1
|
Zhu Y, Watson C, Safonova Y, Pennell M, Bankevich A. CloseRead: a tool for assessing assembly errors in immunoglobulin loci applied to vertebrate long-read genome assemblies. Genome Biol 2025; 26:131. [PMID: 40394681 PMCID: PMC12090573 DOI: 10.1186/s13059-025-03594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 04/28/2025] [Indexed: 05/22/2025] Open
Abstract
Despite tremendous advances in long-read sequencing, some structurally complex and repeat-rich genomic regions remain challenging to assemble. Furthermore, we lack tools to assess local assembly quality, making it hard to identify problems and assess progress. Here we develop a new approach "CloseRead" for visualizing local assembly quality and diagnosing errors using multiple metrics. We apply CloseRead to evaluate how well immunoglobulin loci, paradigmatic cases of structurally complex regions, are assembled in 74 state-of-the-art vertebrate genomes. We then show that targeted, local re-assembly can correct the specific errors identified by CloseRead, highlighting the value of an iterative approach to genome assembly.
Collapse
Affiliation(s)
- Yixin Zhu
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Corey Watson
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yana Safonova
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - Matt Pennell
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | - Anton Bankevich
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
2
|
Yang JH, Luo CF, Xiang R, Min JM, Shao ZT, Zhao YL, Chen L, Huang L, Zhang Y, Liu SS, Li YQ, Pu EN, Shi WQ, Pan HF, Chen WJ, Du CH, Jiang JF. Host taxonomy and environment shapes insectivore viromes and viral spillover risks in Southwestern China. MICROBIOME 2025; 13:122. [PMID: 40380277 DOI: 10.1186/s40168-025-02115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 04/15/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Zoonotic viruses originating from small mammals pose significant challenges to public health on a global scale. Insectivores, serving as natural reservoirs for a diverse array of zoonotic viruses, are known to carry a multitude of viral species. However, compared to the extensive research conducted on rodents (Rodentia) and bats (Chiroptera), the role of insectivores in harboring and transmitting unknown pathogens remains underexplored, which may lead to a severe underestimation of their contributions and impact to global public health. RESULTS This study employed a meta-transcriptomic approach to profile the viromes of 214 individual insectivores, encompassing 13 species from the families Soricidae, Erinaceidae, and Talpidae, collected across 12 counties in Yunnan Province, a recognized zoonotic hotspot. Based on virus reads, the analysis identified 42 viral families associated with vertebrates, highlighting significant virome diversity and host-specific viral tropisms among shrews, hedgehogs, and moles, along with notable geographic and environmental specificity of the viruses. Shrews exhibited greater viral richness and abundance compared to hedgehogs and moles, with variations influenced predominantly by host taxonomy, altitude, and geographic location. A total of 114 RNA-dependent RNA polymerase sequences were obtained, leading to the identification of 68 viruses, including 57 novel species. Instances of host jumping were observed in 11 viruses, with potential pathogenic viruses related to Mojiang paramyxovirus and members of the Hantaviridae family. Cross-species transmission was predominantly observed in viruses carried by shrews, while moles may play a pivotal role in facilitating viral transmission among insectivores. CONCLUSIONS This study enhances the understanding of the high diversity of mammalian viruses among insectivores in a relatively confined region and underscores the associations between virome composition and related zoonotic risks, providing a foundation for proactive measures to prevent and control the spillover of emerging zoonotic pathogens and potential future outbreaks. Video Abstract.
Collapse
Affiliation(s)
- Ji-Hu Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
- School of Public Health, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Chun-Feng Luo
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
- School of Public Health, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Rong Xiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Jiu-Meng Min
- Huo-Yan Engineering Technology, BGI-Shenzhen, Shenzhen, 518083, People's Republic of China
| | - Zong-Ti Shao
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Diseases Control and Prevention, Dali, 671000, People's Republic of China
| | - Yi-Lin Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Lu Chen
- Beijing Macro & Micro-Test Bio-Tech Co., Ltd, Beijing, 101300, People's Republic of China
| | - Lin Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Yun Zhang
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Diseases Control and Prevention, Dali, 671000, People's Republic of China
| | - Shun-Shuai Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
- Zibo Center for Disease Control and Prevention, Zibo, 255020, People's Republic of China
| | - Yu-Qiong Li
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Diseases Control and Prevention, Dali, 671000, People's Republic of China
| | - En-Nian Pu
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Diseases Control and Prevention, Dali, 671000, People's Republic of China
| | - Wen-Qiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Hai-Feng Pan
- School of Public Health, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wei-Jun Chen
- Huo-Yan Engineering Technology, BGI-Shenzhen, Shenzhen, 518083, People's Republic of China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Chun-Hong Du
- Yunnan Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute for Endemic Diseases Control and Prevention, Dali, 671000, People's Republic of China.
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China.
- School of Public Health, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
3
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. Proc Natl Acad Sci U S A 2025; 122:e2500553122. [PMID: 40314967 PMCID: PMC12088440 DOI: 10.1073/pnas.2500553122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Current genome sequencing initiatives across a wide range of life forms offer significant potential to enhance our understanding of evolutionary relationships and support transformative biological and medical applications. Species trees play a central role in many of these applications; however, despite the widespread availability of genome assemblies, accurate inference of species trees remains challenging due to the limited automation, substantial domain expertise, and computational resources required by conventional methods. To address this limitation, we present ROADIES, a fully automated pipeline to infer species trees starting from raw genome assemblies. In contrast to the prominent approach, ROADIES incorporates a unique strategy of randomly sampling segments of the input genomes to generate gene trees. This eliminates the need for predefining a set of loci, limiting the analyses to a fixed number of genes, and performing the cumbersome gene annotation and/or whole genome alignment steps. ROADIES also eliminates the need to infer orthology by leveraging existing discordance-aware methods that allow multicopy genes. Using the genomic datasets from large-scale sequencing efforts across four diverse life forms (placental mammals, pomace flies, birds, and budding yeasts), we show that ROADIES infers species trees that are comparable in quality to the state-of-the-art studies but in a fraction of the time and effort, including on challenging datasets with rampant gene tree discordance and complex polyploidy. With its speed, accuracy, and automation, ROADIES has the potential to vastly simplify species tree inference, making it accessible to a broader range of scientists and applications.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego, CA92093
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| |
Collapse
|
4
|
Brownstein CD, Harrington RC, Alencar LRV, Bellwood DR, Choat JH, Rocha LA, Wainwright PC, Tavera J, Burress ED, Muñoz MM, Cowman PF, Near TJ. Phylogenomics establishes an Early Miocene reconstruction of reef vertebrate diversity. SCIENCE ADVANCES 2025; 11:eadu6149. [PMID: 40333985 PMCID: PMC12057688 DOI: 10.1126/sciadv.adu6149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/28/2025] [Indexed: 05/09/2025]
Abstract
Oceans blanket more than two-thirds of Earth's surface, yet marine biodiversity is disproportionately concentrated in coral reefs. Investigating the origins of this exceptional diversity is crucial for predicting how reefs will respond to anthropogenic disturbances. Here, we use a genome-scale dataset to reconstruct the evolutionary history of the wrasses and parrotfishes (Labridae), which rank among the most species-rich and ecologically diverse lineages of reef fishes. We show that major labrid clades experienced pulses of evolutionary innovation and accelerated diversification during the Miocene approximately 20 to 15 million years ago that the origin of no single phenotypic trait can explain. These results draw parallels to the evolutionary histories of many clades after mass extinctions and corroborate recent fossil evidence for an Early Miocene extinction event in oceanic vertebrates and changes in coral reef faunal composition. Our data provide genomic evidence for a major Early Miocene reassembly of reef faunas.
Collapse
Affiliation(s)
- Chase D. Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, Class of 1954 Environmental Science Center, 21 Sachem Street, New Haven, CT 06511, USA
| | - Richard C. Harrington
- Department of Natural Resources, Marine Resources Research Institute, 217 Ft. Johnson Road, Charleston, SC 29412, USA
| | - Laura R. V. Alencar
- Department of Ecology and Evolutionary Biology, Yale University, Class of 1954 Environmental Science Center, 21 Sachem Street, New Haven, CT 06511, USA
| | - David R. Bellwood
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - John H. Choat
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Luiz A. Rocha
- Section of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA
| | - Peter C. Wainwright
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Jose Tavera
- Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Edward D. Burress
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, Class of 1954 Environmental Science Center, 21 Sachem Street, New Haven, CT 06511, USA
- Peabody Museum, Yale University, 21 Sachem Street, New Haven CT 06511, USA
| | - Peter F. Cowman
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Biodiversity and Geosciences Program, Queensland Museum Tropics, Townsville, QLD 4810, Australia
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology, Yale University, Class of 1954 Environmental Science Center, 21 Sachem Street, New Haven, CT 06511, USA
- Peabody Museum, Yale University, 21 Sachem Street, New Haven CT 06511, USA
| |
Collapse
|
5
|
Brownstein CD, Harrington RC, Radchenko O, Near TJ. The many origins of extremophile fishes. Proc Biol Sci 2025; 292:20250217. [PMID: 40359972 PMCID: PMC12074803 DOI: 10.1098/rspb.2025.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Extremophiles survive in environments that are considered uninhabitable for most living things. The evolution of extremophiles is of great interest because of how they may have contributed to the assembly of ecosystems, yet the evolutionary dynamics that drive extremophile evolution remain obscure. Here, we investigate the evolution of extremophiles in Zoarcoidea, a lineage of over 300 species of fishes that have colonized both poles, the deep sea, and hydrothermal vents. We show that a pulse of habitat invasion occurred across over 20 different zoarcoid lineages within the last 8 million years, far after the origin of their prototypical innovation for surviving in cold water: type III antifreeze protein. Instead, a secondary burst of anatomical, physiological and life history traits and a handful of founder events in extreme ecosystems appear to have propelled zoarcoid diversification. These results decentralize the role of prototypical changes to organismal biology in shaping extremophile radiations and provide a clear example of how a combination of ancient adaptations and recent contingency shapes the origination of lineages in challenging habitats.
Collapse
Affiliation(s)
- Chase D. Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - Olga Radchenko
- Institute of Biological Problems of the North, Far Eastern Branch, Russian Academy of Sciences, Magadan, Russia
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Yale Peabody Museum, New Haven, CT06511, USA
| |
Collapse
|
6
|
Mutai H, Kuroda Y, Noji S, Ichikawa S, Matsuo K, Tanaka S, Kataoka N, Fujioka M, Matsunaga T. Complete omission of exon 21 from Slc12a2 transcripts in mice results in hearing loss. Sci Rep 2025; 15:14790. [PMID: 40295800 PMCID: PMC12038040 DOI: 10.1038/s41598-025-99827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025] Open
Abstract
Hereditary hearing loss is highly heterogeneous. SLC12A2 is linked to autosomal dominant nonsyndromic hearing loss, DFNA78, with all the pathogenic variants affecting the exon 21. The gene encodes a cotransporter NKCC1 crucial for regulating intracellular osmotic pressure and producing endolymph in the cochlea. We generated two mouse strains with heterologous Slc12a2 variants in the splice site of the exon 21 (Em1: NM_009194.3:c.2912-2 A > G and Em2: c.2912-4_2913del). Slc12a2Em2/Em2 mice with complete skip of the exon 21 showed reduced endolymph on postnatal day 1 (P1), reduced stria vascularis (StV) and no auditory brainstem responses at 4 weeks. Reduced StV size was considered to be due to rebalance osmotic pressure, and upregulation of Cldn9 revealed by RNA-seq was considered as tissue response to repair the gaps from reduced cell sizes in the Slc12a2Em2/Em2 cochlea. Female Slc12a2Em2/+ mice also exhibited mild elevation of ABR thresholds in several sound frequencies. Slc12a2Em1/Em1 mice showed normal hearing, presumably due to sufficient cotransporter activity from the 9 bases shorter transcript by cryptic splicing. Minigene assays indicated that a single nucleotide difference between humans and mice at the 5' end of the exon 21 affects exon 21 splicing. Slc12a2Em2 mouse is proposed as a model for studying DFNA78 pathology.
Collapse
Affiliation(s)
- Hideki Mutai
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan.
- Molecular Genetics, Kitasato University School of Medicine, 1-15-1, Kitazato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan.
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo , Japan
| | - Shinobu Noji
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo , Japan
| | - Saki Ichikawa
- Department of Biophysics and Biochemistry, Faculty of Science, The University of Tokyo, Tokyo , Japan
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/ Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo , Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo , Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo , Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/ Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo , Japan
| | - Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/ Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo , Japan
| | - Masato Fujioka
- Molecular Genetics, Kitasato University School of Medicine, 1-15-1, Kitazato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
- Department of Otolaryngology, Keio University School of Medicine, Tokyo , Japan
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
- Medical Genetics Center, NHO Tokyo Medical Center, Tokyo , Japan
| |
Collapse
|
7
|
Ghione CR, Dean MD. Sexual Size Dimorphism Correlates With the Number of Androgen Response Elements in Mammals, But Only in Small-Bodied Species. Genome Biol Evol 2025; 17:evaf068. [PMID: 40248910 PMCID: PMC12015095 DOI: 10.1093/gbe/evaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025] Open
Abstract
Sexual size dimorphism is common throughout the animal kingdom, but its evolution and development remain difficult to explain given most of the genome is shared between males and females. Sex-biased regulation of genes via sex hormone signaling offers an intuitive mechanism by which males and females could develop different body sizes. One prediction of this hypothesis is that the magnitude of sexual size dimorphism scales with the number of androgen response elements or estrogen response elements, the DNA motifs to which sex hormone receptors bind. Here, we test this hypothesis using 268 mammalian species with full genome assemblies and annotations. We find that in the two smallest-bodied lineages (Chiroptera and Rodentia), sexual size dimorphism increases (male-larger) as the number of androgen response elements in a genome increases. In fact, myomorph rodents-which are especially small-bodied with high sexual size dimorphism-show an explosion of androgen receptor elements in their genomes. In contrast, the three large-bodied lineages (orders Carnivora, Cetartiodactyla, and Primates) do not show this relationship, instead following Rensch's Rule, or the observation that sexual size dimorphism increases with overall body size. One hypothesis to unify these observations is that small-bodied organisms like bats and rodents tend to reach peak reproductive fitness quickly and are more reliant on hormonal signaling to achieve sexual size dimorphism over relatively short time periods. Our study uncovers a previously unappreciated relationship between sexual size dimorphism, body size, and hormone signaling that likely varies in ways related to life history.
Collapse
Affiliation(s)
- Caleb R Ghione
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Rafi A, Rumi AMS, Hakim SA, Sohaib, Tahmid MT, Momin RJI, Zaman TA, Reaz R, Bayzid MS. wQFM-TREE: highly accurate and scalable quartet-based species tree inference from gene trees. BIOINFORMATICS ADVANCES 2025; 5:vbaf053. [PMID: 40134580 PMCID: PMC11932941 DOI: 10.1093/bioadv/vbaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Motivation methods are becoming increasingly popular for species tree estimation from multi-locus data in the presence of gene tree discordance. Accurate Species TRee Algorithm (ASTRAL), a leading method in this class, solves the Maximum Quartet Support Species Tree problem within a constrained solution space, while heuristics like Weighted Quartet Fiduccia-Mattheyses (wQFM) and Weighted Quartet MaxCut (wQMC) use weighted quartets and a divide-and-conquer strategy. Recent studies showed wQFM to be more accurate than ASTRAL and wQMC, though its scalability is hindered by the computational demands of explicitly generating and weighting Θ ( n 4 ) quartets. Here, we introduce wQFM-TREE, a novel summary method that enhances wQFM by avoiding explicit quartet generation and weighting, enabling its application to large datasets. Results Extensive simulations under diverse and challenging model conditions, with hundreds or thousands of taxa and genes, consistently demonstrate that wQFM-TREE matches or improves upon the accuracy of ASTRAL. It outperformed ASTRAL in 25 of 27 model conditions (statistically significant in 20) involving 200-1000 taxa. Moreover, applying wQFM-TREE to re-analyze the green plant dataset from the One Thousand Plant Transcriptomes Initiative produced a tree highly congruent with established evolutionary relationships of plants. wQFM-TREE's remarkable accuracy and scalability make it a strong competitor to leading methods. Its algorithmic and combinatorial innovations also enhance quartet-based computations, advancing phylogenetic estimation. Availability and implementation wQFM-TREE is freely available in open source form at https://github.com/abdur-rafi/wQFM-TREE.
Collapse
Affiliation(s)
- Abdur Rafi
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Ahmed Mahir Sultan Rumi
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Sheikh Azizul Hakim
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Sohaib
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Md Toki Tahmid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Rabib Jahin Ibn Momin
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Tanjeem Azwad Zaman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Rezwana Reaz
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| |
Collapse
|
9
|
Chester SGB, Williamson TE, Crowell JW, Silcox MT, Bloch JI, Sargis EJ. New remarkably complete skeleton of Mixodectes reveals arboreality in a large Paleocene primatomorphan mammal following the Cretaceous-Paleogene mass extinction. Sci Rep 2025; 15:8041. [PMID: 40069232 PMCID: PMC11897203 DOI: 10.1038/s41598-025-90203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
Mixodectids are poorly understood placental mammals from the Paleocene of western North America that have variably been considered close relatives of euarchontan mammals (primates, dermopterans, and scandentians) with hypothesized relationships to colugos, extinct plagiomenids, and/or microsyopid plesiadapiforms. Here we describe the most complete dentally associated skeleton yet recovered for a mixodectid, specifically Mixodectes pungens from the early Paleocene of the San Juan Basin, New Mexico. A partial skull with all the teeth erupted and associated axial skeleton, forelimbs, and hind limbs, with epiphyses fused, indicate that it was a mature adult. Results from cladistic analyses incorporating new data robustly support primatomorphan (Primates + Dermoptera) affinities of Mixodectidae, but relationships within Euarchonta are less clear, with Mixodectes recovered as a stem primatomorphan, stem dermopteran, or stem primate. Analyses of postcrania suggest that M. pungens was a relatively large (~ 1.3 kg), claw-climbing arborealist capable of frequent clinging on large diameter vertical supports. With teeth suggesting an omnivorous diet that included leaves, M. pungens occupied a unique ecological niche in the early Paleocene of North America that differed from contemporary, arboreal plesiadapiforms that were smaller and more frugivorous. Euarchontans were thus a more diverse radiation in the early Cenozoic than previously appreciated.
Collapse
Affiliation(s)
- Stephen G B Chester
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, 11210, Brooklyn, NY, USA.
- PhD Program in Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, 10016, New York, NY, USA.
- New York Consortium in Evolutionary Primatology, 10024, New York, NY, USA.
| | - Thomas E Williamson
- New Mexico Museum of Natural History and Science, 1801 Mountain Road, NW, 87104-1375, Albuquerque, NM, USA
| | - Jordan W Crowell
- PhD Program in Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, 10016, New York, NY, USA
- New York Consortium in Evolutionary Primatology, 10024, New York, NY, USA
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, M1C 1A4, Scarborough, ON, Canada
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, 32611-7800, Gainesville, FL, USA
| | - Eric J Sargis
- Department of Anthropology, Yale University, P. O. Box 208277, 06520, New Haven, CT, USA
- Divisions of Vertebrate Paleontology and Vertebrate Zoology, Yale Peabody Museum, 06520, New Haven, CT, USA
- Yale Institute for Biospheric Studies, 06520, New Haven, CT, USA
| |
Collapse
|
10
|
Zhang C, Nielsen R, Mirarab S. CASTER: Direct species tree inference from whole-genome alignments. Science 2025; 387:eadk9688. [PMID: 39847611 PMCID: PMC12038793 DOI: 10.1126/science.adk9688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/05/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Genomes contain mosaics of discordant evolutionary histories, challenging the accurate inference of the tree of life. Although genome-wide data are routinely used for discordance-aware phylogenomic analyses, because of modeling and scalability limitations, the current practice leaves out large chunks of genomes. As more high-quality genomes become available, we urgently need discordance-aware methods to infer the tree directly from a multiple genome alignment. In this study, we introduce Coalescence-Aware Alignment-Based Species Tree Estimator (CASTER), a theoretically justified site-based method that eliminates the need to predefine recombination-free loci. CASTER is scalable to hundreds of mammalian whole genomes. We demonstrate the accuracy and scalability of CASTER in simulations that include recombination and apply CASTER to several biological datasets, showing that its per-site scores can reveal both biological and artifactual patterns of discordance across the genome.
Collapse
Affiliation(s)
- Chao Zhang
- Bioinformatics and Systems Biology, University of
California San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA
- Integrative Biology Department, University of California
Berkeley, 110 Sproul Hall, Berkeley, 94704, CA, USA
- Globe Institute, University of Copenhagen, Øster
Voldgade 5-7, Copenhagen, 1350, Denmark
| | - Rasmus Nielsen
- Integrative Biology Department, University of California
Berkeley, 110 Sproul Hall, Berkeley, 94704, CA, USA
- Globe Institute, University of Copenhagen, Øster
Voldgade 5-7, Copenhagen, 1350, Denmark
| | - Siavash Mirarab
- Electrical and Computer Engineering, University of
California San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA
| |
Collapse
|
11
|
Christmas MJ, Dong MX, Meadows JRS, Kozyrev SV, Lindblad-Toh K. Interpreting mammalian synonymous site conservation in light of the unwanted transcript hypothesis. Nat Commun 2025; 16:2007. [PMID: 40011430 PMCID: PMC11865589 DOI: 10.1038/s41467-025-57179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Mammalian genomes are biased towards GC bases at third codon positions, likely due to a GC-biased ancestral genome and the selectively neutral recombination-related process of GC-biased gene conversion. The unwanted transcript hypothesis posits that this high GC content at synonymous sites may be beneficial for protecting against spurious transcripts, particularly in species with low effective population sizes. Utilising a 240 placental mammal genome alignment and single-base resolution conservation scores, we interpret sequence conservation at mammalian four-fold degenerate sites in this context and find evidence in support of the unwanted transcript hypothesis, including a strong GC bias, high conservation at sites relating to exon splicing, less human genetic variation at conserved four-fold degenerate sites, and conservation of sites important for epigenetic regulation of developmental genes. Additionally, we show that high conservation of four-fold degenerate sites in essential developmental genes, including homeobox genes, likely relates to the low mutation rates experienced by these genes.
Collapse
Affiliation(s)
- Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- SciLifeLab, Uppsala University, Uppsala, Sweden.
| | - Michael X Dong
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Jennifer R S Meadows
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Sergey V Kozyrev
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
12
|
Mouratidis I, Konnaris MA, Chantzi N, Chan CSY, Patsakis M, Provatas K, Montgomery A, Baltoumas FA, Sha CM, Mareboina M, Pavlopoulos GA, Chartoumpekis DV, Georgakopoulos-Soares I. Identification of the shortest species-specific oligonucleotide sequences. Genome Res 2025; 35:279-295. [PMID: 39746719 PMCID: PMC11874967 DOI: 10.1101/gr.280070.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
Despite the exponential increase in sequencing information driven by massively parallel DNA sequencing technologies, universal and succinct genomic fingerprints for each organism are still missing. Identifying the shortest species-specific nucleotide sequences offers insights into species evolution and holds potential practical applications in agriculture, wildlife conservation, and healthcare. We propose a new method for sequence analysis termed nucleic "quasi-primes," the shortest occurring sequences in each of 45,076 organismal reference genomes, present in one genome and absent from every other examined genome. In the human genome, we find that the genomic loci of nucleic quasi-primes are most enriched for genes associated with brain development and cognitive function. In a single-cell case study focusing on the human primary motor cortex, nucleic quasi-prime genes account for a significantly larger proportion of the variation based on average gene expression. Nonneuronal cell types, including astrocytes, endothelial cells, microglia perivascular-macrophages, oligodendrocytes, and vascular and leptomeningeal cells, exhibit significant activation of quasi-prime-containing gene associations related to cancer, whereas simultaneously suppressing quasi-prime-containing genes are associated with cognitive, mental, and developmental disorders. We also show that human disease-causing variants, eQTLs, mQTLs, and sQTLs are 4.43-fold, 4.34-fold, 4.29-fold, and 4.21-fold enriched at human quasi-prime loci, respectively. These findings indicate that nucleic quasi-primes are genomic loci linked to the evolution of species-specific traits, and in humans, they provide insights in the development of cognitive traits and human diseases, including neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Maxwell A Konnaris
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Candace S Y Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94143, USA
| | - Michail Patsakis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
- National Technical University of Athens, School of Electrical and Computer Engineering, Athens 15772, Greece
| | - Kimonas Provatas
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
- National Technical University of Athens, School of Electrical and Computer Engineering, Athens 15772, Greece
| | - Austin Montgomery
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Fotis A Baltoumas
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming," Vari 16672, Greece
| | - Congzhou M Sha
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming," Vari 16672, Greece
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA;
| |
Collapse
|
13
|
Gao F, Wang F, Chen Y, Deng B, Yang F, Cao H, Chen J, Chen H, Qi F, Kapranov P. The human genome encodes a multitude of novel miRNAs. Nucleic Acids Res 2025; 53:gkaf070. [PMID: 39964476 PMCID: PMC11833695 DOI: 10.1093/nar/gkaf070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
Human cells generate a vast complexity of noncoding RNAs, the "RNA dark matter," which includes a vast small RNA (sRNA) transcriptome. The biogenesis, biological relevance, and mechanisms of action of most of these transcripts remain unknown, and they are widely assumed to represent degradation products. Here, we aimed to functionally characterize human sRNA transcriptome by attempting to answer the following question-can a significant number of novel sRNAs correspond to novel members of known classes, specifically, microRNAs (miRNAs)? By developing and validating a miRNA discovery pipeline, we show that at least 2726 novel canonical miRNAs, majority of which represent novel miRNA families, exist in just one human cell line compared to just 1914 known miRNA loci. Moreover, potentially tens of thousands of miRNAs remain to be discovered. Strikingly, many novel miRNAs map to exons of protein-coding genes emphasizing a complex and interleaved architecture of the genome. The existence of so many novel members of a functional class of sRNAs suggest that the human sRNA transcriptome harbors a multitude of novel regulatory molecules. Overall, these results suggest that we are at the very beginning of understanding the true functional complexity of the sRNA component of the "RNA dark matter."
Collapse
Affiliation(s)
- Fan Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiamen Institute for Food and Drug Quality Control, 33 Haishan Road, Xiamen 361012, China
| | - Fang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Chen
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Bolin Deng
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Fujian Yang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Junjie Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Huiling Chen
- Xiamen Institute for Food and Drug Quality Control, 33 Haishan Road, Xiamen 361012, China
| | - Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Pržulj N, Malod-Dognin N. Simplicity within biological complexity. BIOINFORMATICS ADVANCES 2025; 5:vbae164. [PMID: 39927291 PMCID: PMC11805345 DOI: 10.1093/bioadv/vbae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 02/11/2025]
Abstract
Motivation Heterogeneous, interconnected, systems-level, molecular (multi-omic) data have become increasingly available and key in precision medicine. We need to utilize them to better stratify patients into risk groups, discover new biomarkers and targets, repurpose known and discover new drugs to personalize medical treatment. Existing methodologies are limited and a paradigm shift is needed to achieve quantitative and qualitative breakthroughs. Results In this perspective paper, we survey the literature and argue for the development of a comprehensive, general framework for embedding of multi-scale molecular network data that would enable their explainable exploitation in precision medicine in linear time. Network embedding methods (also called graph representation learning) map nodes to points in low-dimensional space, so that proximity in the learned space reflects the network's topology-function relationships. They have recently achieved unprecedented performance on hard problems of utilizing few omic data in various biomedical applications. However, research thus far has been limited to special variants of the problems and data, with the performance depending on the underlying topology-function network biology hypotheses, the biomedical applications, and evaluation metrics. The availability of multi-omic data, modern graph embedding paradigms and compute power call for a creation and training of efficient, explainable and controllable models, having no potentially dangerous, unexpected behaviour, that make a qualitative breakthrough. We propose to develop a general, comprehensive embedding framework for multi-omic network data, from models to efficient and scalable software implementation, and to apply it to biomedical informatics, focusing on precision medicine and personalized drug discovery. It will lead to a paradigm shift in the computational and biomedical understanding of data and diseases that will open up ways to solve some of the major bottlenecks in precision medicine and other domains.
Collapse
Affiliation(s)
- Nataša Pržulj
- Computational Biology Department, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, 00000, United Arabic Emirates
- Barcelona Supercomputing Center, Barcelona 08034, Spain
- Department of Computer Science, University College London, London WC1E6BT, United Kingdom
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | | |
Collapse
|
15
|
Thomas GWC, Hughes JJ, Kumon T, Berv JS, Nordgren CE, Lampson M, Levine M, Searle JB, Good JM. The Genomic Landscape, Causes, and Consequences of Extensive Phylogenomic Discordance in Murine Rodents. Genome Biol Evol 2025; 17:evaf017. [PMID: 39903560 PMCID: PMC11837218 DOI: 10.1093/gbe/evaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
A species tree is a central concept in evolutionary biology whereby a single branching phylogeny reflects relationships among species. However, the phylogenies of different genomic regions often differ from the species tree. Although tree discordance is widespread in phylogenomic studies, we still lack a clear understanding of how variation in phylogenetic patterns is shaped by genome biology or the extent to which discordance may compromise comparative studies. We characterized patterns of phylogenomic discordance across the murine rodents-a large and ecologically diverse group that gave rise to the laboratory mouse and rat model systems. Combining recently published linked-read genome assemblies for seven murine species with other available rodent genomes, we first used ultraconserved elements (UCEs) to infer a robust time-calibrated species tree. We then used whole genomes to examine finer-scale patterns of discordance across ∼12 million years of divergence. We found that proximate chromosomal regions tended to have more similar phylogenetic histories. There was no clear relationship between local tree similarity and recombination rates in house mice, but we did observe a correlation between recombination rates and average similarity to the species tree. We also detected a strong influence of linked selection whereby purifying selection at UCEs led to appreciably less discordance. Finally, we show that assuming a single species tree can result in substantial deviation from the results with gene trees when testing for positive selection under different models. Collectively, our results highlight the complex relationship between phylogenetic inference and genome biology and underscore how failure to account for this complexity can mislead comparative genomic studies.
Collapse
Affiliation(s)
- Gregg W C Thomas
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA
- Informatics Group, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan J Hughes
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Tomohiro Kumon
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob S Berv
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - C Erik Nordgren
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia Levine
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA
| |
Collapse
|
16
|
Álvarez-González L, Ruiz-Herrera A. Evolution of 3D Chromatin Folding. Annu Rev Anim Biosci 2025; 13:49-71. [PMID: 39531399 DOI: 10.1146/annurev-animal-111523-102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Studies examining the evolution of genomes have focused mainly on sequence conservation. However, the inner working of a cell implies tightly regulated crosstalk between complex gene networks controlled by small dispersed regulatory elements of physically contacting DNA regions. How these different levels of chromatin organization crosstalk in different species underpins the potential for genome evolutionary plasticity. We review the evolution of chromatin organization across the Animal Tree of Life. We introduce general aspects of the mode and tempo of genome evolution to later explore the multiple layers of genome organization. We argue that both genome and chromosome size modulate patterns of chromatin folding and that chromatin interactions facilitate the formation of lineage-specific chromosomal reorganizations, especially in germ cells. Overall, analyzing the mechanistic forces involved in the maintenance of chromatin structure and function of the germ line is critical for understanding genome evolution, maintenance, and inheritance.
Collapse
Affiliation(s)
- Lucía Álvarez-González
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina and Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ,
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina and Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ,
| |
Collapse
|
17
|
Zhang C, Nielsen R. WASTER: Practical de novo phylogenomics from low-coverage short reads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633983. [PMID: 39896589 PMCID: PMC11785061 DOI: 10.1101/2025.01.20.633983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The advent of affordable whole-genome sequencing has spurred numerous large-scale projects aimed at inferring the tree of life, yet achieving a complete species-level phylogeny remains a distant goal due to significant costs and computational demands. Traditional species tree inference methods, though effective, are hampered by the need for high-coverage sequencing, high-quality genomic alignments, and extensive computational resources. To address these challenges, this study introduces WASTER, a novel de novo tool for inferring species trees directly from short-read sequences. WASTER employs a k-mer based approach for identifying variable sites, circumventing the need for genome assembly and alignment. Using simulations, we demonstrate that WASTER achieves accuracy comparable to that of traditional alignment-based methods, even for low sequencing depth, and has substantially higher accuracy than other alignment-free methods. We validate WASTER's efficacy on real data, where it accurately reconstructs phylogenies of eukaryotic species with as low depth as 1.5X. WASTER provides a fast and efficient solution for phylogeny estimation in cases where genome assembly and/or alignment may bias analyses or is challenging, for example due to low sequencing depth. It also provides a method for generating guide trees for tree-based alignment algorithms. WASTER's ability to accurately estimate trees from low-coverage sequencing data without relying on assembly and alignment will lead to substantially reduced sequencing and computational costs in phylogenomic projects.
Collapse
Affiliation(s)
- Chao Zhang
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, 1350, Denmark
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, 110 Sproul Hall, Berkeley, 94704, CA, USA
| | - Rasmus Nielsen
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, 1350, Denmark
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, 110 Sproul Hall, Berkeley, 94704, CA, USA
| |
Collapse
|
18
|
Masubuchi T, Chen L, Marcel N, Wen GA, Caron C, Zhang J, Zhao Y, Morris GP, Chen X, Hedrick SM, Lu LF, Wu C, Zou Z, Bui JD, Hui E. Functional differences between rodent and human PD-1 linked to evolutionary divergence. Sci Immunol 2025; 10:eads6295. [PMID: 39752535 PMCID: PMC11774210 DOI: 10.1126/sciimmunol.ads6295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025]
Abstract
Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2. In a mouse melanoma model with adoptively transferred T cells, humanization of a PD-1 intracellular domain disrupted the antitumor activity of CD8+ T cells and increased the magnitude of anti-PD-1 response. We identified a motif highly conserved across vertebrate PD-1 orthologs, absent in rodents, as a key determinant for differential Shp2 recruitment. Evolutionary analysis suggested that PD-1 underwent a rodent lineage-specific functional attenuation during evolution. Together, our study uncovers species-specific features of the PD-1 pathway, with implications for PD-1 evolution and differential anti-PD-(L)1 responses in mouse models and human patients.
Collapse
Affiliation(s)
- Takeya Masubuchi
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Lin Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nimi Marcel
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - George A. Wen
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Christine Caron
- Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Jibin Zhang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Yunlong Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Gerald P. Morris
- Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Xu Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093
| | - Stephen M. Hedrick
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Li-Fan Lu
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhengting Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jack D. Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Enfu Hui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
19
|
Latrille T, Bastian M, Gaboriau T, Salamin N. Detecting diversifying selection for a trait from within and between-species genotypes and phenotypes. J Evol Biol 2024; 37:1538-1550. [PMID: 38991560 DOI: 10.1093/jeb/voae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
To quantify selection acting on a trait, methods have been developed using either within or between-species variation. However, methods using within-species variation do not integrate the changes at the macro-evolutionary scale. Conversely, current methods using between-species variation usually discard within-species variation, thus not accounting for processes at the micro-evolutionary scale. The main goal of this study is to define a neutrality index for a quantitative trait, by combining within- and between-species variation. This neutrality index integrates nucleotide polymorphism and divergence for normalizing trait variation. As such, it does not require estimation of population size nor of time of speciation for normalization. Our index can be used to seek deviation from the null model of neutral evolution, and test for diversifying selection. Applied to brain mass and body mass at the mammalian scale, we show that brain mass is under diversifying selection. Finally, we show that our test is not sensitive to the assumption that population sizes, mutation rates and generation time are constant across the phylogeny, and automatically adjust for it.
Collapse
Affiliation(s)
- T Latrille
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - M Bastian
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Villeurbanne, France
| | - T Gaboriau
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - N Salamin
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
López-Torres S, Bertrand OC, Fostowicz-Frelik Ł, Lang MM, Law CJ, San Martin-Flores G, Schillaci MA, Silcox MT. The allometry of brain size in Euarchontoglires: clade-specific patterns and their impact on encephalization quotients. J Mammal 2024; 105:1430-1445. [PMID: 39588191 PMCID: PMC11586101 DOI: 10.1093/jmammal/gyae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/26/2024] [Indexed: 11/27/2024] Open
Abstract
The timing and nature of evolutionary shifts in the relative brain size of Primates have been extensively studied. Less is known, however, about the scaling of the brain-to-body size in their closest living relatives, i.e., among other members of Euarchontoglires (Dermoptera, Scandentia, Lagomorpha, Rodentia). Ordinary least squares (OLS), reduced major axis (RMA), and phylogenetic generalized least squares (PGLS) regressions were fitted to the largest euarchontogliran data set of brain and body mass, comprising 715 species. Contrary to previous inferences, lagomorph brain sizes (PGLS slope = 0.465; OLS slope = 0.593) scale relative to body mass similarly to rodents (PGLS = 0.526; OLS = 0.638), and differently than primates (PGLS = 0.607; OLS = 0.794). There is a shift in the pattern of the scaling of the brain in Primates, with Strepsirrhini occupying an intermediate stage similar to Scandentia but different from Rodentia and Lagomorpha, while Haplorhini differ from all other groups in the OLS and RMA analyses. The unique brain-body scaling relationship of Primates among Euarchontoglires illustrates the need for clade-specific metrics for relative brain size (i.e., encephalization quotients; EQs) for more restricted taxonomic entities than Mammalia. We created clade-specific regular and phylogenetically adjusted EQ equations at superordinal, ordinal, and subordinal levels. When using fossils as test cases, our results show that generalized mammalian equations underestimate the encephalization of the stem lagomorph Megalagus turgidus in the context of lagomorphs, overestimate the encephalization of the stem primate Microsyops annectens and the early euprimate Necrolemur antiquus, but provide similar EQ values as our new strepsirrhine-specific EQ when applied to the early euprimate Adapis parisiensis.
Collapse
Affiliation(s)
- Sergi López-Torres
- University of Warsaw, Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024-5192, United States
| | - Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
- School of Geosciences, The University of Edinburgh, Grant Institute, Edinburgh EH9 3FE, United Kingdom
| | - Łucja Fostowicz-Frelik
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637, United States
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-Zhi-Men-Wai Street, Beijing 100044, People’s Republic of China
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Madlen M Lang
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Chris J Law
- Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024-5192, United States
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, United States
- Department of Integrative Biology, University of Texas, 2415 Speedway #C0930, Austin, TX 78712, United States
| | - Gabriela San Martin-Flores
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Michael A Schillaci
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
21
|
Carter AM. Genomics, the diversification of mammals, and the evolution of placentation. Dev Biol 2024; 516:167-182. [PMID: 39173812 DOI: 10.1016/j.ydbio.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
When and why did variations in placental structure and function evolve? Such questions cannot be addressed without a reliable version of mammalian phylogeny. Twenty-five years ago, the mammalian tree was reshaped by molecular phylogenetics. Soon it was shown, in contrast to prevailing theories, that the common ancestor of placental mammals had invasive placentation. Subsequently, evolution of many other features of extraembryonic membranes was addressed. This endeavour stimulated research to fill gaps in our knowledge of placental morphology. Last year the mammalian tree was again revised based on a large set of genomic data. With that in mind, this review provides an update on placentation in the nineteen orders of placental mammals, incorporating much recent data. The principal features such as shape, interdigitation, the interhaemal barrier and the yolk sac are summarized in synoptic tables. The evolution of placental traits and its timing is then explored by reference to the revised mammalian tree. Examples are the early appearance of epitheliochorial placentation in the common ancestor of artiodactyls, perissodactyls, pangolins and carnivores (with reversion to invasive forms in the latter) and later refinements such as the binucleate trophoblast cells and placentomes of ruminants. In primates, the intervillous space gradually evolved from the more basic labyrinth whereas trophoblast invasion of the decidua was a late development in humans and great apes. Only seldom can we glimpse the "why" of placental evolution. The best examples concern placental hormones, including some striking examples of convergent evolution such as the chorionic gonadotropins of primates and equids. In concluding, I review current ideas about what drives placental evolution and identify significant gaps in our knowledge of placentation, including several relevant to the evolution of placentation in primates.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
22
|
Latrille T, Joseph J, Hartasánchez DA, Salamin N. Estimating the proportion of beneficial mutations that are not adaptive in mammals. PLoS Genet 2024; 20:e1011536. [PMID: 39724093 PMCID: PMC11709321 DOI: 10.1371/journal.pgen.1011536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/08/2025] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Mutations can be beneficial by bringing innovation to their bearer, allowing them to adapt to environmental change. These mutations are typically unpredictable since they respond to an unforeseen change in the environment. However, mutations can also be beneficial because they are simply restoring a state of higher fitness that was lost due to genetic drift in a stable environment. In contrast to adaptive mutations, these beneficial non-adaptive mutations can be predicted if the underlying fitness landscape is stable and known. The contribution of such non-adaptive mutations to molecular evolution has been widely neglected mainly because their detection is very challenging. We have here reconstructed protein-coding gene fitness landscapes shared between mammals, using mutation-selection models and a multi-species alignments across 87 mammals. These fitness landscapes have allowed us to predict the fitness effect of polymorphisms found in 28 mammalian populations. Using methods that quantify selection at the population level, we have confirmed that beneficial non-adaptive mutations are indeed positively selected in extant populations. Our work confirms that deleterious substitutions are accumulating in mammals and are being reverted, generating a balance in which genomes are damaged and restored simultaneously at different loci. We observe that beneficial non-adaptive mutations represent between 15% and 45% of all beneficial mutations in 24 of 28 populations analyzed, suggesting that a substantial part of ongoing positive selection is not driven solely by adaptation to environmental change in mammals.
Collapse
Affiliation(s)
- Thibault Latrille
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Villeurbanne, France
| | | | - Nicolas Salamin
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Arias‐Sardá C, Quigley S, Farré M. Patterns of chromosome evolution in ruminants. Mol Ecol 2024; 33:e17197. [PMID: 37937367 PMCID: PMC11628655 DOI: 10.1111/mec.17197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Studying when and where gross genomic rearrangements occurred during evolution is key to understanding changes in genome structure with functional consequences that might eventually lead to speciation. Here we identified chromosome rearrangements in ruminants, a clade characterized by large chromosome differences. Using 26 genome assemblies, we reconstructed five ancestral karyotypes and classified the rearrangement events occurring in each lineage. With these reconstructions, we then identified evolutionary breakpoints regions (EBRs) and synteny fragments. Ruminant karyotype evolution is characterized by inversions, while interchromosomal rearrangements occurred preferentially in the oldest ancestor of ruminants. We found that EBRs are depleted of protein coding genes, including housekeeping genes. Similarly, EBRs are not enriched in high GC regions, suggesting that meiotic double strand breaks might not be their origin. Overall, our results characterize at fine detail the location of chromosome rearrangements in ruminant evolution and provide new insights into the formation of EBRs.
Collapse
Affiliation(s)
| | | | - Marta Farré
- School of BiosciencesUniversity of KentCanterburyUK
| |
Collapse
|
24
|
Fan Z, Zhao H, Zhou J, Li D, Fan Y, Bi Y, Ji S. A versatile attention-based neural network for chemical perturbation analysis and its potential to aid surgical treatment: an experimental study. Int J Surg 2024; 110:7671-7686. [PMID: 39017949 PMCID: PMC11634177 DOI: 10.1097/js9.0000000000001781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Deep learning models have emerged as rapid, accurate, and effective approaches for clinical decisions. Through a combination of drug screening and deep learning models, drugs that may benefit patients before and after surgery can be discovered to reduce the risk of complications or speed recovery. However, most existing drug prediction methods have high data requirements and lack interpretability, which has a limited role in adjuvant surgical treatment. To address these limitations, the authors propose the attention-based convolution transpositional interfusion network (ACTIN) for flexible and efficient drug discovery. ACTIN leverages the graph convolution and the transformer mechanism, utilizing drug and transcriptome data to assess the impact of chemical pharmacophores containing certain elements on gene expression. Remarkably, just with only 393 training instances, only one-tenth of the other models, ACTIN achieves state-of-the-art performance, demonstrating its effectiveness even with limited data. By incorporating chemical element embedding disparity and attention mechanism-based parameter analysis, it identifies the possible pharmacophore containing certain elements that could interfere with specific cell lines, which is particularly valuable for screening useful pharmacophores for new drugs tailored to adjuvant surgical treatment. To validate its reliability, the authors conducted comprehensive examinations by utilizing transcriptome data from the lung tissue of fatal COVID-19 patients as additional input for ACTIN, the authors generated novel lead chemicals that align with clinical evidence. In summary, ACTIN offers insights into the perturbation biases of elements within pharmacophore on gene expression, which holds the potential for guiding the development of new drugs that benefit surgical treatment.
Collapse
Affiliation(s)
- Zheqi Fan
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing
| | - Houming Zhao
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing
| | - Jingcheng Zhou
- Senior Department of Otolaryngology-Head and Neck Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing
| | - Dingchang Li
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing
| | - Yunlong Fan
- Department of Dermatology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing
| | - Yiming Bi
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Shuaifei Ji
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
25
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
26
|
Yuan H, Dickson ED, Martinez Q, Arnold P, Asher RJ. The origin and evolution of shrews (Soricidae, Mammalia). Proc Biol Sci 2024; 291:20241856. [PMID: 39689883 DOI: 10.1098/rspb.2024.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 12/19/2024] Open
Abstract
Shrews are among the most speciose of mammalian clades, but their evolutionary history is poorly understood. Their fossil record is fragmentary and even the anatomy of living groups is not well documented. Here, we incorporate the oldest, most complete fossil shrew yet known into the first phylogenetic analysis of the group to include molecular, morphological and temporal data. Our study reveals previously unknown diversity among total- and crown-group soricids. This includes a novel element of the mammalian skeleton: a robust, needle-like sesamoid extending cranially from the second thoracic neural arch in Myosoricini, comparable in length to these species' humeri. Additionally, 'red-toothed' shrews have an unusually elongate basicranium, and 'white-toothed' shrews probably evolved from a common ancestor with dental pigmentation. The fossil Domnina and crown soricids have a double-jaw articulation and incomplete zygomatic arch, but unlike nearly all crown species, Domnina has open vomeronasal canals and a tympanic process of the basisphenoid. Domnina and other heterosoricids are phylogenetically outside crown Soricidae. The oldest, well-supported total-group soricoids are North American, not Asian, and Soricidae probably originated during the Palaeocene or early Eocene. The diverse mammalian genus Crocidura originated and began to diversify during the Miocene.
Collapse
Affiliation(s)
- Haobo Yuan
- Department of Zoology, University of Cambridge CB2 3EJ, UK
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland
| | | | - Quentin Martinez
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart DE-70191, Germany
| | - Patrick Arnold
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Robert J Asher
- Department of Zoology, University of Cambridge CB2 3EJ, UK
| |
Collapse
|
27
|
Vazquez JM, Lauterbur ME, Mottaghinia S, Bucci M, Fraser D, Gray-Sandoval G, Gaucherand L, Haidar ZR, Han M, Kohler W, Lama TM, Le Corf A, Loyer C, Maesen S, McMillan D, Li S, Lo J, Rey C, Capel SLR, Singer M, Slocum K, Thomas W, Tyburec JD, Villa S, Miller R, Buchalski M, Vazquez-Medina JP, Pfeffer S, Etienne L, Enard D, Sudmant PH. Extensive longevity and DNA virus-driven adaptation in nearctic Myotis bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617725. [PMID: 39416019 PMCID: PMC11482938 DOI: 10.1101/2024.10.10.617725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The genus Myotis is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of Myotis. Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats. We find that Myotis bats have some of the most significant variation in cancer risk across mammals and demonstrate a unique DNA damage response in primary cells of the long-lived M. lucifugus. We also find evidence of abundant adaptation in response to DNA viruses - but not RNA viruses - in Myotis and other bats in sharp contrast with other mammals, potentially contributing to the role of bats as reservoirs of zoonoses. Together, our results demonstrate how genomics and primary cells derived from diverse taxa uncover the molecular bases of extreme adaptations in non-model organisms.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- These authors contributed equally
| | - M. Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Current affiliation: Department of Biology, University of Vermont, Burlington, VT USA
- These authors contributed equally
| | - Saba Mottaghinia
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Melanie Bucci
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Devaughn Fraser
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | | | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Zeinab R Haidar
- Department of Biology, California State Polytechnic University, Humboldt, Arcata, CA USA
- Current affiliation: Western EcoSystems Technology Inc, Cheyenne, WY USA
| | - Melissa Han
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - William Kohler
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Tanya M. Lama
- Department of Biological Sciences, Smith College, Northampton, MA USA
| | - Amandine Le Corf
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Sarah Maesen
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Dakota McMillan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Department of Science and Biotechnology, Berkeley City College, Berkeley, CA USA
| | - Stacy Li
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Johnathan Lo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Carine Rey
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Samantha LR Capel
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | - Michael Singer
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - William Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook NY USA
| | | | - Sarah Villa
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | - Richard Miller
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Michael Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
- Senior author
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Senior author
- These authors contributed equally
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
28
|
Telizhenko V, Kosiol C, McGowen MR, Gol'din P. Relaxed selection in evolution of genes regulating limb development gives clue to variation in forelimb morphology of cetaceans and other mammals. Proc Biol Sci 2024; 291:20241106. [PMID: 39378996 PMCID: PMC11606503 DOI: 10.1098/rspb.2024.1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Cetaceans have evolved unique limb structures, such as flippers, due to genetic changes during their transition to aquatic life. However, the full understanding of the genetic and evolutionary mechanisms behind these changes is still developing. By examining 25 limb-related protein-coding genes across various mammalian species, we compared genetic changes between aquatic mammals, like whales, and other mammals with unique limb structures such as bats, rodents and elephants. Our findings revealed significant modifications in limb-related genes, including variations in the Hox, GDF5 and Evx genes. Notably, a relaxed selection in several key genes was observed, suggesting a lifting of developmental constraints, which might have facilitated the emergence of morphological innovations in cetacean limb morphology. We also uncovered non-synonymous changes, insertions and deletions in these genes, particularly in the polyalanine tract of HOXD13, which are distinctive to cetaceans or convergent with other aquatic mammals. These genetic variations correlated with the diverse and specialized limb structures observed in cetaceans, indicating a complex interplay of relaxed selection and specific mutations in mammalian limb evolution.
Collapse
Affiliation(s)
| | | | - Michael R. McGowen
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC20560, USA
| | | |
Collapse
|
29
|
Lyn Fortier A, Pritchard JK. The Primate Major Histocompatibility Complex: An Illustrative Example of Gene Family Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613318. [PMID: 39345418 PMCID: PMC11429698 DOI: 10.1101/2024.09.16.613318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Gene families are groups of evolutionarily-related genes. One large gene family that has experienced rapid evolution is the Major Histocompatibility Complex (MHC), whose proteins serve critical roles in innate and adaptive immunity. Across the ~60 million year history of the primates, some MHC genes have turned over completely, some have changed function, some have converged in function, and others have remained essentially unchanged. Past work has typically focused on identifying MHC alleles within particular species or comparing gene content, but more work is needed to understand the overall evolution of the gene family across species. Thus, despite the immunologic importance of the MHC and its peculiar evolutionary history, we lack a complete picture of MHC evolution in the primates. We readdress this question using sequences from dozens of MHC genes and pseudogenes spanning the entire primate order, building a comprehensive set of gene and allele trees with modern methods. Overall, we find that the Class I gene subfamily is evolving much more quickly than the Class II gene subfamily, with the exception of the Class II MHC-DRB genes. We also pay special attention to the often-ignored pseudogenes, which we use to reconstruct different events in the evolution of the Class I region. We find that despite the shared function of the MHC across species, different species employ different genes, haplotypes, and patterns of variation to achieve a successful immune response. Our trees and extensive literature review represent the most comprehensive look into MHC evolution to date.
Collapse
Affiliation(s)
- Alyssa Lyn Fortier
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| | - Jonathan K. Pritchard
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| |
Collapse
|
30
|
Wang S, Di Y, Yang Y, Salovska B, Li W, Hu L, Yin J, Shao W, Zhou D, Cheng J, Liu D, Yang H, Liu Y. PTMoreR-enabled cross-species PTM mapping and comparative phosphoproteomics across mammals. CELL REPORTS METHODS 2024; 4:100859. [PMID: 39255793 PMCID: PMC11440062 DOI: 10.1016/j.crmeth.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
To support PTM proteomic analysis and annotation in different species, we developed PTMoreR, a user-friendly tool that considers the surrounding amino acid sequences of PTM sites during BLAST, enabling a motif-centric analysis across species. By controlling sequence window similarity, PTMoreR can map phosphoproteomic results between any two species, perform site-level functional enrichment analysis, and generate kinase-substrate networks. We demonstrate that the majority of real P-sites in mice can be inferred from experimentally derived human P-sites with PTMoreR mapping. Furthermore, the compositions of 129 mammalian phosphoproteomes can also be predicted using PTMoreR. The method also identifies cross-species phosphorylation events that occur on proteins with an increased tendency to respond to the environmental factors. Moreover, the classic kinase motifs can be extracted across mammalian species, offering an evolutionary angle for refining current motifs. PTMoreR supports PTM proteomics in non-human species and facilitates quantitative phosphoproteomic analysis.
Collapse
Affiliation(s)
- Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Di
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yin Yang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Liqiang Hu
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahui Yin
- Information Research Institute, Tongji University, Shanghai 200092, China
| | - Wenguang Shao
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong Zhou
- Department of Medicine, Division of Nephrology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Jingqiu Cheng
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hao Yang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Informatics & Data Science, Yale Univeristy School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
31
|
Morales AE, Burbrink FT, Segall M, Meza M, Munegowda C, Webala PW, Patterson BD, Thong VD, Ruedi M, Hiller M, Simmons NB. Distinct Genes with Similar Functions Underlie Convergent Evolution in Myotis Bat Ecomorphs. Mol Biol Evol 2024; 41:msae165. [PMID: 39116340 PMCID: PMC11371419 DOI: 10.1093/molbev/msae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Convergence offers an opportunity to explore to what extent evolution can be predictable when genomic composition and environmental triggers are similar. Here, we present an emergent model system to study convergent evolution in nature in a mammalian group, the bat genus Myotis. Three foraging strategies-gleaning, trawling, and aerial hawking, each characterized by different sets of phenotypic features-have evolved independently multiple times in different biogeographic regions in isolation for millions of years. To investigate the genomic basis of convergence and explore the functional genomic changes linked to ecomorphological convergence, we sequenced and annotated 17 new genomes and screened 16,426 genes for positive selection and associations between relative evolutionary rates and foraging strategies across 30 bat species representing all Myotis ecomorphs across geographic regions as well as among sister groups. We identify genomic changes that describe both phylogenetic and ecomorphological trends. We infer that colonization of new environments may have first required changes in genes linked to hearing sensory perception, followed by changes linked to fecundity and development, metabolism of carbohydrates, and heme degradation. These changes may be linked to prey acquisition and digestion and match phylogenetic trends. Our findings also suggest that the repeated evolution of ecomorphs does not always involve changes in the same genes but rather in genes with the same molecular functions such as developmental and cellular processes.
Collapse
Affiliation(s)
- Ariadna E Morales
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Department of Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Centre for Translational Biodiversity Genomics, Frankfurt am Main, Hessen, Germany
- Senckenberg Research Institute, Frankfurt am Main, Hessen, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Frank T Burbrink
- Department of Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
| | - Marion Segall
- Department of Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d’Histoire Naturelle, CNRS, SU, EPHE, UA, CP 50, Paris, France
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Maria Meza
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Chetan Munegowda
- Centre for Translational Biodiversity Genomics, Frankfurt am Main, Hessen, Germany
- Senckenberg Research Institute, Frankfurt am Main, Hessen, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Paul W Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok 20500, Kenya
| | - Bruce D Patterson
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, USA
| | - Vu Dinh Thong
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Manuel Ruedi
- Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Geneva 1208, Switzerland
| | - Michael Hiller
- Centre for Translational Biodiversity Genomics, Frankfurt am Main, Hessen, Germany
- Senckenberg Research Institute, Frankfurt am Main, Hessen, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
| |
Collapse
|
32
|
Hao X, Lu Q, Zhao H. A molecular phylogeny for all 21 families within Chiroptera (bats). Integr Zool 2024; 19:989-998. [PMID: 37853557 DOI: 10.1111/1749-4877.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Bats, members of the Chiroptera order, rank as the second most diverse group among mammals. Recent molecular systematic studies on bats have successfully classified 21 families within two suborders: Yinpterochiroptera and Yangochiroptera. Nevertheless, the phylogeny within these 21 families has remained a subject of controversy. In this study, we have employed a balanced approach to establish a robust family-level phylogenetic hypothesis for bats, utilizing a more comprehensive molecular dataset. This dataset includes representative species from all 21 bat families, resulting in a reduced level of missing genetic information. The resulting phylogenetic tree comprises 21 lineages that are strongly supported, each corresponding to one of the bat families. Our findings support to place the Emballonuroidea superfamily as the basal lineage of Yangochiroptera, and that Myzopodidae should be situated as a basal lineage of Emballonuroidea, forming a sister relationship with the clade consisting of Nycteridae and Emballonuridae. Finally, we have conducted dating analyses on this newly resolved phylogenetic tree, providing divergence times for each bat family. Collectively, our study has employed a relatively comprehensive molecular dataset to establish a more robust phylogeny encompassing all 21 bat families. This improved phylogenetic framework will significantly contribute to our understanding of evolutionary processes, ecological roles, disease dynamics, and biodiversity conservation in the realm of bats.
Collapse
Affiliation(s)
- Xiangyu Hao
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Lu
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Huabin Zhao
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Li Y, Moritz C, Brennan IG, Zwick A, Nicholls J, Grealy A, Slipinski A. Evolution across the adaptive landscape in a hyperdiverse beetle radiation. Curr Biol 2024; 34:3685-3697.e6. [PMID: 39067451 DOI: 10.1016/j.cub.2024.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
The extraordinary diversification of beetles on Earth is a textbook example of adaptive evolution. Yet, the tempo and drivers of this super-radiation remain largely unclear. Here, we address this problem by investigating macroevolutionary dynamics in darkling beetles (Coleoptera: Tenebrionidae), one of the most ecomorphologically diverse beetle families (with over 30,000 species). Using multiple genomic datasets and analytical approaches, we resolve the long-standing inconsistency over deep relationships in the family. In conjunction with a landmark-based dataset of body shape morphology, we show that the evolutionary history of darkling beetles is marked by ancient rapid radiations, frequent ecological transitions, and rapid bursts of morphological diversification. On a global scale, our analyses uncovered a significant pulse of phenotypic diversification proximal to the Cretaceous-Palaeogene (K/Pg) mass extinction and convergence of body shape associated with recurrent ecological specializations. On a regional scale, two major Australasian radiations, the Adeliini and the Heleine clade, exhibited contrasting patterns of ecomorphological diversification, representing phylogenetic niche conservatism versus adaptive radiation. Our findings align with the Simpsonian model of adaptive evolution across the macroevolutionary landscape and highlight a significant role of ecological opportunity in driving the immense ecomorphological diversity in a hyperdiverse beetle group.
Collapse
Affiliation(s)
- Yun Li
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia; Australian National Insect Collection, CSIRO, Canberra, ACT 2601, Australia.
| | - Craig Moritz
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Ian G Brennan
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia; Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO, Canberra, ACT 2601, Australia
| | - James Nicholls
- Australian National Insect Collection, CSIRO, Canberra, ACT 2601, Australia
| | - Alicia Grealy
- Australian National Herbarium, CSIRO, Canberra, ACT 2601, Australia
| | - Adam Slipinski
- Australian National Insect Collection, CSIRO, Canberra, ACT 2601, Australia
| |
Collapse
|
34
|
Zhu Y, Watson C, Safonova Y, Pennell M, Bankevich A. Assessing Assembly Errors in Immunoglobulin Loci: A Comprehensive Evaluation of Long-read Genome Assemblies Across Vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604360. [PMID: 39091785 PMCID: PMC11291089 DOI: 10.1101/2024.07.19.604360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Long-read sequencing technologies have revolutionized genome assembly producing near-complete chromosome assemblies for numerous organisms, which are invaluable to research in many fields. However, regions with complex repetitive structure continue to represent a challenge for genome assembly algorithms, particularly in areas with high heterozygosity. Robust and comprehensive solutions for the assessment of assembly accuracy and completeness in these regions do not exist. In this study we focus on the assembly of biomedically important antibody-encoding immunoglobulin (IG) loci, which are characterized by complex duplications and repeat structures. High-quality full-length assemblies for these loci are critical for resolving haplotype-level annotations of IG genes, without which, functional and evolutionary studies of antibody immunity across vertebrates are not tractable. To address these challenges, we developed a pipeline, "CloseRead", that generates multiple assembly verification metrics for analysis and visualization. These metrics expand upon those of existing quality assessment tools and specifically target complex and highly heterozygous regions. Using CloseRead, we systematically assessed the accuracy and completeness of IG loci in publicly available assemblies of 74 vertebrate species, identifying problematic regions. We also demonstrated that inspecting assembly graphs for problematic regions can both identify the root cause of assembly errors and illuminate solutions for improving erroneous assemblies. For a subset of species, we were able to correct assembly errors through targeted reassembly. Together, our analysis demonstrated the utility of assembly assessment in improving the completeness and accuracy of IG loci across species.
Collapse
Affiliation(s)
- Yixin Zhu
- Department of Quantitative and Computational Biology and Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Corey Watson
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Yana Safonova
- Department of Computer Science and Engineering, Pennsylvania State University, PA, United States
| | - Matt Pennell
- Department of Quantitative and Computational Biology and Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Anton Bankevich
- Department of Computer Science and Engineering, Pennsylvania State University, PA, United States
| |
Collapse
|
35
|
Werb O, Matuschewski K, Weber N, Hillers A, Garteh J, Jusu A, Turay BS, Wauquier N, Escalante AA, Andreína Pacheco M, Schaer J. New member of Plasmodium (Vinckeia) and Plasmodium cyclopsi discovered in bats in Sierra Leone - nuclear sequence and complete mitochondrial genome analyses. Int J Parasitol 2024; 54:475-484. [PMID: 38762159 DOI: 10.1016/j.ijpara.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Malaria remains the most important arthropod-borne infectious disease globally. The causative agent, Plasmodium, is a unicellular eukaryote that develops inside red blood cells. Identifying new Plasmodium parasite species that infect mammalian hosts can shed light on the complex evolution and diversity of malaria parasites. Bats feature a high diversity of microorganisms including seven separate genera of malarial parasites. Three species of Plasmodium have been reported so far, for which scarce reports exist. Here we present data from an investigation of Plasmodium infections in bats in the western Guinean lowland forest in Sierra Leone. We discovered a new Plasmodium parasite in the horseshoe bat Rhinolophus landeri. Plasmodium cyclopsi infections in a member of leaf-nosed bats, Doryrhina cyclops, exhibited a high prevalence of 100%. Phylogenetic analysis of complete mitochondrial genomes and nine nuclear markers recovered a close relationship between P. cyclopsi and the new Plasmodium parasite with the rodent species Plasmodium berghei, a widely used in vivo model to study malaria in humans. The data suggests that the "rodent/bat" Plasmodium (Vinckeia) clade represents a diverse group of malarial parasites that would likely expand with a systematic sampling of small mammals in tropical Africa. Identifying the bat Plasmodium repertoire is central to our understanding of the evolution of Plasmodium parasites in mammals.
Collapse
Affiliation(s)
- Oskar Werb
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Natalie Weber
- Max Planck Institute of Animal Behavior, Department of Migration, Radolfzell, Germany; Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Germany
| | - Annika Hillers
- Wild Chimpanzee Foundation (WCF), Monrovia, Liberia; The Royal Society for the Protection of Birds, Centre for Conservation Science, Sandy, United Kingdom
| | - Jerry Garteh
- Society for the Conservation of Nature of Liberia (SCNL), Monrovia, Liberia
| | - Amadu Jusu
- Gola Rainforest Conservation Limited by Guarantee (GRC_LG) Kenema, Sierra Leone
| | - Brima S Turay
- Gola Rainforest Conservation Limited by Guarantee (GRC_LG) Kenema, Sierra Leone
| | - Nadia Wauquier
- Sorbonne Université, Inserm U1135 CNRS EMR 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - Juliane Schaer
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany; Department of Biological Sciences, Macquarie University, Sydney, Australia; Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany; Department of Biology, Muni University, Arua, Uganda.
| |
Collapse
|
36
|
Pardo MA, Fristrup K, Lolchuragi DS, Poole JH, Granli P, Moss C, Douglas-Hamilton I, Wittemyer G. African elephants address one another with individually specific name-like calls. Nat Ecol Evol 2024; 8:1353-1364. [PMID: 38858512 DOI: 10.1038/s41559-024-02420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/22/2024] [Indexed: 06/12/2024]
Abstract
Personal names are a universal feature of human language, yet few analogues exist in other species. While dolphins and parrots address conspecifics by imitating the calls of the addressee, human names are not imitations of the sounds typically made by the named individual. Labelling objects or individuals without relying on imitation of the sounds made by the referent radically expands the expressive power of language. Thus, if non-imitative name analogues were found in other species, this could have important implications for our understanding of language evolution. Here we present evidence that wild African elephants address one another with individually specific calls, probably without relying on imitation of the receiver. We used machine learning to demonstrate that the receiver of a call could be predicted from the call's acoustic structure, regardless of how similar the call was to the receiver's vocalizations. Moreover, elephants differentially responded to playbacks of calls originally addressed to them relative to calls addressed to a different individual. Our findings offer evidence for individual addressing of conspecifics in elephants. They further suggest that, unlike other non-human animals, elephants probably do not rely on imitation of the receiver's calls to address one another.
Collapse
Affiliation(s)
- Michael A Pardo
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA.
| | - Kurt Fristrup
- Department of Electronic and Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | | | | | | | - Cynthia Moss
- Amboseli Elephant Research Project, Nairobi, Kenya
| | | | - George Wittemyer
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
- Save The Elephants, Nairobi, Kenya
| |
Collapse
|
37
|
Turbill C, Walker M, Boardman W, Martin JM, McKeown A, Meade J, Welbergen JA. Torpor use in the wild by one of the world's largest bats. Proc Biol Sci 2024; 291:20241137. [PMID: 38981525 PMCID: PMC11335021 DOI: 10.1098/rspb.2024.1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Torpor is widespread among bats presumably because most species are small, and torpor greatly reduces their high mass-specific resting energy expenditure, especially in the cold. Torpor has not been recorded in any bat species larger than 50 g, yet in theory could be beneficial even in the world's largest bats (flying-foxes; Pteropus spp.) that are exposed to adverse environmental conditions causing energy bottlenecks. We used temperature telemetry to measure body temperature in wild-living adult male grey-headed flying-foxes (P. poliocephalus; 799 g) during winter in southern Australia. We found that all individuals used torpor while day-roosting, with minimum body temperature reaching 27°C. Torpor was recorded following a period of cool, wet and windy weather, and on a day with the coldest maximum air temperature, suggesting it is an adaptation to reduce energy expenditure during periods of increased thermoregulatory costs and depleted body energy stores. A capacity for torpor among flying-foxes has implications for understanding their distribution, behavioural ecology and life history. Furthermore, our discovery increases the body mass of bats known to use torpor by more than tenfold and extends the documented use of this energy-saving strategy under wild conditions to all bat superfamilies, with implications for the evolutionary maintenance of torpor among bats and other mammals.
Collapse
Affiliation(s)
- Christopher Turbill
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Melissa Walker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Wayne Boardman
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - John M. Martin
- Taronga Conservation Society, Mosman, New South Wales, Australia
| | - Adam McKeown
- CSIRO Land & Water, Atherton, Queensland, Australia
| | - Jessica Meade
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Justin A. Welbergen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
38
|
Stroud JT, Delory BM, Barnes EM, Chase JM, De Meester L, Dieskau J, Grainger TN, Halliday FW, Kardol P, Knight TM, Ladouceur E, Little CJ, Roscher C, Sarneel JM, Temperton VM, van Steijn TLH, Werner CM, Wood CW, Fukami T. Priority effects transcend scales and disciplines in biology. Trends Ecol Evol 2024; 39:677-688. [PMID: 38508922 DOI: 10.1016/j.tree.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Although primarily studied through the lens of community ecology, phenomena consistent with priority effects appear to be widespread across many different scenarios spanning a broad range of spatial, temporal, and biological scales. However, communication between these research fields is inconsistent and has resulted in a fragmented co-citation landscape, likely due to the diversity of terms used to refer to priority effects across these fields. We review these related terms, and the biological contexts in which they are used, to facilitate greater cross-disciplinary cohesion in research on priority effects. In breaking down these semantic barriers, we aim to provide a framework to better understand the conditions and mechanisms of priority effects, and their consequences across spatial and temporal scales.
Collapse
Affiliation(s)
- J T Stroud
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - B M Delory
- Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany; Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
| | - E M Barnes
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - J M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - L De Meester
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), Müggelseedamm 310, 12587 Berlin, Germany; Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany; Laboratory of Aquatic Ecology, Evolution, and Conservation, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - J Dieskau
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Geobotany and Botanical Garden, Martin-Luther University, Germany
| | - T N Grainger
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F W Halliday
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - P Kardol
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - T M Knight
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle (Saale), Germany; Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - E Ladouceur
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - C J Little
- School of Environmental Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - C Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - J M Sarneel
- Department of Ecology and Environmental Science, Umea University, 901 87 Umea, Sweden
| | - V M Temperton
- Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany
| | - T L H van Steijn
- Department of Ecology and Environmental Science, Umea University, 901 87 Umea, Sweden
| | - C M Werner
- Department of Environmental Science, Policy, and Sustainability, Southern Oregon University, Ashland, OR 97520, USA
| | - C W Wood
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T Fukami
- Departments of Biology and Earth System Science, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Yuan Z, Song Y, Zhang S, Chen Y, Xu M, Fan G, Liu X. The Chromosome-Scale Genome of Chitala ornata Illuminates the Evolution of Early Teleosts. BIOLOGY 2024; 13:478. [PMID: 39056673 PMCID: PMC11274187 DOI: 10.3390/biology13070478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Teleosts are the most prolific vertebrates, occupying the vast majority of aquatic environments, and their pectoral fins have undergone remarkable physiological transformations throughout their evolution. Studying early teleost fishes, such as those belonging to the Osteoglossiformes order, could offer crucial insights into the adaptive evolution of pectoral fins within this group. In this study, we have assembled a chromosomal-level genome for the Clown featherback (Chitala ornata), achieving the highest quality genome assembly for Osteoglossiformes to date, with a contig N50 of 32.78 Mb and a scaffold N50 of 40.73 Mb. By combining phylogenetic analysis, we determined that the Clown featherback diverged approximately 202 to 203 million years ago (Ma), aligning with continental separation events. Our analysis revealed the intriguing discovery that a unique deletion of regulatory elements is adjacent to the Gli3 gene, specifically in teleosts. This deletion might be tied to the specialized adaptation of their pectoral fins. Furthermore, our findings indicate that specific contractions and expansions of transposable elements (TEs) in teleosts, including the Clown featherback, could be connected to their adaptive evolution. In essence, this study not only provides a high-quality genomic resource for Osteoglossiformes but also sheds light on the evolutionary trajectory of early teleosts.
Collapse
Affiliation(s)
- Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Z.Y.)
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
- BGI-Shenzhen, Shenzhen 518083, China
| | - Suyu Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Z.Y.)
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yadong Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
| | - Mengyang Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
40
|
Arnold P, Janiszewska K, Li Q, O'Connor JK, Fostowicz-Frelik Ł. The Late Cretaceous eutherian Zalambdalestes reveals unique axis and complex evolution of the mammalian neck. Sci Bull (Beijing) 2024; 69:1767-1775. [PMID: 38702276 DOI: 10.1016/j.scib.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
The typical mammalian neck consisting of seven cervical vertebrae (C1-C7) was established by the Late Permian in the cynodont forerunners of modern mammals. This structure is precisely adapted to facilitate movements of the head during feeding, locomotion, predator evasion, and social interactions. Eutheria, the clade including crown placentals, has a fossil record extending back more than 125 million years revealing significant morphological diversification in the Mesozoic. Yet very little is known concerning the early evolution of eutherian cervical morphology and its functional adaptations. A specimen of Zalambdalestes lechei from the Late Cretaceous of Mongolia boasts exceptional preservation of an almost complete series of cervical vertebrae (C2-C7) revealing a highly modified axis (C2). The significance of this cervical morphology is explored utilizing an integrated approach combining comparative anatomical examination across mammals, muscle reconstruction, geometric morphometrics and virtual range of motion analysis. We compared the shape of the axis in Zalambdalestes to a dataset of 88 mammalian species (monotremes, marsupials, and placentals) using three-dimensional landmark analysis. The results indicate that the unique axis morphology of Zalambdalestes has no close analog among living mammals. Virtual range of motion analysis of the neck strongly implies Zalambdalestes was capable of exerting very forceful head movements and had a high degree of ventral flexion for an animal its size. These findings reveal unexpected complexity in the early evolution of the eutherian cervical morphology and suggest a feeding behavior similar to insectivores specialized in vermivory and defensive behaviors in Zalambdalestes akin to modern spiniferous mammals.
Collapse
Affiliation(s)
- Patrick Arnold
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam D-14476, Germany
| | - Katarzyna Janiszewska
- Environmental Paleobiology Department, Institute of Paleobiology, Polish Academy of Sciences, Warsaw 00-818, Poland
| | - Qian Li
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | | | - Łucja Fostowicz-Frelik
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago IL 60637, USA; Evolutionary Paleobiology Department, Institute of Paleobiology, Polish Academy of Sciences, Warsaw 00-818, Poland.
| |
Collapse
|
41
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596098. [PMID: 38854139 PMCID: PMC11160643 DOI: 10.1101/2024.05.27.596098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inference of species trees plays a crucial role in advancing our understanding of evolutionary relationships and has immense significance for diverse biological and medical applications. Extensive genome sequencing efforts are currently in progress across a broad spectrum of life forms, holding the potential to unravel the intricate branching patterns within the tree of life. However, estimating species trees starting from raw genome sequences is quite challenging, and the current cutting-edge methodologies require a series of error-prone steps that are neither entirely automated nor standardized. In this paper, we present ROADIES, a novel pipeline for species tree inference from raw genome assemblies that is fully automated, easy to use, scalable, free from reference bias, and provides flexibility to adjust the tradeoff between accuracy and runtime. The ROADIES pipeline eliminates the need to align whole genomes, choose a single reference species, or pre-select loci such as functional genes found using cumbersome annotation steps. Moreover, it leverages recent advances in phylogenetic inference to allow multi-copy genes, eliminating the need to detect orthology. Using the genomic datasets released from large-scale sequencing consortia across three diverse life forms (placental mammals, pomace flies, and birds), we show that ROADIES infers species trees that are comparable in quality with the state-of-the-art approaches but in a fraction of the time. By incorporating optimal approaches and automating all steps from assembled genomes to species and gene trees, ROADIES is poised to improve the accuracy, scalability, and reproducibility of phylogenomic analyses.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| |
Collapse
|
42
|
Quintero I, Lartillot N, Morlon H. Imbalanced speciation pulses sustain the radiation of mammals. Science 2024; 384:1007-1012. [PMID: 38815022 DOI: 10.1126/science.adj2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
The evolutionary histories of major clades, including mammals, often comprise changes in their diversification dynamics, but how these changes occur remains debated. We combined comprehensive phylogenetic and fossil information in a new "birth-death diffusion" model that provides a detailed characterization of variation in diversification rates in mammals. We found an early rising and sustained diversification scenario, wherein speciation rates increased before and during the Cretaceous-Paleogene (K-Pg) boundary. The K-Pg mass extinction event filtered out more slowly speciating lineages and was followed by a subsequent slowing in speciation rates rather than rebounds. These dynamics arose from an imbalanced speciation process, with separate lineages giving rise to many, less speciation-prone descendants. Diversity seems to have been brought about by these isolated, fast-speciating lineages, rather than by a few punctuated innovations.
Collapse
Affiliation(s)
- Ignacio Quintero
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nicolas Lartillot
- Université Claude Bernard Lyon 1, CNRS, VetAgroSup, LBBE, UMR 5558, F-69100 Villeurbanne, France
| | - Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
43
|
Rojo D, Hael CE, Soria A, de Souza FSJ, Low MJ, Franchini LF, Rubinstein M. A mammalian tripartite enhancer cluster controls hypothalamic Pomc expression, food intake, and body weight. Proc Natl Acad Sci U S A 2024; 121:e2322692121. [PMID: 38652744 PMCID: PMC11067048 DOI: 10.1073/pnas.2322692121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.
Collapse
Affiliation(s)
- Daniela Rojo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Clara E. Hael
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Agustina Soria
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
| | - Flávio S. J. de Souza
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48105
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48105
| |
Collapse
|
44
|
Wirthlin ME, Schmid TA, Elie JE, Zhang X, Kowalczyk A, Redlich R, Shvareva VA, Rakuljic A, Ji MB, Bhat NS, Kaplow IM, Schäffer DE, Lawler AJ, Wang AZ, Phan BN, Annaldasula S, Brown AR, Lu T, Lim BK, Azim E, Clark NL, Meyer WK, Pond SLK, Chikina M, Yartsev MM, Pfenning AR. Vocal learning-associated convergent evolution in mammalian proteins and regulatory elements. Science 2024; 383:eabn3263. [PMID: 38422184 PMCID: PMC11313673 DOI: 10.1126/science.abn3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.
Collapse
Affiliation(s)
- Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tobias A. Schmid
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Julie E. Elie
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Amanda Kowalczyk
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Ruby Redlich
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Varvara A. Shvareva
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ashley Rakuljic
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Maria B. Ji
- Department of Psychology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ninad S. Bhat
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Alyssa J. Lawler
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Andrew Z. Wang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Siddharth Annaldasula
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tianyu Lu
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Byung Kook Lim
- Neurobiology section, Division of Biological Science, University of California, San Diego; La Jolla, CA 92093, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Nathan L. Clark
- Department of Biological Sciences, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University; Bethlehem, PA 18015, USA
| | | | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Michael M. Yartsev
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| |
Collapse
|
45
|
Lundstrøm J, Bojar D. The evolving world of milk oligosaccharides: Biochemical diversity understood by computational advances. Carbohydr Res 2024; 537:109069. [PMID: 38402731 DOI: 10.1016/j.carres.2024.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Milk oligosaccharides, complex carbohydrates unique to mammalian milk, play crucial roles in infant nutrition and immune development. This review explores their biochemical diversity, tracing the evolutionary paths that have led to their variation across different species. We highlight the intersection of nutrition, biology, and chemistry in understanding these compounds. Additionally, we discuss the latest computational methods and analytical techniques that have revolutionized the study of milk oligosaccharides, offering insights into their structural complexity and functional roles. This brief but essential review not only aims to provide a deeper understanding of milk oligosaccharides but also discuss the road toward their potential applications.
Collapse
Affiliation(s)
- Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden.
| |
Collapse
|
46
|
Wu S, Rheindt FE, Zhang J, Wang J, Zhang L, Quan C, Li Z, Wang M, Wu F, Qu Y, Edwards SV, Zhou Z, Liu L. Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous. Proc Natl Acad Sci U S A 2024; 121:e2319696121. [PMID: 38346181 PMCID: PMC10895254 DOI: 10.1073/pnas.2319696121] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024] Open
Abstract
The phylogeny and divergence timing of the Neoavian radiation remain controversial despite recent progress. We analyzed the genomes of 124 species across all Neoavian orders, using data from 25,460 loci spanning four DNA classes, including 5,756 coding sequences, 12,449 conserved nonexonic elements, 4,871 introns, and 2,384 intergenic segments. We conducted a comprehensive sensitivity analysis to account for the heterogeneity across different DNA classes, leading to an optimal tree of Neoaves with high resolution. This phylogeny features a novel Neoavian dichotomy comprising two monophyletic clades: a previously recognized Telluraves (land birds) and a newly circumscribed Aquaterraves (waterbirds and relatives). Molecular dating analyses with 20 fossil calibrations indicate that the diversification of modern birds began in the Late Cretaceous and underwent a constant and steady radiation across the KPg boundary, concurrent with the rise of angiosperms as well as other major Cenozoic animal groups including placental and multituberculate mammals. The KPg catastrophe had a limited impact on avian evolution compared to the Paleocene-Eocene Thermal Maximum, which triggered a rapid diversification of seabirds. Our findings suggest that the evolution of modern birds followed a slow process of gradualism rather than a rapid process of punctuated equilibrium, with limited interruption by the KPg catastrophe. This study places bird evolution into a new context within vertebrates, with ramifications for the evolution of the Earth's biota.
Collapse
Affiliation(s)
- Shaoyuan Wu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jin Zhang
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Jiajia Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Cheng Quan
- School of Earth Science and Resources, Chang'an University, Xi'an, Shaanxi 710054, China
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Feixiang Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Liang Liu
- Department of Statistics, Institute of Bioinformatics, University of Georgia, Athens, GA 30606
| |
Collapse
|
47
|
Fromm B, Sorger T. Rapid adaptation of cellular metabolic rate to the MicroRNA complements of mammals and its relevance to the evolution of endothermy. iScience 2024; 27:108740. [PMID: 38327773 PMCID: PMC10847693 DOI: 10.1016/j.isci.2023.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/13/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
The metabolic efficiency of mammalian cells depends on the attenuation of intrinsic translation noise by microRNAs. We devised a metric of cellular metabolic rate (cMR), rMR/Mexp optimally fit to the number of microRNA families (mirFam), that is robust to variation in mass and sensitive to body temperature (Tb), consistent with the heat dissipation limit theory of Speakman and Król (2010). Using mirFam as predictor, an Ornstein-Uhlenbeck process of stabilizing selection, with an adaptive shift at the divergence of Boreoeutheria, accounted for 95% of the variation in cMR across mammals. Branchwise rates of evolution of cMR, mirFam and Tb concurrently increased 6- to 7-fold at the divergence of Boreoeutheria, independent of mass. Cellular MR variation across placental mammals was also predicted by the sum of model conserved microRNA-target interactions, revealing an unexpected degree of integration of the microRNA-target apparatus into the energy economy of the mammalian cell.
Collapse
Affiliation(s)
- Bastian Fromm
- The Arctic University Museum of Norway, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Thomas Sorger
- Department of Biology, Roger Williams University, Bristol, RI 02809, USA
| |
Collapse
|
48
|
Randall JG, Gatesy J, McGowen MR, Springer MS. Molecular Evidence for Relaxed Selection on the Enamel Genes of Toothed Whales (Odontoceti) with Degenerative Enamel Phenotypes. Genes (Basel) 2024; 15:228. [PMID: 38397217 PMCID: PMC10888366 DOI: 10.3390/genes15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Different species of toothed whales (Odontoceti) exhibit a variety of tooth forms and enamel types. Some odontocetes have highly prismatic enamel with Hunter-Schreger bands, whereas enamel is vestigial or entirely lacking in other species. Different tooth forms and enamel types are associated with alternate feeding strategies that range from biting and grasping prey with teeth in most oceanic and river dolphins to the suction feeding of softer prey items without the use of teeth in many beaked whales. At the molecular level, previous studies have documented inactivating mutations in the enamel-specific genes of some odontocete species that lack complex enamel. At a broader scale, however, it is unclear whether enamel complexity across the full diversity of extant Odontoceti correlates with the relative strength of purifying selection on enamel-specific genes. Here, we employ sequence alignments for seven enamel-specific genes (ACP4, AMBN, AMELX, AMTN, ENAM, KLK4, MMP20) in 62 odontocete species that are representative of all extant families. The sequences for 33 odontocete species were obtained from databases, and sequences for the remaining 29 species were newly generated for this study. We screened these alignments for inactivating mutations (e.g., frameshift indels) and provide a comprehensive catalog of these mutations in species with one or more inactivated enamel genes. Inactivating mutations are rare in Delphinidae (oceanic dolphins) and Platanistidae/Inioidea (river dolphins) that have higher enamel complexity scores. By contrast, mutations are much more numerous in clades such as Monodontidae (narwhal, beluga), Ziphiidae (beaked whales), Physeteroidea (sperm whales), and Phocoenidae (porpoises) that are characterized by simpler enamel or even enamelless teeth. Further, several higher-level taxa (e.g., Hyperoodon, Kogiidae, Monodontidae) possess shared inactivating mutations in one or more enamel genes, which suggests loss of function of these genes in the common ancestor of each clade. We also performed selection (dN/dS) analyses on a concatenation of these genes and used linear regression and Spearman's rank-order correlation to test for correlations between enamel complexity and two different measures of selection intensity (# of inactivating mutations per million years, dN/dS values). Selection analyses revealed that relaxed purifying selection is especially prominent in physeteroids, monodontids, and phocoenids. Linear regressions and correlation analyses revealed a strong negative correlation between selective pressure (dN/dS values) and enamel complexity. Stronger purifying selection (low dN/dS) is found on branches with more complex enamel and weaker purifying selection (higher dN/dS) occurs on branches with less complex enamel or enamelless teeth. As odontocetes diversified into a variety of feeding modes, in particular, the suction capture of prey, a reduced reliance on the dentition for prey capture resulted in the relaxed selection of genes that are critical to enamel development.
Collapse
Affiliation(s)
- Jason G. Randall
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA;
| | - Michael R. McGowen
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, MRC 108, P.O. Box 37012, Washington, DC 20013, USA;
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
49
|
Crowell JW, Wible JR, Chester SGB. Basicranial evidence suggests picrodontid mammals are not stem primates. Biol Lett 2024; 20:20230335. [PMID: 38195058 PMCID: PMC10776232 DOI: 10.1098/rsbl.2023.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
The Picrodontidae from the middle Palaeocene of North America are enigmatic placental mammals that were allied with various mammalian groups but are generally now considered to have close affinities to paromomyid and palaechthonid plesiadapiforms based on proposed dental synapomorphies. The picrodontid fossil record consists entirely of dental and gnathic remains except for one partial cranium of Zanycteris paleocenus (AMNH 17180). Here, we use µCT technology to unveil previously undocumented morphology in AMNH 17180, describe and compare the basicranial morphology of a picrodontid for the first time, and incorporate these new data into cladistic analyses. The basicranial morphology of Z. paleocenus is distinct from plesiadapiforms and shares similarities with the Palaeogene Apatemyidae and Nyctitheriidae. Results of cladistic analyses incorporating these novel data suggest picrodontids are not stem primates nor euarchontan mammals and that the proposed dental synapomorphies uniting picrodontids with plesiadapiforms and, by extension, primates evolved independently. Results highlight the need to scrutinize proposed synapomorphies of highly autapomorphic taxa with limited fossil records.
Collapse
Affiliation(s)
- Jordan W. Crowell
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - John R. Wible
- Section of Mammals, Carnegie Museum of Natural History, 5800 Baum Boulevard, Pittsburgh, PA 15206, USA
| | - Stephen G. B. Chester
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
50
|
Mao Q, Ye Q, Xu Y, Jiang J, Fan Y, Zhuang L, Liu G, Wang T, Zhang Z, Feng T, Kong S, Lu J, Zhang H, Wang H, Lin CP. Murine trophoblast organoids as a model for trophoblast development and CRISPR-Cas9 screening. Dev Cell 2023; 58:2992-3008.e7. [PMID: 38056451 DOI: 10.1016/j.devcel.2023.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The placenta becomes one of the most diversified organs during placental mammal radiation. The main in vitro model for studying mouse trophoblast development is the 2D differentiation model of trophoblast stem cells, which is highly skewed to certain lineages and thus hampers systematic screens. Here, we established culture conditions for the establishment, maintenance, and differentiation of murine trophoblast organoids. Murine trophoblast organoids under the maintenance condition contain stem cell-like populations, whereas differentiated organoids possess various trophoblasts resembling placental ones in vivo. Ablation of Nubpl or Gcm1 in trophoblast organoids recapitulated their deficiency phenotypes in vivo, suggesting that those organoids are valid in vitro models for trophoblast development. Importantly, we performed an efficient CRISPR-Cas9 screening in mouse trophoblast organoids using a focused sgRNA (single guide RNA) library targeting G protein-coupled receptors. Together, our results establish an organoid model to investigate mouse trophoblast development and a practicable approach to performing forward screening in trophoblast lineages.
Collapse
Affiliation(s)
- Qian Mao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingwei Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunhao Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lili Zhuang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Guohui Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tengfei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Teng Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|