat-FHB interaction. In order to identify the key siRNAs that can potentially be used in the improvement of resistance to FHB, siRNAs from the spikes of an FHB-resistant variety Sumai 3 and an FHB-susceptible variety of Chinese Spring (CS) were sequenced after F. graminearum infection and mock inoculation, respectively. The expression patterns of the siRNAs of interest were analyzed. A total of 4019 siRNAs of high-confidence were identified, with 131 being CS-specific, 309 Sumai 3-specific and 3071 being common in both varieties. More than 87% of these siRNAs were 24 nt in length. An overall down-regulation trend was found for siRNAs in the spikes of both varieties after being infected with F. graminearum. The expression patterns for Triticum aestivum Dicer-like 3 (TaDCL3) that synthesizes 24 nt siRNAs were validated by qRT-PCR, which were positively correlated with those of the siRNAs. A total of 85% of the differentially expressed genes putatively targeted by the siRNAs were significantly up-regulated after infection, showing a negative correlation with the overall down-regulated expression of siRNAs. Interestingly, the majority of the up-regulated genes are annotated as disease resistance. These results suggested that the inhibition of siRNA by F. graminearum up-regulated the disease resistance genes, which were putatively suppressed by siRNAs through RNA-directed DNA methylation (RdDM). Consequently, the resistant capability to F. graminearum infection was enhanced. This study provides novel clues for investigating the function of siRNA in wheat-F. graminearum interaction.
Collapse
Affiliation(s)
- Kai Fu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (K.F.); (Q.W.); (N.J.); (S.H.); (H.Y.); (Y.H.); (L.L.); (T.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qianhui Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (K.F.); (Q.W.); (N.J.); (S.H.); (H.Y.); (Y.H.); (L.L.); (T.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ning Jiang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (K.F.); (Q.W.); (N.J.); (S.H.); (H.Y.); (Y.H.); (L.L.); (T.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Sijia Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (K.F.); (Q.W.); (N.J.); (S.H.); (H.Y.); (Y.H.); (L.L.); (T.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Ye
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (K.F.); (Q.W.); (N.J.); (S.H.); (H.Y.); (Y.H.); (L.L.); (T.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yi Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (K.F.); (Q.W.); (N.J.); (S.H.); (H.Y.); (Y.H.); (L.L.); (T.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (K.F.); (Q.W.); (N.J.); (S.H.); (H.Y.); (Y.H.); (L.L.); (T.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Tao Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (K.F.); (Q.W.); (N.J.); (S.H.); (H.Y.); (Y.H.); (L.L.); (T.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhengxi Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (K.F.); (Q.W.); (N.J.); (S.H.); (H.Y.); (Y.H.); (L.L.); (T.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
26
|
Jiang L, Qi Y, Yang L, Miao Y, Ren W, Liu H, Huang Y, Huang S, Chen S, Shi Y, Cai L. Remodeling the tumor immune microenvironment via siRNA therapy for precision cancer treatment. Asian J Pharm Sci 2023; 18:100852. [PMID: 37920650 PMCID: PMC10618707 DOI: 10.1016/j.ajps.2023.100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 11/04/2023] Open
Abstract
How to effectively transform the pro-oncogenic tumor microenvironments (TME) surrounding a tumor into an anti-tumoral never fails to attract people to study. Small interfering RNA (siRNA) is considered one of the most noteworthy research directions that can regulate gene expression following a process known as RNA interference (RNAi). The research about siRNA delivery targeting tumor cells and TME has been on the rise in recent years. Using siRNA drugs to silence critical proteins in TME was one of the most efficient solutions. However, the manufacture of a siRNA delivery system faces three major obstacles, i.e., appropriate cargo protection, accurately targeted delivery, and site-specific cargo release. In the following review, we summarized the pharmacological actions of siRNA drugs in remolding TME. In addition, the delivery strategies of siRNA drugs and combination therapy with siRNA drugs to remodel TME are thoroughly discussed. In the meanwhile, the most recent advancements in the development of all clinically investigated and commercialized siRNA delivery technologies are also presented. Ultimately, we propose that nanoparticle drug delivery siRNA may be the future research focus of oncogene therapy. This summary offers a thorough analysis and roadmap for general readers working in the field.
Collapse
Affiliation(s)
- Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yao Qi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lei Yang
- Department of Pharmacy, Jianyang People's Hospital of Sichuan Province, Jianyang 641400, China
| | - Yangbao Miao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Weiming Ren
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hongmei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shan Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shiyin Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
27
|
Deng T, Su S, Yuan X, He J, Huang Y, Ma J, Wang J. Structural mechanism of R2D2 and Loqs-PD synergistic modulation on DmDcr-2 oligomers. Nat Commun 2023; 14:5228. [PMID: 37633971 PMCID: PMC10460399 DOI: 10.1038/s41467-023-40919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/16/2023] [Indexed: 08/28/2023] Open
Abstract
Small interference RNAs are the key components of RNA interference, a conserved RNA silencing or viral defense mechanism in many eukaryotes. In Drosophila melanogaster, Dicer-2 (DmDcr-2)-mediated RNAi pathway plays important roles in defending against viral infections and protecting genome integrity. During the maturation of siRNAs, two cofactors can regulate DmDcr-2's functions: Loqs-PD that is required for dsRNA processing, and R2D2 that is essential for the subsequent loading of siRNAs into effector Ago2 to form RISC complexes. However, due to the lack of structural information, it is still unclear whether R2D2 and Loqs-PD affect the functions of DmDcr-2 simultaneously. Here we present several cryo-EM structures of DmDcr-2/R2D2/Loqs-PD complex bound to dsRNAs with various lengths by the Helicase domain. These structures revealed that R2D2 and Loqs-PD can bind to different regions of DmDcr-2 without interfering with each other. Furthermore, the cryo-EM results demonstrate that these complexes can form large oligomers and assemble into fibers. The formation and depolymerization of these oligomers are associated with ATP hydrolysis. These findings provide insights into the structural mechanism of DmDcr-2 and its cofactors during siRNA processing.
Collapse
Affiliation(s)
- Ting Deng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Xun Yuan
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinqiu He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Ying Huang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China.
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
28
|
Zhang X, Du M, Yang Z, Wang Z, Lim KJ. Biogenesis, Mode of Action and the Interactions of Plant Non-Coding RNAs. Int J Mol Sci 2023; 24:10664. [PMID: 37445841 DOI: 10.3390/ijms241310664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The central dogma of genetics, which outlines the flow of genetic information from DNA to RNA to protein, has long been the guiding principle in molecular biology. In fact, more than three-quarters of the RNAs produced by transcription of the plant genome are not translated into proteins, and these RNAs directly serve as non-coding RNAs in the regulation of plant life activities at the molecular level. The breakthroughs in high-throughput transcriptome sequencing technology and the establishment and improvement of non-coding RNA experiments have now led to the discovery and confirmation of the biogenesis, mechanisms, and synergistic effects of non-coding RNAs. These non-coding RNAs are now predicted to play important roles in the regulation of gene expression and responses to stress and evolution. In this review, we focus on the synthesis, and mechanisms of non-coding RNAs, and we discuss their impact on gene regulation in plants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Mingjun Du
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
29
|
Bélanger S, Zhan J, Meyers BC. Phylogenetic analyses of seven protein families refine the evolution of small RNA pathways in green plants. PLANT PHYSIOLOGY 2023; 192:1183-1203. [PMID: 36869858 PMCID: PMC10231463 DOI: 10.1093/plphys/kiad141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/01/2023]
Abstract
Several protein families participate in the biogenesis and function of small RNAs (sRNAs) in plants. Those with primary roles include Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) proteins. Protein families such as double-stranded RNA-binding (DRB), SERRATE (SE), and SUPPRESSION OF SILENCING 3 (SGS3) act as partners of DCL or RDR proteins. Here, we present curated annotations and phylogenetic analyses of seven sRNA pathway protein families performed on 196 species in the Viridiplantae (aka green plants) lineage. Our results suggest that the RDR3 proteins emerged earlier than RDR1/2/6. RDR6 is found in filamentous green algae and all land plants, suggesting that the evolution of RDR6 proteins coincides with the evolution of phased small interfering RNAs (siRNAs). We traced the origin of the 24-nt reproductive phased siRNA-associated DCL5 protein back to the American sweet flag (Acorus americanus), the earliest diverged, extant monocot species. Our analyses of AGOs identified multiple duplication events of AGO genes that were lost, retained, or further duplicated in subgroups, indicating that the evolution of AGOs is complex in monocots. The results also refine the evolution of several clades of AGO proteins, such as AGO4, AGO6, AGO17, and AGO18. Analyses of nuclear localization signal sequences and catalytic triads of AGO proteins shed light on the regulatory roles of diverse AGOs. Collectively, this work generates a curated and evolutionarily coherent annotation for gene families involved in plant sRNA biogenesis/function and provides insights into the evolution of major sRNA pathways.
Collapse
Affiliation(s)
| | - Junpeng Zhan
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
30
|
Zhang HW, Huang K, Gu ZX, Wu XX, Wang JW, Zhang Y. A cryo-EM structure of KTF1-bound polymerase V transcription elongation complex. Nat Commun 2023; 14:3118. [PMID: 37253723 DOI: 10.1038/s41467-023-38619-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
De novo DNA methylation in plants relies on transcription of RNA polymerase V (Pol V) along with KTF1, which produce long non-coding RNAs for recruitment and assembly of the DNA methylation machinery. Here, we report a cryo-EM structure of the Pol V transcription elongation complex bound to KTF1. The structure reveals the conformation of the structural motifs in the active site of Pol V that accounts for its inferior RNA-extension ability. The structure also reveals structural features of Pol V that prevent it from interacting with the transcription factors of Pol II and Pol IV. The KOW5 domain of KTF1 binds near the RNA exit channel of Pol V providing a scaffold for the proposed recruitment of Argonaute proteins to initiate the assembly of the DNA methylation machinery. The structure provides insight into the Pol V transcription elongation process and the role of KTF1 during Pol V transcription-coupled DNA methylation.
Collapse
Affiliation(s)
- Hong-Wei Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan-Xi Gu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Xian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
31
|
Manavella PA, Godoy Herz MA, Kornblihtt AR, Sorenson R, Sieburth LE, Nakaminami K, Seki M, Ding Y, Sun Q, Kang H, Ariel FD, Crespi M, Giudicatti AJ, Cai Q, Jin H, Feng X, Qi Y, Pikaard CS. Beyond transcription: compelling open questions in plant RNA biology. THE PLANT CELL 2023; 35:1626-1653. [PMID: 36477566 PMCID: PMC10226580 DOI: 10.1093/plcell/koac346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 05/30/2023]
Abstract
The study of RNAs has become one of the most influential research fields in contemporary biology and biomedicine. In the last few years, new sequencing technologies have produced an explosion of new and exciting discoveries in the field but have also given rise to many open questions. Defining these questions, together with old, long-standing gaps in our knowledge, is the spirit of this article. The breadth of topics within RNA biology research is vast, and every aspect of the biology of these molecules contains countless exciting open questions. Here, we asked 12 groups to discuss their most compelling question among some plant RNA biology topics. The following vignettes cover RNA alternative splicing; RNA dynamics; RNA translation; RNA structures; R-loops; epitranscriptomics; long non-coding RNAs; small RNA production and their functions in crops; small RNAs during gametogenesis and in cross-kingdom RNA interference; and RNA-directed DNA methylation. In each section, we will present the current state-of-the-art in plant RNA biology research before asking the questions that will surely motivate future discoveries in the field. We hope this article will spark a debate about the future perspective on RNA biology and provoke novel reflections in the reader.
Collapse
Affiliation(s)
- Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Micaela A Godoy Herz
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Buenos Aires C1428EHA, Argentina
| | - Alberto R Kornblihtt
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Buenos Aires C1428EHA, Argentina
| | - Reed Sorenson
- School of Biological Sciences, University of UtahSalt Lake City 84112, USA
| | - Leslie E Sieburth
- School of Biological Sciences, University of UtahSalt Lake City 84112, USA
| | - Kentaro Nakaminami
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244-0813, Japan
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, Orsay 91405, France
| | - Axel J Giudicatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Hailing Jin
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Craig S Pikaard
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
32
|
Chow HT, Mosher RA. Small RNA-mediated DNA methylation during plant reproduction. THE PLANT CELL 2023; 35:1787-1800. [PMID: 36651080 DOI: 10.1093/plcell/koad010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 05/30/2023]
Abstract
Reproductive tissues are a rich source of small RNAs, including several classes of short interfering (si)RNAs that are restricted to this stage of development. In addition to RNA polymerase IV-dependent 24-nt siRNAs that trigger canonical RNA-directed DNA methylation, abundant reproductive-specific siRNAs are produced from companion cells adjacent to the developing germ line or zygote and may move intercellularly before inducing methylation. In some cases, these siRNAs are produced via non-canonical biosynthesis mechanisms or from sequences with little similarity to transposons. While the precise role of these siRNAs and the methylation they trigger is unclear, they have been implicated in specifying a single megaspore mother cell, silencing transposons in the male germ line, mediating parental dosage conflict to ensure proper endosperm development, hypermethylation of mature embryos, and trans-chromosomal methylation in hybrids. In this review, we summarize the current knowledge of reproductive siRNAs, including their biosynthesis, transport, and function.
Collapse
Affiliation(s)
- Hiu Tung Chow
- The School of Plant Sciences, The University of Arizona, Tucson, Arizona 85721-0036, USA
| | - Rebecca A Mosher
- The School of Plant Sciences, The University of Arizona, Tucson, Arizona 85721-0036, USA
| |
Collapse
|
33
|
Aderounmu AM, Aruscavage PJ, Kolaczkowski B, Bass BL. Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. eLife 2023; 12:e85120. [PMID: 37068011 PMCID: PMC10159624 DOI: 10.7554/elife.85120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 04/18/2023] Open
Abstract
Antiviral defense in ecdysozoan invertebrates requires Dicer with a helicase domain capable of ATP hydrolysis. But despite well-conserved ATPase motifs, human Dicer is incapable of ATP hydrolysis, consistent with a muted role in antiviral defense. To investigate this enigma, we used ancestral protein reconstruction to resurrect Dicer's helicase in animals and trace the evolutionary trajectory of ATP hydrolysis. Biochemical assays indicated ancient Dicer possessed ATPase function, that like extant invertebrate Dicers, is stimulated by dsRNA. Analyses revealed that dsRNA stimulates ATPase activity by increasing ATP affinity, reflected in Michaelis constants. Deuterostome Dicer-1 ancestor, while exhibiting lower dsRNA affinity, retained some ATPase activity; importantly, ATPase activity was undetectable in the vertebrate Dicer-1 ancestor, which had even lower dsRNA affinity. Reverting residues in the ATP hydrolysis pocket was insufficient to rescue hydrolysis, but additional substitutions distant from the pocket rescued vertebrate Dicer-1's ATPase function. Our work suggests Dicer lost ATPase function in the vertebrate ancestor due to loss of ATP affinity, involving motifs distant from the active site, important for coupling dsRNA binding to the active conformation. By competing with Dicer for viral dsRNA, RIG-I-like receptors important for interferon signaling may have allowed or actively caused loss of ATPase function.
Collapse
Affiliation(s)
| | | | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, University of FloridaGainesvilleUnited States
| | - Brenda L Bass
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| |
Collapse
|
34
|
Xie G, Du X, Hu H, Li S, Cao X, Jacobsen SE, Du J. Structure and mechanism of the plant RNA polymerase V. Science 2023; 379:1209-1213. [PMID: 36893216 PMCID: PMC10041816 DOI: 10.1126/science.adf8231] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In addition to the conserved RNA polymerases I to III (Pols I to III) in eukaryotes, two atypical polymerases, Pols IV and V, specifically produce noncoding RNA in the RNA-directed DNA methylation pathway in plants. Here, we report on the structures of cauliflower Pol V in the free and elongation conformations. A conserved tyrosine residue of NRPE2 stacks with a double-stranded DNA branch of the transcription bubble to potentially attenuate elongation by inducing transcription stalling. The nontemplate DNA strand is captured by NRPE2 to enhance backtracking, thereby increasing 3'-5' cleavage, which likely underpins Pol V's high fidelity. The structures also illuminate the mechanism of Pol V transcription stalling and enhanced backtracking, which may be important for Pol V's retention on chromatin to serve its function in tethering downstream factors for RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Guohui Xie
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuan Du
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Hongmiao Hu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sisi Li
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
35
|
Nakamura A, Meng H, Zhao M, Wang F, Hou J, Cao R, Si D. Fast and automated protein-DNA/RNA macromolecular complex modeling from cryo-EM maps. Brief Bioinform 2023; 24:bbac632. [PMID: 36682003 PMCID: PMC10399284 DOI: 10.1093/bib/bbac632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/23/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) allows a macromolecular structure such as protein-DNA/RNA complexes to be reconstructed in a three-dimensional coulomb potential map. The structural information of these macromolecular complexes forms the foundation for understanding the molecular mechanism including many human diseases. However, the model building of large macromolecular complexes is often difficult and time-consuming. We recently developed DeepTracer-2.0, an artificial-intelligence-based pipeline that can build amino acid and nucleic acid backbones from a single cryo-EM map, and even predict the best-fitting residues according to the density of side chains. The experiments showed improved accuracy and efficiency when benchmarking the performance on independent experimental maps of protein-DNA/RNA complexes and demonstrated the promising future of macromolecular modeling from cryo-EM maps. Our method and pipeline could benefit researchers worldwide who work in molecular biomedicine and drug discovery, and substantially increase the throughput of the cryo-EM model building. The pipeline has been integrated into the web portal https://deeptracer.uw.edu/.
Collapse
Affiliation(s)
- Andrew Nakamura
- Division of Computing and Software Systems, University of Washington Bothell, Bothell, WA 98011, USA
| | - Hanze Meng
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama Birmingham, Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Jie Hou
- Department of Computer Science, Saint Louis University, Saint Louis, MO 63103, USA
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA 98447, USA
| | - Dong Si
- Corresponding author: Dong Si, Division of Computing and Software Systems, University of Washington Bothell, Bothell, WA 98011, USA. E-mail:
| |
Collapse
|
36
|
|
37
|
Structure of the human DICER-pre-miRNA complex in a dicing state. Nature 2023; 615:331-338. [PMID: 36813958 DOI: 10.1038/s41586-023-05723-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/14/2022] [Indexed: 02/24/2023]
Abstract
Dicer has a key role in small RNA biogenesis, processing double-stranded RNAs (dsRNAs)1,2. Human DICER (hDICER, also known as DICER1) is specialized for cleaving small hairpin structures such as precursor microRNAs (pre-miRNAs) and has limited activity towards long dsRNAs-unlike its homologues in lower eukaryotes and plants, which cleave long dsRNAs. Although the mechanism by which long dsRNAs are cleaved has been well documented, our understanding of pre-miRNA processing is incomplete because structures of hDICER in a catalytic state are lacking. Here we report the cryo-electron microscopy structure of hDICER bound to pre-miRNA in a dicing state and uncover the structural basis of pre-miRNA processing. hDICER undergoes large conformational changes to attain the active state. The helicase domain becomes flexible, which allows the binding of pre-miRNA to the catalytic valley. The double-stranded RNA-binding domain relocates and anchors pre-miRNA in a specific position through both sequence-independent and sequence-specific recognition of the newly identified 'GYM motif'3. The DICER-specific PAZ helix is also reoriented to accommodate the RNA. Furthermore, our structure identifies a configuration of the 5' end of pre-miRNA inserted into a basic pocket. In this pocket, a group of arginine residues recognize the 5' terminal base (disfavouring guanine) and terminal monophosphate; this explains the specificity of hDICER and how it determines the cleavage site. We identify cancer-associated mutations in the 5' pocket residues that impair miRNA biogenesis. Our study reveals how hDICER recognizes pre-miRNAs with stringent specificity and enables a mechanistic understanding of hDICER-related diseases.
Collapse
|
38
|
Jiang K, Guo H, Zhai J. Interplay of phytohormones and epigenetic regulation: A recipe for plant development and plasticity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:381-398. [PMID: 36223083 DOI: 10.1111/jipb.13384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Both phytohormone signaling and epigenetic mechanisms have long been known to play crucial roles in plant development and plasticity in response to ambient stimuli. Indeed, diverse signaling pathways mediated by phytohormones and epigenetic processes integrate multiple upstream signals to regulate various plant traits. Emerging evidence indicates that phytohormones and epigenetic processes interact at multiple levels. In this review, we summarize the current knowledge of the interplay between phytohormones and epigenetic processes from the perspective of phytohormone biology. We also review chemical regulators used in epigenetic studies and propose strategies for developing novel regulators using multidisciplinary approaches.
Collapse
Affiliation(s)
- Kai Jiang
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
39
|
Torrez RM, Ohi MD, Garner AL. Structural Insights into the Advances and Mechanistic Understanding of Human Dicer. Biochemistry 2023; 62:1-16. [PMID: 36534787 PMCID: PMC11467861 DOI: 10.1021/acs.biochem.2c00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The RNase III endoribonuclease Dicer was discovered to be associated with cleavage of double-stranded RNA in 2001. Since then, many advances in our understanding of Dicer function have revealed that the enzyme plays a major role not only in microRNA biology but also in multiple RNA interference-related pathways. Yet, there is still much to be learned regarding Dicer structure-function in relation to how Dicer and Dicer-like enzymes initiate their cleavage reaction and release the desired RNA product. This Perspective describes the latest advances in Dicer structural studies, expands on what we have learned from this data, and outlines key gaps in knowledge that remain to be addressed. More specifically, we focus on human Dicer and highlight the intermediate processing steps where there is a lack of structural data to understand how the enzyme traverses from pre-cleavage to cleavage-competent states. Understanding these details is necessary to model Dicer's function as well as develop more specific microRNA-targeted therapeutics for the treatment of human diseases.
Collapse
Affiliation(s)
- Rachel M. Torrez
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Melanie D. Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
40
|
Liu W, Shoji K, Naganuma M, Tomari Y, Iwakawa HO. The mechanisms of siRNA selection by plant Argonaute proteins triggering DNA methylation. Nucleic Acids Res 2022; 50:12997-13010. [PMID: 36477368 PMCID: PMC9825178 DOI: 10.1093/nar/gkac1135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The model plant Arabidopsis thaliana encodes as many as ten Argonaute proteins (AGO1-10) with different functions. Each AGO selectively loads a set of small RNAs by recognizing their length and 5' nucleotide identity to properly regulate target genes. Previous studies showed that AGO4 and AGO6, key factors in DNA methylation, incorporate 24-nt small-interfering RNAs with 5' adenine (24A siRNAs). However, it has been unclear how these AGOs specifically load 24A siRNAs. Here, we biochemically investigated the siRNA preference of AGO4, AGO6 and their chimeric mutants. We found that AGO4 and AGO6 use distinct mechanisms to preferentially load 24A siRNAs. Moreover, we showed that the 5' A specificity of AGO4 and AGO6 is not determined by the previously known nucleotide specificity loop in the MID domain but rather by the coordination of the MID and PIWI domains. These findings advance our mechanistic understanding of how small RNAs are accurately sorted into different AGO proteins in plants.
Collapse
Affiliation(s)
- Wei Liu
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Keisuke Shoji
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masahiro Naganuma
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiro-oki Iwakawa
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
41
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
42
|
Structure and Mechanism of Plant DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:137-157. [PMID: 36350509 PMCID: PMC10112988 DOI: 10.1007/978-3-031-11454-0_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
DNA methylation is an important epigenetic mark conserved in eukaryotes from fungi to animals and plants, where it plays a crucial role in regulating gene expression and transposon silencing. Once the methylation mark is established by de novo DNA methyltransferases, specific regulatory mechanisms are required to maintain the methylation state during chromatin replication, both during meiosis and mitosis. Plant DNA methylation is found in three contexts; CG, CHG, and CHH (H = A, T, C), which are established and maintained by a unique set of DNA methyltransferases and are regulated by plant-specific pathways. DNA methylation in plants is often associated with other epigenetic modifications, such as noncoding RNA and histone modifications. This chapter focuses on the structure, function, and regulatory mechanism of plant DNA methyltransferases and their crosstalk with other epigenetic pathways.
Collapse
|
43
|
Jouravleva K, Golovenko D, Demo G, Dutcher RC, Hall TMT, Zamore PD, Korostelev AA. Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB. Mol Cell 2022; 82:4049-4063.e6. [PMID: 36182693 PMCID: PMC9637774 DOI: 10.1016/j.molcel.2022.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 08/31/2022] [Indexed: 12/22/2022]
Abstract
In animals and plants, Dicer enzymes collaborate with double-stranded RNA-binding domain (dsRBD) proteins to convert precursor-microRNAs (pre-miRNAs) into miRNA duplexes. We report six cryo-EM structures of Drosophila Dicer-1 that show how Dicer-1 and its partner Loqs‑PB cooperate (1) before binding pre-miRNA, (2) after binding and in a catalytically competent state, (3) after nicking one arm of the pre-miRNA, and (4) following complete dicing and initial product release. Our reconstructions suggest that pre-miRNA binds a rare, open conformation of the Dicer‑1⋅Loqs‑PB heterodimer. The Dicer-1 dsRBD and three Loqs‑PB dsRBDs form a tight belt around the pre-miRNA, distorting the RNA helix to place the scissile phosphodiester bonds in the RNase III active sites. Pre-miRNA cleavage shifts the dsRBDs and partially closes Dicer-1, which may promote product release. Our data suggest a model for how the Dicer‑1⋅Loqs‑PB complex affects a complete cycle of pre-miRNA recognition, stepwise endonuclease cleavage, and product release.
Collapse
Affiliation(s)
- Karina Jouravleva
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Dmitrij Golovenko
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Robert C Dutcher
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
44
|
Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol Cell 2022; 82:4064-4079.e13. [DOI: 10.1016/j.molcel.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/21/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
45
|
Affiliation(s)
- Jiamu Du
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
46
|
Ruiz-Arroyo VM, Nam Y. Dynamic Protein-RNA recognition in primary MicroRNA processing. Curr Opin Struct Biol 2022; 76:102442. [PMID: 36067707 PMCID: PMC9509664 DOI: 10.1016/j.sbi.2022.102442] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
MicroRNAs are prevalent regulators of gene expression, controlling most of the proteome in multicellular organisms. To generate the functional small RNAs, precise processing steps are required. In animals, microRNA biogenesis is initiated by Microprocessor that minimally consists of the Drosha enzyme and its partner, DGCR8. This first step is critical for selecting primary microRNAs, and many RNA-binding proteins and regulatory pathways target both the accuracy and efficiency of microRNA maturation. Structures of Drosha and DGCR8 in complex with primary microRNAs elucidate how RNA structural features rather than sequence provide the framework for substrate recognition. Comparing multiple states of Microprocessor and the closely related Dicer homologs shed light on the dynamic protein-RNA complex assembly and disassembly required to recognize RNAs with diverse sequences via common structural features.
Collapse
Affiliation(s)
- Victor M Ruiz-Arroyo
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. https://twitter.com/@Ruiz_Arroy0
| | - Yunsun Nam
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
47
|
Chakraborty T, Payne H, Mosher RA. Expansion and contraction of small RNA and methylation machinery throughout plant evolution. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102260. [PMID: 35849937 DOI: 10.1016/j.pbi.2022.102260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The revolution in sequencing has created a wealth of plant genomes that can be mined to understand the evolution of biological complexity. Complexity is often driven by gene duplication, which allows paralogs to specialize in an activity of the ancestral gene or acquire novel functions. Angiosperms encode a variety of gene silencing pathways that share related machinery for small RNA biosynthesis and function. Recent phylogenetic analysis of these gene families plots the expansion, specialization, and occasional contraction of this core machinery. This analysis reveals the ancient origin of RNA-directed DNA Methylation in early land plants, or possibly their algal ancestors, as well as ongoing duplications that evolve novel small RNA pathways.
Collapse
Affiliation(s)
- Tania Chakraborty
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA
| | - Hayden Payne
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA.
| |
Collapse
|
48
|
Host-induced gene silencing of PcCesA3 and PcOSBP1 confers resistance to Phytophthora capsici in Nicotiana benthamiana through NbDCL3 and NbDCL4 processed small interfering RNAs. Int J Biol Macromol 2022; 222:1665-1675. [PMID: 36167102 DOI: 10.1016/j.ijbiomac.2022.09.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
Host-induced gene silencing (HIGS) is a RNA-based system depend on the biological macromolecules generated in plants to control diseases. However, the effector proteins active in the HIGS are uncertain, which impedes its further application, especially for oomycete that lack efficient HIGS targets. Phytophthora capsici is an important oomycete causes blight in over 70 crops. Here, we comprehensively screened efficient HIGS vectors targeting PcCesA3 or PcOSBP1 in P. capsici to better control it and explore the characteristics of efficient HIGS vectors. Among the 26 vectors with different lengths and structures, we found that hairpin vectors with a 70 nt loop and ~ 500 bp stem showed the highest control efficacy, with the expressing of the screened vectors, the infection and fertility of P. capsici were greatly inhibited in transgenic Nicotiana benthamiana. Based on these efficient vectors, we demonstrated that the amount of HIGS vector generated small interfering RNAs (siRNAs) was positively related to gene silencing efficiency and resistance, and that NbDCL3 and NbDCL4 were the key effectors producing siRNAs. This work discovers the principles for efficient HIGS vectors design, and elucidates the molecular mechanism of HIGS, which could benefit the control of many other plant diseases based on HIGS.
Collapse
|
49
|
Jeena GS, Singh N, Shukla RK. An insight into microRNA biogenesis and its regulatory role in plant secondary metabolism. PLANT CELL REPORTS 2022; 41:1651-1671. [PMID: 35579713 DOI: 10.1007/s00299-022-02877-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The present review highlights the regulatory roles of microRNAs in plant secondary metabolism and focuses on different bioengineering strategies to modulate secondary metabolite content in plants. MicroRNAs (miRNAs) are the class of small endogenous, essential, non-coding RNAs that riboregulate the gene expression involved in various biological processes in most eukaryotes. MiRNAs has emerged as important regulators in plants that function by silencing target genes through cleavage or translational inhibition. These miRNAs plays an important role in a wide range of plant biological and metabolic processes, including plant development and various environmental response controls. Several important plant secondary metabolites like alkaloids, terpenoids, and phenolics are well studied for their function in plant defense against different types of pests and herbivores. Due to the presence of a wide range of biological and pharmaceutical properties of plant secondary metabolites, it is important to study the regulation of their biosynthetic pathways. The contribution of miRNAs in regulating plant secondary metabolism is not well explored. Recent advancements in molecular techniques have improved our knowledge in understanding the molecular function of genes, proteins, enzymes, and small RNAs involved in different steps of secondary metabolic pathways. In the present review, we have discussed the recent progress made on miRNA biogenesis, its regulation, and highlighted the current research developed in the field of identification, analysis, and characterizations of various miRNAs that regulate plant secondary metabolism. We have also discussed how different bioengineering strategies such as artificial miRNA (amiRNA), endogenous target mimicry, and CRISPR/Cas9 could be utilized to enhance the secondary metabolite production in plants.
Collapse
Affiliation(s)
- Gajendra Singh Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Neeti Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rakesh Kumar Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
50
|
Lelwala RV, LeBlanc Z, Gauthier MEA, Elliott CE, Constable FE, Murphy G, Tyle C, Dinsdale A, Whattam M, Pattemore J, Barrero RA. Implementation of GA-VirReport, a Web-Based Bioinformatics Toolkit for Post-Entry Quarantine Screening of Virus and Viroids in Plants. Viruses 2022; 14:v14071480. [PMID: 35891459 PMCID: PMC9317486 DOI: 10.3390/v14071480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
High-throughput sequencing (HTS) of host plant small RNA (sRNA) is a popular approach for plant virus and viroid detection. The major bottlenecks for implementing this approach in routine virus screening of plants in quarantine include lack of computational resources and/or expertise in command-line environments and limited availability of curated plant virus and viroid databases. We developed: (1) virus and viroid report web-based bioinformatics workflows on Galaxy Australia called GA-VirReport and GA-VirReport-Stats for detecting viruses and viroids from host plant sRNA extracts and (2) a curated higher plant virus and viroid database (PVirDB). We implemented sRNA sequencing with unique dual indexing on a set of plants with known viruses. Sequencing data were analyzed using GA-VirReport and PVirDB to validate these resources. We detected all known viruses in this pilot study with no cross-sample contamination. We then conducted a large-scale diagnosis of 105 imported plants processed at the post-entry quarantine facility (PEQ), Australia. We detected various pathogens in 14 imported plants and discovered that de novo assembly using 21–22 nt sRNA fraction and the megablast algorithm yielded better sensitivity and specificity. This study reports the successful, large-scale implementation of HTS and a user-friendly bioinformatics workflow for virus and viroid screening of imported plants at the PEQ.
Collapse
Affiliation(s)
- Ruvini V. Lelwala
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (R.V.L.); (Z.L.); (M.-E.A.G.)
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Zacharie LeBlanc
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (R.V.L.); (Z.L.); (M.-E.A.G.)
| | - Marie-Emilie A. Gauthier
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (R.V.L.); (Z.L.); (M.-E.A.G.)
| | - Candace E. Elliott
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Fiona E. Constable
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia;
| | - Greg Murphy
- Technology Infrastructure Branch, Information Services Division, Department of Agriculture, Fisheries and Forestry, Canberra, ACT 2601, Australia; (G.M.); (C.T.)
| | - Callum Tyle
- Technology Infrastructure Branch, Information Services Division, Department of Agriculture, Fisheries and Forestry, Canberra, ACT 2601, Australia; (G.M.); (C.T.)
| | - Adrian Dinsdale
- Plant Innovation Centre, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia; (A.D.); (M.W.)
| | - Mark Whattam
- Plant Innovation Centre, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia; (A.D.); (M.W.)
| | - Julie Pattemore
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Roberto A. Barrero
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (R.V.L.); (Z.L.); (M.-E.A.G.)
- Correspondence:
| |
Collapse
|