1
|
Lu R, Ni X, Diao S, Wu Y, Zhang L. Recent advances in degraders engaging lysosomal pathways and related nanomedicine. Eur J Med Chem 2025; 292:117701. [PMID: 40328032 DOI: 10.1016/j.ejmech.2025.117701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
The advent of targeted protein degradation (TPD) strategies presents unparalleled opportunities for innovating and expediting the development of new drugs. As the most mature TPD technology to date, proteolysis targeting chimeras (PROTACs) reliant on the ubiquitin proteasome system (UPS) have successfully transitioned from the laboratory to phase III clinical trials after nearly two decades of development. In recent years, the gradually emerging degraders engaging lysosomal pathways have further broadened the range of degradation mechanisms and substantially increased the diversity of potential targets and indications, ushering in a new era for the TPD field. Despite their significant advantages, the limited permeability, adverse pharmacokinetic properties, and off-target side effects caused by non-specific distribution still pose significant challenges to the clinical translation of these degraders. Currently, researchers are exploring the use of nanotechnology to surmount these obstacles and have achieved notable progress. This paper systematically summarizes the fundamental design principles, research status, challenges and future prospects of degraders engaging lysosomal pathways, and highlights the efforts and latest advances in related nanomedicine to optimize these degraders. The aim of this review is to deepen our comprehension of this emerging field and offer guidance for future exploration, development, and further utilization of new TPD techniques.
Collapse
Affiliation(s)
- Runxin Lu
- Department of Pharmacy/Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Ni
- Department of Pharmacy/Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Sha Diao
- Department of Pharmacy/Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Lingli Zhang
- Department of Pharmacy/Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zamani MR, Šácha P. Immune checkpoint inhibitors in cancer therapy: what lies beyond monoclonal antibodies? Med Oncol 2025; 42:273. [PMID: 40536609 DOI: 10.1007/s12032-025-02822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/23/2025] [Indexed: 06/22/2025]
Abstract
Immune checkpoints are critical in modulating immune responses and maintaining self-tolerance. Cancer cells can exploit these mechanisms to evade immune detection, making immune checkpoints attractive targets for cancer therapy. The introduction of immune checkpoint inhibitors (ICIs) has transformed cancer treatment, with monoclonal antibodies targeting CTLA-4, PD-1, and PD-L1 demonstrating clinical success. However, challenges such as immune-related adverse events, primary and acquired resistance, and high treatment costs persist. To address these challenges, it is essential to explore alternative strategies, including small-molecule and peptide-based inhibitors, aptamers, RNA-based therapies, gene-editing technologies, bispecific and multispecific agents, and cell-based therapies. Additionally, innovative approaches such as lysosome-targeting chimeras, proteolysis-targeting chimeras, and N-(2-hydroxypropyl) methacrylamide copolymers are emerging as promising options for enhancing treatment effectiveness. This review highlights significant advancements in the field, focusing on their clinical implications and successes.
Collapse
Affiliation(s)
- Mohammad Reza Zamani
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, Prague 6, Prague, 16610, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, Prague 6, Prague, 16610, Czech Republic.
| |
Collapse
|
3
|
Chen X, Wu T, Chen Y, Wu H, Kang W, Wang N, You Q, Guo X, Jiang Z. Supramolecular Host-Guest Assemblies for Tunable and Modular Lysosome-Targeting Protein Degradation. Angew Chem Int Ed Engl 2025:e202506618. [PMID: 40492932 DOI: 10.1002/anie.202506618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 06/04/2025] [Accepted: 06/10/2025] [Indexed: 06/12/2025]
Abstract
Heterobifunctional drugs have revolutionized chemical biology and therapeutic innovation, yet their fixed covalent linkages constrain dynamic adaptability. Here, we introduce host-guest bridged lysosome-targeting chimeras (HGTACs), a supramolecular bifunctional platform that utilizes β-cyclodextrin-adamantane host-guest interactions to achieve tunable and modular assembly. HGTACs effectively facilitated lysosomal degradation of both extracellular and transmembrane proteins, including NS-650, epidermal growth factor receptor (EGFR), and human epidermal growth factor receptor 2. By deconstructing lysosome-targeting chimeras into host and guest components, HGTACs enable spatiotemporal control over protein degradation through noncovalent bridging. This strategy allows for the fine-tuning of degradation efficiency by adjusting stoichiometric ratios and introducing competitive ligands. Notably, the recyclable nature of the asialoglycoprotein receptor-binding host module conferred sustained degradation activity. In vivo, EGFR-targeting HGTACs significantly reduced EGFR protein levels and suppressed tumor growth in xenograft models. This supramolecular control system reshapes lysosome-targeting chimeras, providing a flexible and efficient strategy for advancing chemically induced proximity-based modalities.
Collapse
Affiliation(s)
- Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yali Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huidan Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenjing Kang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Nan Wang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
4
|
Chen J, Wang S, Li T, Li W, Ke X, Ma Z, Du L, Li M. Development and characterization of endolysosomal trafficking targeting chimera degraders of α 1A-adrenergic receptor. J Adv Res 2025:S2090-1232(25)00422-9. [PMID: 40490152 DOI: 10.1016/j.jare.2025.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 05/05/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025] Open
Abstract
INTRODUCTION Despite the booming targeted protein degradation technologies, degrading cell membrane proteins remains an enormous challenge. In particular, only a limited approach is appropriate for the degradation of the G protein-coupled receptor (GPCR) superfamily. It is encouraging that accelerating GPCRs' endocytosis and switching their post-endocytic fate from recycling to lysosomal degradation would represent a promising strategy for developing chemical degraders of GPCRs. OBJECTIVES This study aimed to elucidate the mechanism underlying post-endocytic sorting of internalized α1A-adrenergic receptor (α1A-AR) upon agonist stimulation and put forward a unique strategy for designing chemical degraders of GPCRs utilizing α1A-AR as an exemplary target. METHODS The protein-protein interaction (PPI) of GASP1, Beclin 2, and α1A-AR was investigated by co-immunoprecipitation and GST pull-down, and the regulatory mechanism was explored using immunofluorescence imaging and biotin protection degradation assay. By conjugating the agonistic phenylephrine moiety and a Beclin 2-recruiting moiety, ML246 with linkers, the Endolysosomal Trafficking TArgeting Chimera (ETTAC) molecules were constructed as GPCR degraders for proof-of-concept studies. RESULTS Mechanistically, the binding of Beclin 2 to GASP1 is crucial to the endolysosomal sorting and degradation of α1A-ARs. Recruiting Beclin 2 to enhance the Beclin 2-GASP1 binding, the ETTAC molecular proved to be highly efficient in reducing recycling and facilitating the degradation of α1A-AR. Furthermore, the representative ETTAC, PMA-37, effectively induces the α1A-ARs degradation in transfected and cancerous cells at the nanomole range in a GASP1 and Beclin 2-dependant manner and thus exhibits significant therapeutic effects against prostate tumor and benign prostatic hyperplasia. CONCLUSIONS Proof-of-concept studies of the ETTAC degraders for GPCR successfully elucidate the roles of post-endocytic sorting proteins and applied to directing the lysosomal degradation of α1A-ARs. Consequently, the ETTAC strategy represents a promising approach for the selective degradation of GPCRs and paves the way for future drug development.
Collapse
Affiliation(s)
- Jiwei Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenhua Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuechun Ke
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Tropical Biological Resources (MOE), School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
5
|
Mo M, Wang F, Zhang H, Zhang Y, Yang C, Shang J, Zhu Z. Membrane-Bounded Intracellular E3 Ubiquitin Ligase-Targeting Chimeras (MembTACs) for Targeted Membrane Protein Degradation. Angew Chem Int Ed Engl 2025; 64:e202501857. [PMID: 40148237 DOI: 10.1002/anie.202501857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025]
Abstract
Targeted protein degradation (TPD) represents a potent therapeutic strategy aimed at dismantling disease-associated target proteins. PROTAC is the most widely developed technique for intracellular protein degradation, while its degradation ability on membrane proteins has been hindered by the need for complex synthetic processes and limited permeability. In this study, we developed the membrane-bounded intracellular E3 ubiquitin ligase-targeting chimeras (MembTACs) that simultaneously recruit intracellular E3 ubiquitin ligase and bind to the desired membrane proteins for targeted degradation of membrane proteins. We demonstrate that the MembTACs can effectively utilize intracellular E3 ubiquitin ligase to degrade the therapeutically relevant membrane proteins of EpCAM and Met via the proteasome pathway. We anticipate that the new platform will expand the range of PROTAC applications and provide a new dimension for targeted membrane protein degradation.
Collapse
Affiliation(s)
- Mengwu Mo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Feiyu Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Huiming Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, China
| | - Ying Zhang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, China
| | - Jinbiao Shang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Tan Y, Hu G, Li M, An Y, Wang Z, Liu R, Xu D, Tan X, Zeng Y, He Y, Lu Z, Liu G. Two-photon photosensitizer for specific targeting and induction of tumor pyroptosis to elicit systemic immunity-boosting anti-tumor therapy. Biomaterials 2025; 317:123108. [PMID: 39824002 DOI: 10.1016/j.biomaterials.2025.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment due to its precise spatiotemporal selectivity and non-invasive nature. However, several challenges, including the inability of photosensitizers to discriminate between tumor and healthy tissues, as well as the limited tissue penetration depth of light sources, impede its broader application. To surmount these impediments, our research introduces a two-photon photosensitizer (TPSS) that specifically targets tumor overexpressing carbonic anhydrase IX (CA IX), thereby exhibiting exceptional specificity for tumor cells. Under two-photon laser stimulation, TPSS generates a large amount of reactive oxygen species (ROS), inducing cell pyroptosis and subsequently triggering a strong anti-tumor immune response. Additionally, proteomics analysis provides compelling evidence to elucidate the anti-tumor mechanism of TPSS in vivo. Through comprehensive immune assessments, TPSS under two-photon laser irradiation effectively activates both the innate and adaptive immune systems, efficiently suppressing the proliferation of distant metastatic tumors, underscoring its considerable therapeutic potential. Collectively, this study provides a viable strategy to overcome the limitations of PDT, highlighting the prospects of two-photon excitation photosensitizers.
Collapse
Affiliation(s)
- Yubo Tan
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China; Sichuan Research Institute of Xiamen University, Chengdu, 610000, China
| | - Guosheng Hu
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Man Li
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ziying Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Renyuan Liu
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinyu Tan
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Yaohui He
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhixiang Lu
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; Sichuan Research Institute of Xiamen University, Chengdu, 610000, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
7
|
Xie W, Sun W, Li Q, Dang Y, Ma L, Liu Y, Zhang H, Qu F, Tan W. Click-constructed modular signal aptamer chimeras enable receptor-independent degradation of membrane proteins. Proc Natl Acad Sci U S A 2025; 122:e2424500122. [PMID: 40388621 DOI: 10.1073/pnas.2424500122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/08/2025] [Indexed: 05/21/2025] Open
Abstract
Cell-membrane proteins are critical mediators of signal transduction, playing essential roles in disease occurrence and progression. The emerging LYTACs (Lysosome-targeting chimeras) technology combines drug-targeting strategies with lysosomal degradation, providing a novel approach to drug development and offering new possibilities for disease therapy. However, the clinical applicability of current LYTAC degraders is limited by the variable expression of lysosome-targeting receptors (LTRs) in tissues. To overcome this limitation, we herein hijacked a YXXØ sorting signal that derived from lysosome-associated membrane protein 2a (LAMP-2a) to develop a signal aptamer platform (SApt), which exhibits high specificity for targeting membrane proteins and inducing efficient lysosomal degradation. SApts were synthesized by conjugating the YXXØ signal peptide to the aptamer's terminus through a click reaction. Our study demonstrated that SApts efficiently degrade disease-associated membrane proteins, such as PTK7, Met, and NCL, based on the inherent signals rather than specific LTR. The potent antitumor efficacy of SApts was further confirmed in a xenograft tumor model, where in vivo degradation of PTK7 was observed. Collectively, our work provides insights into the development of a simple and universal lysosomal degradation platform with potential translational value in clinical treatment.
Collapse
Affiliation(s)
- Wanlin Xie
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Weidi Sun
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Qin Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, Zhejiang, China
| | - Yang Dang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Lele Ma
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Yuan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, Zhejiang, China
| | - Hui Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, Zhejiang, China
| | - Fengli Qu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, Zhejiang, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, Zhejiang, China
| |
Collapse
|
8
|
Li T, Liu M, Luo ZX, Qin XJ, Ye XS, Xiong DC. Photoinduced Regio- and Stereoselective Hydrotrifluoromethylation of Glycals with Langlois Reagent. J Org Chem 2025; 90:6713-6720. [PMID: 40357743 DOI: 10.1021/acs.joc.5c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Fluorination has demonstrated the potential to improve the physicochemical and enzymatic properties of carbohydrates. Hydrotrifluoromethylation is an emerging reaction to introduce trifluoromethyl groups. However, the hydrotrifluoromethylation of glycals has been challenging because of the lack of regioselectivity and stereoselectivity. Herein, we describe an efficient, highly selective, and broadly applicable photoinduced hydrotrifluoromethylation strategy of glycals using cost-effective sodium trifluoromethanesulfonate to give 1,2-dideoxy-2-trifluoromethyl sugars.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhao-Xiang Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xian-Jin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315010, China
| |
Collapse
|
9
|
Ma F, Wang W, Dong J, Zhou X, Lin Z, Zheng P, Nian X, Dong L. Genome-wide identification of socs gene in rainbow trout (Oncorhynchus mykiss) and response to microplastic exposure. Mol Biol Rep 2025; 52:486. [PMID: 40402276 DOI: 10.1007/s11033-025-10601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND To investigate the response of the suppressor of the cytokine signaling (socs) gene family in rainbow trout following exposure to microplastics, this study conducted a bioinformatics analysis of the socs gene family using rainbow trout genome data, complemented by experiments involving microplastic exposure and gene expression detection. METHODS AND RESULTS The findings revealed that the rainbow trout SOCS gene family comprises 27 members, encoding proteins with lengths ranging from 110 to 837 amino acids. Analyses of motifs, domains, and gene structures indicate that members of this family are highly conserved. RNA sequencing data demonstrated that, following microplastic exposure, the expression levels of socs1, socs2, socs3, socs5, socs6, socs7, and cish in the liver, intestine, and brain tissues of rainbow trout underwent significant changes. Additionally, RT-qPCR results indicated that the expression levels of several socs genes were down-regulated, whereas socs1a, socs1b, socs7a1, socs7b1, and socs7b2 exhibited significant up-regulation. These genes may play crucial roles in the response to microplastic exposure in rainbow trout. CONCLUSION This study elucidates the involvement of the socs gene family members in the context of microplastic exposure, providing valuable insights into the underlying toxicological mechanisms and enhancing our understanding of the threats posed by plastic pollution to freshwater organisms.
Collapse
Affiliation(s)
- Fang Ma
- School of Bioengineering and Technology, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, Gansu Province, 741000, P. R. China.
| | - Wenli Wang
- School of Bioengineering and Technology, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, Gansu Province, 741000, P. R. China
| | - Jiaxuan Dong
- School of Bioengineering and Technology, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, Gansu Province, 741000, P. R. China
| | - Xiangjun Zhou
- School of Bioengineering and Technology, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, Gansu Province, 741000, P. R. China
- Dingxi Vocational and Technical College, Dingxi, 730500, China
| | - Zhiyun Lin
- School of Bioengineering and Technology, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, Gansu Province, 741000, P. R. China
| | - Pan Zheng
- School of Bioengineering and Technology, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, Gansu Province, 741000, P. R. China
| | - Xiajiao Nian
- School of Bioengineering and Technology, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, Gansu Province, 741000, P. R. China
| | - Lili Dong
- Dingxi Vocational and Technical College, Dingxi, 730500, China
| |
Collapse
|
10
|
Liu Y, Ran X, Zhou G, Liu Y, Tan W. Multivalent Aptamer Assembly Enhances Tumor-Specific Degradation of Transforming Growth Factor-Beta to Remodel the Stromal and Immunosuppressive Cancer Microenvironment. ACS NANO 2025; 19:18164-18175. [PMID: 40326636 DOI: 10.1021/acsnano.4c16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Extracellular proteins like transforming growth factor-β (TGFβ) are crucial enforcers in the development of cancer stroma and the tumor immunosuppressive microenvironment. Lysosome-targeting chimera-mediated protein degradation appeared as a promising tool for extracellular signal interference but was limited by several lysosome-trafficking receptors and inadequate in vivo degradation efficiency. Here, we designed a multivalent aptamer assembly with a universal pattern to drag extracellular proteins (e.g., TGFβ1) for lysosome degradation with high tumor specificity. By accelerating cell recognition-internalization and lysosomal delivery, the assembly promoted TGFβ blockade and degradation in pancreatic cancer cells and pancreatic stellate cells (PSCs). In vivo, the assembly exhibited highly tumor-specific accumulation and prolonged retention, which resulted in efficient TGFβ inhibition, stromal remodeling, and reversed polarization of immunosuppressive cells in the tumor microenvironment, as well as synergic therapeutic effects when combined with gemcitabine or ovalbumin. Therefore, this study provides a feasible strategy to construct a multivalent aptamer assembly for tumor-specific extracellular protein degradation, after remodeling the tumor stromal and immunosuppressive microenvironment in a manner that enhances the effects of cancer chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyue Ran
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
11
|
Yang X, Rong K, Fu S, Yang Y, Liu S, Zhang C, Xu K, Zhang K, Zhu Y, Hao Y, Zhao J, Fu J. Engineered Spirulina platensis for treating rheumatoid arthritis and restoring bone homeostasis. Nat Commun 2025; 16:4434. [PMID: 40360534 PMCID: PMC12075783 DOI: 10.1038/s41467-025-59579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Rheumatoid arthritis (RA) is characterized by massive intra-articular infiltration of pro-inflammatory macrophages, leading to articular immune dysfunction, severe synovitis, and ultimately joint erosion. Comprehensive remodeling of articular immune homeostasis and bone homeostasis is essential for alleviating RA. Here we report on Spirulina platensis (SP), a natural microorganism commercially farmed worldwide as a food, as an efficient regulator of both synovial inflammation and osteoclast differentiation in male RA mouse models. SP reduces excessive reactive oxygen species and downregulates pro-inflammatory cytokines in synovial macrophages. Moreover, SP reprograms pro-inflammatory M1-like macrophages to anti-inflammatory M2-like phenotype, suppressing synovitis and remodeling redox balance. Notably, SP inhibits osteoclast activation effectively and blocks the progression of bone erosion. SP is then engineered with macrophage membranes (SP@M) to enable immune evasion and RA-targeting in vivo. SP@M increases LC3-mediated autophagy as well as strengthens ubiquitin-mediated proteasomal degradation toward KEAP1, which promotes the expression and nuclear translocation of NRF2. The NRF2 further activates antioxidant enzymes to terminate macrophages-initiated pathological cascades and reestablish intra-articular immune homeostasis, conferring a bone recovery and chondroprotective effect in collagen-induced arthritis mouse models. This work shows the therapeutic activity of FDA-approved functional food of SP in suppressing synovial inflammation and osteoclast differentiation, offering an off-the-shelf strategy for RA treatment.
Collapse
Affiliation(s)
- Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Shaotian Fu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Yangzi Yang
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, No. 415 Fengyang Road, 200003, Shanghai, China
| | - Shasha Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Zhang
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, 200011, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Kang Xu
- The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Yingchun Zhu
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, 200011, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China.
| | - Jingke Fu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China.
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, 200011, Shanghai, China.
| |
Collapse
|
12
|
Hu S, Xu J, Cui W, Jin H, Wang X, Maimaitiyiming Y. Post-Translational Modifications in Multiple Myeloma: Mechanisms of Drug Resistance and Therapeutic Opportunities. Biomolecules 2025; 15:702. [PMID: 40427595 PMCID: PMC12109037 DOI: 10.3390/biom15050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Multiple myeloma (MM) remains an incurable hematologic malignancy due to the inevitable development of drug resistance, particularly in relapsed or refractory cases. Post-translational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, and glycosylation, play pivotal roles in regulating protein function, stability, and interactions, thereby influencing MM pathogenesis and therapeutic resistance. This review comprehensively explores the mechanisms by which dysregulated PTMs contribute to drug resistance in MM, focusing on their impact on key signaling pathways, metabolic reprogramming, and the tumor microenvironment. We highlight how PTMs modulate drug uptake, alter drug targets, and regulate cell survival signals, ultimately promoting resistance to PIs, IMiDs, and other therapeutic agents. Furthermore, we discuss emerging therapeutic strategies targeting PTM-related pathways, which offer promising avenues for overcoming resistance to treatment. By integrating preclinical and clinical insights, this review underscores the potential of PTM-targeted therapies to enhance treatment efficacy and improve patient outcomes in MM.
Collapse
Affiliation(s)
- Shuoyang Hu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
| | - Jirun Xu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
| | - Weiyan Cui
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
| | - Haoran Jin
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
| | - Xiaoyu Wang
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
| | - Yasen Maimaitiyiming
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
13
|
Lin JY, Wu Y, Liang XH, Tang M, Sun X, Lu SX, Jin JM, Guo X, Wang B, Chen HZ, Zhang WD, Luan X. A Self-Assembling LYTAC Mediates CTGF Degradation and Remodels Inflammatory Tumor Microenvironment for Triple-Negative Breast Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500311. [PMID: 40349150 DOI: 10.1002/advs.202500311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/23/2025] [Indexed: 05/14/2025]
Abstract
As a multifunctional extracellular protein, connective tissue growth factor (CTGF/CCN2) is significantly associated with the progression and prognosis of triple-negative breast cancer (TNBC). However, current blockade therapies targeting CTGF's multiple domains are limited, creating substantial challenges in treatment. Lysosome-targeting chimeras (LYTACs) have emerged as a promising approach for achieving complete protein degradation and inhibiting CTGF's various bioactivities. In this study, a self-assembling LYTAC nanoplatform, NanoCLY, designed to tumor microenvironment (TME)-responsively degrade CTGF is presented. The complete degradation of CTGF downregulates the TGF-β signaling pathway and disrupts the CTGF-IL-6 cell crosstalk within the TME, which further inhibits the activation of inflammatory cancer-associated fibroblasts (CAFs) and alleviates the inflammatory TME. Notably, the anti-TNBC effect of LYTAC-based CTGF degradation therapy surpasses that of antibody-based blockade therapy in both in vitro and in vivo models. The findings provide a proof of concept for CTGF degradation in TNBC and introduce the first CTGF-LYTAC nanoplatform aimed at TME-directed therapy.
Collapse
Affiliation(s)
- Jia-Yi Lin
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ye Wu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Hui Liang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min Tang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Sun
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Sheng-Xin Lu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Mei Jin
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Guo
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bei Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong-Zhuan Chen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei-Dong Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100700, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xin Luan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
14
|
Zhang D, Wang Z, Inuzuka H, Wei W. Proximity-induced membrane protein degradation for cancer therapies. RSC Med Chem 2025:d5md00141b. [PMID: 40365034 PMCID: PMC12066958 DOI: 10.1039/d5md00141b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
The selective modulation of membrane proteins presents a significant challenge in drug development, particularly in cancer therapies. However, conventional small molecules and biologics often face significant hurdles in effectively targeting membrane-bound proteins, largely due to the structural complexity of these proteins and their involvement in intricate cellular processes. In light of these limitations, proximity-induced protein modulation has recently emerged as a transformative approach. It leverages molecule-induced proximity strategies to commandeer endogenous cellular machinery for precise protein manipulation. One of these modulatory strategies is protein degradation, wherein membrane-targeting degraders derived from proximity-induction approaches offer a unique therapeutic avenue by inducing the irreversible removal of key oncogenic and immune-regulatory proteins to combat cancer. This review explores the fundamental principles underlying proximity-driven membrane protein degradation, highlighting key strategies such as LYTACs, PROTABs, TransTACs, and IFLD that are reshaping targeted cancer therapy. We discuss recent technological advancements in the application of proximity-induced degraders across breast cancer, lung cancer, immunotherapy, and other malignancies, underscoring how these innovative approaches have demonstrated significant therapeutic potential. Lastly, while these emerging technologies offer significant promise, they still face substantial limitations, including drug delivery, selectivity, and resistance mechanisms that need to be addressed to achieve successful clinical translation.
Collapse
Affiliation(s)
- Dingpeng Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| | - Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| |
Collapse
|
15
|
Fu Y, Zhang J, Qin R, Ren Y, Zhou T, Han B, Liu B. Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases. Pharmacol Rev 2025; 77:100053. [PMID: 40187044 DOI: 10.1016/j.pharmr.2025.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/05/2024] [Indexed: 04/07/2025] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of "chasing and escaping" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.
Collapse
Affiliation(s)
- Yuqi Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueting Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Brain Science, Faculty of Medicine, Imperial College, London, UK
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Mamun MAA, Bakunts AG, Chernorudskiy AL. Targeted degradation of extracellular proteins: state of the art and diversity of degrader designs. J Hematol Oncol 2025; 18:52. [PMID: 40307925 PMCID: PMC12044797 DOI: 10.1186/s13045-025-01703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Selective elimination of proteins associated with the pathogenesis of diseases is an emerging therapeutic modality with distinct advantages over traditional inhibitor-based approaches. This strategy, called targeted protein degradation (TPD), is based on hijacking the cellular proteolytic machinery using chimeric degrader molecules that physically link the target protein of interest with the degradation effectors. The TPD era began with the development of PROteolysis TAtrgeting Chimeras (PROTACs) in 2001, with various methods and applications currently available. Classical PROTAC molecules are heterobifunctional chimeras linking target proteins with E3 ubiquitin ligases. This induced interaction leads to the ubiquitylation of the target protein, which is needed for its recognition and subsequent degradation by the cellular proteasomes. However, this technology is limited to intracellular proteins since the effectors involved (E3 ubiquitin ligases and proteasomes) are located in the cytosol. The related methods for selective destruction of proteins present in the extracellular space have only emerged recently and are collectively termed extracellular TPD (eTPD). The prototypic eTPD technology utilizes LYsosomal TArgeting Chimeras (LYTACs) that link extracellular target proteins (secreted or membrane-associated) to lysosome-targeting receptors (LTRs) on the cell surface. The resulting complex is then internalized by endocytosis and trafficked to lysosomes, where the target protein is degraded. The successful elimination of various extracellular proteins via LYTACs and related approaches has been reported, including several important targets in oncology that drive tumor growth and dissemination. This review summarizes current progress in the eTPD field and focuses primarily on the respective technological developments. It discusses the design principles and diversity of degrader molecules and the landscape of available targets and effectors that can be employed for eTPD. Finally, it emphasizes current open questions, challenges, and perspectives of this technological platform to promote the expansion of the eTPD toolkit and further development of its therapeutic applications.
Collapse
Affiliation(s)
- M A A Mamun
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Anush G Bakunts
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Alexander L Chernorudskiy
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China.
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, 20156, Italy.
| |
Collapse
|
17
|
Hinterndorfer M, Spiteri VA, Ciulli A, Winter GE. Targeted protein degradation for cancer therapy. Nat Rev Cancer 2025:10.1038/s41568-025-00817-8. [PMID: 40281114 DOI: 10.1038/s41568-025-00817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Targeted protein degradation (TPD) aims at reprogramming the target specificity of the ubiquitin-proteasome system, the major cellular protein disposal machinery, to induce selective ubiquitination and degradation of therapeutically relevant proteins. Since its conception over 20 years ago, TPD has gained a lot of attention mainly due to improvements in the design of bifunctional proteolysis targeting chimeras (PROTACs) and understanding the mechanisms underlying molecular glue degraders. Today, PROTACs are on the verge of a first clinical approval and recent structural and mechanistic insights combined with technological leaps promise to unlock the rational design of protein degraders, following the lead of lenalidomide and related clinically approved analogues. At the same time, the TPD universe is expanding at a record speed with the discovery of novel modalities beyond molecular glue degraders and PROTACs. Here we review the recent progress in the field, focusing on newly discovered degrader modalities, the current state of clinical degrader candidates for cancer therapy and upcoming design approaches.
Collapse
Affiliation(s)
- Matthias Hinterndorfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Valentina A Spiteri
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
18
|
Zhou H, Hou B, Shan Y, Huang L, Chen F, Ren S, Zhang S, Pan J, Dang Y, Yu H, Xu Z. De Novo Design of Structure-Tunable Multivalent Targeting Chimeras for Tumor-Targeted PD-L1 Degradation and Potentiated Cancer Immunotherapy. Angew Chem Int Ed Engl 2025:e202504233. [PMID: 40285333 DOI: 10.1002/anie.202504233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Targeted protein degradation (TPD) technology holds significant potential for modulating protein homeostasis and treating diseases. However, current methods for degrading membrane proteins highly depend on the lysosome-targeting ligands or membrane receptors. In this study, we present a set of multivalent targeting chimeras (multi-TACs) for tumor-specific degradation of programmed death ligand 1 (PD-L1) on the surface of the tumor cell membrane. The multi-TACs are synthesized by copolymerization of small-molecule PD-L1 inhibitor BMS-1 with acid-responsive monomers. The chemical structures of the multi-TACs are optimized by investigating the correlation between PD-L1 degradation efficacy and the key parameters, including acid-sensitive moieties, BMS-1 valency, and spacer length. Mechanistic study reveals that the multi-TACs highly efficiently degrade PD-L1 on the surface of tumor cells via the adsorption-mediated endocytosis and lysosomal degradation pathways, which differ from the reported strategies for membrane protein degradation. The outperformed multi-TAC GG56 with tumor extracellular acidity and enzyme-sensitivity dramatically reduces PD-L1 levels and suppresses tumor growth in mouse models of B16-F10 melanoma and 4T1 breast tumors. Furthermore, GG56 serves as a versatile nanoplatform for combinatory chemo-immunotherapy and radio-immunotherapy of 4T1 breast tumor by co-delivery of chemotherapeutic and radio-sensitizer, respectively.
Collapse
Affiliation(s)
- Huiling Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bo Hou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Yiming Shan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Ren
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shunan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxing Pan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
19
|
Ge RX, Chen M, Li QC, Liu M, Zhou J, Xie SB. Targeting neurodegenerative disease-associated protein aggregation with proximity-inducing modalities. Acta Pharmacol Sin 2025:10.1038/s41401-025-01538-2. [PMID: 40195511 DOI: 10.1038/s41401-025-01538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunction and anatomical changes caused by neuron loss and gliosis, ultimately leading to severe declines in brain function. While these disorders arise from a variety of pathological mechanisms, a common molecular feature is the accumulation of misfolded proteins, which occurs both inside and outside neurons. For example, Alzheimer's disease (AD) is defined by extracellular β-amyloid plaques and intracellular tau neurofibrillary tangles. These pathological protein aggregates are often resistant to traditional small molecule drugs. Recent advances in proximity-inducing chimeras such as proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimeras (LYTACs), autophagy-targeted chimeras (AUTOTACs), dephosphorylation-targeting chimeras (DEPTACs) and ribonuclease-targeting chimeras (RIBOTACs) offer promising strategies to eliminate pathological proteins or mRNAs through intracellular degradation pathways. These innovative approaches open avenues for developing new therapies for NDDs. In this review we summarize the regulatory mechanisms of protein aggregation, highlight the advancements in proximity-inducing modalities for NDDs, and discuss the current challenges and future directions in therapeutic development.
Collapse
Affiliation(s)
- Rui-Xin Ge
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Miao Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255500, China
| | - Qing-Chao Li
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Min Liu
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Song-Bo Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University. Department of Ophthalmology, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
20
|
Jain A, Heremans I, Rademaker G, Detomasi TC, Rohweder P, Anderson D, Zhang J, Hernandez GA, Gupta S, von Linde T, Lange M, Spacci M, Luo J, Citron YR, Olzmann JA, Dawson DW, Craik CS, Bommer G, Perera RM, Zoncu R. Leucine aminopeptidase LyLAP enables lysosomal degradation of membrane proteins. Science 2025; 387:eadq8331. [PMID: 40146846 DOI: 10.1126/science.adq8331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/25/2024] [Accepted: 01/13/2025] [Indexed: 03/29/2025]
Abstract
Breakdown of every transmembrane protein trafficked to lysosomes requires proteolysis of their hydrophobic helical transmembrane domains. Combining lysosomal proteomics with functional genomic datasets, we identified lysosomal leucine aminopeptidase (LyLAP; formerly phospholipase B domain-containing 1) as the hydrolase most tightly associated with elevated endocytosis. Untargeted metabolomics and biochemical reconstitution demonstrated that LyLAP is a processive monoaminopeptidase with preference for amino-terminal leucine. This activity was necessary and sufficient for the breakdown of hydrophobic transmembrane domains. LyLAP was up-regulated in pancreatic ductal adenocarcinoma (PDA), which relies on macropinocytosis for nutrient uptake. In PDA cells, LyLAP ablation led to the buildup of undigested hydrophobic peptides, lysosomal membrane damage, and growth inhibition. Thus, LyLAP enables lysosomal degradation of membrane proteins and protects lysosomal integrity in highly endocytic cancer cells.
Collapse
Affiliation(s)
- Aakriti Jain
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Isaac Heremans
- Metabolic Research Group, de Duve Institute and WELBIO, Universite Catholique de Louvain, Brussels, Belgium
| | - Gilles Rademaker
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Tyler C Detomasi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Dashiell Anderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Justin Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Grace A Hernandez
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Suprit Gupta
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Teresa von Linde
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Martina Spacci
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jiayi Luo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Y Rose Citron
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Guido Bommer
- Metabolic Research Group, de Duve Institute and WELBIO, Universite Catholique de Louvain, Brussels, Belgium
| | - Rushika M Perera
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
21
|
Padhy A, Gupta M, Das A, Farook I, Dutta T, Datta S, Datta R, Gupta SS. Lysosome-Specific Delivery of β-Glucosidase Enzyme Using Protein-Glycopolypeptide Conjugate via Protein Engineering and Bioconjugation. Bioconjug Chem 2025; 36:383-394. [PMID: 39988831 DOI: 10.1021/acs.bioconjchem.4c00430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Lysosomal enzyme replacement therapy (ERT) holds potential for treating lysosomal storage disorders, but achieving targeted delivery of deficient therapeutic enzymes remains a significant challenge. This study presents a novel approach for the lysosome-specific delivery of the β-glucosidase (B8CYA8) enzyme by covalently conjugating lysosome-targeting mannose-6-phosphate functionalized glycopolypeptides (M6P-GP). We used a protein-glycopolypeptide conjugate developed through advanced protein engineering and bioconjugation techniques. By conjugating β-glucosidase to M6P-GP that has a high affinity for the cation-independent mannose-6-phosphate receptors (CI-MPR) and lysosomal receptors, we enhance the enzyme's selective intracellular uptake and lysosome-specific localization. To attain maximum activity of the near-native enzyme after delivery, we have designed and synthesized an acetal linkage containing the pH-responsive linker maleimide-acetal-azide (MAA), which will cleave in the lysosomal acidic pH to detach the glycopolypeptide from the protein backbone. We demonstrated the efficient cellular uptake of the protein-glycopolypeptide conjugate and showed targeted lysosome delivery, leading to increased enzymatic activity compared to untreated cells. Our results proved that the approach mainly improves the specificity and efficiency of enzyme delivery, particularly into lysosomes, which may enable new methods for ERT. These findings suggest that protein-glycopolypeptide conjugates could represent a class of bioconjugates to design targeted enzyme therapies, offering a pathway to the effective treatment of Gaucher disease (GD) and potentially other related lysosomal storage disorders.
Collapse
Affiliation(s)
- Abinash Padhy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Mani Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Apurba Das
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Isha Farook
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tahiti Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Supratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
- Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
22
|
Xing Y, Li J, Wang L, Zhu Z, Yan J, Liu Y, Liu Q. A Bifunctional Lysosome-Targeting Chimera Nanoplatform for Tumor-Selective Protein Degradation and Enhanced Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417942. [PMID: 39888098 DOI: 10.1002/adma.202417942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Lysosome-targeting chimeras (LYTACs) have recently emerged as a promising therapeutic strategy for degrading extracellular and membrane-associated pathogenic proteins by hijacking lysosome-targeting receptors. However, the antitumor performance of LYTAC is limited by its insufficient tumor accumulation and nonspecific activation. Additionally, the synergistic effects of LYTACs and other therapeutic modalities are crucial. To address these issues, a bifunctional LYTAC nanoplatform (NLTC) is developed for tumor-selective protein degradation and enhanced cancer immunotherapy. By rationally controlling the surface composition, the NLTC can effectively transport extracellular or membrane proteins into lysosomes for degradation via cation-independent mannose 6-phosphate receptors. With removable surface modification, an NLTC is obtained that efficiently accumulated in tumor tissues and avoided on-target off-tumor toxicity. Moreover, the synthesis method of NLTC is generally applicable to various enzymes. Thus, catalase (CAT) is encapsulated with NLTC to synergistically degrade cancer cell surface programmed death ligand-1 (PD-L1), relieve the immunosuppressive tumor microenvironment for effective cancer immunotherapy, and significantly inhibit tumor growth, recurrence, and metastasis in B16F10-bearing mice. This work presents a bifunctional LYTAC nanoplatform that can not only perform tissue-selective protein degradation but also integrate other therapeutic modalities, providing insights into the design of advanced LYTAC technologies for clinical applications.
Collapse
Affiliation(s)
- Yumeng Xing
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingjing Li
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Leyuan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Zhihui Zhu
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Jian Yan
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yang Liu
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qi Liu
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
23
|
Cheng B, Li H, Peng X, Chen J, Shao C, Kong Z. Recent advances in developing targeted protein degraders. Eur J Med Chem 2025; 284:117212. [PMID: 39736199 DOI: 10.1016/j.ejmech.2024.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Targeted protein degradation (TPD) represents a promising therapeutic approach, encompassing several innovative strategies, including but not limited to proteolysis targeting chimeras (PROTACs), molecular glues, hydrophobic tag tethering degraders (HyTTD), and lysosome-targeted chimeras (LYTACs). Central to TPD are small molecule ligands, which play a critical role in mediating the degradation of target proteins. This review summarizes the current landscape of small molecule ligands for TPD molecules. These small molecule ligands can utilize the proteasome, lysosome, autophagy, or hydrophobic-tagging system to achieve the degradation of target proteins. The article mainly focuses on introducing their design principles, application advantages, and potential limitations. A brief discussion on the development prospects and future directions of TPD technology was also provided.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, 435003, China; Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Hongqiao Li
- The Central Hospital of Huangshi, Huangshi, 435000, China
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| | - Zhihua Kong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, FoShan, 528200, China.
| |
Collapse
|
24
|
Zhang TK, Yi ZQ, Huang YQ, Geng W, Yang XY. Natural biomolecules for cell-interface engineering. Chem Sci 2025; 16:3019-3044. [PMID: 39882561 PMCID: PMC11773181 DOI: 10.1039/d4sc08422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation. Lastly, the current prospects and challenges in this area are presented with potential solutions to solve these problems, which in turn benefits the design of next-generation cell engineering.
Collapse
Affiliation(s)
- Tong-Kai Zhang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zi-Qian Yi
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yao-Qi Huang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- School of Engineering and Applied Sciences, Harvard University MA-02138 USA
| | - Wei Geng
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory Foshan 528200 P. R. China
| |
Collapse
|
25
|
Xiao Y, He Z, Li W, Chen D, Niu X, Yang X, Zeng W, Wang M, Qian Y, Su Y, Luo F, Chen G, Liu J, Sui X, Zhou X, Gao Y. A covalent peptide-based lysosome-targeting protein degradation platform for cancer immunotherapy. Nat Commun 2025; 16:1388. [PMID: 39910101 PMCID: PMC11799215 DOI: 10.1038/s41467-025-56648-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The lysosome-targeting chimera (LYTAC) strategy provided a very powerful tool for the degradation of membrane proteins. However, the synthesis of LYTACs, antibody-small molecule conjugates, is challenging. The ability of antibody-based LYTACs to penetrate solid tumor is limited as well, especially to cross the blood-brain barrier (BBB). Here, we propose a covalent chimeric peptide-based targeted degradation platform (Pep-TACs) by introducing a long flexible aryl sulfonyl fluoride group, which allows proximity-enabled cross-linking upon binding with the protein of interest. The Pep-TACs platform facilitates the degradation of target proteins through the mechanism of recycling transferrin receptor (TFRC)-mediated lysosomal targeted endocytosis. Biological experiments demonstrate that covalent Pep-TACs can significantly degrade the expression of PD-L1 on tumor cells, dendritic cells and macrophages, especially under acidic conditions, and markedly enhance the function of T cells and tumor phagocytosis by macrophages. Furthermore, both in anti-PD-1-responsive and -resistant tumor models, the Pep-TACs exert significant anti-tumor immune response. It is noteworthy that Pep-TACs can cross the BBB and prolong the survival of mice with in situ brain tumor. As a proof-of-concept, this study introduces a modular TFRC-based covalent peptide degradation platform for the degradation of membrane protein, and especially for the immunotherapy of brain tumors.
Collapse
Affiliation(s)
- Youmei Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Zhuoying He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Wanqiong Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Danhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Xin Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Wenxuan Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Mengfan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yuzhen Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Ye Su
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Feiyu Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Juan Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
26
|
Wang C, Zhou X, Bu T, Liang S, Hao Z, Qu M, Liu Y, Wei M, Xing C, Yang G, Yuan L. Engineered extracellular vesicles as nanosponges for lysosomal degradation of PCSK9. Mol Ther 2025; 33:471-484. [PMID: 39604267 PMCID: PMC11853006 DOI: 10.1016/j.ymthe.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in the degradation of the low-density lipoprotein receptor (LDLR), and PCSK9 inhibition emerges as an attractive strategy for atherosclerosis management. In this study, extracellular vesicles (EVs) were engineered to nanosponges, which could efficiently adsorb and deliver PCSK9 into lysosomes for degradation. Briefly, nanosponges were engineered by modifying EVs with EGF-A/PTGFRN fusion protein (PCSK9 binding domain EGF-A from the mutant LDLR with higher affinity was fused to the C terminus of prostaglandin F2 receptor negative regulator). The modification endowed the EVs with hundreds of EGF-As displayed on the surface, and thus the capacity to adsorb PCSK9 efficiently. The adsorbed PCSK9 would thus be delivered into lysosomes for degradation when the nanosponges were endocytosed by liver cells, thus releasing endogenous LDLR from degradation. In the ApoE-/- mouse model, tail vein-injected nanosponges were able to degrade PCSK9, increase LDLR expression, lower the LDL-C level, and thus alleviate atherosclerosis. In summary, here we not only develop a novel strategy for PCSK9 inhibition but we also propose a universal method for adsorption and degradation of circulating proteins for disease management.
Collapse
Affiliation(s)
- Chen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xueying Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Te Bu
- Department of Gastroenterology, The No. 967 Hospital of PLA Joint Logistics Support Force, Dalian 116011, China
| | - Shuang Liang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Zhenzhen Hao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Mi Qu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Mengying Wei
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an 710032, China
| | - Changyang Xing
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an 710032, China.
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
27
|
Wang X, Chen S, Xia X, Du Y, Wei Y, Yang W, Zhang Y, Song Y, Lei T, Huang Q, Gao H. Lysosome-Targeting Protein Degradation Through Endocytosis Pathway Triggered by Polyvalent Nano-Chimera for AD Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411061. [PMID: 39686821 DOI: 10.1002/adma.202411061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/02/2024] [Indexed: 12/18/2024]
Abstract
The excessive up-regulation of receptor for advanced glycation end products (RAGE), a well-known pathological marker, drives the onset and progression of Alzheimer's disease. Although lysosome-targeting protein degradation has emerged as an effective therapeutic modality, the limited lysosome-sorting efficacy greatly hindered the degradation efficiency of target proteins. Herein, a lysosome-shuttle-like nano-chimera (endoTAC) is proposed based on polyvalent receptor binding mode for enhanced RAGE degradation as well as precise drug delivery. The endoTAC shows a high affinity to RAGE and enhances RAGE degradation due to its polyvalent-interaction with RAGE. Additionally, endoTAC features increased accumulation in diseased brain and shows promise as a precise brain delivery system. After loading with simvastatin, the SV@endoTAC proves to successfully reverse pathological features both in vitro and in vivo. The work proposes that the combination of a lysosome-targeting chimera and an effective drug delivery system can be promising in Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shiqin Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yufan Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yiwei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yujun Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
28
|
Guo Y, Che J, Dong X. TransTACs: Transforming antibodies into targeted protein degraders. Acta Pharm Sin B 2025; 15:1186-1188. [PMID: 40177569 PMCID: PMC11959879 DOI: 10.1016/j.apsb.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 04/05/2025] Open
Affiliation(s)
- Yu Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Huang B, Abedi M, Ahn G, Coventry B, Sappington I, Tang C, Wang R, Schlichthaerle T, Zhang JZ, Wang Y, Goreshnik I, Chiu CW, Chazin-Gray A, Chan S, Gerben S, Murray A, Wang S, O'Neill J, Yi L, Yeh R, Misquith A, Wolf A, Tomasovic LM, Piraner DI, Duran Gonzalez MJ, Bennett NR, Venkatesh P, Ahlrichs M, Dobbins C, Yang W, Wang X, Sahtoe DD, Vafeados D, Mout R, Shivaei S, Cao L, Carter L, Stewart L, Spangler JB, Roybal KT, Greisen PJ, Li X, Bernardes GJL, Bertozzi CR, Baker D. Designed endocytosis-inducing proteins degrade targets and amplify signals. Nature 2025; 638:796-804. [PMID: 39322662 PMCID: PMC11839401 DOI: 10.1038/s41586-024-07948-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by endogenous ligands. Therapeutic approaches such as lysosome-targeting chimaeras1,2 (LYTACs) and cytokine receptor-targeting chimeras3 (KineTACs) have used this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. Although powerful, these approaches can be limited by competition with native ligands and requirements for chemical modification that limit genetic encodability and can complicate manufacturing, and, more generally, there may be no native ligands that stimulate endocytosis through a given receptor. Here we describe computational design approaches for endocytosis-triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for insulin-like growth factor 2 receptor (IGF2R) and asialoglycoprotein receptor (ASGPR), sortilin and transferrin receptors, and show that fusing these tags to soluble or transmembrane target protein binders leads to lysosomal trafficking and target degradation. As these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. EndoTag fusion to a PD-L1 antibody considerably increases efficacy in a mouse tumour model compared to antibody alone. The modularity and genetic encodability of EndoTags enables AND gate control for higher-specificity targeted degradation, and the localized secretion of degraders from engineered cells. By promoting endocytosis, EndoTag fusion increases signalling through an engineered ligand-receptor system by nearly 100-fold. EndoTags have considerable therapeutic potential as targeted degradation inducers, signalling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody-drug and antibody-RNA conjugates.
Collapse
Affiliation(s)
- Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Green Ahn
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Isaac Sappington
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Schlichthaerle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jason Z Zhang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yujia Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Ching Wen Chiu
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Adam Chazin-Gray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey Gerben
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shunzhi Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Li Yi
- Novo Nordisk, Måløv, Denmark
| | | | | | | | - Luke M Tomasovic
- Departments of Biomedical Engineering and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan I Piraner
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Maria J Duran Gonzalez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Nathaniel R Bennett
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Preetham Venkatesh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinru Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Dionne Vafeados
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rubul Mout
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Shirin Shivaei
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Kole T Roybal
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Zhang D, Duque-Jimenez J, Facchinetti F, Brixi G, Rhee K, Feng WW, Jänne PA, Zhou X. Transferrin receptor targeting chimeras for membrane protein degradation. Nature 2025; 638:787-795. [PMID: 39322661 PMCID: PMC11839386 DOI: 10.1038/s41586-024-07947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Cancer cells require high levels of iron for rapid proliferation, leading to significant upregulation of cell-surface transferrin receptor 1 (TfR1), which mediates iron uptake by binding to the iron-carrying protein transferrin1-3. Leveraging this phenomenon and the fast endocytosis rate of TfR1 (refs. 4,5), we developed transferrin receptor targeting chimeras (TransTACs), a heterobispecific antibody modality for membrane protein degradation. TransTACs are engineered to drive rapid co-internalization of a target protein of interest and TfR1 from the cell surface, and to enable target protein entry into the lysosomal degradation pathway. We show that TransTACs can efficiently degrade a diverse range of single-pass, multi-pass, native or synthetic membrane proteins, including epidermal growth factor receptor, programmed cell death 1 ligand 1, cluster of differentiation 20 and chimeric antigen receptor. In example applications, TransTACs enabled the reversible control of human primary chimeric antigen receptor T cells and the targeting of drug-resistant epidermal growth factor receptor-driven lung cancer with the exon 19 deletion/T790M/C797S mutations in a mouse xenograft model. TransTACs represent a promising new family of bifunctional antibodies for precise manipulation of membrane proteins and targeted cancer therapy.
Collapse
Affiliation(s)
- Dingpeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Francesco Facchinetti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kaitlin Rhee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - William W Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xin Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Xie Y, Luo Y, Li W, Zhou Y, Men Y, Liu F, Pan F, Cai L, Jiao Z, Zhang P. A Molecular Logic Gate Enables Unconventional Super-resolution Same-Day Imaging of Lysosome Membrane in Live Cells. Anal Chem 2025; 97:33-37. [PMID: 39722175 PMCID: PMC11740186 DOI: 10.1021/acs.analchem.4c05907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Lysosomes are acidic membrane-bound organelles that aid digestion, excretion, and cell renewal. The lysosomal membranes are essential for maintaining lysosomal functions and cellular homeostasis. In this work, we developed a molecular "NOR" logic gate, SIATFluor-580L, by introducing malachite green into the spirocyclic rhodamine. SIATFluor-580L requires restriction of molecular rotation of the malachite green motif (Input 1, tight membrane structure) and a large amount of H+ ions to convert the spirocyclic rhodamine into the zwitterionic form (Input 2, acidic environment) to produce a fluorescent product (Output), providing a fluorogenic probe to visualize the lysosomal membrane dynamics in living cells with subdiffraction resolution by using HyVolution (also known as Lightning), an unconventional and inexpensive super-resolution imaging approach based on a basic confocal optical system.
Collapse
Affiliation(s)
- Yangzi Xie
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, P. R. China
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
CAS Key Laboratory of Biomedical Imaging Science and System, Institute
of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced
Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yuan Luo
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
CAS Key Laboratory of Biomedical Imaging Science and System, Institute
of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced
Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Wen Li
- College
of Biotechnology, Tianjin University of
Science and Technology, Tianjin 300457, P. R. China
| | - Yi Zhou
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
| | - Yongfan Men
- Research
Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical
and Health Engineering, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Fufeng Liu
- College
of Biotechnology, Tianjin University of
Science and Technology, Tianjin 300457, P. R. China
| | - Fan Pan
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
CAS Key Laboratory of Biomedical Imaging Science and System, Institute
of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced
Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Lintao Cai
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
CAS Key Laboratory of Biomedical Imaging Science and System, Institute
of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced
Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- Sino-Euro
Center of Biomedicine and Health, Luohu, Shenzhen 518024, P. R. China
| | - Zhe Jiao
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, P. R. China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
CAS Key Laboratory of Biomedical Imaging Science and System, Institute
of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced
Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| |
Collapse
|
32
|
Li YY, Yang Y, Zhang RS, Ge RX, Xie SB. Targeted degradation of membrane and extracellular proteins with LYTACs. Acta Pharmacol Sin 2025; 46:1-7. [PMID: 39103530 PMCID: PMC11696130 DOI: 10.1038/s41401-024-01364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Targeted protein degradation technology has gained substantial momentum over the past two decades as a revolutionary strategy for eliminating pathogenic proteins that are otherwise refractory to treatment. Among the various approaches developed to harness the body's innate protein homeostasis mechanisms for this purpose, lysosome targeting chimeras (LYTACs) that exploit the lysosomal degradation pathway by coupling the target proteins with lysosome-trafficking receptors represent the latest innovation. These chimeras are uniquely tailored to degrade proteins that are membrane-bound and extracellular, encompassing approximately 40% of all proteome. Several novel LYTAC formulas have been developed recently, providing valuable insights for the design and development of therapeutic degraders. This review delineates the recent progresses of LYTAC technology, its practical applications, and the factors that dictate target degradation efficiency. The potential and emerging trends of this technology are discussed as well. LYTAC technology offers a promising avenue for targeted protein degradation, potentially revolutionizing the therapeutic landscape for numerous diseases.
Collapse
Affiliation(s)
- Yu-Yang Li
- Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo, 255300, China
| | - Yang Yang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ren-Shuai Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Rui-Xin Ge
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Song-Bo Xie
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, 300052, China.
| |
Collapse
|
33
|
Tolosa EJ, Yang L, Ayers-Ringler J, Suzuki S, Mallareddy JR, Schaefer-Klein J, Borad M, Kosari F, Natarajan A, Mansfield AS. Proteolysis targeting chimera (PROTAC)-driven antibody internalization of oncogenic cell surface receptors. Commun Biol 2024; 7:1719. [PMID: 39741170 DOI: 10.1038/s42003-024-07439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
Antibody-drug conjugates (ADCs) are increasingly used in clinic for multiple indications and may improve upon the activity of parental antibodies by delivering cytotoxic payloads into target cells. This activity is predicated upon internalization to release the cytotoxic payloads intracellularly. Since binding of ADCs to their cell surface targets does not guarantee their internalization, we hypothesize that proteolysis targeting chimeras (PROTACs) could improve the activity of ADCs through forced internalization. We show that PROTACs improve internalization of antibodies or their derivative antibody drug conjugates when both agents target the same oncogenic cell surface proteins (EGFR, HER2 or MET) by 1.4-1.9 fold in most models. PROTACs also significantly enhance cytotoxicity with HER2-targeting ADCs. These effects depend on dynamin and proteolysis. This application of PROTACs may impact the use of ADCs and provides a rationale to combine these agents in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Amarnath Natarajan
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
34
|
Al Mazid M, Shkel O, Ryu E, Kim J, Shin KH, Kim YK, Lim HS, Lee JS. Aptamer and N-Degron Ensemble (AptaGron) as a Target Protein Degradation Strategy. ACS Chem Biol 2024; 19:2462-2468. [PMID: 39630150 PMCID: PMC11668241 DOI: 10.1021/acschembio.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Target protein degradation (TPD) is a promising strategy for catalytic downregulation of target proteins through various cellular proteolytic pathways. Despite numerous reports on novel TPD mechanisms, the discovery of target-specific ligands remains a major challenge. Unlike small-molecule ligands, aptamers offer significant advantages, owing to their SELEX-based systematic screening method. To fully utilize aptamers for TPD, we designed an aptamer and N-degron ensemble system (AptaGron) that circumvents the need for synthetic conjugations between aptamers and proteolysis-recruiting units. In our AptaGron system, a peptide nucleic acid containing an N-degron peptide and a sequence complementary to the aptamer was designed. Using this system, we successfully degraded three target proteins, tau, nucleolin, and eukaryotic initiation factor 4E (eIF4E), which lack specific small-molecule ligands. Our results highlight the potential of the AptaGron approach as a robust platform for targeted protein degradation.
Collapse
Affiliation(s)
- Mohammad
Faysal Al Mazid
- Division
of Bio-Medical Science and Technology, Korea
Institute of Science and Technology (KIST) & Department of Biological
Chemistry, KIST School UST, Seoul 02792, South Korea
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Olha Shkel
- Brain
Science Institute, Korea Institute of Science
and Technology (KIST) & Department of Biological Chemistry, KIST
School UST, Seoul 02792, South Korea
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Eunteg Ryu
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jiwon Kim
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Kyung Ho Shin
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Yun Kyung Kim
- Brain
Science Institute, Korea Institute of Science
and Technology (KIST) & Department of Biological Chemistry, KIST
School UST, Seoul 02792, South Korea
| | - Hyun Suk Lim
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Jun-Seok Lee
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| |
Collapse
|
35
|
Xu M, Hu Y, Wu J, Liu J, Pu K. Sonodynamic Nano-LYTACs Reverse Tumor Immunosuppressive Microenvironment for Cancer Immunotherapy. J Am Chem Soc 2024; 146:34669-34680. [PMID: 39644208 DOI: 10.1021/jacs.4c13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Extracellular and transmembrane proteins, which account for the products of approximately 40% of all protein-encoding genes in tumors, play a crucial role in shaping the tumor immunosuppressive microenvironment (TIME). While protein degradation therapy has been applied to membrane proteins of cancer cells, it has rarely been extended to immune cells. We herein report a polymeric nanolysosome targeting chimera (nano-LYTAC) that undergoes membrane protein degradation on M2 macrophages and generates a sonodynamic effect for combinational cancer immunotherapy. Nano-LYTAC is found to have higher degradation efficacy to the interleukin 4 receptor (IL-4R) compared to traditional inhibitors. More importantly, it is revealed that the effect of nano-LYTAC on the function of the M2 macrophage is concentration-dependent: downregulating CD206 expression and interleukin 10 (IL-10) secretion from M2 macrophages at low concentration, while triggering their apoptosis at high concentration. Moreover, nano-LYTAC is found to possess long tumor retention (>48 h), allowing for multiple sonodynamic treatments with a single dose. Such a synergistic sonodynamic immunotherapy mediated by nano-LYTAC effectively reprograms the TIME via inhibiting the functions of M2 macrophages and regulatory T cells (Tregs), as well as promoting the maturation of dendritic cells (DCs) and tumor infiltration of T effector cells (Teffs), completely suppressing tumor growth, inhibiting pulmonary metastasis, and preventing recurrence under preclinical animal models.
Collapse
Affiliation(s)
- Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
36
|
Jain A, Heremans I, Rademaker G, Detomasi TC, Hernandez GA, Zhang J, Gupta S, von Linde T, Lange M, Spacci M, Rohweder P, Anderson D, Citron YR, Olzmann JA, Dawson DW, Craik CS, Bommer G, Perera RM, Zoncu R. Leucine Aminopeptidase LyLAP enables lysosomal degradation of membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628212. [PMID: 39713462 PMCID: PMC11661280 DOI: 10.1101/2024.12.13.628212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Proteolysis of hydrophobic helices is required for complete breakdown of every transmembrane protein trafficked to the lysosome and sustains high rates of endocytosis. However, the lysosomal mechanisms for degrading hydrophobic domains remain unknown. Combining lysosomal proteomics with functional genomic data mining, we identify Lysosomal Leucine Aminopeptidase (LyLAP; formerly Phospholipase B Domain-Containing 1) as the hydrolase most tightly associated with elevated endocytic activity. Untargeted metabolomics and biochemical reconstitution demonstrate that LyLAP is not a phospholipase, but a processive monoaminopeptidase with strong preference for N-terminal leucine - an activity necessary and sufficient for breakdown of hydrophobic transmembrane domains. LyLAP is upregulated in pancreatic ductal adenocarcinoma (PDA), which relies on macropinocytosis for nutrient uptake, and its ablation led to buildup of undigested hydrophobic peptides, which compromised lysosomal membrane integrity and inhibited PDA cell growth. Thus, LyLAP enables lysosomal degradation of membrane proteins, and may represent a vulnerability in highly endocytic cancer cells. One sentence summary LyLAP degrades transmembrane proteins to sustain high endocytosis and lysosomal membrane stability in pancreatic cancer.
Collapse
|
37
|
Tong H, Jiang Z, Song L, Tan K, Yin X, He C, Huang J, Li X, Jing X, Yun H, Li G, Zhao Y, Kang Q, Wei Y, Li R, Long Z, Yin J, Luo Q, Liang X, Wan Y, Zheng A, Lin N, Zhang T, Xu J, Yang X, Jiang Y, Li Y, Xiang Y, Zhang Y, Feng L, Lei Z, Shi H, Ma X. Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation. Cell Metab 2024; 36:2493-2510.e9. [PMID: 39577415 DOI: 10.1016/j.cmet.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
The effect of the serine/glycine-free diet (-SG diet) on colorectal cancer (CRC) remains unclear; meanwhile, programmed death-1 (PD-1) inhibitors are less effective for most CRC patients. Here, we demonstrate that the -SG diet inhibits CRC growth and promotes the accumulation of cytotoxic T cells to enhance antitumor immunity. Additionally, we also identified the lactylation of programmed death-ligand 1 (PD-L1) in tumor cells as a mechanism of immune evasion during cytotoxic T cell-mediated antitumor responses, and blocking the PD-1/PD-L1 signaling pathway is able to rejuvenate the function of CD8+ T cells recruited by the -SG diet, indicating the potential of combining the -SG diet with immunotherapy. We conducted a single-arm, phase I study (ChiCTR2300067929). The primary outcome suggests that the -SG diet is feasible and safe for regulating systemic immunity. Secondary outcomes include patient tolerability and potential antitumor effects. Collectively, our findings highlight the promising therapeutic potential of the -SG diet for treating solid tumors.
Collapse
Affiliation(s)
- Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China; Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keqin Tan
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomeng Yin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoyue Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Wupai Technology Limited Liability Company, Chengdu, Sichuan, China
| | - Xiaofan Jing
- Department of Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Yun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangqi Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianlong Kang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuhao Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Renwei Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiwen Long
- Recovery Plus Clinic, New York, NY 10019, USA
| | - Jun Yin
- Recovery Plus Clinic, New York, NY 10019, USA
| | - Qiang Luo
- Department of Oncology, Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiao Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanzhi Wan
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Aiping Zheng
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nan Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinggang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuting Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yueyi Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Xiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lusi Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Lei
- Recovery Plus Clinic, New York, NY 10019, USA.
| | - Hubing Shi
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China.
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Chen Y, Pal S, Li W, Liu F, Yuan S, Hu Q. Engineered platelets as targeted protein degraders and application to breast cancer models. Nat Biotechnol 2024:10.1038/s41587-024-02494-8. [PMID: 39627511 DOI: 10.1038/s41587-024-02494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/30/2024] [Indexed: 01/15/2025]
Abstract
Clinical application of chimeric molecules for targeted protein degradation has been limited by unfavorable drug-like properties and biosafety concerns arising from nonspecific biodistribution after systemic administration. Here we develop a method to engineer platelets for degradation of either intracellular or extracellular proteins of interest (POIs) in vivo by covalently labeling heat shock protein 90 (HSP90) in platelets with a POI ligand. The degrader platelets (DePLTs) target wound areas and undergo activation. Depending on the tethered POI ligand and transport mechanism of the prelabeled HSP90, activated DePLTs can mediate targeted protein degradation in the target cell through the ubiquitin-proteasome machinery or the lysosome. HSP90 packaged into platelet-derived microparticles uses the ubiquitin-proteasome system to degrade intracellular POIs, whereas released free HSP90 redirects extracellular POIs to lysosomal degradation. In postsurgical breast cancer mouse models, DePLTs engineered with corresponding POI ligands effectively degrade intracellular bromodomain-containing protein 4 or extracellular programmed cell death ligand 1, thereby suppressing cancer recurrence or metastasis.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Wen Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Sichen Yuan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
39
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
40
|
Thapa R, Bhat AA, Gupta G, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Prasad GVS, Pramanik A, Ali H. CRBN-PROTACs in Cancer Therapy: From Mechanistic Insights to Clinical Applications. Chem Biol Drug Des 2024; 104:e70009. [PMID: 39496477 DOI: 10.1111/cbdd.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024]
Abstract
Cereblon (CRBN), a member of the E3 ubiquitin ligase complex, has gained significant attention as a therapeutic target in cancer. CRBN regulates the degradation of various proteins in cancer progression, including transcription factors and signaling molecules. PROTACs (proteolysis-targeting chimeras) are a novel approach that uses the cell's degradation system to remove disease-causing proteins selectively. CRBN-dependent PROTACs work by tagging harmful proteins for destruction through the ubiquitin-proteasome system. This strategy offers several advantages over traditional protein inhibition methods, including the potential to overcome drug resistance. Recent progress in developing CRBN-based PROTACs has shown promising preclinical results in both hematologic malignancies and solid tumors. Additionally, CRBN-based PROTACs have enhanced our understanding of CRBN's role in cancer, potentially serving as biomarkers for patient stratification and predicting therapeutic responses. In this review, we delineate the mechanisms of action for CRBN-dependent PROTACs (CRBN-PROTACs), summarize recent advances in preclinical and clinical applications, and provide our perspective on future development.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
41
|
Winter GE. Extrapolating Lessons from Targeted Protein Degradation to Other Proximity-Inducing Drugs. ACS Chem Biol 2024; 19:2089-2102. [PMID: 39264973 PMCID: PMC11494510 DOI: 10.1021/acschembio.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Targeted protein degradation (TPD) is an emerging pharmacologic strategy. It relies on small-molecule "degraders" that induce proximity of a component of an E3 ubiquitin ligase complex and a target protein to induce target ubiquitination and subsequent proteasomal degradation. Essentially, degraders thus expand the function of E3 ligases, allowing them to degrade proteins they would not recognize in the absence of the small molecule. Over the past decade, insights gained from identifying, designing, and characterizing various degraders have significantly enhanced our understanding of TPD mechanisms, precipitating in rational degrader discovery strategies. In this Account, I aim to explore how these insights can be extrapolated to anticipate both opportunities and challenges of utilizing the overarching concept of proximity-inducing pharmacology to manipulate other cellular circuits for the dissection of biological mechanisms and for therapeutic purposes.
Collapse
Affiliation(s)
- Georg E. Winter
- CeMM Research Center for
Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
42
|
Yun C, Li N, Zhang Y, Fang T, Ma J, Zheng Z, Zhou S, Cai X. Glucose Transporter-Targeting Chimeras Enabling Tumor-Selective Degradation of Secreted and Membrane Proteins. ACS Chem Biol 2024; 19:2254-2263. [PMID: 39374326 DOI: 10.1021/acschembio.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Tumor-selective degradation of target proteins has the potential to offer superior therapeutic benefits with maximized therapeutic windows and minimized off-target effects. However, the development of effective lysosome-targeted degradation platforms for achieving selective protein degradation in tumors remains a substantial challenge. Cancer cells depend on certain solute carrier (SLC) transporters to acquire extracellular nutrients to sustain their metabolism and growth. This current study exploits facilitative glucose transporters (GLUTs), a group of SLC transporters widely overexpressed in numerous types of cancer, to drive the endocytosis and lysosomal degradation of target proteins in tumor cells. GLUT-targeting chimeras (GTACs) were generated by conjugating multiple glucose ligands to an antibody specific for the target protein. We demonstrate that the constructed GTACs can induce the internalization and lysosomal degradation of the extracellular and membrane proteins streptavidin, tumor necrosis factor-alpha (TNF-α), and human epidermal growth factor receptor 2 (HER2). Compared with the parent antibody, the GTAC exhibited higher potency in inhibiting the growth of tumor cells in vitro and enhanced tumor-targeting capacity in a tumor-bearing mouse model. Thus, the GTAC platform represents a novel degradation strategy that harnesses an SLC transporter for tumor-selective depletion of secreted and membrane proteins of interest.
Collapse
Affiliation(s)
- Chengyu Yun
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Na Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Yishu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Tong Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Jing Ma
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Zhenting Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Subing Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| |
Collapse
|
43
|
Seabrook LJ, Franco CN, Loy CA, Osman J, Fredlender C, Zimak J, Campos M, Nguyen ST, Watson RL, Levine SR, Khalil MF, Sumigray K, Trader DJ, Albrecht LV. Methylarginine targeting chimeras for lysosomal degradation of intracellular proteins. Nat Chem Biol 2024:10.1038/s41589-024-01741-y. [PMID: 39414979 DOI: 10.1038/s41589-024-01741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
A paradigm shift in drug development is the discovery of small molecules that harness the ubiquitin-proteasomal pathway to eliminate pathogenic proteins. Here we provide a modality for targeted protein degradation in lysosomes. We exploit an endogenous lysosomal pathway whereby protein arginine methyltransferases (PRMTs) initiate substrate degradation via arginine methylation. We developed a heterobifunctional small molecule, methylarginine targeting chimera (MrTAC), that recruits PRMT1 to a target protein for induced degradation in lysosomes. MrTAC compounds degraded substrates across cell lines, timescales and doses. MrTAC degradation required target protein methylation for subsequent lysosomal delivery via microautophagy. A library of MrTAC molecules exemplified the generality of MrTAC to degrade known targets and neo-substrates-glycogen synthase kinase 3β, MYC, bromodomain-containing protein 4 and histone deacetylase 6. MrTAC selectively degraded target proteins and drove biological loss-of-function phenotypes in survival, transcription and proliferation. Collectively, MrTAC demonstrates the utility of endogenous lysosomal proteolysis in the generation of a new class of small molecule degraders.
Collapse
Affiliation(s)
- Laurence J Seabrook
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Carolina N Franco
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Cody A Loy
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jaida Osman
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Callie Fredlender
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jan Zimak
- Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Melissa Campos
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Steven T Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Richard L Watson
- Department of Medicine, Division of Pulmonary & Critical Care, University of California, Los Angeles, Los Angeles, CA, USA
| | - Samantha R Levine
- Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Marian F Khalil
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Darci J Trader
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Lauren V Albrecht
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
44
|
Crook ZR, Sevilla GP, Young P, Girard EJ, Phi TD, Howard ML, Price J, Olson JM, Nairn NW. CYpHER: catalytic extracellular targeted protein degradation with high potency and durable effect. Nat Commun 2024; 15:8731. [PMID: 39384759 PMCID: PMC11464628 DOI: 10.1038/s41467-024-52975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal delivery of surface and extracellular targets while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.
Collapse
Affiliation(s)
- Zachary R Crook
- Cyclera Therapeutics Inc, Seattle, WA, 98115, USA
- Blaze Bioscience Inc, Seattle, WA, 98109, USA
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
| | - Gregory P Sevilla
- Cyclera Therapeutics Inc, Seattle, WA, 98115, USA
- Blaze Bioscience Inc, Seattle, WA, 98109, USA
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
| | | | - Emily J Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98105, USA
| | | | | | - Jason Price
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98105, USA
| | - Natalie W Nairn
- Cyclera Therapeutics Inc, Seattle, WA, 98115, USA.
- Blaze Bioscience Inc, Seattle, WA, 98109, USA.
| |
Collapse
|
45
|
Fang T, Zheng Z, Li N, Zhang Y, Ma J, Yun C, Cai X. Lysosome-targeting chimeras containing an endocytic signaling motif trigger endocytosis and lysosomal degradation of cell-surface proteins. Chem Sci 2024:d4sc05093b. [PMID: 39391383 PMCID: PMC11459673 DOI: 10.1039/d4sc05093b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Lysosome-targeting degradation technologies have emerged as a promising therapeutic strategy for the selective depletion of target extracellular and cell-surface proteins by harnessing a cell-surface effector protein such as lysosome-targeting receptors (LTRs) or transmembrane E3 ligases that direct lysosomal degradation. We recently developed a lysosome-targeting degradation platform termed signal-mediated lysosome-targeting chimeras (SignalTACs) that functions independently of an LTR or E3 ligase; these are engineered fusion proteins comprising a target binder, a cell-penetrating peptide (CPP), and a lysosomal sorting signal motif (P1). Herein, we present the next-generation SignalTACs containing a single endocytic signal that bypasses the need for a CPP. We demonstrate that the fusion with a 10-amino acid endocytic signaling peptide (P3) derived from the cation-independent mannose-6-phosphate receptor (CI-M6PR) induces robust internalization and lysosomal degradation of the target protein. The P3-based SignalTAC exhibited enhanced antitumor efficacy compared to the parent antibody. We envision that the fusion of the endocytic signaling peptide P3 to a target binder may allow the construction of an effective degrader for membrane-associated targets. Furthermore, mechanistic studies identified different drivers for the activities of the P3- and P1-based SignalTACs, which is expected to provide crucial insights toward the harnessing of the intrinsic signaling pathways to direct protein trafficking and degradation.
Collapse
Affiliation(s)
- Tong Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Zhenting Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Na Li
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Yishu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Jing Ma
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Chengyu Yun
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| |
Collapse
|
46
|
Chen Y, Liu F, Pal S, Hu Q. Proteolysis-targeting drug delivery system (ProDDS): integrating targeted protein degradation concepts into formulation design. Chem Soc Rev 2024; 53:9582-9608. [PMID: 39171633 DOI: 10.1039/d4cs00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a revolutionary paradigm in drug discovery and development, offering a promising avenue to tackle challenging therapeutic targets. Unlike traditional drug discovery approaches that focus on inhibiting protein function, TPD aims to eliminate proteins of interest (POIs) using modular chimeric structures. This is achieved through the utilization of proteolysis-targeting chimeras (PROTACs), which redirect POIs to E3 ubiquitin ligases, rendering them for degradation by the cellular ubiquitin-proteasome system (UPS). Additionally, other TPD technologies such as lysosome-targeting chimeras (LYTACs) and autophagy-based protein degraders facilitate the transportation of proteins to endo-lysosomal or autophagy-lysosomal pathways for degradation, respectively. Despite significant growth in preclinical TPD research, many chimeras fail to progress beyond this stage in the drug development. Various factors contribute to the limited success of TPD agents, including a significant hurdle of inadequate delivery to the target site. Integrating TPD into delivery platforms could surmount the challenges of in vivo applications of TPD strategies by reshaping their pharmacokinetics and pharmacodynamic profiles. These proteolysis-targeting drug delivery systems (ProDDSs) exhibit superior delivery performance, enhanced targetability, and reduced off-tissue side effects. In this review, we will survey the latest progress in TPD-inspired drug delivery systems, highlight the importance of introducing delivery ideas or technologies to the development of protein degraders, outline design principles of protein degrader-inspired delivery systems, discuss the current challenges, and provide an outlook on future opportunities in this field.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
47
|
Yu S, Shi T, Li C, Xie C, Wang F, Liu X. Programming DNA Nanoassemblies into Polyvalent Lysosomal Degraders for Potent Degradation of Pathogenic Membrane Proteins. NANO LETTERS 2024; 24:11573-11580. [PMID: 39225423 DOI: 10.1021/acs.nanolett.4c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lysosome-targeting chimera (LYTAC) shows great promise for protein-based therapeutics by targeted degradation of disease-associated membrane or extracellular proteins, yet its efficiency is constrained by the limited binding affinity between LYTAC reagents and designated proteins. Here, we established a programmable and multivalent LYTAC system by tandem assembly of DNA into a high-affinity protein degrader, a heterodimer aptamer nanostructure targeting both pathogenic membrane protein and lysosome-targeting receptor (insulin-like growth factor 2 receptor, IGF2R) with adjustable spatial distribution or organization pattern. The DNA-based multivalent LYTACs showed enhanced efficacy in removing immune-checkpoint protein programmable death-ligand 1 (PD-L1) and vascular endothelial growth factor receptor 2 (VEGFR2) in tumor cell membrane that respectively motivated a significant increase in T cell activity and a potent effect on cancer cell growth inhibition. With high programmability and versatility, this multivalent LYTAC system holds considerable promise for realizing protein therapeutics with enhanced activity.
Collapse
Affiliation(s)
- Shuyi Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Tianhui Shi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chenbiao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chongyu Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Beijing Life Science Academy, Beijing 102209, China
| |
Collapse
|
48
|
Chen C, Pan Y, Yang X, Li H, Cai X, He S, Wang Q, Yang Y, Zheng R, Li H, Yuan S, Dong X, Samarawickrama PN, Zi M, He Y, Zhang X. Liver-targeting chimeras as a potential modality for the treatment of liver diseases. J Control Release 2024; 374:627-638. [PMID: 39208934 DOI: 10.1016/j.jconrel.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Liver diseases pose significant challenges to global public health. In the realm of drug discovery and development, overcoming 'on-target off-tissue' effects remains a substantial barrier for various diseases. In this study, we have pioneered a Liver-Targeting Chimera (LIVTAC) approach using a proteolysis-targeting chimera (PROTAC) molecule coupled to the liver-specific asialoglycoprotein receptor (ASGPR) through an innovative linker attachment strategy for the precise induction of target protein degradation within the liver. As a proof-of-concept study, we designed XZ1606, a mammalian bromodomain and extra-terminal domain (BET)-targeting LIVTAC agent, which not only demonstrated enduring tumor suppression (over 2 months) in combination with sorafenib but also an improved safety profile, notably ameliorating the incidence of thrombocytopenia, a common and severe on-target dose-limiting toxic effect associated with conventional BET inhibitors. These encouraging results highlight the potential of LIVTAC as a versatile platform for addressing a broad spectrum of liver diseases.
Collapse
Affiliation(s)
- Chuanjie Chen
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongzhang Pan
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Xiaoyu Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiqin Li
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Xinhui Cai
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengyuan He
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiong Wang
- National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yiwen Yang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Huiwen Li
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shengjie Yuan
- University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Xin Dong
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Meiting Zi
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China.
| | - Xuan Zhang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
49
|
Wang Q, Zhu Y, Pei J. Targeting EGFR with molecular degraders as a promising strategy to overcome resistance to EGFR inhibitors. Future Med Chem 2024; 16:1923-1944. [PMID: 39206853 PMCID: PMC11485768 DOI: 10.1080/17568919.2024.2389764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Abnormal activation of EGFR is often associated with various malignant tumors, making it an important target for antitumor therapy. However, traditional targeted inhibitors have several limitations, such as drug resistance and side effects. Many studies have focused on the development of EGFR degraders to overcome this resistance and enhance the therapeutic effect on tumors. Proteolysis targeting chimeras (PROTAC) and Lysosome-based degradation techniques have made significant progress in degrading EGFR. This review provides a summary of the structural and function of EGFR, the resistance, particularly the research progress and activity of EGFR degraders via the proteasome and lysosome. Furthermore, this review aims to provide insights for the development of the novel EGFR degraders.
Collapse
Affiliation(s)
- Qiangfeng Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
50
|
Zhu Q, Zhang R, Gu X, Zhao Z, Gao Q, Chen M, Wu Q, Xie T, Sui X. Honokiol enhances the sensitivity of cetuximab in KRAS G13D mutant colorectal cancer through destroying SNX3-retromer complex. Theranostics 2024; 14:5443-5460. [PMID: 39310106 PMCID: PMC11413778 DOI: 10.7150/thno.97180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale : the proto-oncogene KRAS is frequently mutated in colorectal cancer (CRC), leading to inherent resistance against monoclonal antibodies targeting the epidermal growth factor receptor (EGFR), such as cetuximab. Therefore, addressing the primary resistance and expanding the indications for target therapy have become critical challenges. Methods : the screening of a natural product library against KRAS mutant CRC cells was conducted, leading to the discovery of a small molecule compound that sensitive to the KRASG13D mutation site. The anti-tumor activity of this small molecule compound in combination with cetuximab was evaluated using the KRASG13D mutant CRC models both in vivo and in vitro. This evaluation includes an examination of its effects on cell proliferation, viability, apoptosis, cell cycle progression, and tumor growth. Furthermore, RNA sequencing, western blot analysis, immunofluorescence, real-time quantitative PCR, and pull-down assays were employed to explore the molecular mechanisms underlying the synergistic anti-tumor effect of this small molecule compound in combination with cetuximab. Results : our study screened 882 compounds in KRAS mutant CRC cells and identified honokiol, a small molecule compound that exhibits specific sensitivity to KRASG13D mutant CRC cells. Furthermore, we revealed that the synergistic augmentation of cetuximab's sensitivity in vivo and in vitro models of KRASG13D mutant CRC in combination with honokiol. Mechanistically, honokiol suppresses SNX3-retromer mediated trafficking, thereby impeding lysosomal proteolytic capacity and inhibiting autophagy and macropinocytosis fluxes. Moreover, honokiol inhibits the conversion of RAS GDP to RAS GTP, heightening the susceptibility of KRASG13D CRC mutant cells to cetuximab. Conclusions : honokiol enhances the sensitivity of cetuximab by destroying SNX3 retromer in KRASG13D mutant CRC preclinical model. These findings present a promising strategy for expanding the indications of target therapy in KRAS mutant colorectal cancer patients.
Collapse
Affiliation(s)
- Qianru Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Ruonan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Quan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Min Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|