1
|
Liu YH, Schneider R. Histone modifications in development. Development 2025; 152:dev204384. [PMID: 40514762 DOI: 10.1242/dev.204384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
In eukaryotic cells, the genetic material is organized into chromatin, which consists mainly of DNA, histones and chromatin-associated proteins. An important regulator of chromatin structure and function are histone post-translational modifications, which can shape gene expression patterns and control the epigenetic landscape. Here, we summarize the role of some key histone modifications in animal development, with a focus on the two best-studied types of histone modifications: lysine methylation and acylations, specifically, acetylation.
Collapse
Affiliation(s)
- Yu-Hao Liu
- Institute of Functional Epigenetics, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Raghunathan K, Eroglu C. Developmental roles of astrocytes in circuit wiring. Curr Opin Neurobiol 2025; 92:103042. [PMID: 40367704 DOI: 10.1016/j.conb.2025.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
Astrocytes, the perisynaptic glial cells of the brain, play fundamental roles in sculpting synaptic circuits and instructing their remodeling and maturation during development. Astrocytes do so through a plethora of cell adhesion and secretory signaling to neurons. This rich communication between astrocytes and neurons is critical for balancing inhibitory and excitatory synaptic connectivity. Additionally, astrocytes refine neural circuits via synaptic engulfment and elimination. Here, we will review recent findings highlighting the diversity and significance of astrocyte-to-neuron communication during developmental circuit wiring. Moreover, we will point out emerging mechanisms of how neurons instruct astrocytes' maturation and synaptic functions to spotlight the essential bidirectional communication between these two cell types in shaping synaptic circuits during neurodevelopment.
Collapse
Affiliation(s)
- Kavya Raghunathan
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Cagla Eroglu
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA; The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
3
|
Zheng J, Wang M, Wang S, Shao Z. Temperature Regulates Astroglia Morphogenesis Through Thermosensory Circuitry in Caenorhabditis elegans. Glia 2025; 73:985-1003. [PMID: 39780488 DOI: 10.1002/glia.24668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Astrocytes are the most abundant type of macroglia in the brain and play crucial roles in regulating neural development and functions. The diverse functions of astrocytes are largely determined by their morphology, which is regulated by genetic and environmental factors. However, whether and how the astrocyte morphology is affected by temperature remains largely unknown. Here we discovered that elevated cultivation temperature (26°C) stimulates Caenorhabditis elegans ventral CEPsh glia endfoot extension during early developmental stages. This extension depends on the activation of glutamate AWC neurons, which inhibit the postsynaptic cholinergic AIY interneurons through glutamate-gated chloride channels, GLC-3 and GLC-4. In responding to the thermosensory signal, the guanyl-nucleotide exchange factor EPHX-1 and Rho GTPase CDC-42/Cdc42 in the glia facilitate the endfoot extension via F-actin assembly. This study elucidates the significant role of thermosensory circuitry in glia morphogenesis and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Junyu Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Shaocheng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
4
|
Liu K, Zhang Y, Du G, Chen X, Xiao L, Jiang L, Jing N, Xu P, Zhao C, Liu Y, Zhao H, Sun Y, Wang J, Cheng C, Wang D, Pan J, Xue W, Zhang P, Zhang ZG, Gao WQ, Jiang SH, Zhang K, Zhu HH. 5-HT orchestrates histone serotonylation and citrullination to drive neutrophil extracellular traps and liver metastasis. J Clin Invest 2025; 135:e183544. [PMID: 39903533 PMCID: PMC11996869 DOI: 10.1172/jci183544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
Serotonin (5-HT) is a neurotransmitter that has been linked to tumorigenesis. Whether and how 5-HT modulates cells in the microenvironment to regulate tumor metastasis is largely unknown. Here, we demonstrate that 5-HT was secreted by neuroendocrine prostate cancer (NEPC) cells to communicate with neutrophils and to induce the formation of neutrophil extracellular traps (NETs) in the liver, which in turn facilitated the recruitment of disseminated cancer cells and promoted liver metastasis. 5-HT induced histone serotonylation (H3Q5ser) and orchestrated histone citrullination (H3cit) in neutrophils to trigger chromatin decondensation and facilitate the formation of NETs. Interestingly, we uncovered in this process a reciprocally reinforcing effect between H3Q5ser and H3cit and a crosstalk between the respective writers enzyme transglutaminase 2 (TGM2) and peptidylarginine deiminase 4 (PAD4). Genetic ablation or pharmacological targeting of TGM2, or inhibition of the 5-HT transporter (SERT) with the FDA-approved antidepressant drug fluoxetine reduced H3Q5ser and H3cit modifications, suppressed NET formation, and effectively inhibited NEPC, small-cell lung cancer, and thyroid medullary cancer liver metastasis. Collectively, the 5-HT-triggered production of NETs highlights a targetable neurotransmitter/immune axis that drives liver metastasis of NE cancers.
Collapse
Affiliation(s)
- Kaiyuan Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchao Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genyu Du
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Xiao
- Department of Emergency Medicine, Shanghai Seventh People’s Hospital, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Jiang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Jing
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Xu
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoxian Zhao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyun Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Zhao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinming Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaping Cheng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Wang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahua Pan
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xue
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Zhang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Weekley BH, Ahmed NI, Maze I. Elucidating neuroepigenetic mechanisms to inform targeted therapeutics for brain disorders. iScience 2025; 28:112092. [PMID: 40160416 PMCID: PMC11951040 DOI: 10.1016/j.isci.2025.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The evolving field of neuroepigenetics provides important insights into the molecular foundations of brain function. Novel sequencing technologies have identified patient-specific mutations and gene expression profiles involved in shaping the epigenetic landscape during neurodevelopment and in disease. Traditional methods to investigate the consequences of chromatin-related mutations provide valuable phenotypic insights but often lack information on the biochemical mechanisms underlying these processes. Recent studies, however, are beginning to elucidate how structural and/or functional aspects of histone, DNA, and RNA post-translational modifications affect transcriptional landscapes and neurological phenotypes. Here, we review the identification of epigenetic regulators from genomic studies of brain disease, as well as mechanistic findings that reveal the intricacies of neuronal chromatin regulation. We then discuss how these mechanistic studies serve as a guideline for future neuroepigenetics investigations. We end by proposing a roadmap to future therapies that exploit these findings by coupling them to recent advances in targeted therapeutics.
Collapse
Affiliation(s)
- Benjamin H. Weekley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Newaz I. Ahmed
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Li K, Cui Y. The Emerging Role of Astrocytes in Learning and Memory Recall. J Integr Neurosci 2025; 24:38721. [PMID: 40152578 DOI: 10.31083/jin38721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Affiliation(s)
- Kecan Li
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, 310058 Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 310058 Hangzhou, Zhejiang, China
| | - Yihui Cui
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, 310058 Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 310058 Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Li J, Li S, Sun Q, Li L, Zhang Y, Hua Z. H3K18 lactylation-mediated nucleotide-binding oligomerization domain-2 (NOD2) expression promotes bilirubin-induced pyroptosis of astrocytes. J Neuroinflammation 2025; 22:76. [PMID: 40075479 PMCID: PMC11905654 DOI: 10.1186/s12974-025-03399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Histone lactylation, a newly glycosis-related histone modification, plays a crucial role in the regulation of gene expression in various immune cells. However, the role of histone lactylation in astrocytes remains unclear. Here, this study showed that the H3K18 lactylation (H3K18la) levels were upregulated in primary astrocytes under unconjugated bilirubin (UCB) stimulation and hippocampus of bilirubin encephalopathy (BE) rats. Inhibition of glycolysis decreased H3K18la and attenuated pyroptosis both in vitro and in vivo. CUT& Tag and RNA-seq results revealed that H3K18la was enriched at the promoter of nucleotide-binding oligomerization domain 2 (NOD2) and promoted its transcription. Moreover, NOD2 boosted the activation of downstream mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, which exacerbated the neuroinflammation of BE. Collectively, this study provides a novel understanding of epigenetic regulation in astrocytes, and interruption of the H3K18la/NOD2 axis may represent a novel therapeutic strategy for treating bilirubin encephalopathy.
Collapse
Affiliation(s)
- Jing Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Siyu Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Qian Sun
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Ling Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Yan Zhang
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China.
| |
Collapse
|
8
|
Le AD, Fu M, Carper A, Zegarowicz E, Kumar R, Zacharias G, Garcia ADR. Astrocyte Modulation of Synaptic Plasticity Mediated by Activity-Dependent Sonic Hedgehog Signaling. J Neurosci 2025; 45:e1336242025. [PMID: 39900499 PMCID: PMC11905353 DOI: 10.1523/jneurosci.1336-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
The influence of neural activity on astrocytes and their reciprocal interactions with neurons has emerged as an important modulator of synapse function. Astrocytes exhibit activity-dependent changes in gene expression, yet the molecular mechanisms by which neural activity is coupled to gene expression are not well understood. The molecular signaling pathway, Sonic hedgehog (Shh), mediates neuron-astrocyte communication and regulates the organization of cortical synapses. Here, we demonstrate that neural activity stimulates Shh signaling in cortical astrocytes and upregulates expression of Hevin and SPARC, astrocyte-derived molecules that modify synapses. Whisker stimulation in both male and female mice promotes activity-dependent Shh signaling selectively in the somatosensory, but not in the visual cortex, whereas sensory deprivation reduces Shh activity, demonstrating bidirectional regulation of the pathway by sensory experience. Selective loss of Shh signaling in astrocytes reduces expression of Hevin and SPARC and occludes activity-dependent synaptic plasticity. Taken together, these data identify Shh signaling as an activity-dependent, molecular signaling pathway that regulates astrocyte gene expression and promotes astrocyte modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Anh Duc Le
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Marissa Fu
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Ashley Carper
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | | | - Riya Kumar
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Gloria Zacharias
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - A Denise R Garcia
- Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
9
|
Rangan RS, Petty RM, Acharya S, Emmitte KA, do Valle RS, Lam C, Essajee SI, Mayhew W, Young O, Brooks CD, Forster MJ, Tovar-Vidales T, Clark AF. Phenethylaminylation: Preliminary In Vitro Evidence for the Covalent Transamidation of Psychedelic Phenethylamines to Glial Proteins using 3,5-Dimethoxy-4-(2-Propynyloxy)-Phenethylamine as a Model Compound. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638188. [PMID: 40027829 PMCID: PMC11870397 DOI: 10.1101/2025.02.13.638188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Psychedelics are well known for their ability to produce profoundly altered states of consciousness. But, more importantly, the effects of psychedelics can influence neurobehavioral changes that last well after these acute subjective effects end. This phenomenon is currently being leveraged in the development of psychedelic-assisted psychotherapies for the treatment of multiple neuropsychiatric disorders. The cellular and molecular mechanisms by which single doses of psychedelics are able to mediate long-term cognitive changes are an active area of research. We hypothesize that psychedelics contribute to long term changes in cellular state by covalently modifying proteins. This post-translational modification by psychedelics is possible through the transglutaminase-mediated transamidation of their amine termini to glutamine carboxamide residues. Here, we synthesize and utilize a propargylated analogue of mescaline - the classic serotonergic psychedelic phenethylamine found in cacti species - to identify putative protein targets of psychedelic modifications through the use of click-chemistry in a primary human astrocyte cell culture model. Our preliminary findings indicate that a diverse array of glial proteins may be substrates for transglutaminase 2-mediated monoaminylation by our model phenethylamine ("phenethylaminylation"). Based on these points, we speculatively highlight new directions for the study of this putative noncanonical psychedelic activity.
Collapse
Affiliation(s)
- Rajiv S. Rangan
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - R. Max Petty
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Suchismita Acharya
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rafael S. do Valle
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Chandra Lam
- Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Salman I. Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - William Mayhew
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Olivia Young
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Calvin D. Brooks
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Michael J. Forster
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tara Tovar-Vidales
- Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Abbot F. Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
10
|
Dong R, Wang T, Dong W, Zhang H, Li Y, Tao R, Liu Q, Liang H, Chen X, Zhang B, Zhang X. TGM2-mediated histone serotonylation promotes HCC progression via MYC signalling pathway. J Hepatol 2025:S0168-8278(24)02829-0. [PMID: 39788430 DOI: 10.1016/j.jhep.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is an aggressive malignancy for which there are few effective treatment options. H3Q5ser, a serotonin-based histone modification mediated by transglutaminase 2 (TGM2), affects diverse biological processes, such as neurodevelopment. The role of TGM2-mediated H3Q5ser in HCC progression remains unclear. This study investigated the role of TGM2 in promoting HCC progression and evaluated its potential as a therapeutic target for HCC treatment. METHODS Adeno-associated virus-mediated liver-specific overexpression models of Tgm2 or H3.3 were adopted to validate the effects of H3Q5ser on HCC progression. CUT&Tag and RNA sequencing was employed to investigate the underlying mechanisms. HCC organoids, subcutaneous xenograft models, and hydrodynamic tail vein injection models were used to evaluate the treatment efficiency of TGM2 inhibitors. RESULTS TMG2 expression positively correlated with higher alpha-fetoprotein levels, poor differentiation, and a later BCLC stage. Tgm2 deficiency or H3Q5ser inhibition notably inhibited HCC progression. CUT&Tag and RNA sequencing analyses revealed that downregulated genes were enriched in the MYC pathway following treatment with the TGM2 inhibitors. Furthermore, transcriptional intermediary factor 1 β mediated the recruitment of TGM2 to MYC, facilitating H3Q5ser modifications on MYC target genes. Finally, targeting the transglutaminase activity of TGM2 significantly suppressed HCC progression and showed synergy with sorafenib treatment in preclinical models. TGM2 inhibitors did not cause significant myelosuppression or tissue damage. CONCLUSIONS TGM2 serves as a prognostic biomarker and targeting its transglutaminase activity may be an effective strategy for inhibiting HCC progression. IMPACT AND IMPLICATIONS Transglutaminase 2 (TGM2)-mediated H3Q5ser modifications promote hepatocellular carcinoma (HCC) progression via MYC pathway signalling. Targeting the transglutaminase activity of TGM2 markedly inhibited HCC progression. TGM2 inhibitors did not induce significant myelosuppression or tissue damage. This preclinical study provides a theoretical basis to explore new strategies for HCC therapy.
Collapse
Affiliation(s)
- Renshun Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China
| | - Tianci Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Haoquan Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China
| | - Yani Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Ran Tao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
11
|
Sardar D, Kutateladze TG. Circadian rhythms are set by epigenetic marks in neurons. Nature 2025; 637:795-796. [PMID: 39779988 DOI: 10.1038/d41586-024-04080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
12
|
Williamson MR, Kwon W, Woo J, Ko Y, Maleki E, Yu K, Murali S, Sardar D, Deneen B. Learning-associated astrocyte ensembles regulate memory recall. Nature 2025; 637:478-486. [PMID: 39506118 PMCID: PMC11924044 DOI: 10.1038/s41586-024-08170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
The physical manifestations of memory formation and recall are fundamental questions that remain unresolved1. At the cellular level, ensembles of neurons called engrams are activated by learning events and control memory recall1-5. Astrocytes are found in close proximity to neurons and engage in a range of activities that support neurotransmission and circuit plasticity6-10. Moreover, astrocytes exhibit experience-dependent plasticity11-13, although whether specific ensembles of astrocytes participate in memory recall remains obscure. Here we show that learning events induce c-Fos expression in a subset of hippocampal astrocytes, and that this subsequently regulates the function of the hippocampal circuit in mice. Intersectional labelling of astrocyte ensembles with c-Fos after learning events shows that they are closely affiliated with engram neurons, and reactivation of these astrocyte ensembles stimulates memory recall. At the molecular level, learning-associated astrocyte (LAA) ensembles exhibit elevated expression of nuclear factor I-A, and its selective deletion from this population suppresses memory recall. Taken together, our data identify LAA ensembles as a form of plasticity that is sufficient to provoke memory recall and indicate that astrocytes are an active component of the engram.
Collapse
Affiliation(s)
- Michael R Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Yeunjung Ko
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ehson Maleki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sanjana Murali
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Zheng Q, Weekley BH, Vinson DA, Zhao S, Bastle RM, Thompson RE, Stransky S, Ramakrishnan A, Cunningham AM, Dutta S, Chan JC, Di Salvo G, Chen M, Zhang N, Wu J, Fulton SL, Kong L, Wang H, Zhang B, Vostal L, Upad A, Dierdorff L, Shen L, Molina H, Sidoli S, Muir TW, Li H, David Y, Maze I. Bidirectional histone monoaminylation dynamics regulate neural rhythmicity. Nature 2025; 637:974-982. [PMID: 39779849 PMCID: PMC11754111 DOI: 10.1038/s41586-024-08371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Histone H3 monoaminylations at Gln5 represent an important family of epigenetic marks in brain that have critical roles in permissive gene expression1-3. We previously demonstrated that serotonylation4-10 and dopaminylation9,11-13 of Gln5 of histone H3 (H3Q5ser and H3Q5dop, respectively) are catalysed by transglutaminase 2 (TG2), and alter both local and global chromatin states. Here we found that TG2 additionally functions as an eraser and exchanger of H3 monoaminylations, including H3Q5 histaminylation (H3Q5his), which displays diurnally rhythmic expression in brain and contributes to circadian gene expression and behaviour. We found that H3Q5his, in contrast to H3Q5ser, inhibits the binding of WDR5, a core member of histone H3 Lys4 (H3K4) methyltransferase complexes, thereby antagonizing methyltransferase activities on H3K4. Taken together, these data elucidate a mechanism through which a single chromatin regulatory enzyme has the ability to sense chemical microenvironments to affect the epigenetic states of cells, the dynamics of which have critical roles in the regulation of neural rhythmicity.
Collapse
Affiliation(s)
- Qingfei Zheng
- Department of Radiation Oncology, College of Medicine and Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Benjamin H Weekley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Vinson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shuai Zhao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Ryan M Bastle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sohini Dutta
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giuseppina Di Salvo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Min Chen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine and Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine and Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sasha L Fulton
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lingchun Kong
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haifeng Wang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Baichao Zhang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Lauren Vostal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Akhil Upad
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Lauren Dierdorff
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Henrik Molina
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Haitao Li
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- SXMU-TM Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Hao Y, Wang Z, Li Q. Modulation of olfactory bulb activity by serotoninergic inputs in odor-associative learning. Acta Physiol (Oxf) 2024; 240:e14222. [PMID: 39189694 DOI: 10.1111/apha.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Affiliation(s)
- Yue Hao
- Department of Otolaryngology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Otolaryngology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Otolaryngology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Gungor Aydin A, Lemenze A, Bieszczad KM. Functional diversities within neurons and astrocytes in the adult rat auditory cortex revealed by single-nucleus RNA sequencing. Sci Rep 2024; 14:25314. [PMID: 39455606 PMCID: PMC11511993 DOI: 10.1038/s41598-024-74732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
The mammalian cerebral cortex is composed of a rich diversity of cell types. Sensory cortical cells are organized into networks that rely on their functional diversity to ultimately carry out a variety of sophisticated cognitive functions for perception, learning, and memory. The auditory cortex (AC) has been most extensively studied for its experience-dependent effects, including for perceptual learning and associative memory. Here, we used single-nucleus RNA sequencing (snRNA-seq) in the AC of the adult rat to investigate the breadth of transcriptionally diverse cell types that likely support the role of AC in experience-dependent functions. A variety of unique excitatory and inhibitory neuron subtypes were identified that harbor unique transcriptional profiles of genes with putative relevance for the adaptive neuroplasticity of cortical microcircuits. In addition, we report for the first time a diversity of astrocytes in AC that may represent functionally unique subtypes, including those that could integrate experience-dependent adult neuroplasticity at cortical synapses. Together, these results pave the way for building models of how cortical neurons work in concert with astrocytes to fulfill dynamic and experience-dependent cognitive functions.
Collapse
Affiliation(s)
- Aysegul Gungor Aydin
- Department of Psychology-Behavioral and Systems Neuroscience, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Alexander Lemenze
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers University, Newark, NJ, 07103, USA
| | - Kasia M Bieszczad
- Department of Psychology-Behavioral and Systems Neuroscience, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Rutgers Center for Cognitive Science (RuCCS), Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
16
|
Yang Y, Huang H, Zhu MY, Wei HR, Zhang M, Tang L, Gao W, Yang X, Zhang Z, Cao P, Tao W. A neural circuit for lavender-essential-oil-induced antinociception. Cell Rep 2024; 43:114800. [PMID: 39365703 DOI: 10.1016/j.celrep.2024.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
Lavender essential oil (LEO) has been shown to relieve pain in humans, but the underlying neural mechanisms remain unknown. Here, we found that inhalation exposure to 0.1% LEO confers antinociceptive effects in mice with complete Freund adjuvant (CFA)-induced inflammatory pain through activation of projections from the anterior piriform cortex (aPir) to the insular cortex (IC). Specifically, in vivo fiber photometry recordings and viral tracing data show that glutamatergic projections from the aPir (aPirGlu) innervate GABAergic neurons in the IC (ICGABA) to inhibit local glutamatergic neurons (ICGlu) that are hyperactivated in inflammatory pain. Optogenetic or chemogenetic activation of this aPirGlu→ICGABA→Glu pathway can recapitulate the antinociceptive effects of LEO inhalation in CFA mice. Conversely, artificial inhibition of IC-projecting aPirGlu neurons abolishes LEO-induced antinociception. Our study thus depicts an LEO-responsive olfactory system circuit mechanism for alleviating inflammatory pain via aPir→IC neural connections, providing evidence to support development of aroma-based treatments for alleviating pain.
Collapse
Affiliation(s)
- Yumeng Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hao Huang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Meng-Yu Zhu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hong-Rui Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mingjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lan Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wei Gao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xinlu Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Advance Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Peng Cao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Wenjuan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
17
|
Rangel-Gomez M, Alberini CM, Deneen B, Drummond GT, Manninen T, Sur M, Vicentic A. Neuron-Glial Interactions: Implications for Plasticity, Behavior, and Cognition. J Neurosci 2024; 44:e1231242024. [PMID: 39358030 PMCID: PMC11450529 DOI: 10.1523/jneurosci.1231-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The traditional view of glial cells as mere supportive tissue has shifted, due to advances in technology and theoretical conceptualization, to include a diversity of other functions, such as regulation of complex behaviors. Astrocytes, the most abundant glial cells in the central nervous system (CNS), have been shown to modulate synaptic functions through gliotransmitter-mediated neurotransmitter reuptake, influencing neuronal signaling and behavioral functions. Contemporary studies further highlight astrocytes' involvement in complex cognitive functions. For instance, inhibiting astrocytes in the hippocampus can lead to memory deficits, suggesting their integral role in memory processes. Moreover, astrocytic calcium activity and astrocyte-neuron metabolic coupling have been linked to changes in synaptic strength and learning. Microglia, another type of glial cell, also extend beyond their supportive roles, contributing to learning and memory processes, with microglial reductions impacting these functions in a developmentally dependent manner. Oligodendrocytes, traditionally thought to have limited roles postdevelopment, are now recognized for their activity-dependent modulation of myelination and plasticity, thus influencing behavioral responses. Recent advancements in technology and computational modeling have expanded our understanding of glial functions, particularly how astrocytes influence neuronal circuits and behaviors. This review underscores the importance of glial cells in CNS functions and the need for further research to unravel the complexities of neuron-glia interactions, the impact of these interactions on brain functions, and potential implications for neurological diseases.
Collapse
Affiliation(s)
- Mauricio Rangel-Gomez
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| | | | - Benjamin Deneen
- Center for Cell and Gene Therapy, Center for Cancer Neuroscience, and Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Gabrielle T Drummond
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland 33720
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Aleksandra Vicentic
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| |
Collapse
|
18
|
Ling T, Dai Z, Wang H, Kien TT, Cui R, Yu T, Chen J. Serotonylation in tumor-associated fibroblasts contributes to the tumor-promoting roles of serotonin in colorectal cancer. Cancer Lett 2024; 600:217150. [PMID: 39097134 DOI: 10.1016/j.canlet.2024.217150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Accumulated studies have highlighted the diverse roles of 5-hydroxytryptamine (5-HT), or serotonin, in cancer biology, particularly in colorectal cancer (CRC). While 5-HT primarily exerts its effects through binding to various 5-HT receptors, receptor-independent mechanisms such as serotonylation remain unclear. This study revealed that depleting 5-HT, either through genetic silencing of Tph1 or using a selective TPH1 inhibitor, effectively reduced the growth of CRC tumors. Interestingly, although intrinsic 5-HT synthesis exists in CRC, it is circulating 5-HT that mediates the cancer-promoting function of 5-HT. Blocking the function of 5-HT receptors showed that the oncogenic roles of 5-HT in CRC operate through a mechanism that is separate from its receptor. Instead, serotonylation of histone H3Q5 (H3Q5ser) was found in CRC cells and cancer-associated fibroblasts (CAFs). H3Q5ser triggers a phenotypic switch of CAFs towards an inflammatory-like CAF (iCAF) subtype, which further enhances CRC cell proliferation, invasive characteristics, and macrophage polarization. Knockdown of the 5-HT transporter SLC22A3 or inhibition of TGM2 reduces H3Q5ser levels and reverses the tumor-promoting phenotypes of CAFs in CRC. Collectively, this study sheds light on the serotonylation-dependent mechanisms of 5-HT in CRC progression, offering insights into potential therapeutic strategies targeting the serotonin pathway for CRC treatment.
Collapse
Affiliation(s)
- Tianlong Ling
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhanghan Dai
- Department of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Houming Wang
- Department of General Surgery, Jiading Hospital of Traditional Chinese Medicine, Jiading District, Shanghai, China
| | - Tran Trung Kien
- Oncology Department, University Medical Shing Mark Hospital, 1054 Highway 51, Long Binh Tan Ward, Bien Hoa City, Dong Nai, Viet Nam
| | - Rong Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Tachung Yu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianjun Chen
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
19
|
Stewart AF, Fulton SL, Durand-de Cuttoli R, Thompson RE, Chen PJ, Brindley E, Cetin B, Farrelly LA, Futamura R, Claypool S, Bastle RM, Di Salvo G, Peralta C, Molina H, Baljinnyam E, Marro SG, Russo SJ, DeVita RJ, Muir TW, Maze I. Hippocampal γCaMKII dopaminylation promotes synaptic-to-nuclear signaling and memory formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613951. [PMID: 39345578 PMCID: PMC11430047 DOI: 10.1101/2024.09.19.613951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Protein monoaminylation is a class of posttranslational modification (PTM) that contributes to transcription, physiology and behavior. While recent analyses have focused on histones as critical substrates of monoaminylation, the broader repertoire of monoaminylated proteins in brain remains unclear. Here, we report the development/implementation of a chemical probe for the bioorthogonal labeling, enrichment and proteomics-based detection of dopaminylated proteins in brain. We identified 1,557 dopaminylated proteins - many synaptic - including γCaMKII, which mediates Ca2+-dependent cellular signaling and hippocampal-dependent memory. We found that γCaMKII dopaminylation is largely synaptic and mediates synaptic-to-nuclear signaling, neuronal gene expression and intrinsic excitability, and contextual memory. These results indicate a critical role for synaptic dopaminylation in adaptive brain plasticity, and may suggest roles for these phenomena in pathologies associated with altered monoaminergic signaling.
Collapse
Affiliation(s)
- Andrew F. Stewart
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sasha L. Fulton
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | | | - Peng-Jen Chen
- Department of Pharmacological Sciences and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Elizabeth Brindley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Bulent Cetin
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Lorna A. Farrelly
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sarah Claypool
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ryan M. Bastle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Giuseppina Di Salvo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Christopher Peralta
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Erdene Baljinnyam
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Samuele G. Marro
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Scott J. Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert J. DeVita
- Department of Pharmacological Sciences and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Tom W. Muir
- Department of Chemistry, Princeton, New Jersey 08544, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Pharmacological Sciences and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
20
|
Ma S, Wang L, Zhang J, Geng L, Yang J. The role of transcriptional and epigenetic modifications in astrogliogenesis. PeerJ 2024; 12:e18151. [PMID: 39314847 PMCID: PMC11418818 DOI: 10.7717/peerj.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Astrocytes are widely distributed and play a critical role in the central nervous system (CNS) of the human brain. During the development of CNS, astrocytes provide essential nutritional and supportive functions for neural cells and are involved in their metabolism and pathological processes. Despite the numerous studies that have reported on the regulation of astrogliogenesis at the transcriptional and epigenetic levels, there is a paucity of literature that provides a comprehensive summary of the key factors influencing this process. In this review, we analyzed the impact of transcription factors (e.g., NFI, JAK/STAT, BMP, and Ngn2), DNA methylation, histone acetylation, and noncoding RNA on astrocyte behavior and the regulation of astrogliogenesis, hope it enhances our comprehension of the mechanisms underlying astrogliogenesis and offers a theoretical foundation for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lujing Geng
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Junzheng Yang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, China
| |
Collapse
|
21
|
Gómez-Sotres P, Skupio U, Dalla Tor T, Julio-Kalajzic F, Cannich A, Gisquet D, Bonilla-Del Rio I, Drago F, Puente N, Grandes P, Bellocchio L, Busquets-Garcia A, Bains JS, Marsicano G. Olfactory bulb astrocytes link social transmission of stress to cognitive adaptation in male mice. Nat Commun 2024; 15:7103. [PMID: 39155299 PMCID: PMC11330966 DOI: 10.1038/s41467-024-51416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Emotions and behavior can be affected by social chemosignals from conspecifics. For instance, olfactory signals from stressed individuals induce stress-like physiological and synaptic changes in naïve partners. Direct stress also alters cognition, but the impact of socially transmitted stress on memory processes is currently unknown. Here we show that exposure to chemosignals produced by stressed individuals is sufficient to impair memory retrieval in unstressed male mice. This requires astrocyte control of information in the olfactory bulb mediated by mitochondria-associated CB1 receptors (mtCB1). Targeted genetic manipulations, in vivo Ca2+ imaging and behavioral analyses reveal that mtCB1-dependent control of mitochondrial Ca2+ dynamics is necessary to process olfactory information from stressed partners and to define their cognitive consequences. Thus, olfactory bulb astrocytes provide a link between social odors and their behavioral meaning.
Collapse
Affiliation(s)
- Paula Gómez-Sotres
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
| | - Urszula Skupio
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
| | - Tommaso Dalla Tor
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | | | - Astrid Cannich
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
| | - Doriane Gisquet
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
| | - Itziar Bonilla-Del Rio
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, 95124, Italy
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Luigi Bellocchio
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
| | | | - Jaideep S Bains
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Hotchkiss Brain Institute and Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada.
| | - Giovanni Marsicano
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
22
|
Chen HC, He P, McDonald M, Williamson MR, Varadharajan S, Lozzi B, Woo J, Choi DJ, Sardar D, Huang-Hobbs E, Sun H, Ippagunta SM, Jain A, Rao G, Merchant TE, Ellison DW, Noebels JL, Bertrand KC, Mack SC, Deneen B. Histone serotonylation regulates ependymoma tumorigenesis. Nature 2024; 632:903-910. [PMID: 39085609 PMCID: PMC11951423 DOI: 10.1038/s41586-024-07751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Bidirectional communication between tumours and neurons has emerged as a key facet of the tumour microenvironment that drives malignancy1,2. Another hallmark feature of cancer is epigenomic dysregulation, in which alterations in gene expression influence cell states and interactions with the tumour microenvironment3. Ependymoma (EPN) is a paediatric brain tumour that relies on epigenomic remodelling to engender malignancy4,5; however, how these epigenetic mechanisms intersect with extrinsic neuronal signalling during EPN tumour progression is unknown. Here we show that the activity of serotonergic neurons regulates EPN tumorigenesis, and that serotonin itself also serves as an activating modification on histones. We found that inhibiting histone serotonylation blocks EPN tumorigenesis and regulates the expression of a core set of developmental transcription factors. High-throughput, in vivo screening of these transcription factors revealed that ETV5 promotes EPN tumorigenesis and functions by enhancing repressive chromatin states. Neuropeptide Y (NPY) is one of the genes repressed by ETV5, and its overexpression suppresses EPN tumour progression and tumour-associated network hyperactivity through synaptic remodelling. Collectively, this study identifies histone serotonylation as a key driver of EPN tumorigenesis, and also reveals how neuronal signalling, neuro-epigenomics and developmental programs are intertwined to drive malignancy in brain cancer.
Collapse
Affiliation(s)
- Hsiao-Chi Chen
- Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Peihao He
- Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm McDonald
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Michael R Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Srinidhi Varadharajan
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Emmet Huang-Hobbs
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Hua Sun
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Siri M Ippagunta
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Ganesh Rao
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey L Noebels
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Kelsey C Bertrand
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen C Mack
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
- Neurobiology and Brain Tumor Program, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Benjamin Deneen
- Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA.
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Al-Kachak A, Di Salvo G, Fulton SL, Chan JC, Farrelly LA, Lepack AE, Bastle RM, Kong L, Cathomas F, Newman EL, Menard C, Ramakrishnan A, Safovich P, Lyu Y, Covington HE, Shen L, Gleason K, Tamminga CA, Russo SJ, Maze I. Histone serotonylation in dorsal raphe nucleus contributes to stress- and antidepressant-mediated gene expression and behavior. Nat Commun 2024; 15:5042. [PMID: 38871707 PMCID: PMC11176395 DOI: 10.1038/s41467-024-49336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Mood disorders are an enigmatic class of debilitating illnesses that affect millions of individuals worldwide. While chronic stress clearly increases incidence levels of mood disorders, including major depressive disorder (MDD), stress-mediated disruptions in brain function that precipitate these illnesses remain largely elusive. Serotonin-associated antidepressants (ADs) remain the first line of therapy for many with depressive symptoms, yet low remission rates and delays between treatment and symptomatic alleviation have prompted skepticism regarding direct roles for serotonin in the precipitation and treatment of affective disorders. Our group recently demonstrated that serotonin epigenetically modifies histone proteins (H3K4me3Q5ser) to regulate transcriptional permissiveness in brain. However, this non-canonical phenomenon has not yet been explored following stress and/or AD exposures. Here, we employed a combination of genome-wide and biochemical analyses in dorsal raphe nucleus (DRN) of male and female mice exposed to chronic social defeat stress, as well as in DRN of human MDD patients, to examine the impact of stress exposures/MDD diagnosis on H3K4me3Q5ser dynamics, as well as associations between the mark and depression-related gene expression. We additionally assessed stress-induced/MDD-associated regulation of H3K4me3Q5ser following AD exposures, and employed viral-mediated gene therapy in mice to reduce H3K4me3Q5ser levels in DRN and examine its impact on stress-associated gene expression and behavior. We found that H3K4me3Q5ser plays important roles in stress-mediated transcriptional plasticity. Chronically stressed mice displayed dysregulated H3K4me3Q5ser dynamics in DRN, with both AD- and viral-mediated disruption of these dynamics proving sufficient to attenuate stress-mediated gene expression and behavior. Corresponding patterns of H3K4me3Q5ser regulation were observed in MDD subjects on vs. off ADs at their time of death. These findings thus establish a neurotransmission-independent role for serotonin in stress-/AD-associated transcriptional and behavioral plasticity, observations of which may be of clinical relevance to human MDD and its treatment.
Collapse
Affiliation(s)
- Amni Al-Kachak
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Giuseppina Di Salvo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Sasha L Fulton
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lorna A Farrelly
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashley E Lepack
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ryan M Bastle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lingchun Kong
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Flurin Cathomas
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily L Newman
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| | - Caroline Menard
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Polina Safovich
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yang Lyu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Herbert E Covington
- Department of Psychology, Empire State College, State University of New York, Saratoga Springs, NY, 12866, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kelly Gleason
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
24
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
25
|
Williamson MR, Deneen B. Astrocytes remember inflammation. Immunity 2024; 57:938-940. [PMID: 38749396 DOI: 10.1016/j.immuni.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 01/23/2025]
Abstract
Astrocytes respond to all forms of central nervous system maladies. In a recent issue of Nature, Lee et al. demonstrate that astrocytes encode inflammatory stimuli as epigenetic memory, which strengthens responses to subsequent stimuli and exacerbates pathology in disease models.
Collapse
Affiliation(s)
- Michael R Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
26
|
Pu H, Gao C, Zou Y, Zhao L, Li G, Liu C, Zhao L, Zheng M, Sheng G, Sun X, Hao X, Wang C, He X, Xiao J. Single cell transcriptome profiling of infrapatellar fat pad highlights the role of interstitial inflammatory fibroblasts in osteoarthritis. Int Immunopharmacol 2024; 131:111888. [PMID: 38522139 DOI: 10.1016/j.intimp.2024.111888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVES Osteoarthritis (OA) is a whole-joint disease in which the role of the infrapatellar fat pad (IFP) in its pathogenesis is unclear. Our study explored the cellular heterogeneity of IFP to understand OA and identify therapeutic targets. METHODS Single-cell and single-nuclei RNA sequencing were used to analyze 10 IFP samples, comprising 5 from OA patients and 5 from healthy controls. Analyses included differential gene expression, enrichment, pseudotime trajectory, and cellular communication, along with comparative studies with visceral and subcutaneous fats. Key subcluster and pathways were validated using multiplex immunohistochemistry. RESULTS The scRNA-seq performed on the IFPs of the OA and control group profiled the gene expressions of over 49,674 cells belonging to 11 major cell types. We discovered that adipose stem and progenitor cells (ASPCs), contributing to the formation of both adipocytes and synovial-lining fibroblasts (SLF). Interstitial inflammatory fibroblasts (iiFBs) were a subcluster of ASPCs that exhibit notable pro-inflammatory and proliferative characteristics. We identified four adipocyte subtypes, with one subtype showing a reduced lipid synthesis ability. Furthermore, iiFBs modulated the activities of macrophages and T cells in the IFP. Compared to subcutaneous and visceral adipose tissues, iiFBs represented a distinctive subpopulation of ASPCs in IFP that regulated cartilage proliferation through the MK pathway. CONCLUSION This study presents a comprehensive single-cell transcriptomic atlas of IFP, uncovering its complex cellular landscape and potential impact on OA progression. Our findings highlight the role of iiFBs in OA, especially through MK pathway, opening new avenues for understanding OA pathogenesis and developing novel targeted therapies.
Collapse
Affiliation(s)
- Hongxu Pu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenghao Gao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zou
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liming Zhao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guanghao Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changyu Liu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Libo Zhao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Zheng
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaohong Sheng
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuying Sun
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jun Xiao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Aydin AG, Lemenze A, Bieszczad KM. Functional diversities within neurons and astrocytes in the adult rat auditory cortex revealed by single-nucleus RNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589831. [PMID: 38659766 PMCID: PMC11042262 DOI: 10.1101/2024.04.16.589831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The mammalian cerebral cortex is composed of a rich diversity of cell types. Cortical cells are organized into networks that rely on their functional diversity to ultimately carry out a variety of sophisticated cognitive functions. To investigate the breadth of transcriptional diverse cell types in the sensory cortex, we have used single-nucleus RNA sequencing (snRNA-seq) in the auditory cortex of the adult rat. A variety of unique excitatory and inhibitory neuron types were identified. In addition, we report for the first time a diversity of astrocytes in the auditory cortex that may represent functionally unique subtypes. Together, these results pave the way for building models of how neurons in the sensory cortex work in concert with astrocytes at synapses to fulfill high-cognitive functions like learning and memory.
Collapse
|
28
|
Chan JC, Alenina N, Cunningham AM, Ramakrishnan A, Shen L, Bader M, Maze I. Serotonin Transporter-dependent Histone Serotonylation in Placenta Contributes to the Neurodevelopmental Transcriptome. J Mol Biol 2024; 436:168454. [PMID: 38266980 PMCID: PMC10957302 DOI: 10.1016/j.jmb.2024.168454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Brain development requires appropriate regulation of serotonin (5-HT) signaling from distinct tissue sources across embryogenesis. At the maternal-fetal interface, the placenta is thought to be an important contributor of offspring brain 5-HT and is critical to overall fetal health. Yet, how placental 5-HT is acquired, and the mechanisms through which 5-HT influences placental functions, are not well understood. Recently, our group identified a novel epigenetic role for 5-HT, in which 5-HT can be added to histone proteins to regulate transcription, a process called H3 serotonylation. Here, we show that H3 serotonylation undergoes dynamic regulation during placental development, corresponding to gene expression changes that are known to influence key metabolic processes. Using transgenic mice, we demonstrate that placental H3 serotonylation is dependent on 5-HT uptake by the serotonin transporter (SERT/SLC6A4). SERT deletion robustly reduces enrichment of H3 serotonylation across the placental genome, and disrupts neurodevelopmental gene networks in early embryonic brain tissues. Thus, these findings suggest a novel role for H3 serotonylation in coordinating placental transcription at the intersection of maternal physiology and offspring brain development.
Collapse
Affiliation(s)
- Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Germany
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
29
|
Lee HG, Rone JM, Li Z, Akl CF, Shin SW, Lee JH, Flausino LE, Pernin F, Chao CC, Kleemann KL, Srun L, Illouz T, Giovannoni F, Charabati M, Sanmarco LM, Kenison JE, Piester G, Zandee SEJ, Antel JP, Rothhammer V, Wheeler MA, Prat A, Clark IC, Quintana FJ. Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature 2024; 627:865-872. [PMID: 38509377 PMCID: PMC11016191 DOI: 10.1038/s41586-024-07187-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph M Rone
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Camilo Faust Akl
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung Won Shin
- Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucas E Flausino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Pernin
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Lena Srun
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Illouz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Federico Giovannoni
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc Charabati
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gavin Piester
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephanie E J Zandee
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandre Prat
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Iain C Clark
- Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Boston, MA, USA.
| |
Collapse
|
30
|
Ollivier M, Soto JS, Linker KE, Moye SL, Jami-Alahmadi Y, Jones AE, Divakaruni AS, Kawaguchi R, Wohlschlegel JA, Khakh BS. Crym-positive striatal astrocytes gate perseverative behaviour. Nature 2024; 627:358-366. [PMID: 38418885 PMCID: PMC10937394 DOI: 10.1038/s41586-024-07138-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Astrocytes are heterogeneous glial cells of the central nervous system1-3. However, the physiological relevance of astrocyte diversity for neural circuits and behaviour remains unclear. Here we show that a specific population of astrocytes in the central striatum expresses μ-crystallin (encoded by Crym in mice and CRYM in humans) that is associated with several human diseases, including neuropsychiatric disorders4-7. In adult mice, reducing the levels of μ-crystallin in striatal astrocytes through CRISPR-Cas9-mediated knockout of Crym resulted in perseverative behaviours, increased fast synaptic excitation in medium spiny neurons and dysfunctional excitatory-inhibitory synaptic balance. Increased perseveration stemmed from the loss of astrocyte-gated control of neurotransmitter release from presynaptic terminals of orbitofrontal cortex-striatum projections. We found that perseveration could be remedied using presynaptic inhibitory chemogenetics8, and that this treatment also corrected the synaptic deficits. Together, our findings reveal converging molecular, synaptic, circuit and behavioural mechanisms by which a molecularly defined and allocated population of striatal astrocytes gates perseveration phenotypes that accompany neuropsychiatric disorders9-12. Our data show that Crym-positive striatal astrocytes have key biological functions within the central nervous system, and uncover astrocyte-neuron interaction mechanisms that could be targeted in treatments for perseveration.
Collapse
Affiliation(s)
- Matthias Ollivier
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joselyn S Soto
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kay E Linker
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stefanie L Moye
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Kinkade JA, Seetharam AS, Sachdev S, Bivens NJ, Phinney BS, Grigorean G, Roberts RM, Tuteja G, Rosenfeld CS. Extracellular vesicles from mouse trophoblast cells: Effects on neural progenitor cells and potential participants in the placenta-brain axis†. Biol Reprod 2024; 110:310-328. [PMID: 37883444 PMCID: PMC10873279 DOI: 10.1093/biolre/ioad146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
The fetal brain of the mouse is thought to be dependent upon the placenta as a source of serotonin (5-hydroxytryptamine; 5-HT) and other factors. How factors reach the developing brain remains uncertain but are postulated here to be part of the cargo carried by placental extracellular vesicles (EV). We have analyzed the protein, catecholamine, and small RNA content of EV from mouse trophoblast stem cells (TSC) and TSC differentiated into parietal trophoblast giant cells (pTGC), potential primary purveyors of 5-HT. Current studies examined how exposure of mouse neural progenitor cells (NPC) to EV from either TSC or pTGC affect their transcriptome profiles. The EV from trophoblast cells contained relatively high amounts of 5-HT, as well as dopamine and norepinephrine, but there were no significant differences between EV derived from pTGC and from TSC. Content of miRNA and small nucleolar (sno)RNA, however, did differ according to EV source, and snoRNA were upregulated in EV from pTGC. The primary inferred targets of the microRNA (miRNA) from both pTGC and TSC were mRNA enriched in the fetal brain. NPC readily internalized EV, leading to changes in their transcriptome profiles. Transcripts regulated were mainly ones enriched in neural tissues. The transcripts in EV-treated NPC that demonstrated a likely complementarity with miRNA in EV were mainly up- rather than downregulated, with functions linked to neuronal processes. Our results are consistent with placenta-derived EV providing direct support for fetal brain development and being an integral part of the placenta-brain axis.
Collapse
Affiliation(s)
- Jessica A Kinkade
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Shrikesh Sachdev
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Nathan J Bivens
- Genomics Technology Core Facility, University of Missouri, Columbia, MO, USA
| | - Brett S Phinney
- Proteomics Core UC Davis Genome Center, University of California, Davis, CA, USA
| | - Gabriela Grigorean
- Proteomics Core UC Davis Genome Center, University of California, Davis, CA, USA
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| |
Collapse
|
32
|
Lee HG, Rone JM, Li Z, Akl CF, Shin SW, Lee JH, Flausino LE, Pernin F, Chao CC, Kleemann KL, Srun L, Illouz T, Giovannoni F, Charabati M, Sanmarco LM, Kenison JE, Piester G, Zandee SEJ, Antel J, Rothhammer V, Wheeler MA, Prat A, Clark IC, Quintana FJ. Disease-associated astrocyte epigenetic memory promotes CNS pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574196. [PMID: 38260616 PMCID: PMC10802318 DOI: 10.1101/2024.01.04.574196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Astrocytes play important roles in the central nervous system (CNS) physiology and pathology. Indeed, astrocyte subsets defined by specific transcriptional activation states contribute to the pathology of neurologic diseases, including multiple sclerosis (MS) and its pre-clinical model experimental autoimmune encephalomyelitis (EAE) 1-8 . However, little is known about the stability of these disease-associated astrocyte subsets, their regulation, and whether they integrate past stimulation events to respond to subsequent challenges. Here, we describe the identification of an epigenetically controlled memory astrocyte subset which exhibits exacerbated pro-inflammatory responses upon re-challenge. Specifically, using a combination of single-cell RNA sequencing (scRNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), and cell-specific in vivo CRISPR/Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) used by the histone acetyltransferase p300 to control chromatin accessibility. ACLY + p300 + memory astrocytes are increased in acute and chronic EAE models; the genetic targeting of ACLY + p300 + astrocytes using CRISPR/Cas9 ameliorated EAE. We also detected responses consistent with a pro-inflammatory memory phenotype in human astrocytes in vitro ; scRNA-seq and immunohistochemistry studies detected increased ACLY + p300 + astrocytes in chronic MS lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, MS. These findings may guide novel therapeutic approaches for MS and other neurologic diseases.
Collapse
|
33
|
Gianni G, Pasqualetti M. Wiring and Volume Transmission: An Overview of the Dual Modality for Serotonin Neurotransmission. ACS Chem Neurosci 2023; 14:4093-4104. [PMID: 37966717 DOI: 10.1021/acschemneuro.3c00648] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Serotonin is a neurotransmitter involved in the modulation of a multitude of physiological and behavioral processes. In spite of the relatively reduced number of serotonin-producing neurons present in the mammalian CNS, a complex long-range projection system provides profuse innervation to the whole brain. Heterogeneity of serotonin receptors, grouped in seven families, and their spatiotemporal expression pattern account for its widespread impact. Although neuronal communication occurs primarily at tiny gaps called synapses, wiring transmission, another mechanism based on extrasynaptic diffusion of neuroactive molecules and referred to as volume transmission, has been described. While wiring transmission is a rapid and specific one-to-one modality of communication, volume transmission is a broader and slower mode in which a single element can simultaneously act on several different targets in a one-to-many mode. Some experimental evidence regarding ultrastructural features, extrasynaptic localization of receptors and transporters, and serotonin-glia interactions collected over the past four decades supports the existence of a serotonergic system of a dual modality of neurotransmission, in which wiring and volume transmission coexist. To date, in spite of the radical difference in the two modalities, limited information is available on the way they are coordinated to mediate the specific activities in which serotonin participates. Understanding how wiring and volume transmission modalities contribute to serotonergic neurotransmission is of utmost relevance for the comprehension of serotonin functions in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Giulia Gianni
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP), 56126 Pisa, Italy
| |
Collapse
|
34
|
Chan JC, Alenina N, Cunningham AM, Ramakrishnan A, Shen L, Bader M, Maze I. Serotonin transporter-dependent histone serotonylation in placenta contributes to the neurodevelopmental transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567020. [PMID: 38014301 PMCID: PMC10680709 DOI: 10.1101/2023.11.14.567020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Brain development requires appropriate regulation of serotonin (5-HT) signaling from distinct tissue sources across embryogenesis. At the maternal-fetal interface, the placenta is thought to be an important contributor of offspring brain 5-HT and is critical to overall fetal health. Yet, how placental 5-HT is acquired, and the mechanisms through which 5-HT influences placental functions, are not well understood. Recently, our group identified a novel epigenetic role for 5-HT, in which 5-HT can be added to histone proteins to regulate transcription, a process called H3 serotonylation. Here, we show that H3 serotonylation undergoes dynamic regulation during placental development, corresponding to gene expression changes that are known to influence key metabolic processes. Using transgenic mice, we demonstrate that placental H3 serotonylation largely depends on 5-HT uptake by the serotonin transporter (SERT/SLC6A4). SERT deletion robustly reduces enrichment of H3 serotonylation across the placental genome, and disrupts neurodevelopmental gene networks in early embryonic brain tissues. Thus, these findings suggest a novel role for H3 serotonylation in coordinating placental transcription at the intersection of maternal physiology and offspring brain development.
Collapse
Affiliation(s)
- Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Germany
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|