1
|
Li W, Zhang Q, Wang Z, Liu X. Three-quarters of species' ranges have not been covered by protected areas in global borders. Nat Commun 2025; 16:2608. [PMID: 40097386 PMCID: PMC11914608 DOI: 10.1038/s41467-025-57212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Borderlands are increasingly recognized as critically important for biodiversity conservation owing to their ecological significance and high political profile. However, the species ranges covered by protected areas and their influencing factors in transboundary areas are still largely unknown worldwide. Here, based on the distributional ranges of 19,039 terrestrial vertebrates, we find that three-quarters of species' ranges in global borders remain uncovered by protected areas, particularly in tropical areas of Southeast Asia and West Africa. The average protected area coverage of species ranges is lower in transboundary areas than non-transboundary areas after accounting for geographical differences in sampling efforts. We also observe that protected area coverage of species ranges increases with governance effectiveness, collaboration abilities, protection levels, sizes and establishment years of protected areas, and topographic complexity, but decreases with human population density, human development index, and cropland expansion. Furthermore, protected areas simultaneously face threats of ongoing global challenges from climate change, land-use modification, and alien species invasion, and the proportions of borderlands threatened by global changes are higher than elsewhere. All these findings demonstrate that cross-border cooperation is urgently needed to achieve the ambitious goal of global biodiversity conservation by 2050.
Collapse
Affiliation(s)
- Wenjie Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Qing Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhining Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Cheng Z, Zhang Y, Liu W, ZhenyuZhong, Bai J, Cheng K, Feng C, Wang L, Zhang Y, Yi H, Guo Q, Zhang Q, Zhang P. Population dynamics and the role of protected areas in China's milu deer (Elaphurus davidianus) rewilding. Sci Rep 2025; 15:188. [PMID: 39747309 PMCID: PMC11697174 DOI: 10.1038/s41598-024-84456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Protected areas are refugia for wildlife and play a crucial role in biodiversity conservation, especially in the restoration of rare and endangered species. However, little attention has been paid to the long-term contribution of protected areas to rare species population rejuvenation. To identify the population growth of milu deer (Elaphurus davidianus)in protected areas and unprotected areas, we fitted the population dynamics curve of reintroduced free-ranging and wild populations based on long-term monitoring data in four protected areas: Jiangsu Dafeng Milu National Nature Reserve, Hubei Shishou Milu National Nature Reserve, Hunan East Dongting Lake National Nature Reserve, and Jiangxi Poyang Lake area. We also examined population dynamics in two unprotected areas: Yangbotan wetland and Sanheyuan wetland in Shishou County, Hubei province. We analyzed the habitat characteristics (coastal marshy wetland, riverine wetlands, and lake wetlands)in all these areas. The results showed that: (1) population growth in Dafeng, Shishou, Dongting, Sanheyuan and Yangbotan all followed an S-curve (p < 0.001); while population growth around Poyang Lake was linear (p < 0.001); (2) the population growth rate of Yangbotan wetland was significantly higher than that of Dongting Nature Reserve (p < 0.05); and (3) the two unprotected areas, Yangbotan and Sanheyuan wetlands, are important for the conservation of milu, as they have been facing the threats of urbanization and fragmentation in recent years. Our studies indicate that long-term conservation in protected areas has played an irreplaceable role in the reconstruction and rejuvenation of wild populations of milu deer over the past 30 years, and multiple reintroductions are an effective way to quickly restore wild milu populations in China.
Collapse
Affiliation(s)
- Zhibin Cheng
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
- Beijing Milu Ecological Research Center, Beijing, 100076, China
- Beijing Biodiversity Conservation Research Center, Beijing, 100076, China
| | - Yuanyuan Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, China
- Beijing Biodiversity Conservation Research Center, Beijing, 100076, China
| | - Wei Liu
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
| | - ZhenyuZhong
- Beijing Milu Ecological Research Center, Beijing, 100076, China
- Beijing Biodiversity Conservation Research Center, Beijing, 100076, China
| | - Jiade Bai
- Beijing Milu Ecological Research Center, Beijing, 100076, China.
- Beijing Biodiversity Conservation Research Center, Beijing, 100076, China.
| | - Kun Cheng
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China.
| | - Chengmiao Feng
- Beijing Milu Ecological Research Center, Beijing, 100076, China
- Beijing Biodiversity Conservation Research Center, Beijing, 100076, China
| | - Libo Wang
- Jiangsu Dafeng Milu National Nature Reserve, Yancheng, 224136, China
| | - Yuming Zhang
- Hubei Shishou Milu National Nature Reserve, Shishou434407, China
| | - Hongxin Yi
- Hubei Shishou Milu National Nature Reserve, Shishou434407, China
| | - Qingyun Guo
- Beijing Milu Ecological Research Center, Beijing, 100076, China
- Beijing Biodiversity Conservation Research Center, Beijing, 100076, China
| | - Qingxun Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, China
- Beijing Biodiversity Conservation Research Center, Beijing, 100076, China
| | - Pan Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, China
- Beijing Biodiversity Conservation Research Center, Beijing, 100076, China
| |
Collapse
|
3
|
Tjaden-McClement K, Naidoo R, Brennan A, Burton AC. Global prioritization schemes vary in their impact on the placement of protected areas. PLoS One 2025; 20:e0307730. [PMID: 39746008 PMCID: PMC11695003 DOI: 10.1371/journal.pone.0307730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/08/2024] [Indexed: 01/04/2025] Open
Abstract
In response to global declines in biodiversity, many global conservation prioritization schemes were developed to guide effective protected area establishment. Protected area coverage has grown dramatically since the introduction of several high-profile biodiversity prioritization schemes, but the impact of such schemes on protected area establishment has not been evaluated. We used matching methods and a Before-After Control-Impact causal analysis to evaluate the impact of two key prioritization schemes-Biodiversity Hotspots and Last of the Wild-representing examples of the reactive and proactive ends of the prioritization spectrum. We found that Last of the Wild had a positive impact on the rate of protection in its identified priority areas, but Biodiversity Hotspots did not. Because Biodiversity Hotspots are in or near human-dominated landscapes, this scheme may have been unable to overcome biases towards protecting areas with little human pressure. In contrast, Last of the Wild aligned with the tendency to protect areas far from high human use and thus with lower implementation costs, and so received greater uptake. Stronger links between large-scale prioritizations and more locally driven implementation of area-based conservation, as well as other forms of conservation action, are needed to overcome practical constraints and effectively protect biodiversity on an increasingly human-dominated planet.
Collapse
Affiliation(s)
- Katie Tjaden-McClement
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robin Naidoo
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
- WWF-US, Washington, District of Columbia, United States of America
| | - Angela Brennan
- Interdisciplinary Biodiversity Solutions Collaboratory, University of British Columbia, Vancouver, Canada
- Conservation Science Partners, Inc., Truckee, California, United States of America
| | - A. Cole Burton
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
- Interdisciplinary Biodiversity Solutions Collaboratory, University of British Columbia, Vancouver, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Booth H, Milner-Gulland EJ, Bang A, Bull J, Moreno-Ternero JD, Squires D. Fair division for avoidance of biodiversity impacts. Trends Ecol Evol 2024; 39:1102-1110. [PMID: 39333000 DOI: 10.1016/j.tree.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024]
Abstract
Biodiversity is declining at alarming rates, with some negative impacts caused by activities that are necessary for meeting basic human needs and others which should be avoided to prevent ecological collapse. Avoidance of biodiversity impacts is costly; these costs must be distributed fairly. Principles of fair allocation - which are grounded in longstanding theories of justice and are mathematically operationalizable - are rarely used in biodiversity decision-making but can help to deliver procedural and distributive justice alongside biodiversity outcomes. We show how incorporating rules of fair allocation into biodiversity decision-making could advance policy formulation towards a safe and just future. Such rules provide a means to operationalize equity and create space for cooperatively and constructively negotiating avoidance liabilities within biodiversity impact mitigation.
Collapse
Affiliation(s)
- Hollie Booth
- Department of Biology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, UK; The Biodiversity Consultancy, 3E King's Parade, Cambridge CB2 1SJ, UK.
| | - E J Milner-Gulland
- Department of Biology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, UK
| | - Ashley Bang
- Department of Biology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, UK; The Biodiversity Consultancy, 3E King's Parade, Cambridge CB2 1SJ, UK
| | - Joseph Bull
- Department of Biology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, UK
| | - Juan D Moreno-Ternero
- Department of Economics, University Pablo de Olavide, Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Dale Squires
- Department of Economics, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Chowdhury S, Cardillo M, Chapman JW, Green D, Norris DR, Riva F, Zalucki MP, Fuller RA. Protected area coverage of the full annual cycle of migratory butterflies. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14423. [PMID: 39607325 DOI: 10.1111/cobi.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/29/2024]
Abstract
Effective conservation of migratory species relies on habitat protection throughout their annual cycle. Although protected areas (PAs) play a central role in conservation, their effectiveness at conserving habitats across the annual cycle of migratory species has rarely been assessed. We developed seasonal ecological niche models for 418 migratory butterfly species across their global distribution to assess whether they were adequately represented in the PAs across their full annual cycle. PA coverage was inadequate in at least one season for 84% of migratory butterflies, adequate for only 17% of species in one season, and inadequate for 45% of species in all seasons. There was marked geographic variation in PA coverage: 77% of species met representation targets in Sri Lanka, for example, but only 32% met targets in Italy. Our results suggest that coordinated efforts across multiple countries will be needed to develop international networks of PAs that cover the full annual cycle of migratory insects and that conservation measures, in addition to the establishment and maintenance of PAs, are likely to be needed to effectively conserve these species.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Marcel Cardillo
- Macroevolution and Macroecology Group, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jason W Chapman
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - David Green
- Research Computing Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Federico Riva
- Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Myron P Zalucki
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Richard A Fuller
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
6
|
Loch A, Scholz G, Adamson D, Sexton S, Peralta A. Validating costly protected area restoration after (increasing) disasters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122305. [PMID: 39243648 DOI: 10.1016/j.jenvman.2024.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 06/24/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Protected areas such as national parks constitute an increasing land mass globally, but these areas are under increasing threat from climate change events such as drought, flooding, and bushfires. The recent Yosemite National Park fires in California provide an example of this issue. After any such disaster, authorities will need to restore those protected areas to their former state at significant costs within any public funding cycle. To corroborate that request, clear economic assessments of total costs and benefits will be required. However, in previous studies of these issues a complete set of government cost and/or benefit data may not be provided, skewing assessment results accordingly. Using South Australia's Kangaroo Island protected areas-which were significantly destroyed by bushfire in 2019-20-as a case study with a unique set of State government cost data we calculate a set of analyses via economic methods. Despite significant restoration costs the study found the discounted net present value of returning tourists to the Island is 3.15 over ten years for park tourism and regional economic impacts, providing an internal rate of return of 22%. The rebuild work is also expected to support around 430 full time equivalent (FTE) jobs during construction, with a return to full tourism supporting another 744 FTEs across relevant sectors (e.g. accommodation, retail) of the Kangaroo Island economy. This robust assessment makes it far easier for protected area managers to argue their funding case.
Collapse
Affiliation(s)
- Adam Loch
- Centre for Global Food and Resources, School of Economics and Public Policy, The University of Adelaide, Adelaide, South Australia.
| | - Glen Scholz
- The South Australia Department for Environment and Water, Adelaide, South Australia
| | - David Adamson
- Centre for Global Food and Resources, School of Economics and Public Policy, The University of Adelaide, Adelaide, South Australia; Royal Agricultural University, Cirencester, United Kingdom
| | - Stuart Sexton
- The South Australia Department for Environment and Water, Adelaide, South Australia
| | - Alexandra Peralta
- Centre for Global Food and Resources, School of Economics and Public Policy, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|
7
|
Dooley K, Christiansen KL, Lund JF, Carton W, Self A. Over-reliance on land for carbon dioxide removal in net-zero climate pledges. Nat Commun 2024; 15:9118. [PMID: 39438491 PMCID: PMC11496795 DOI: 10.1038/s41467-024-53466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Achieving net-zero climate targets requires some level of carbon dioxide removal. Current assessments focus on tonnes of CO2 removed, without specifying what form these removals will take. Here, we show that countries' climate pledges require approximately 1 (0.9-1.1) billion ha of land for removals. For over 40% of this area, the pledges envisage the conversion of existing land uses to forests, while the remaining area restores existing ecosystems and land uses. We analyse how this demand for land is distributed geographically and over time. The results are concerning, both in terms of the aggregate area of land, but also the rate and extent of land use change. Our findings demonstrate a gap between governments' expected reliance on land and the role that land can realistically play in climate mitigation. This adds another layer to the observed shortcomings of national climate pledges and indicates a need for more transparency around the role of land in national climate mitigation plans.
Collapse
Affiliation(s)
- Kate Dooley
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Jens Friis Lund
- Department of Food and Resource Economics, University of Copenhagen, Frederiksberg C, Denmark
| | - Wim Carton
- Centre for Sustainability Studies, Lund University, Lund, Sweden
| | - Alister Self
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Parkville, VIC, Australia
- Climate Resource, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Gupta J, Bai X, Liverman DM, Rockström J, Qin D, Stewart-Koster B, Rocha JC, Jacobson L, Abrams JF, Andersen LS, Armstrong McKay DI, Bala G, Bunn SE, Ciobanu D, DeClerck F, Ebi KL, Gifford L, Gordon C, Hasan S, Kanie N, Lenton TM, Loriani S, Mohamed A, Nakicenovic N, Obura D, Ospina D, Prodani K, Rammelt C, Sakschewski B, Scholtens J, Tharammal T, van Vuuren D, Verburg PH, Winkelmann R, Zimm C, Bennett E, Bjørn A, Bringezu S, Broadgate WJ, Bulkeley H, Crona B, Green PA, Hoff H, Huang L, Hurlbert M, Inoue CYA, Kılkış Ş, Lade SJ, Liu J, Nadeem I, Ndehedehe C, Okereke C, Otto IM, Pedde S, Pereira L, Schulte-Uebbing L, Tàbara JD, de Vries W, Whiteman G, Xiao C, Xu X, Zafra-Calvo N, Zhang X, Fezzigna P, Gentile G. A just world on a safe planet: a Lancet Planetary Health-Earth Commission report on Earth-system boundaries, translations, and transformations. Lancet Planet Health 2024; 8:e813-e873. [PMID: 39276783 DOI: 10.1016/s2542-5196(24)00042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/09/2023] [Accepted: 03/08/2024] [Indexed: 09/17/2024]
Affiliation(s)
- Joyeeta Gupta
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands; IHE-Delft Institute for Water Education, Delft, Netherlands
| | - Xuemei Bai
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia
| | - Diana M Liverman
- School of Geography, Development and Environment, University of Arizona, Tucson, AZ, USA
| | - Johan Rockström
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany; Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
| | - Dahe Qin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; China Meteorological Administration, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ben Stewart-Koster
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Juan C Rocha
- Future Earth Secretariat, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
| | | | - Jesse F Abrams
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Lauren S Andersen
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - David I Armstrong McKay
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Systems Institute, University of Exeter, Exeter, UK; Georesilience Analytics, Leatherhead, UK
| | - Govindasamy Bala
- Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India
| | - Stuart E Bunn
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Daniel Ciobanu
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Fabrice DeClerck
- EAT, Oslo, Norway; Alliance of Bioversity and CIAT, CGIAR, Montpellier, France
| | - Kristie L Ebi
- Center for Health & the Global Environment, University of Washington, Seattle, WA, USA
| | - Lauren Gifford
- School of Geography, Development and Environment, University of Arizona, Tucson, AZ, USA
| | - Christopher Gordon
- Institute for Environment and Sanitation Studies, University of Ghana, Legon, Ghana
| | - Syezlin Hasan
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Norichika Kanie
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | | | - Sina Loriani
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - Awaz Mohamed
- Functional Forest Ecology, University of Hamburg, Hamburg, Germany
| | | | - David Obura
- Coastal Oceans Research and Development in the Indian Ocean East Africa, Mombasa, Kenya
| | | | - Klaudia Prodani
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Crelis Rammelt
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Boris Sakschewski
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - Joeri Scholtens
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Thejna Tharammal
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru, India
| | - Detlef van Vuuren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands; PBL Netherlands Environmental Assessment Agency, The Hague, Netherlands
| | - Peter H Verburg
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland; Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ricarda Winkelmann
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany; Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Caroline Zimm
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Elena Bennett
- Bieler School of Environment and Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Anders Bjørn
- Centre for Absolute Sustainability and Section for Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefan Bringezu
- Center for Environmental Systems Research, University of Kassel, Kassel, Germany
| | | | - Harriet Bulkeley
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands; Department of Geography, Durham University, Durham, UK
| | - Beatrice Crona
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Economic Dynamics and the Biosphere Programme, Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Pamela A Green
- Advanced Science Research Center at the Graduate Center, City University of New York, NY, USA
| | - Holger Hoff
- Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
| | - Lei Huang
- National Climate Center, Beijing, China
| | - Margot Hurlbert
- Johnson-Shoyama Graduate School of Public Policy, University of Regina, Regina, SK, Canada
| | - Cristina Y A Inoue
- Center for Global Studies, Institute of International Relations, University of Brasília, Brasília, Brazil; Institute for Management Research, Radboud University, Nijmegen, Netherlands
| | - Şiir Kılkış
- Scientific and Technological Research Council of Turkey, Ankara, Türkiye
| | - Steven J Lade
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia; Future Earth Secretariat, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Imran Nadeem
- Institute of Meteorology and Climatology, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria
| | - Christopher Ndehedehe
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia; School of Environment & Science, Griffith University, Nathan, QLD, Australia
| | | | - Ilona M Otto
- Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
| | - Simona Pedde
- Future Earth Secretariat, Stockholm, Sweden; Soil raphy and Landscape Group, Wageningen University & Research, Wageningen, Netherlands
| | - Laura Pereira
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Lena Schulte-Uebbing
- PBL Netherlands Environmental Assessment Agency, The Hague, Netherlands; Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, Netherlands
| | - J David Tàbara
- Autonomous University of Barcelona, Barcelona, Spain; Global Climate Forum, Berlin, Germany
| | - Wim de Vries
- Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Cunde Xiao
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Xinwu Xu
- China Meteorological Administration, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Noelia Zafra-Calvo
- Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Biscay, Spain
| | - Xin Zhang
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA
| | - Paola Fezzigna
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Giuliana Gentile
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Dawson NM, Coolsaet B, Bhardwaj A, Brown D, Lliso B, Loos J, Mannocci L, Martin A, Oliva M, Pascual U, Sherpa P, Worsdell T. Reviewing the science on 50 years of conservation: Knowledge production biases and lessons for practice. AMBIO 2024; 53:1395-1413. [PMID: 39023682 PMCID: PMC11383897 DOI: 10.1007/s13280-024-02049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Drawing on 662 studies from 102 countries, we present a systematic review of published empirical studies about site-level biodiversity conservation initiated between 1970 and 2019. Within this sample, we find that knowledge production about the Global South is largely produced by researchers in the Global North, implying a neocolonial power dynamic. We also find evidence of bias in reported ecological outcomes linked to lack of independence in scientific studies, serving to uphold narratives about who should lead conservation. We explore relationships in the sample studies between conservation initiative types, the extent of Indigenous Peoples' and local communities' influence in governance, and reported social and ecological outcomes. Findings reveal positive ecological and social outcomes are strongly associated with higher levels of influence of Indigenous Peoples and local communities and their institutions, implying equity in conservation practice should be advanced not only for moral reasons, but because it can enhance conservation effectiveness.
Collapse
Affiliation(s)
- Neil M Dawson
- Global Environmental Justice Research Group, School of Global Development, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
- Centre for the Synthesis and Analysis of Biodiversity (CESAB), French Foundation for Research on Biodiversity (FRB), 34000, Montpellier, France.
| | - Brendan Coolsaet
- Fund for Scientific Research (FNRS), 1000, Brussels, Belgium
- Institute for the Analysis of Change in Contemporary and Historical Societies, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | | | - David Brown
- Global Environmental Justice Research Group, School of Global Development, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Centre for Landscape Regeneration, University of Cambridge Conservation Research Institute, Cambridge, CB2 3QZ, UK
| | - Bosco Lliso
- World Benchmarking Alliance, 1012 TM, Amsterdam, The Netherlands
- Basque Centre for Climate Change, 48940, Leioa, Spain
| | - Jacqueline Loos
- Department of Botany and Biodiversity Research, University of Vienna, 1030, Vienna, Austria
- Institute of Ecology and Social-Ecological Systems Institute, Leuphana University, 21335, Lüneburg, Germany
| | - Laura Mannocci
- Centre for the Synthesis and Analysis of Biodiversity (CESAB), French Foundation for Research on Biodiversity (FRB), 34000, Montpellier, France
- MARBEC (Univ Montpellier, CNRS, Ifremer, IRD), 34070, Montpellier, France
| | - Adrian Martin
- Global Environmental Justice Research Group, School of Global Development, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Malena Oliva
- Laboratorio Nacional de Ciencias de la Sostenibilidad, LANCIS, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Unai Pascual
- Basque Centre for Climate Change, 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Pasang Sherpa
- Central Department of Sociology, Tribhuvan University, Kirtipur, Kathmandu, 44618, Nepal
| | | |
Collapse
|
10
|
Li G, Fang C, Watson JEM, Sun S, Qi W, Wang Z, Liu J. Mixed effectiveness of global protected areas in resisting habitat loss. Nat Commun 2024; 15:8389. [PMID: 39333073 PMCID: PMC11437083 DOI: 10.1038/s41467-024-52693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Protected areas are the cornerstones of conservation efforts to mitigate the anthropogenic pressures driving biodiversity loss. Nations aim to protect 30% of Earth's land and water by 2030, yet the effectiveness of protected areas remains unclear. Here we analyze the performance of over 160,000 protected areas in resisting habitat loss at different spatial and temporal scales, using high-resolution data. We find that 1.14 million km2 of habitat, equivalent to three times the size of Japan, across 73% of protected areas, had been altered between 2003 and 2019. These protected areas experienced habitat loss due to the expansion of built-up land, cropland, pastureland, or deforestation. Larger and stricter protected areas generally had lower rates of habitat loss. While most protected areas effectively halted the expansion of built-up areas, they were less successful in preventing deforestation and agricultural conversion. Protected areas were 33% more effective in reducing habitat loss compared to unprotected areas, though their ability to mitigate nearby human pressures was limited and varied spatially. Our findings indicate that, beyond establishing new protected areas, there is an urgent need to enhance the effectiveness of existing ones to better prevent habitat loss and achieve the post-2020 global biodiversity goals.
Collapse
Affiliation(s)
- Guangdong Li
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanglin Fang
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - James E M Watson
- School of the Environment, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Siao Sun
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Qi
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenbo Wang
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
11
|
Beaury EM, Smith J, Levine JM. Global suitability and spatial overlap of land-based climate mitigation strategies. GLOBAL CHANGE BIOLOGY 2024; 30:e17515. [PMID: 39319461 DOI: 10.1111/gcb.17515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Land-based mitigation strategies (LBMS) are critical to reducing climate change and will require large areas for their implementation. Yet few studies have considered how and where LBMS either compete for land or could be deployed jointly across the Earth's surface. To assess the opportunity costs of scaling up LBMS, we derived high-resolution estimates of the land suitable for 19 different LBMS, including ecosystem maintenance, ecosystem restoration, carbon-smart agricultural and forestry management, and converting land to novel states. Each 1 km resolution map was derived using the Earth's current geographic and biophysical features without socioeconomic constraints. By overlaying these maps, we estimated 8.56 billion hectares theoretically suitable for LBMS across the Earth. This includes 5.20 Bha where only one of the studied strategies is suitable, typically the strategy that involves maintaining the current ecosystem and the carbon it stores. The other 3.36 Bha is suitable for more than one LBMS, framing the choices society has among which LBMS to implement. The majority of these regions of overlapping LBMS include strategies that conflict with one another, such as the conflict between better management of existing land cover types and restoration-based strategies such as reforestation. At the same time, we identified several agricultural management LBMS that were geographically compatible over large areas, including for example, enhanced chemical weathering and improved plantation rotations. Our analysis presents local stakeholders, communities, and governments with the range of LBMS options, and the opportunity costs associated with scaling up any given LBMS to reduce global climate change.
Collapse
Affiliation(s)
- Evelyn M Beaury
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - Jeffrey Smith
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - Jonathan M Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
12
|
Furumo PR, Yu J, Hogan JA, Tavares de Carvalho LM, Brito B, Lambin EF. Land conflicts from overlapping claims in Brazil's rural environmental registry. Proc Natl Acad Sci U S A 2024; 121:e2407357121. [PMID: 39110724 PMCID: PMC11331109 DOI: 10.1073/pnas.2407357121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
Satellite-based land use monitoring and farm-level traceability offer opportunities for targeted zero-deforestation interventions on private lands. Brazil's Rural Environmental Registry (Cadastro Ambiental Rural, or "CAR"), a land cadaster based on self-declaration of property boundaries, was created to monitor compliance with national forest laws. It has become an important enabling measure for sustainable supply chain initiatives like the Amazon Soy Moratorium. However, CAR enrollment is increasingly used to bolster illegal land claims, putting it at the heart of land grabbing dynamics. Self-declaration of properties in the CAR offers a unique situation to study land conflicts and their impact on land use decisions on a large scale. We quantified competing land claims among 846,420 registrations in the Brazilian Legal Amazon and applied a series of generalized linear mixed-effects models. We determined that CAR overlaps are more prevalent on larger registrations, in more densely settled areas, and in areas with less secure land tenure. We tested how landholders respond to land conflicts, finding significantly more deforestation and declared legal forest reserve on lands with multiple claims. CAR overlap results in an overestimation of forest reserves by up to 9.7 million hectares when considering double-counted and deforested areas of reserves, highlighting an overlooked form of Forest Code noncompliance. While the CAR continues to be used as evidence of land tenure, we conclude that the formalization of land claims through self-declarations is inadequate to decrease conflicts. CAR overlap information provides objective evidence of land conflict that authorities can leverage with field inspection to ensure peaceful occupation before issuing land titles.
Collapse
Affiliation(s)
- Paul R. Furumo
- Department of Earth System Science and Woods Institute for the Environment, Doerr School of Sustainability, Stanford University, Stanford, CA 94305
| | - Jevan Yu
- Department of Earth System Science and Woods Institute for the Environment, Doerr School of Sustainability, Stanford University, Stanford, CA 94305
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - J. Aaron Hogan
- International Institute of Tropical Forestry, US Department of Agriculture Forest Service, San Juan, PR00926
| | | | | | - Eric F. Lambin
- Department of Earth System Science and Woods Institute for the Environment, Doerr School of Sustainability, Stanford University, Stanford, CA 94305
- Earth and Life Institute, Université catholique de Louvain, Louvain-le-NeuveB-1348, Belgium
| |
Collapse
|
13
|
Xu D, Peng J, Dong J, Jiang H, Liu M, Luo Y, Xu Z. Expanding China's protected areas network to enhance resilience of climate connectivity. Sci Bull (Beijing) 2024; 69:2273-2280. [PMID: 38724302 DOI: 10.1016/j.scib.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 07/22/2024]
Abstract
Expanding the network of connected and resilient protected areas (PAs) for climate change adaptation can help species track suitable climate conditions and safeguard biodiversity. This is often overlooked when expanding PAs and quantifying their benefits, resulting in an underestimate of the benefits of expanding PAs. We expanded PAs through terrestrial mammalian species distribution hotspots, Key Biodiversity Areas (KBAs), and wilderness areas. Then, we constructed climate connectivity networks using a resistance-based approach and further quantified the network resilience to propose resilient climate response strategies in China. The results showed that existing PAs suffered from location biases with important biodiversity areas. The existing PAs represented about half of the KBAs and wilderness areas, yet only 12.08% of terrestrial mammalian species distribution hotspots were located within existing PAs. Compared with the existing PA network, the network efficiency and resilience of the expanded PAs' climate connectivity increased to 1.80 times and 1.78 times, respectively. With 56% of the nodes remaining, the network efficiency of the expanded PAs was equivalent to that of the existing PAs with all nodes. The network resilience of preferentially protecting and restoring low human footprint patches was approximately 1.5-2 times that of the random scenario. These findings highlighted that confronted with the unoptimistic situation of global warming, nature conservation based on existing PAs was no longer optimal. It was critical to construct a connected and resilient conservation network relying on both important biodiversity areas and low human footprint patches.
Collapse
Affiliation(s)
- Dongmei Xu
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jian Peng
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Jianquan Dong
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Hong Jiang
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Menglin Liu
- Key Laboratory for Environmental and Urban Sciences, School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Yuhang Luo
- Key Laboratory for Environmental and Urban Sciences, School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Zihan Xu
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
14
|
Oakleaf J, Kennedy C, Wolff NH, Terasaki Hart DE, Ellis P, Theobald DM, Fariss B, Burkart K, Kiesecker J. Mapping global land conversion pressure to support conservation planning. Sci Data 2024; 11:830. [PMID: 39080308 PMCID: PMC11289476 DOI: 10.1038/s41597-024-03639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Proactively identifying where land conversion might occur is critical to targeted and effective conservation planning. Previous efforts to map future habitat loss have largely focused on forested systems and have been limited in their consideration of drivers of loss. We developed a 1-km resolution, global map of land conversion pressure from multiple drivers, referred to as the conversion pressure index (CPI). The CPI combines past rates of anthropogenic change, as measured by temporal human modification maps, with suitability maps for potential future expansion by large-scale development. The CPI thus offers a new way to measure a cumulative gradient of anthropogenic pressure as opposed to categorical land cover change. We find that nearly 23% of land across 200 countries have relatively high conversion pressure, potentially impacting over 460 million ha of intact natural lands. We illustrate how this information can be used to identify areas for proactive conservation to avoid future loss and ensure that national commitments under the Kunming-Montreal Global Biodiversity and Paris Agreement Climate Frameworks are upheld.
Collapse
Affiliation(s)
- James Oakleaf
- Global Protect Oceans, Lands and Waters, The Nature Conservancy, Fort Collins, CO, 80524, USA.
| | - Christina Kennedy
- Global Science, The Nature Conservancy, Fort Collins, CO, 80521, USA
| | - Nicholas H Wolff
- Global Science, The Nature Conservancy, Brunswick, ME, 04011, USA
| | - Drew E Terasaki Hart
- Natural Climate Solutions Science, The Nature Conservancy, Arlington, VA, 22203, USA
- CSIRO Environment, Brisbane, Queensland, 4102, Australia
| | - Peter Ellis
- Natural Climate Solutions Science, The Nature Conservancy, Arlington, VA, 22203, USA
| | - David M Theobald
- Conservation Planning Technologies, Fort Collins, CO, 80521, USA
| | - Brandie Fariss
- Global Protect Oceans, Lands and Waters, The Nature Conservancy, Fort Collins, CO, 80524, USA
| | | | - Joseph Kiesecker
- Global Protect Oceans, Lands and Waters, The Nature Conservancy, Fort Collins, CO, 80524, USA
| |
Collapse
|
15
|
Li BV, Wu S, Pimm SL, Cui J. The synergy between protected area effectiveness and economic growth. Curr Biol 2024; 34:2907-2920.e5. [PMID: 38906143 DOI: 10.1016/j.cub.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/01/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Protected areas conserve biodiversity and ecosystem functions but might impede local economic growth. Understanding the global patterns and predictors of different relationships between protected area effectiveness and neighboring community economic growth can inform better implementation of the Kunming-Montreal Global Biodiversity Framework. We assessed 10,143 protected areas globally with matched samples to address the non-random location of protected areas. Our results show that protected areas resist human-induced land cover changes and do not limit nightlight increases in neighboring settlements. This result is robust, using different matching techniques, parameter settings, and selection of covariates. We identify four types of relationships between land cover changes and nightlight changes for each protected area: "synergy," "retreat," and two tradeoff relationships. About half of the protected areas (47.5%) retain their natural land cover and do so despite an increase of nightlights in the neighboring communities. This synergy relationship is the most common globally but varies between biomes and continents. Synergy is less frequent in the Amazon, Southeast Asia, and some developing areas, where most biodiversity resides and which suffer more from poverty. Smaller protected areas and those with better access to cities, moderate road density, and better baseline economic conditions have a higher probability of reaching synergy. Our results are promising, as the expansion of protected areas and increased species protection will rely more on conserving the human-modified landscape with smaller protected areas. Future interventions should address local development and biodiversity conservation together to achieve more co-benefits.
Collapse
Affiliation(s)
- Binbin V Li
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu 215316, China; Nicholas School of the Environment, Duke University, Box 90328, Durham, NC 27708, USA.
| | - Shuyao Wu
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu 215316, China; Center for Yellow River Ecosystem Products, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Stuart L Pimm
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC 27708, USA
| | - Jingbo Cui
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu 215316, China
| |
Collapse
|
16
|
Peng J, Xu D, Xu Z, Tang H, Jiang H, Dong J, Liu Y. Ten key issues for ecological restoration of territorial space. Natl Sci Rev 2024; 11:nwae176. [PMID: 38883299 PMCID: PMC11173174 DOI: 10.1093/nsr/nwae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
This study innovatively puts forward the three-stage restoration goals and cutting-edge key scientific issues of ecological restoration, as well as their relationships.
Collapse
Affiliation(s)
- Jian Peng
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, China
| | - Dongmei Xu
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, China
| | - Zihan Xu
- School of Soil and Water Conservation, Beijing Forestry University, China
| | - Hui Tang
- Key Laboratory for Environmental and Urban Sciences, School of Urban Planning and Design, Shenzhen Graduate School, Peking University, China
| | - Hong Jiang
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, China
| | - Jianquan Dong
- School of Landscape Architecture, Beijing Forestry University, China
| | - Yanxu Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, China
| |
Collapse
|
17
|
Fellner A, Bresgen N, Fefer M, Liu J, Plaetzer K. Fly into the light: eliminating Drosophila melanogaster with chlorophyllin-based Photodynamic Inactivation. Photochem Photobiol Sci 2024; 23:1155-1166. [PMID: 38739325 DOI: 10.1007/s43630-024-00583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Fruit flies spoil crops in agricultural settings. As conventional pesticides may generate negative off-target effects on humans or the environment, existing treatment methods need eco-friendly and safe alternatives. Photodynamic Inactivation (PDI) is based on the photosensitizer-mediated and light-induced overproduction of reactive oxygen species in targets. We here explore the potential of PDI for the control of fruit fly pests. Drosophila melanogaster serves as well-established model organism in this study. Two distinct experimental approaches are presented: the feed assay, in which fruit flies are provided with sodium magnesium chlorophyllin (Chl, approved as food additive E140) along with sucrose (3%) as their food, and the spray assay, where the photosensitizer is sprayed onto the insects. We show that PDI based on Chl can induce moribundity rates of Drosophila melanogaster of more than 99% with 5 mM Chl and LED illumination (395 nm, 8 h incubation in the dark, radiant exposure 78.9 J/cm2) with the feed assay. If the radiant exposure is doubled to 157.8 J/cm2, 88% of insects are killed by PDI based on 1 mM Chl. The photoactive compound is also effective if presented on strawberries without addition of sucrose with somewhat lower moribundity (71% at 5 mM Chl). Spraying Chl onto insects is less effective than feeding the photosensitizer: 5 mM Chl resulted in 79.5% moribundity (drug to light interval 8 h, radiant exposure 78.9 J/cm2), but if 5 h of sun light (532 J/cm2) and overnight (14 h) dark incubation is used for activation of Chl, more than 95% of insects are killed. As conclusion, Chl serves as effective photoinsecticide against Drosophila melanogaster if a drug to light interval of 8 h is maintained. Feeding the photoactive compound together with sucrose is more effective than spraying it onto insects and increasing the radiant exposure allows for lowering the photosensitizer concentration. Photodynamic Inactivation might therefore represent an eco-friendly addition to the farmers armamentarium against (semi-transparent) insects.
Collapse
Affiliation(s)
- Andreas Fellner
- Laboratory of Photodynamic Inactivation of Microorganisms, Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Hellbrunnerstr. 34, Salzburg, Austria
| | - Nikolaus Bresgen
- Workgroup Stress Physiology, Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Hellbrunnerstr. 34, Salzburg, Austria
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K1A8, Canada
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K1A8, Canada
| | - Kristjan Plaetzer
- Laboratory of Photodynamic Inactivation of Microorganisms, Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Hellbrunnerstr. 34, Salzburg, Austria.
| |
Collapse
|
18
|
Carroll C, Hoban S, Ray JC. Lessons from COP15 on effective scientific engagement in biodiversity policy processes. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14192. [PMID: 37768193 DOI: 10.1111/cobi.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The Kunming-Montreal Global Biodiversity Framework was adopted by parties to the Convention on Biological Diversity in December 2022. The aftermath of these negotiations provides an opportunity to draw lessons as to how ecological and evolutionary science can more effectively inform policy. We examined key challenges that limit effective engagement by scientists in the biodiversity policy process, drawing parallels with analogous challenges within global climate negotiations. Biodiversity is multifaceted, yet represents only one framing for nature's contributions to people, complicating the nexus between evidence and values in development of the framework's targets. Processes generating biodiversity and driving its loss are multiscalar, challenging development of an evidence base for globally standardized targets. We illustrated these challenges by contrasting development of 2 key elements of the framework. The genetic diversity element of the framework's target 4 is directly related to the framework's primary goals, but its complexity required development of novel engagement skills. The target for protected areas was easily communicated but more indirectly related to biodiversity outcomes; evidence from ecological and social science was essential to communicating the context and limitations of this relationship. Scientists can strengthen the effectiveness of global agreements and address challenges arising from complexity, scaling, capacity limitations, and the interplay of science and values, if they can prioritize communication, consensus-building, and networking skills and engage throughout the process, from development of an evidence base to implementation.
Collapse
Affiliation(s)
- Carlos Carroll
- Klamath Center for Conservation Research, Orleans, California, USA
| | - Sean Hoban
- Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| | - Justina C Ray
- Wildlife Conservation Society Canada, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Negret PJ, Venegas R, Sonter LJ, Possingham HP, Maron M. Conservation planning for retention, not just protection. GLOBAL CHANGE BIOLOGY 2024; 30:e17211. [PMID: 38439736 DOI: 10.1111/gcb.17211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 03/06/2024]
Abstract
Most protected area (PA) planning aims to improve biota representation within the PA system, but this does not necessarily achieve the best outcomes for biota retention across regions when we also consider habitat loss in areas outside the PA system. Here, we assess the implications that different PA expansion strategies can have on the retention of species habitat across an entire region. Using retention of forest habitat for Colombia's 550 forest-dependent bird species as our outcome variable, we found that when a minimum of 30% of each species' habitat was included in the PA system, a pattern of PA expansion targeting areas at highest deforestation risk (risk-prevention) led to the retention, on average, of 7.2% more forest habitat per species by 2050 than did a pattern that targeted areas at lowest risk (risk-avoidance). The risk-prevention approach cost more per km2 of land conserved, but it was more cost-effective in retaining habitat in the landscape (50%-69% lower cost per km2 of avoided deforestation). To have the same effectiveness preventing habitat loss in Colombia, the risk-avoidance approach would require more than twice as much protected area, costing three times more in the process. Protected area expansion should focus on the contributions of PAs to outcomes not only within PA systems themselves, but across entire regions.
Collapse
Affiliation(s)
- Pablo Jose Negret
- Centre for Development and Environment, Institute of Geography, Wyss Academy for Nature, University of Bern, Bern, Switzerland
- School of the Environment, The University of Queensland, Saint Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Ruben Venegas
- School of the Environment, The University of Queensland, Saint Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Laura J Sonter
- School of the Environment, The University of Queensland, Saint Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Hugh P Possingham
- School of the Environment, The University of Queensland, Saint Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Martine Maron
- School of the Environment, The University of Queensland, Saint Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
20
|
Blowes SA, McGill B, Brambilla V, Chow CFY, Engel T, Fontrodona-Eslava A, Martins IS, McGlinn D, Moyes F, Sagouis A, Shimadzu H, van Klink R, Xu WB, Gotelli NJ, Magurran A, Dornelas M, Chase JM. Synthesis reveals approximately balanced biotic differentiation and homogenization. SCIENCE ADVANCES 2024; 10:eadj9395. [PMID: 38381832 PMCID: PMC10881054 DOI: 10.1126/sciadv.adj9395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
It is commonly thought that the biodiversity crisis includes widespread declines in the spatial variation of species composition, called biotic homogenization. Using a typology relating homogenization and differentiation to local and regional diversity changes, we synthesize patterns across 461 metacommunities surveyed for 10 to 91 years, and 64 species checklists (13 to 500+ years). Across all datasets, we found that no change was the most common outcome, but with many instances of homogenization and differentiation. A weak homogenizing trend of a 0.3% increase in species shared among communities/year on average was driven by increased numbers of widespread (high occupancy) species and strongly associated with checklist data that have longer durations and large spatial scales. At smaller spatial and temporal scales, we show that homogenization and differentiation can be driven by changes in the number and spatial distributions of both rare and common species. The multiscale perspective introduced here can help identify scale-dependent drivers underpinning biotic differentiation and homogenization.
Collapse
Affiliation(s)
- Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Brian McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Guia Marine Lab, MARE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cher F. Y. Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Thore Engel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Inês S. Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Daniel McGlinn
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hideyasu Shimadzu
- Department of Mathematical Sciences, Loughborough University, Leicestershire, UK
- Department of Data Science, Kitasato University, Kanagawa, Japan
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wu-Bing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Anne Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Guia Marine Lab, MARE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
21
|
Chaudhary A, Hertel T. Recent Developments and Challenges in Projecting the Impact of Crop Productivity Growth on Biodiversity Considering Market-Mediated Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2627-2635. [PMID: 38285505 DOI: 10.1021/acs.est.3c05137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The effect of an increase in crop productivity (output per unit of inputs) on biodiversity is hitherto poorly understood. This is because increased productivity of a crop in particular regions leads to increased profit that can encourage expansion of its cultivated area causing land use change and ultimately biodiversity loss, a phenomenon also known as "Jevons paradox" or the "rebound effect". Modeling such consequences in an interconnected and globalized world considering such rebound effects is challenging. Here, we discuss the use of computable general equilibrium (CGE) and other economic models in combination with ecological models to project consequences of crop productivity improvements for biodiversity globally. While these economic models have the advantage of taking into account market-mediated responses, resource constraints, endogenous price responses, and dynamic bilateral patterns of trade, there remain a number of important research and data gaps in these models which must be addressed to improve their performance in assessment of the link between local crop productivity changes and global biodiversity. To this end, we call for breaking the silos and building interdisciplinary networks across the globe to facilitate data sharing and knowledge exchange in order to improve global-to-local-to-global analysis of land, biodiversity, and ecosystem sustainability.
Collapse
Affiliation(s)
- Abhishek Chaudhary
- Department of Civil Engineering, Indian Institute of Technology (IIT) Kanpur, Kanpur 208016, India
| | - Thomas Hertel
- Department of Agricultural Economics, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
22
|
Neugarten RA, Chaplin-Kramer R, Sharp RP, Schuster R, Strimas-Mackey M, Roehrdanz PR, Mulligan M, van Soesbergen A, Hole D, Kennedy CM, Oakleaf JR, Johnson JA, Kiesecker J, Polasky S, Hanson JO, Rodewald AD. Mapping the planet's critical areas for biodiversity and nature's contributions to people. Nat Commun 2024; 15:261. [PMID: 38199986 PMCID: PMC10781687 DOI: 10.1038/s41467-023-43832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024] Open
Abstract
Meeting global commitments to conservation, climate, and sustainable development requires consideration of synergies and tradeoffs among targets. We evaluate the spatial congruence of ecosystems providing globally high levels of nature's contributions to people, biodiversity, and areas with high development potential across several sectors. We find that conserving approximately half of global land area through protection or sustainable management could provide 90% of the current levels of ten of nature's contributions to people and meet minimum representation targets for 26,709 terrestrial vertebrate species. This finding supports recent commitments by national governments under the Global Biodiversity Framework to conserve at least 30% of global lands and waters, and proposals to conserve half of the Earth. More than one-third of areas required for conserving nature's contributions to people and species are also highly suitable for agriculture, renewable energy, oil and gas, mining, or urban expansion. This indicates potential conflicts among conservation, climate and development goals.
Collapse
Affiliation(s)
- Rachel A Neugarten
- Department of Natural Resources and Environment, Cornell University, 226 Mann Drive, Ithaca, NY, 14853, USA.
- Conservation International, 2100 Crystal Drive #600, Arlington, VA, 22202, USA.
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA.
| | - Rebecca Chaplin-Kramer
- Global Science, WWF, 131 Steuart St, San Francisco, CA, 94105, USA
- Institute on the Environment, University of Minnesota, 1954 Buford Ave, St. Paul, MN, 55108, USA
| | - Richard P Sharp
- Global Science, WWF, 131 Steuart St, San Francisco, CA, 94105, USA
- SPRING, 5455 Shafter Ave, Oakland, CA, 94618, USA
| | - Richard Schuster
- Nature Conservancy of Canada, 245 Eglinton Ave East, Suite 410, Toronto, ON, M4P 3J1, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Matthew Strimas-Mackey
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Patrick R Roehrdanz
- Conservation International, 2100 Crystal Drive #600, Arlington, VA, 22202, USA
| | - Mark Mulligan
- Department of Geography, King's College London, Bush House, North East Wing, 40 Aldwych, London, WC2B 4BG, UK
| | - Arnout van Soesbergen
- Department of Geography, King's College London, Bush House, North East Wing, 40 Aldwych, London, WC2B 4BG, UK
- UN Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge, CB3 0DL, UK
| | - David Hole
- Conservation International, 2100 Crystal Drive #600, Arlington, VA, 22202, USA
| | | | - James R Oakleaf
- Global Protect Oceans, Lands and Waters Program, The Nature Conservancy, Fort Collins, CO, 80524, USA
| | - Justin A Johnson
- Department of Applied Economics, University of Minnesota, St. Paul, MN, 55108, USA
- Natural Capital Project, University of Minnesota, St. Paul, MN, 55108, USA
| | - Joseph Kiesecker
- Global Protect Oceans, Lands and Waters Program, The Nature Conservancy, Fort Collins, CO, 80524, USA
| | - Stephen Polasky
- Department of Applied Economics, University of Minnesota, St. Paul, MN, 55108, USA
- Natural Capital Project, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Amanda D Rodewald
- Department of Natural Resources and Environment, Cornell University, 226 Mann Drive, Ithaca, NY, 14853, USA
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| |
Collapse
|
23
|
Sievers M, Brown CJ, McGowan J, Turschwell MP, Buelow CA, Holgate B, Pearson RM, Adame MF, Andradi-Brown DA, Arnell A, Mackey BG, Ermgassen PSEZ, Gosling J, McOwen CJ, Worthington TA, Connolly RM. Co-occurrence of biodiversity, carbon storage, coastal protection, and fish and invertebrate production to inform global mangrove conservation planning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166357. [PMID: 37595913 DOI: 10.1016/j.scitotenv.2023.166357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Mangrove forests support unique biodiversity and provide a suite of ecosystem services (ES) that benefit people. Decades of continual mangrove loss and degradation have necessitated global efforts to protect and restore this important ecosystem. Generating and evaluating asset maps of biodiversity and ES is an important precursor to identifying locations that can deliver conservation outcomes across varying scales, such as maximising the co-occurrence of specific ES. We bring together global datasets on mangrove-affiliated biodiversity, carbon stocks, fish and invertebrate production, and coastal protection to provide insight into potential trade-offs, synergies and opportunities from mangrove conservation. We map opportunities where high ES provision co-occurs with these areas that could be leveraged in conservation planning, and identify potential high-value opportunities for single ES that might otherwise be missed with a biodiversity focus. Hotspots of single ES, co-occurrence of multiple ES, and opportunities to simultaneously leverage biodiversity and ES occurred throughout the world. For example, efforts that focus on conserving or restoring mangroves to store carbon can be targed to deliver multiple ES benefits. Some nations, such as Vietnam, Oman, Ecuador and China, showed consistent (although not necessarily strong) correlations between ES pairs. A lack of clear or consistent spatial trends elsewhere suggests that some nations will likely benefit more from complementarity-based approaches that focus on multiple sites with high provision of different services. Individual sites within these nations, however, such as Laguna de Terminos in Mexico still provide valuable opportunities to leverage co-benefits. Ensuring that an ES focused approach is complemented by strategic spatial planning is a priority, and our analyses provide a precursor towards decisions about where and how to invest.
Collapse
Affiliation(s)
- Michael Sievers
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Christopher J Brown
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania 7053, Australia
| | - Jennifer McGowan
- The Nature Conservancy, 4245 Fairfax Dr #100, Arlington, VA 22203, United States of America; Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Mischa P Turschwell
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Christina A Buelow
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Briana Holgate
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Ryan M Pearson
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Maria F Adame
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Andy Arnell
- UN Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge CB3 0DL, United Kingdom
| | - Brendan G Mackey
- Griffith Climate Action Beacon, Griffith University, Gold Coast 4222, Queensland, Australia
| | - Philine S E Zu Ermgassen
- Changing Oceans Group, School of Geosciences, University of Edinburgh, James Hutton Rd, King's Buildings, Edinburgh EH9 3FE, United Kingdom
| | - Joe Gosling
- UN Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge CB3 0DL, United Kingdom
| | - Chris J McOwen
- UN Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge CB3 0DL, United Kingdom
| | - Thomas A Worthington
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Rod M Connolly
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
24
|
Aschi F, Dekker SC, van Vuuren DP, Bogaart PW, Rijsdijk KF, van Loon EE. Costs and benefits of protecting linear landscape elements: Applying systematic conservation planning on a case study in the Netherlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119262. [PMID: 37866179 DOI: 10.1016/j.jenvman.2023.119262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Protecting and increasing linear landscape elements (LLEs) in agricultural lands is regarded as a possible solution for a transition to a more biodiverse agricultural system. However, optimizing the spatial configuration of LLEs protected areas is challenging, especially given the demand for land for food production. Systematic Conservation Planning (SCP) can address this challenge, by prioritizing cost-efficient protection areas. We used a SCP approach to look at the LLEs network in the Province of Noord-Brabant in the Netherlands, identifying the possible trade-off between optimizing species conservation, costs and the monetary values of ecosystem services (ES). For this we defined two scenarios. One scenario focuses on achieving species conservation targets at the minimum cost, and the other focuses on achieving targets while maximizing the benefits provided by ES. For each scenario, we further developed two land-management options, namely land-sharing and land-sparing. For each solution, we tested their cost-effectiveness by calculating implementation costs, economic benefits provided by ES, and cost/benefit ratios. First, our scenario analysis indicates that the economic benefits provided by ES always outweigh the implementation costs. Second, it shows that including ES as co-benefits in SCP (Maximize ES Scenario) yields more cost-efficient conservation solutions. Third, both land-sharing and land-sparing are possible cost-efficient approaches to achieve conservation targets. Our results are spatially explicit and identify crucial habitat areas for the conservation of the selected species, which represent 12-20% of the current unprotected network of LLEs. Our findings showcase net economic benefit of conserving species and LLEs, thus representing an additional reason for biodiversity conservation.
Collapse
Affiliation(s)
- Flavia Aschi
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands; Netherlands Environmental Assessment Agency (PBL), The Hague, the Netherlands.
| | - Stefan C Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
| | - Detlef P van Vuuren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands; Netherlands Environmental Assessment Agency (PBL), The Hague, the Netherlands
| | - Patrick W Bogaart
- Department of National Accounts, Statistics Netherlands, The Hague, the Netherlands
| | - Kenneth F Rijsdijk
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - E Emiel van Loon
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Arlidge WNS, Arlinghaus R, Kurvers RHJM, Nassauer A, Oyanedel R, Krause J. Situational social influence leading to non-compliance with conservation rules. Trends Ecol Evol 2023; 38:1154-1164. [PMID: 37634956 DOI: 10.1016/j.tree.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
It is well established that the decisions that we make can be strongly influenced by the behaviour of others. However, testing how social influence can lead to non-compliance with conservation rules during an individual's decision-making process has received little research attention. We synthesise advances in understanding of conformity and rule-breaking in individuals and in groups, and take a situational approach to studying the social dynamics and ensuing social identity changes that can lead to non-compliant decision-making. We focus on situational social influence contagion that are copresent (i.e., same space and same time) or trace-based (i.e., behavioural traces in the same space). We then suggest approaches for testing how situational social influence can lead to certain behaviours in non-compliance with conservation rules.
Collapse
Affiliation(s)
- William N S Arlidge
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| | - Robert Arlinghaus
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany; Faculty of Life Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany; SCIoI Excellence Cluster, 10587 Berlin, Germany
| | - Ralf H J M Kurvers
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany; SCIoI Excellence Cluster, 10587 Berlin, Germany; Center for Adaptive Rationality, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Anne Nassauer
- Faculty of Economics, Law and Social Sciences, University of Erfurt, Nordhäuser Str. 63 99089 Erfurt, Germany
| | - Rodrigo Oyanedel
- Instituto Milenio en Socio-Ecología Costera (SECOS), Av. Libertador Bernardo O'Higgins 340, Santiago, Región Metropolitana, Chile; Centro de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)- Universidad Austral de Chile, Edificio Emilio Pugin, piso 1 Campus Isla Teja, Valdivia, Región de los Ríos, Chile
| | - Jens Krause
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany; Faculty of Life Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany; SCIoI Excellence Cluster, 10587 Berlin, Germany
| |
Collapse
|
26
|
Chen K, Midway SR, Peoples BK, Wang B, Olden JD. Shifting taxonomic and functional community composition of rivers under land use change. Ecology 2023; 104:e4155. [PMID: 37611172 DOI: 10.1002/ecy.4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 08/25/2023]
Abstract
Land use intensification has led to conspicuous changes in plant and animal communities across the world. Shifts in trait-based functional composition have recently been hypothesized to manifest at lower levels of environmental change when compared to species-based taxonomic composition; however, little is known about the commonalities in these responses across taxonomic groups and geographic regions. We investigated this hypothesis by testing for taxonomic and geographic similarities in the composition of riverine fish and insect communities across gradients of land use in major hydrological regions of the conterminous United States. We analyzed an extensive data set representing 556 species and 33 functional trait modalities from 8023 fish communities and 1434 taxa and 50 trait modalities from 5197 aquatic insect communities. Our results demonstrate abrupt threshold changes in both taxonomic and functional community composition due to land use conversion. Functional composition consistently demonstrated lower land use threshold responses compared to taxonomic composition for both fish (urban p = 0.069; agriculture p = 0.029) and insect (urban p = 0.095; agriculture p = 0.043) communities according to gradient forest models. We found significantly lower thresholds for urban versus agricultural land use for fishes (taxonomic and functional p < 0.001) and insects (taxonomic p = 0.001; functional p = 0.033). We further revealed that threshold responses in functional composition were more geographically consistent than for taxonomic composition to both urban and agricultural land use change. Traits contributing the most to overall functional composition change differed along urban and agricultural land gradients and conformed to predicted ecological mechanisms underpinning community change. This study points to reliable early-warning thresholds that accurately forecast compositional shifts in riverine communities to land use conversion, and highlight the importance of considering trait-based indicators of community change to inform large-scale land use management strategies and policies.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Stephen R Midway
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Brandon K Peoples
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, South Carolina, USA
| | - Beixin Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Ferreira MR, Belluardo F, Cocca W, Crottini A, Carvalho SB. A conservation planning strategy applied to the evolutionary history of the mantellid frogs of Madagascar. NPJ BIODIVERSITY 2023; 2:21. [PMID: 39242839 PMCID: PMC11332064 DOI: 10.1038/s44185-023-00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/04/2023] [Indexed: 09/09/2024]
Abstract
Phylogenetic diversity is an increasingly applied metric used to maximize the representation of evolutionary history in spatial conservation planning. When following this approach, researchers commonly overlook sites with a relatively higher proportion of recently diverged endemic species, also known as centers of neo-endemism. Here we aim to demonstrate how targeting the conservation of different facets of diversity (taxonomic diversity, phylogenetic diversity and centers of endemism) can provide more cost-effective solutions to the conservation of the all evolutionary spectrum of biodiversity. We do so by using the mantellid frogs of Madagascar as a case study. Our results confirm that areas with high concentrations of neo-endemism can be effectively identified as conservation planning priorities only if we specifically target them. Neglecting areas that are poor in phylogenetic diversity may therefore compromise the maintenance of diversification processes, particularly when lesser proportions of the landscape are protected. This approach can be of particular interest to island ecosystems, since they often harbor unique and restricted evolutionary radiations.
Collapse
Affiliation(s)
- Miguel R Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Francesco Belluardo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Walter Cocca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Sílvia B Carvalho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
28
|
Buchadas A, Jung M, Bustamante M, Fernández-Llamazares Á, Garnett ST, Nanni AS, Ribeiro N, Meyfroidt P, Kuemmerle T. Tropical dry woodland loss occurs disproportionately in areas of highest conservation value. GLOBAL CHANGE BIOLOGY 2023; 29:4880-4897. [PMID: 37365752 DOI: 10.1111/gcb.16832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Tropical and subtropical dry woodlands are rich in biodiversity and carbon. Yet, many of these woodlands are under high deforestation pressure and remain weakly protected. Here, we assessed how deforestation dynamics relate to areas of woodland protection and to conservation priorities across the world's tropical dry woodlands. Specifically, we characterized different types of deforestation frontier from 2000 to 2020 and compared them to protected areas (PAs), Indigenous Peoples' lands and conservation areas for biodiversity, carbon and water. We found that global conservation priorities were always overrepresented in tropical dry woodlands compared to the rest of the globe (between 4% and 96% more than expected, depending on the type of conservation priority). Moreover, about 41% of all dry woodlands were characterized as deforestation frontiers, and these frontiers have been falling disproportionately in areas with important regional (i.e. tropical dry woodland) conservation assets. While deforestation frontiers were identified within all tropical dry woodland classes of woodland protection, they were lower than the average within protected areas coinciding with Indigenous Peoples' lands (23%), and within other PAs (28%). However, within PAs, deforestation frontiers have also been disproportionately affecting regional conservation assets. Many emerging deforestation frontiers were identified outside but close to PAs, highlighting a growing threat that the conserved areas of dry woodland will become isolated. Understanding how deforestation frontiers coincide with major types of current woodland protection can help target context-specific conservation policies and interventions to tropical dry woodland conservation assets (e.g. PAs in which deforestation is rampant require stronger enforcement, inactive deforestation frontiers could benefit from restoration). Our analyses also identify recurring patterns that can be used to test the transferability of governance approaches and promote learning across social-ecological contexts.
Collapse
Affiliation(s)
- Ana Buchadas
- Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
- Integrated Research Institute on Transformations of Human-Environment Systems (IRI THESys), Berlin, Germany
| | - Martin Jung
- Biodiversity, Ecology and Conservation Research Group, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Mercedes Bustamante
- Department of Ecology, University of Brasília, Brasília, Federal District, Brazil
| | - Álvaro Fernández-Llamazares
- Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Ciència I Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stephen T Garnett
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - Ana Sofía Nanni
- Instituto de Ecología Regional (UNT-CONICET), Universidad Nacional de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Natasha Ribeiro
- Faculty of Agronomy and Forest Engineering, Universidade Eduardo Mondlane, Maputo, Mozambique
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Patrick Meyfroidt
- Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
- F.R.S.-FNRS, Brussels, Belgium
| | - Tobias Kuemmerle
- Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
- Integrated Research Institute on Transformations of Human-Environment Systems (IRI THESys), Berlin, Germany
| |
Collapse
|
29
|
Wang Y, Zhang C, Qiu L, Yang B, Dai Q. Gaps in mammal conservation in China: An analysis with a framework based on minimum area requirements. GLOBAL CHANGE BIOLOGY 2023; 29:5224-5239. [PMID: 37430455 DOI: 10.1111/gcb.16843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Climate change, habitat loss, and human disturbance are major threats to biodiversity. Protecting habitats plays a pivotal role in biodiversity conservation, and there is a global imperative to establish an effective system of protected areas (PAs) to implement habitat conservation and halt biodiversity decline. However, the protected patch size of habitat for a species is just as important for biodiversity conservation as the expansion of areas already under protection. In China, conservation management is often carried out based on administrative divisions. Therefore, here, an analytical conservation management framework was developed based on administrative divisions to assess whether the current network of PAs can effectively meet species' conservation needs using the minimum area requirements (MARs) of species as criteria for medium and large-sized mammals in China. This study found that the MAR of medium and large-sized mammals was larger in the northwest and smaller in the southeast, while taking the Hu line as the dividing line. Precipitation seasonality, elevation, annual mean temperature, and annual precipitation are the main environmental factors driving the distribution of a species MAR. Compared with MAR for each species, the maximum protected patch size of habitat is severely undersized in most provinces where those species primarily distribute, and this is particularly true for large carnivores and threatened species. The densely populated provinces of eastern China are particularly affected by this. The present study's framework can identify the provinces needing to expand PAs or implement other effective area-based conservation measures and habitat restoration. This analytical framework is also relevant for biodiversity conservation in different taxa and regions around the globe.
Collapse
Affiliation(s)
- Yihong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chengcheng Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lan Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Biao Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, China
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Gaston KJ, Phillips BB, Soga M. Personalised ecology and the future of biodiversity. CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e18. [PMID: 40078673 PMCID: PMC11895722 DOI: 10.1017/ext.2023.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 03/14/2025]
Abstract
The future of biodiversity lies not just in the strategies and mechanisms by which ecosystems and species are practically best protected from anthropogenic pressures. It lies also, and perhaps foremost, in the many billions of decisions that people make that, intentionally or otherwise, shape their impact on nature and the conservation policies and interventions that are implemented. Personalised ecology - the set of direct sensory interactions that each of us has with nature - is one important consideration in understanding the decisions that people make. Indeed, it has long been argued that people's personalised ecologies have powerful implications, as captured in such concepts as biophilia, extinction of experience and shifting baselines. In this paper, we briefly review the connections between personalised ecology and the future of biodiversity, and the ways in which personalised ecologies might usefully be enhanced to improve that future.
Collapse
Affiliation(s)
- Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | | | - Masashi Soga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Deteix L, Salou T, Drogué S, Loiseau E. The importance of land in resource criticality assessment methods: A first step towards characterising supply risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163248. [PMID: 37023826 DOI: 10.1016/j.scitotenv.2023.163248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Land is a key resource for human activities under growing pressure. Resource criticality assessment methods investigate the extent to which a resource may become a limiting factor according to various dimensions, including geological, economic and geopolitical availability. They have been applied to resources like minerals, fossil fuels, biotic material or water, but none consider land resources, i.e. natural land units providing space and support for human activities. Based on two recognised criticality methods developed by i) the Yale University and ii) the Joint Research Centre of the European Commission, this study aims to develop spatialized land supply risk indexes at country level. The accessibility of raw resources can be quantified and compared using the supply risk index. The specific characteristics of land call for certain adaptations of the criticality approach, and are designed to ensure comparability between resources. The main adaptations include the definition of land stress and the internal land concentration index. Land stress represents the physical availability of land, while internal land concentration relates to the concentration of landowners within a country. Finally, land supply risk indexes are computed for 76 countries, including 24 European countries for which the results of the two criticality methods are compared. Comparison points to divergences in the countries ranking for land accessibility, thus underlining the importance of methodological choices in the construction of the indexes. Data quality is discussed for European countries with the JRC method, and the use of alternative data sources reveals that it may lead to differences in absolute values, although the ranking of countries with low or high land supply risk does not change. Finally, this work covers a gap in criticality methods by including land resources. These resources can be critical for certain countries, and are essential for human activities such as food or energy production.
Collapse
Affiliation(s)
- Lazare Deteix
- ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; Elsa, Research Group for Environmental Lifecycle & Sustainability Assessment, Montpellier, France.
| | - Thibault Salou
- ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; Elsa, Research Group for Environmental Lifecycle & Sustainability Assessment, Montpellier, France
| | - Sophie Drogué
- MoISA, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Eléonore Loiseau
- ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; Elsa, Research Group for Environmental Lifecycle & Sustainability Assessment, Montpellier, France
| |
Collapse
|
32
|
Cosma S, Rimo G, Cosma S. Conservation finance: What are we not doing? A review and research agenda. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117649. [PMID: 36870317 DOI: 10.1016/j.jenvman.2023.117649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Conservation finance embraces a series of innovative financing mechanisms aimed at raising and managing capital to be used for the conservation of biodiversity. The climate emergency and the pursuit of sustainable development underline the criticality of financial support for achieving this goal. Funding for the protection of biodiversity, in fact, has long been disbursed by governments in a residual form, only after they have dealt with social needs and political challenges. To date, the main challenge of conservation finance is to identify solutions that not only generate new revenue for biodiversity, but also effectively manage and allocate existing funding to provide a mix of social and community benefits as well. The paper, therefore, aims to act as a wake-up call, urging academics working in economics and finance to turn their attention to resolving the financial problems faced by conservation. Through a comparative bibliometric analysis, the study aims to outline the structure of scientific research on the topic of conservation finance, to understand the state of the art, and to identify open questions and new research trends. The results of the study show that the topic of conservation finance is currently a prerogative of scholars and journals of ecology, biology and environmental sciences. Finance scholars pay very little attention to the topic and yet there are many opportunities/needs for future research. The results are of interest to researchers in banking and finance, policy-makers and managers.
Collapse
Affiliation(s)
- Simona Cosma
- Department of Management, University of Bologna, Via Capo di, Lucca, 34, 40126, Bologna, Italy.
| | - Giuseppe Rimo
- Department of Economics, University of Salento, Via per Monteroni, 73100, Lecce, Italy.
| | - Stefano Cosma
- Department of Economics Marco Biagi, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
33
|
Zeng Y, Senior RA, Crawford CL, Wilcove DS. Gaps and weaknesses in the global protected area network for safeguarding at-risk species. SCIENCE ADVANCES 2023; 9:eadg0288. [PMID: 37267362 PMCID: PMC10413669 DOI: 10.1126/sciadv.adg0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/01/2023] [Indexed: 06/04/2023]
Abstract
Protected areas are essential to biodiversity conservation. Creating new parks can protect larger populations and more species, yet strengthening existing parks, particularly those vulnerable to harmful human activities, is a critical but underappreciated step for safeguarding at-risk species. Here, we model the area of habitat that terrestrial mammals, amphibians, and birds have within park networks and their vulnerability to current downgrading, downsizing, or degazettement events and future land-use change. We find that roughly 70% of species analyzed have scant representation in parks, or occur within parks that are affected by shifts in formal legal protections or are vulnerable to increased human pressures. Our results also show that expanding and strengthening park networks across just 1% of the world's land area could preserve irreplaceable habitats of 1191 species that are particularly vulnerable to extinction.
Collapse
Affiliation(s)
- Yiwen Zeng
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Rebecca A. Senior
- Conservation Ecology Group, Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Christopher L. Crawford
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - David S. Wilcove
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
34
|
Chowdhury S, Aich U, Rokonuzzaman M, Alam S, Das P, Siddika A, Ahmed S, Labi MM, Marco MD, Fuller RA, Callaghan CT. Increasing biodiversity knowledge through social media: A case study from tropical Bangladesh. Bioscience 2023; 73:453-459. [PMID: 37397834 PMCID: PMC10308356 DOI: 10.1093/biosci/biad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 07/04/2023] Open
Abstract
Citizen science programs are becoming increasingly popular among naturalists but remain heavily biased taxonomically and geographically. However, with the explosive popularity of social media and the near-ubiquitous availability of smartphones, many post wildlife photographs on social media. Here, we illustrate the potential of harvesting these data to enhance our biodiversity understanding using Bangladesh, a tropical biodiverse country, as a case study. We compared biodiversity records extracted from Facebook with those from the Global Biodiversity Information Facility (GBIF), collating geospatial records for 1013 unique species, including 970 species from Facebook and 712 species from GBIF. Although most observation records were biased toward major cities, the Facebook records were more evenly spatially distributed. About 86% of the Threatened species records were from Facebook, whereas the GBIF records were almost entirely Of Least Concern species. To reduce the global biodiversity data shortfall, a key research priority now is the development of mechanisms for extracting and interpreting social media biodiversity data.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, University of Queensland, in Saint Lucia, Queensland, Australia
- Institute of Biodiversity, Friedrich Schiller University Jena, in Jena, Germany
- Helmholtz Centre for Environmental Research—UFZ, Department of Ecosystem Services, in Leipzig, Germany
- German Centre for Integrative Biodiversity Research, in Leipzig, Germany
| | - Upama Aich
- School of Biological Sciences, Monash University, in Clayton, Victoria, Australia
| | - Md Rokonuzzaman
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Shofiul Alam
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Priyanka Das
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Asma Siddika
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Sultan Ahmed
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | | | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, in Rome, Italy
| | - Richard A Fuller
- School of Biological Sciences, University of Queensland, in Saint Lucia, Queensland, Australia
| | - Corey T Callaghan
- Department of Wildlife Ecology and Conservation, Fort Lauderdale, Florida, United States
- Research and Education Center, University of Florida, Davie, Florida, United States
| |
Collapse
|
35
|
Simmonds JS, Suarez-Castro AF, Reside AE, Watson JEM, Allan JR, Atkinson SC, Borrelli P, Dudley N, Edwards S, Fuller RA, Game ET, Linke S, Maxwell SL, Panagos P, Puydarrieux P, Quétier F, Runting RK, Santini T, Sonter LJ, Maron M. Retaining natural vegetation to safeguard biodiversity and humanity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14040. [PMID: 36424859 DOI: 10.1111/cobi.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 05/30/2023]
Abstract
Global efforts to deliver internationally agreed goals to reduce carbon emissions, halt biodiversity loss, and retain essential ecosystem services have been poorly integrated. These goals rely in part on preserving natural (e.g., native, largely unmodified) and seminatural (e.g., low intensity or sustainable human use) forests, woodlands, and grasslands. To show how to unify these goals, we empirically derived spatially explicit, quantitative, area-based targets for the retention of natural and seminatural (e.g., native) terrestrial vegetation worldwide. We used a 250-m-resolution map of natural and seminatural vegetation cover and, from this, selected areas identified under different international agreements as being important for achieving global biodiversity, carbon, soil, and water targets. At least 67 million km2 of Earth's terrestrial vegetation (∼79% of the area of vegetation remaining) required retention to contribute to biodiversity, climate, soil, and freshwater conservation objectives under 4 United Nations' resolutions. This equates to retaining natural and seminatural vegetation across at least 50% of the total terrestrial (excluding Antarctica) surface of Earth. Retention efforts could contribute to multiple goals simultaneously, especially where natural and seminatural vegetation can be managed to achieve cobenefits for biodiversity, carbon storage, and ecosystem service provision. Such management can and should co-occur and be driven by people who live in and rely on places where natural and sustainably managed vegetation remains in situ and must be complemented by restoration and appropriate management of more human-modified environments if global goals are to be realized.
Collapse
Affiliation(s)
- Jeremy S Simmonds
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Andres Felipe Suarez-Castro
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, D.C., Colombia
| | - April E Reside
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - James E M Watson
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Global Conservation Program, Wildlife Conservation Society, Bronx, New York, USA
| | - James R Allan
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | | | - Pasquale Borrelli
- Department of Science, Roma Tre University, Rome, Italy
- Department of Biological Environment, Kangwon National University, Chuncheon, Republic of Korea
| | | | - Stephen Edwards
- International Union for Conservation of Nature (IUCN), Gland, Switzerland
| | - Richard A Fuller
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Edward T Game
- The Nature Conservancy, South Brisbane, Queensland, Australia
| | - Simon Linke
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
- CSIRO Land & Water, Dutton Park, Queensland, Australia
| | - Sean L Maxwell
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Panos Panagos
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | | | | | - Rebecca K Runting
- School of Geography, The University of Melbourne, Parkville, Victoria, Australia
| | - Talitha Santini
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, Australia
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura J Sonter
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Martine Maron
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
36
|
Wang L, Wei F, Svenning JC. Accelerated cropland expansion into high integrity forests and protected areas globally in the 21st century. iScience 2023; 26:106450. [PMID: 37034983 PMCID: PMC10074200 DOI: 10.1016/j.isci.2023.106450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Intact forests and protected areas (PAs) are central to global biodiversity conservation and nature-based climate change mitigation. However, cropland encroachment threatens the ecological integrity and resilience of their functioning. Using satellite observations, we find that a large proportion of croplands in the remaining forests globally have been gained during 2003-2019, especially for high-integrity forests (62%) and non-forest biomes (60%) and tropical forests (47%). Cropland expansion during 2011-2019 in forests globally has even doubled (130% relative increase) than 2003-2011, with high medium-integrity (190%) and high-integrity (165%) categories and non-forest (182%) and tropical forest biomes (136%) showing higher acceleration. Unexpectedly, a quarter of croplands in PAs globally were gained during 2003-2019, again with a recent accelerated expansion (48%). These results suggest insufficient protection of these irreplaceable landscapes and a major challenge to global conservation. More effective local, national, and international coordination among sustainable development goals 15, 13, and 2 is urgently needed.
Collapse
Affiliation(s)
- Lanhui Wang
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) and Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Fangli Wei
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| |
Collapse
|
37
|
Sandbrook C, Albury-Smith S, Allan JR, Bhola N, Bingham HC, Brockington D, Byaruhanga AB, Fajardo J, Fitzsimons J, Franks P, Fleischman F, Frechette A, Kakuyo K, Kaptoyo E, Kuemmerle T, Kalunda PN, Nuvunga M, O'Donnell B, Onyai F, Pfeifer M, Pritchard R, Ramos A, Rao M, Ryan CM, Shyamsundar P, Tauli J, Tumusiime DM, Vilaça M, Watmough GR, Worsdell T, Zaehringer JG. Social considerations are crucial to success in implementing the 30×30 global conservation target. Nat Ecol Evol 2023:10.1038/s41559-023-02048-2. [PMID: 37046146 DOI: 10.1038/s41559-023-02048-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- Chris Sandbrook
- Department of Geography, University of Cambridge, Cambridge, UK.
| | | | | | - Nina Bhola
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Heather C Bingham
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Dan Brockington
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, ICREA, Barcelona, Spain
| | | | - Javier Fajardo
- Department of Geography, University of Cambridge, Cambridge, UK
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - James Fitzsimons
- The Nature Conservancy, Carlton, Victoria, Australia
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Phil Franks
- International Institute for Environment and Development, Edinburgh, UK
| | - Forrest Fleischman
- Department of Forest Resources, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | - Tobias Kuemmerle
- Geography Department, Humboldt University of Berlin, Berlin, Germany
- Integrated Research Institute for Transformations in Human-Environment Systems (IRI THESys), Humboldt University of Berlin, Berlin, Germany
| | | | | | | | - Fred Onyai
- National Environment Management Authority, Kampala, Uganda
| | - Marion Pfeifer
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
| | - Rose Pritchard
- Global Development Institute, University of Manchester, Manchester, UK
| | - Ameyali Ramos
- IUCN Commission on Environment, Economic and Social Policy, Gland, Switzerland
| | - Madhu Rao
- IUCN World Commission on Protected Areas, Gland, Switzerland
| | - Casey M Ryan
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | | | - Josefa Tauli
- Global Youth Biodiversity Network, Baguio City, Philippines
| | - David Mwesigye Tumusiime
- Makerere University Biological Field Station, Fort Portal City, Uganda
- Department of Environmental Management, Makerere University, Kampala, Uganda
| | - Mônica Vilaça
- The Nature Conservancy, João Pessoa, Brazil
- Doctorate Program in Sociology, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Gary R Watmough
- School of Geosciences, University of Edinburgh, Edinburgh, UK
- Novel Data Ecosystems for Sustainability, International Institute of Applied Systems Analysis, Laxenburg, Austria
| | - Thomas Worsdell
- IUCN Commission on Environment, Economic and Social Policy, Gland, Switzerland
- Amazon Frontlines, Nuava Loja, Ecuador
| | - Julie G Zaehringer
- Wyss Academy for Nature, Centre for Development and Environment & Institute of Geography, University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Cardillo M, Skeels A, Dinnage R. Priorities for conserving the world's terrestrial mammals based on over-the-horizon extinction risk. Curr Biol 2023; 33:1381-1388.e6. [PMID: 37040697 DOI: 10.1016/j.cub.2023.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 04/13/2023]
Abstract
Three major axes of global change put the world's mammal biodiversity at risk: climate change, human population growth, and land-use change.1,2,3,4,5,6,7,8,9,10,11,12 In some parts of the world the full effects of these threats on species will only be felt in decades to come, yet conservation emphasizes species currently threatened with extinction, by threats that have already occurred. There have been calls for conservation to become more proactive by anticipating and protecting species that may not yet be threatened, but have a high chance of becoming threatened in the future.3,6,8,10,12,13,14 We refer to this as "over-the-horizon" extinction risk, and we identify such species among the world's nonmarine mammals by considering not only the severity of increase in threats faced by each species, but also the way each species' biology confers sensitivity or robustness to threats. We define four future risk factors based on species' biology and projected exposure to severe change in climate, human population, and land use. We regard species with two or more of these risk factors as especially vulnerable to future extinction risk.10,15,16,17,18,19 Our models predict that by 2100 up to 1,057 (20%) of nonmarine mammal species will have combinations of two or more future risk factors. These species will be particularly concentrated in two future risk hotspots in sub-Saharan Africa and southern/eastern Australia. Proactively targeting species with over-the-horizon extinction risk could help to future-proof global conservation planning and prevent a new wave of mammal species from becoming threatened with extinction by the end of this century.
Collapse
Affiliation(s)
- Marcel Cardillo
- Research School of Biology, Australian National University, 46 Sullivans Creek Rd, Acton, ACT 0200, Australia.
| | - Alexander Skeels
- Research School of Biology, Australian National University, 46 Sullivans Creek Rd, Acton, ACT 0200, Australia; Landscape Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Russell Dinnage
- Research School of Biology, Australian National University, 46 Sullivans Creek Rd, Acton, ACT 0200, Australia; Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
39
|
Currie J, Merritt W, Liang C, Sothe C, Beatty CR, Shackelford N, Hirsh‐Pearson K, Gonsamo A, Snider J. Prioritizing ecological restoration of converted lands in Canada by spatially integrating organic carbon storage and biodiversity benefits. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Affiliation(s)
- Jessica Currie
- World Wildlife Fund Canada 410 Adelaide Street West Toronto Ontario M5V 1S8 Canada
| | - Will Merritt
- World Wildlife Fund Canada 410 Adelaide Street West Toronto Ontario M5V 1S8 Canada
| | - Chris Liang
- World Wildlife Fund Canada 410 Adelaide Street West Toronto Ontario M5V 1S8 Canada
| | - Camile Sothe
- School of Earth, Environment and Society McMaster University 1280 Main Street West Hamilton Ontario L8S 4L8 Canada
| | - Craig R. Beatty
- World Wildlife Fund United States 1250 NW 24th Street Washington DC 20037 USA
| | - Nancy Shackelford
- School of Environmental Studies University of Victoria 3800 Finnerty Rd Victoria British Columbia V8P 5C2 Canada
| | - Kristen Hirsh‐Pearson
- Conservation Solutions Lab University of Northern British Columbia 3333 University Way Prince George British Columbia V2N 4Z9 Canada
| | - Alemu Gonsamo
- School of Earth, Environment and Society McMaster University 1280 Main Street West Hamilton Ontario L8S 4L8 Canada
| | - James Snider
- World Wildlife Fund Canada 410 Adelaide Street West Toronto Ontario M5V 1S8 Canada
| |
Collapse
|
40
|
Kundu S, Kamalakannan M, Mukherjee T, Banerjee D, Kim HW. Genetic Characterization and Insular Habitat Enveloping of Endangered Leaf-Nosed Bat, Hipposideros nicobarulae (Mammalia: Chiroptera) in India: Phylogenetic Inference and Conservation Implication. Genes (Basel) 2023; 14:genes14030765. [PMID: 36981035 PMCID: PMC10048616 DOI: 10.3390/genes14030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The Nicobar leaf-nosed Bat (Hipposideros nicobarulae) was described in the early 20th century; however, its systematic classification has been debated for over 100 years. This endangered and endemic species has achieved species status through morphological data in the last 10 years. However, the genetic information and phylogenetic relationships of H. nicobarulae remain neglected. The generated mitochondrial cytochrome b gene (mtCytb) sequences (438 bp) of H. nicobarulae contains 53.42-53.65% AT composition and 1.82% variable sites. The studied species, H. nicobarulae maintains an 8.1% to 22.6% genetic distance from other Hipposideros species. The genetic divergence estimated in this study is congruent with the concept of gene speciation in bats. The Bayesian and Maximum-Likelihood phylogenies clearly discriminated all Hipposideros species and showed a sister relationship between H. nicobarulae and H. cf. antricola. Current mtCytb-based investigations of H. nicobarulae have confirmed the species status at the molecular level. Further, the MaxEnt-based species distribution modelling illustrates the most suitable habitat of H. nicobarulae (294 km2), of which the majority (171 km2) is located on Great Nicobar Island. The present study suggests rigorous sampling across the range, taxonomic coverage, the generation of multiple molecular markers (mitochondrial and nuclear), as well as more ecological information, which will help in understanding population genetic structure, habitat suitability, and the implementation of appropriate conservation action plans for H. nicobarulae and other Hipposideros species.
Collapse
Affiliation(s)
- Shantanu Kundu
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Tanoy Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Dhriti Banerjee
- Western Ghat Regional Centre, Zoological Survey of India, Kozhikode 673006, India
- Zoological Survey of India, M Block, New Alipore, Kolkata 700053, India
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
41
|
Glaubrecht M. On the end of evolution – Humankind and the annihilation of species. ZOOL SCR 2023. [DOI: 10.1111/zsc.12592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Matthias Glaubrecht
- Department of Biodiversity of Animals Universität Hamburg Hamburg Germany
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) Zoological Museum Hamburg Hamburg Germany
| |
Collapse
|
42
|
Loch A, Scholz G, Auricht C, Sexton S, O'Connor P, Imgraben S. Valuing Protected Area Tourism Ecosystem Services Using Big Data. ENVIRONMENTAL MANAGEMENT 2023; 71:260-273. [PMID: 36396859 PMCID: PMC9672632 DOI: 10.1007/s00267-022-01746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Economic value from protected areas informs decisions for biodiversity conservation and visitor benefits. Calculating these benefits assists governments to allocate limited budget resources. This study estimated tourism ecosystem service expenditure values for a regional protected area network in South Australia (57 parks) using direct transactional data, travel costs and economic multipliers. The big dataset came from a comprehensive booking system, which helped overcome common limitations associated with survey data (e.g., key areas rather than full network and high zero-value observations). Protected areas returned AU$373.8 million in the 2018-19 base year to the South Australian economy. The results indicate that combined estimation methods coupled to big data sets provide information on baseline expenditure to engage with critical conservation and tourism sites (e.g., Kangaroo Island). In this case they offer a unique full area network expenditure estimate which is an improvement on typical survey approaches, highlighting the advantage of protected area managers investing in big data. Finally, as South Australian protected areas exceed that in many other contexts the study offers important inputs to funding narratives and protected area expansion in line with global assessment targets.
Collapse
Affiliation(s)
- Adam Loch
- Centre for Global Food and Resources, School of Economics and Public Policy, Level 6 - 10 Pulteney Street, The University of Adelaide, Adelaide, SA, Australia.
| | - Glen Scholz
- The South Australia Department for Environment and Water, Adelaide, SA, Australia
| | | | - Stuart Sexton
- The South Australia Department for Environment and Water, Adelaide, SA, Australia
| | - Patrick O'Connor
- Centre for Global Food and Resources, School of Economics and Public Policy, Level 6 - 10 Pulteney Street, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah Imgraben
- The South Australia Department for Environment and Water, Adelaide, SA, Australia
| |
Collapse
|
43
|
Chowdhury S. Threatened species could be more vulnerable to climate change in tropical countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159989. [PMID: 36347284 DOI: 10.1016/j.scitotenv.2022.159989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a major threat impacting insects globally, yet the impact on tropical insects is largely unknown. Here, I assessed the climatic vulnerability of Bangladeshi butterflies (242 species). About 42 % of species could experience range contraction, and the impact could be significantly more severe among threatened species. Depending on Socio-Economic Pathways (ssps), the future climatic condition could be unsuitable for 2 (ssp126) - 34 % (ssp585) species. The mean elevation of the suitable habitat could increase by 238 %, and the situation could be more severe for the threatened butterflies. Further, 54 % of the realised niche of butterflies could be altered. Although there might be no significant association between the shift in habitat suitability along the elevational gradient, migratory species could experience a more significant shift than non-migrants. Overall, climate change could have a severe impact on Bangladeshi butterflies. To mitigate insect decline globally and meet the Post 2020 Biodiversity Framework targets, immediate detection of climate change impact on tropical insects and developing effective conservation strategies is essential.
Collapse
Affiliation(s)
- Shawan Chowdhury
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; Helmholtz Centre for Environmental Research (UFZ), Department of Ecosystem Services, Permoserstraße 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.
| |
Collapse
|
44
|
Guerra CA, Berdugo M, Eldridge DJ, Eisenhauer N, Singh BK, Cui H, Abades S, Alfaro FD, Bamigboye AR, Bastida F, Blanco-Pastor JL, de Los Ríos A, Durán J, Grebenc T, Illán JG, Liu YR, Makhalanyane TP, Mamet S, Molina-Montenegro MA, Moreno JL, Mukherjee A, Nahberger TU, Peñaloza-Bojacá GF, Plaza C, Picó S, Verma JP, Rey A, Rodríguez A, Tedersoo L, Teixido AL, Torres-Díaz C, Trivedi P, Wang J, Wang L, Wang J, Zaady E, Zhou X, Zhou XQ, Delgado-Baquerizo M. Global hotspots for soil nature conservation. Nature 2022; 610:693-698. [PMID: 36224389 DOI: 10.1038/s41586-022-05292-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
Soils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils-that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services-peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.
Collapse
Affiliation(s)
- Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. .,Institute of Biology, Martin Luther University Halle Wittenberg, Halle(Saale), Germany. .,Institute of Biology, Leipzig University, Leipzig, Germany.
| | - Miguel Berdugo
- Institute of Integrative Biology, Department of Environment Systems Science, ETH Zürich, Zürich, Switzerland
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Haiying Cui
- Institute of Grassland Science, School of Life Science, Northeast Normal University, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China.,Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| | - Sebastian Abades
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Huechuraba, Chile
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Huechuraba, Chile.,Instituto de Ecología & Biodiversidad (IEB), Santiago, Chile
| | | | - Felipe Bastida
- CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | | | - Asunción de Los Ríos
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,Misión Biolóxica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Spain
| | - Tine Grebenc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Javier G Illán
- Department of Entomology, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, USA
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Steven Mamet
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Marco A Molina-Montenegro
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,CEAZA, Universidad Católica del Norte, Coquimbo, Chile
| | - José L Moreno
- CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | | | | | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sergio Picó
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Ana Rey
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alexandra Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alberto L Teixido
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Cristian Torres-Díaz
- Grupo de Investigación en Biodiversidad y Cambio Global (GI BCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Ling Wang
- Institute of Grassland Science, School of Life Science, Northeast Normal University, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Jianyong Wang
- Institute of Grassland Science, School of Life Science, Northeast Normal University, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Institute of Plant Sciences, Gilat Research Center, Negev, Israel
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain. .,Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
45
|
McGuire JL, Shipley BR. Dynamic priorities for conserving species. Science 2022; 376:1048-1049. [PMID: 35653475 DOI: 10.1126/science.abq0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Animals' ranges must be conserved while allowing movement for sustaining biodiversity.
Collapse
Affiliation(s)
- Jenny L McGuire
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Benjamin R Shipley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
46
|
Lemieux CJ, Beazley KF, MacKinnon D, Wright P, Kraus D, Pither R, Crawford L, Jacob AL, Hilty J. Transformational changes for achieving the Post-2020 Global Biodiversity Framework ecological connectivity goals. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The first draft of the United Nations Convention on Biological Diversity (CBD) Post-2020 Global Biodiversity Framework (GBF) includes an unprecedented call for states that have ratified the treaty (Parties) to implement measures to maintain and enhance ecological connectivity as urgent actions to abate further biodiversity loss and ecosystem decline. Considering the challenges that lie ahead for Parties to the CBD, we highlight the ways in which effective and equitable connectivity conservation can be achieved through four transformative changes, including: (1) mainstreaming connectivity retention and restoration within biodiversity conservation sector and influencing sectors (e.g., transportation, energy, agriculture, forestry); (2) mainstreaming financial resources and incentives to support effective implementation; (3) fostering collaboration with a focus on cross-sector collective action; and (4) investing in diverse forms of knowledge (co-)production and management in support of adaptive governance. We detail 15 key actions that can be used to support the implementation of these transformative changes. While ambitious, the transformative changes and associated key actions recommended in this perspective will need to be put in place with unprecedented urgency, coherency, and coordination if Parties to the CBD truly aspire to achieve the goals and targets of the forthcoming Post-2020 GBF in this new decade of biodiversity.
Collapse
Affiliation(s)
- Christopher J. Lemieux
- Canadian Council on Ecological Areas (CCEA)/Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Karen F. Beazley
- School for Resource and Environmental Studies, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David MacKinnon
- Protected Areas and Ecosystems Branch, Nova Scotia Environment, Halifax, NS B3J 2P8, Canada
| | - Pamela Wright
- Ecosystem Science and Management, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Daniel Kraus
- Wildlife Conservation Society Canada, Toronto, ON M5S 3A7, Canada
| | - Richard Pither
- Environment and Climate Change Canada, Gatineau, QC K1A 0H3, Canada
| | - Lindsay Crawford
- Environment and Climate Change Canada, Gatineau, QC K1A 0H3, Canada
| | - Aerin L. Jacob
- Ecosystem Science and Management, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
- Yellowstone to Yukon Conservation Initiative, Canmore, AB T1W 1P6, Canada
| | - Jodi Hilty
- Yellowstone to Yukon Conservation Initiative, Canmore, AB T1W 1P6, Canada
| |
Collapse
|