1
|
Wang B, Shen J, Huang C, Ye Z, He J, Wu X, Guo Z, Zhang L, Xu T. Magnetically driven biohybrid blood hydrogel fibres for personalized intracranial tumour therapy under fluoroscopic tracking. Nat Biomed Eng 2025:10.1038/s41551-025-01382-z. [PMID: 40312457 DOI: 10.1038/s41551-025-01382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/25/2025] [Indexed: 05/03/2025]
Abstract
Small materials with pliability and untethered mobility are particularly suitable for minimally invasive medical interventions inside the body. However, the capabilities and applicability of such soft 'robots' are restricted by foreign-body responses to them and by the need to get them cleared from the body after the intervention. Here we report the development of biodegradable magnetized biohybrid blood hydrogel fibres that evade immune recognition, and their applicability for targeted intracranial tumour therapy with real-time tracking through X-ray fluoroscopy. The gel fibres can be made of the patient's own blood mixed with a small amount of magnetic particles and can be produced in about 15 min. We show that the locomotion of intracranially injected gel fibres through cerebrospinal fluid can be remotely controlled under a magnetic field and fluoroscopically tracked, and that a drug encapsulated in the gels can be released on demand under magnetic control, as we show for the delivery of doxorubicin to intracranial tumours in the minipigs. Biodegradable soft actuatable materials that avoid foreign-body responses may aid the development of personalized targeted interventions.
Collapse
Affiliation(s)
- Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China.
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, P. R. China
| | - Chenyang Huang
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Jiajun He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Xinyu Wu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, P. R. China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, P. R. China.
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China.
- The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China.
| |
Collapse
|
2
|
Ma Y, Hu W, Hu J, Ruan M, Hu J, Yang M, Zhang Y, Xie H, Hu C. Bifunctional nanoprobe for simultaneous detection of intracellular reactive oxygen species and temperature in single cells. MICROSYSTEMS & NANOENGINEERING 2024; 10:171. [PMID: 39562541 PMCID: PMC11577004 DOI: 10.1038/s41378-024-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024]
Abstract
Living cells can rapidly adjust their metabolic activities in response to external stimuli, leading to fluctuations in intracellular temperature and reactive oxygen species (ROS) levels. Monitoring these parameters is essential for understanding cellular metabolism, particularly during dynamic biological processes. In this study, we present a bifunctional nanoprobe capable of simultaneous measurement of ROS levels and temperature within single cells. The nanoprobe features two individually addressable nanoelectrodes, with platinum (Pt) and nickel (Ni) coatings on both sides. At the tip, these two metal layers form a nano-thermocouple, enabling precise intracellular temperature measurements, while the Pt layer facilitates selective ROS detection. This dual functionality allows for real-time monitoring of cellular responses during synergistic chemo-photothermal therapy of cancer cells and zebrafish embryos subjected to mitochondrial toxic stress. Our results demonstrate that the nanoprobe effectively measures increases in temperature and ROS levels in HeLa cells undergoing chemo-photothermal therapy, as well as in chemically stimulated zebrafish embryos. By providing detailed analysis of submicrometer-scale temperature and ROS variations within living cells, this nanoprobe offers valuable insights into cellular processes and holds promise for early disease detection and drug development.
Collapse
Affiliation(s)
- Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Weikang Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Jian Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Muyang Ruan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Jie Hu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Ming Yang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Yi Zhang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Hanhan Xie
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
3
|
Wang C, Harder P, İyisan N, Li B, Hiendlmeier L, Wolfrum B, Özkale B. A multiscale approach to assess thermomechanical performance and force generation in nanorobotic microgels. NANOSCALE 2024; 16:5222-5231. [PMID: 38354060 DOI: 10.1039/d3nr06485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We present a multiscale approach to characterize the performance of photothermally powered, nanorobotic 3D microgels. Optically triggered nanoactuators, consisting of a gold nanorod core and thermoresponsive pNIPMAM shell, are used as building blocks to generate the nanorobotic 3D microgels. We use microfluidic encapsulation to physically embed the nanoactuators in an alginate network, to form the microgel droplets. The nanoactuators respond to near-infrared light owing to the synergistic effects of plasmonic and thermoresponsive components, and the nanorobotic 3D microgels generate compressive force under the same light stimulus. We use a multiscale approach to characterize this behavior for both the nanoactuators and the assembled microgels via dynamic light scattering and fluorescence microscopy, respectively. A thermoresponsive fluorescent molecule, Rhodamine B, is integrated into alginate chains to monitor the temperature of the microgels (22-59 °C) during actuation at laser intensities up to 6.4 μW μm-2. Our findings show that nanoactuators and the microgels exhibit reversible deformation above the lower critical solution temperature of the thermoresponsive polymer at 42 °C. 785 nm laser light triggers the generation of 2D radial strain in nanoactuators at a maximum of 44%, which translates to an average 2D radial strain of 2.1% in the nanorobotic microgels at 26.4 vol% nanoactuator loading. We then use a semi-experimental approach to quantify the photothermally generated forces in the microgels. Finite element modeling coupled with experimental measurements shows that nanorobotic microgels generate up to 8.5 nN of force over encapsulated single cells. Overall, our method provides a comprehensive approach to characterizing the mechanical performance of nanorobotic hydrogel networks.
Collapse
Affiliation(s)
- Chen Wang
- Microrobotic Bioengineering Lab, School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich, Hans-Piloty-Straße 1, 85748 Garching, Germany.
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Philipp Harder
- Microrobotic Bioengineering Lab, School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich, Hans-Piloty-Straße 1, 85748 Garching, Germany.
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Nergishan İyisan
- Microrobotic Bioengineering Lab, School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich, Hans-Piloty-Straße 1, 85748 Garching, Germany.
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Bolin Li
- Microrobotic Bioengineering Lab, School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich, Hans-Piloty-Straße 1, 85748 Garching, Germany.
| | - Lukas Hiendlmeier
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
- Neuroelectronics, School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich, Hans-Piloty-Straße 1, 85748 Garching, Germany
| | - Bernhard Wolfrum
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
- Neuroelectronics, School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich, Hans-Piloty-Straße 1, 85748 Garching, Germany
| | - Berna Özkale
- Microrobotic Bioengineering Lab, School of Computation, Information, and Technology, Department of Electrical Engineering, Technical University of Munich, Hans-Piloty-Straße 1, 85748 Garching, Germany.
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| |
Collapse
|
4
|
Giusti V, Kaur G, Giusto E, Civiero L. Brain clearance of protein aggregates: a close-up on astrocytes. Mol Neurodegener 2024; 19:5. [PMID: 38229094 PMCID: PMC10790381 DOI: 10.1186/s13024-024-00703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Protein misfolding and accumulation defines a prevailing feature of many neurodegenerative disorders, finally resulting in the formation of toxic intra- and extracellular aggregates. Intracellular aggregates can enter the extracellular space and be subsequently transferred among different cell types, thus spreading between connected brain districts.Although microglia perform a predominant role in the removal of extracellular aggregated proteins, mounting evidence suggests that astrocytes actively contribute to the clearing process. However, the molecular mechanisms used by astrocytes to remove misfolded proteins are still largely unknown.Here we first provide a brief overview of the progressive transition from soluble monomers to insoluble fibrils that characterizes amyloid proteins, referring to α-Synuclein and Tau as archetypical examples. We then highlight the mechanisms at the basis of astrocyte-mediated clearance with a focus on their potential ability to recognize, collect, internalize and digest extracellular protein aggregates. Finally, we explore the potential of targeting astrocyte-mediated clearance as a future therapeutic approach for the treatment of neurodegenerative disorders characterized by protein misfolding and accumulation.
Collapse
Affiliation(s)
| | - Gurkirat Kaur
- Department of Biology, University of Padova, Padua, Italy
| | | | - Laura Civiero
- IRCCS San Camillo Hospital, Venice, Italy.
- Department of Biology, University of Padova, Padua, Italy.
| |
Collapse
|
5
|
Wang Q, Jermyn S, Quashie D, Gatti SE, Katuri J, Ali J. Magnetically actuated swimming and rolling erythrocyte-based biohybrid micromotors. RSC Adv 2023; 13:30951-30958. [PMID: 37876656 PMCID: PMC10591291 DOI: 10.1039/d3ra05844a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Erythrocytes are natural multifunctional biomaterials that can be engineered for use as micro robotic vectors for therapeutic applications. Erythrocyte based micromotors offer several advantages over existing bio-hybrid micromotors, but current control mechanisms are often complex, utilizing multiple external signals, such as tandem magnetic and acoustic fields to achieve both actuation and directional control. Further, existing actuation methods rely on proximity to a substrate to achieve effective propulsion through symmetry breaking. Alternatively, control mechanisms only requiring the use of a single control input may aid in the translational use of these devices. Here, we report a simple scalable technique for fabricating erythrocyte-based magnetic biohybrid micromotors and demonstrate the ability to control two modes of motion, surface rolling and bulk swimming, using a single uniform rotating magnetic field. While rolling exploits symmetry breaking from the proximity of a surface, bulk swimming relies on naturally occurring shape asymmetry of erythrocytes. We characterize swimming and rolling kinematics, including step-out frequencies, propulsion velocity, and steerability in aqueous solutions using open-loop control. The observed dynamics may enable the development of future erythrocyte micromotor designs and control strategies for therapeutic applications.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Sophie Jermyn
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Sarah Elizabeth Gatti
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
- Department of Biomedical Engineering, Vanderbilt University College of Engineering Nashville Tennessee 37235 USA
| | - Jaideep Katuri
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| |
Collapse
|
6
|
Harder P, İyisan N, Wang C, Kohler F, Neb I, Lahm H, Dreßen M, Krane M, Dietz H, Özkale B. A Laser-Driven Microrobot for Thermal Stimulation of Single Cells. Adv Healthc Mater 2023; 12:e2300904. [PMID: 37229536 PMCID: PMC11468149 DOI: 10.1002/adhm.202300904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Here, the study presents a thermally activated cell-signal imaging (TACSI) microrobot, capable of photothermal actuation, sensing, and light-driven locomotion. The plasmonic soft microrobot is specifically designed for thermal stimulation of mammalian cells to investigate cell behavior under heat active conditions. Due to the integrated thermosensitive fluorescence probe, Rhodamine B, the system allows dynamic measurement of induced temperature changes. TACSI microrobots show excellent biocompatibility over 72 h in vitro, and they are capable of thermally activating single cells to cell clusters. Locomotion in a 3D workspace is achieved by relying on thermophoretic convection, and the microrobot speed is controlled within a range of 5-65 µm s-1 . In addition, light-driven actuation enables spatiotemporal control of the microrobot temperature up to a maximum of 60 °C. Using TACSI microrobots, this study targets single cells within a large population, and demonstrates thermal cell stimulation using calcium signaling as a biological output. Initial studies with human embryonic kidney 293 cells indicate a dose dependent change in intracellular calcium content within the photothermally controlled temperature range of 37-57 °C.
Collapse
Affiliation(s)
- Philipp Harder
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Nergishan İyisan
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Chen Wang
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Fabian Kohler
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Irina Neb
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Harald Lahm
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Martina Dreßen
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Markus Krane
- Division of Cardiac Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Hendrik Dietz
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Berna Özkale
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| |
Collapse
|
7
|
Untethered: using remote magnetic fields for regenerative medicine. Trends Biotechnol 2022; 41:615-631. [PMID: 36220708 DOI: 10.1016/j.tibtech.2022.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Magnetic fields are increasingly being used for the remote, noncontact manipulation of cells and biomaterials for a wide range of regenerative medical (RM) applications. They have been deployed for their direct effects on biological systems or in conjunction with magnetic materials or magnetically tagged cells for a targeted therapeutic effect. In this work, we highlight the recent trends on the broad use of magnetic fields for the homing of therapeutic cells and particles at targeted tissue sites, biomimetic tissue fabrication, and control of cell fate and proliferation. We also survey the design and control principles of magnetic manipulation systems, including their capabilities and limitations, which can guide future research into developing more effective magnetic field-based regenerative strategies.
Collapse
|
8
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
9
|
Wang X, Wang T, Chen X, Law J, Shan G, Tang W, Gong Z, Pan P, Liu X, Yu J, Ru C, Huang X, Sun Y. Microrobotic Swarms for Intracellular Measurement with Enhanced Signal-to-Noise Ratio. ACS NANO 2022; 16:10824-10839. [PMID: 35786860 DOI: 10.1021/acsnano.2c02938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In cell biology, fluorescent dyes are routinely used for biochemical measurements. The traditional global dye treatment method suffers from low signal-to-noise ratios (SNR), especially when used for detecting a low concentration of ions, and increasing the concentration of fluorescent dyes causes more severe cytotoxicity. Here, we report a robotic technique that controls how a low amount of fluorescent-dye-coated magnetic nanoparticles accurately forms a swarm and increases the fluorescent dye concentration in a local region inside a cell for intracellular measurement. Different from existing magnetic micromanipulation systems that generate large swarms (several microns and above) or that cannot move the generated swarm to an arbitrary position, our system is capable of generating a small swarm (e.g., 1 μm) and accurately positioning the swarm inside a single cell (position control accuracy: 0.76 μm). In experiments, the generated swarm inside the cell showed an SNR 10 times higher than the traditional global dye treatment method. The high-SNR robotic swarm enabled intracellular measurements that had not been possible to achieve with traditional global dye treatment. The robotic swarm technique revealed an apparent pH gradient in a migrating cell and was used to measure the intracellular apparent pH in a single oocyte of living C. elegans. With the position control capability, the swarm was also applied to measure calcium changes at the perinuclear region of a cell before and after mechanical stimulation. The results showed a significant calcium increase after mechanical stimulation, and the calcium increase was regulated by the mechanically sensitive ion channel, PIEZO1.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Tiancong Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518172, China
| | - Changhai Ru
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xi Huang
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
- Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada
| |
Collapse
|
10
|
Vorselen D, Barger SR, Wang Y, Cai W, Theriot JA, Gauthier NC, Krendel M. Phagocytic 'teeth' and myosin-II 'jaw' power target constriction during phagocytosis. eLife 2021; 10:e68627. [PMID: 34708690 PMCID: PMC8585483 DOI: 10.7554/elife.68627] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Phagocytosis requires rapid actin reorganization and spatially controlled force generation to ingest targets ranging from pathogens to apoptotic cells. How actomyosin activity directs membrane extensions to engulf such diverse targets remains unclear. Here, we combine lattice light-sheet microscopy (LLSM) with microparticle traction force microscopy (MP-TFM) to quantify actin dynamics and subcellular forces during macrophage phagocytosis. We show that spatially localized forces leading to target constriction are prominent during phagocytosis of antibody-opsonized targets. This constriction is largely driven by Arp2/3-mediated assembly of discrete actin protrusions containing myosin 1e and 1f ('teeth') that appear to be interconnected in a ring-like organization. Contractile myosin-II activity contributes to late-stage phagocytic force generation and progression, supporting a specific role in phagocytic cup closure. Observations of partial target eating attempts and sudden target release via a popping mechanism suggest that constriction may be critical for resolving complex in vivo target encounters. Overall, our findings present a phagocytic cup shaping mechanism that is distinct from cytoskeletal remodeling in 2D cell motility and may contribute to mechanosensing and phagocytic plasticity.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Biology and Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Sarah R Barger
- Department of Cell and Developmental Biology, State University of New York Upstate Medical UniversitySyracuseUnited States
| | - Yifan Wang
- Department of Mechanical Engineering, Stanford UniversityStanfordUnited States
| | - Wei Cai
- Department of Mechanical Engineering, Stanford UniversityStanfordUnited States
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | | | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical UniversitySyracuseUnited States
| |
Collapse
|
11
|
Asgeirsson DO, Christiansen MG, Valentin T, Somm L, Mirkhani N, Nami AH, Hosseini V, Schuerle S. 3D magnetically controlled spatiotemporal probing and actuation of collagen networks from a single cell perspective. LAB ON A CHIP 2021; 21:3850-3862. [PMID: 34505607 PMCID: PMC8507888 DOI: 10.1039/d1lc00657f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/28/2021] [Indexed: 05/15/2023]
Abstract
Cells continuously sense and react to mechanical cues from their surrounding matrix, which consists of a fibrous network of biopolymers that influences their fate and behavior. Several powerful methods employing magnetic control have been developed to assess the micromechanical properties within extracellular matrix (ECM) models hosting cells. However, many of these are limited to in-plane sensing and actuation, which does not allow the matrix to be probed within its full 3D context. Moreover, little attention has been given to factors specific to the model ECM systems that can profoundly influence the cells contained there. Here we present methods to spatiotemporally probe and manipulate extracellular matrix networks at the scale relevant to cells using magnetic microprobes (μRods). Our techniques leverage 3D magnetic field generation, physical modeling, and image analysis to examine and apply mechanical stimuli to fibrous collagen matrices. We determined shear moduli ranging between hundreds of Pa to tens of kPa and modeled the effects of proximity to rigid surfaces and local fiber densification. We analyzed the spatial extent and dynamics of matrix deformation produced in response to magnetic torques on the order of 10 pNm, deflecting fibers over an area spanning tens of micrometers. Finally, we demonstrate 3D actuation and pose extraction of fluorescently labelled μRods.
Collapse
Affiliation(s)
- Daphne O Asgeirsson
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Michael G Christiansen
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Thomas Valentin
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Luca Somm
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Nima Mirkhani
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Amin Hosseini Nami
- Department of Biotechnology, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Vahid Hosseini
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Simone Schuerle
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
12
|
Affiliation(s)
- Shimin Yu
- Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| | - Yang Cai
- School of Materials Science and Engineering Heilongjiang University of Science and Technology Harbin China
| | - Zhiguang Wu
- Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| | - Qiang He
- Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| |
Collapse
|
13
|
Fu D, Wang Z, Tu Y, Peng F. Interactions between Biomedical Micro-/Nano-Motors and the Immune Molecules, Immune Cells, and the Immune System: Challenges and Opportunities. Adv Healthc Mater 2021; 10:e2001788. [PMID: 33506650 DOI: 10.1002/adhm.202001788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Mobile micro- and nano-motors (MNMs) emerge as revolutionary platforms for biomedical applications, including drug delivery, biosensing, non-invasive surgery, and cancer therapy. While for applications in biomedical fields and practical clinical translation, the interactions of these untethered tiny machines with the immune system is an essential issue to be considered. This review highlights the recent approaches of surpassing immune barriers to prevent foreign motors from triggering immune responses. In addition to trials focusing on the function preservation of MNMs, examples of versatile MNMs working with the immune components (immune molecules, immune cells and the whole system) to achieve cancer immunotherapy, immunoassay, and detoxification are outlined. The immune interference part provides researchers an idea about what is the limit presented by the immune components. The coworking part suggests ways to bypass or even utilize the limit. With interdisciplinary cooperation of nanoengineering, materials science, and immunology field, the rationally designed functional MNMs are expected to provide novel opportunities for the biomedical field.
Collapse
Affiliation(s)
- Dongmei Fu
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| | - Zhen Wang
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical Science Southern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| |
Collapse
|
14
|
Li J, Jiang X, Li H, Gelinsky M, Gu Z. Tailoring Materials for Modulation of Macrophage Fate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004172. [PMID: 33565154 PMCID: PMC9245340 DOI: 10.1002/adma.202004172] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/31/2020] [Indexed: 05/03/2023]
Abstract
Human immune system acts as a pivotal role in the tissue homeostasis and disease progression. Immunomodulatory biomaterials that can manipulate innate immunity and adaptive immunity hold great promise for a broad range of prophylactic and therapeutic purposes. This review is focused on the design strategies and principles of immunomodulatory biomaterials from the standpoint of materials science to regulate macrophage fate, such as activation, polarization, adhesion, migration, proliferation, and secretion. It offers a comprehensive survey and discussion on the tunability of material designs regarding physical, chemical, biological, and dynamic cues for modulating macrophage immune response. The range of such tailorable cues encompasses surface properties, surface topography, materials mechanics, materials composition, and materials dynamics. The representative immunoengineering applications selected herein demonstrate how macrophage-immunomodulating biomaterials are being exploited for cancer immunotherapy, infection immunotherapy, tissue regeneration, inflammation resolution, and vaccination. A perspective on the future research directions of immunoregulatory biomaterials is also provided.
Collapse
Affiliation(s)
- Jinhua Li
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hongjun Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
15
|
Soto F, Karshalev E, Zhang F, Esteban Fernandez de Avila B, Nourhani A, Wang J. Smart Materials for Microrobots. Chem Rev 2021; 122:5365-5403. [DOI: 10.1021/acs.chemrev.0c00999] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fernando Soto
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Emil Karshalev
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Fangyu Zhang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Berta Esteban Fernandez de Avila
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Amir Nourhani
- Department of Mechanical Engineering, Department of Mathematics, Biology, Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, United States
| | - Joseph Wang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002203. [PMID: 33173743 PMCID: PMC7610261 DOI: 10.1002/advs.202002203] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Indexed: 05/15/2023]
Abstract
Advances in medical robots promise to improve modern medicine and the quality of life. Miniaturization of these robotic platforms has led to numerous applications that leverages precision medicine. In this review, the current trends of medical micro and nanorobotics for therapy, surgery, diagnosis, and medical imaging are discussed. The use of micro and nanorobots in precision medicine still faces technical, regulatory, and market challenges for their widespread use in clinical settings. Nevertheless, recent translations from proof of concept to in vivo studies demonstrate their potential toward precision medicine.
Collapse
Affiliation(s)
- Fernando Soto
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Jie Wang
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Rajib Ahmed
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| |
Collapse
|
17
|
Cabanach P, Pena-Francesch A, Sheehan D, Bozuyuk U, Yasa O, Borros S, Sitti M. Zwitterionic 3D-Printed Non-Immunogenic Stealth Microrobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003013. [PMID: 32864804 PMCID: PMC7610461 DOI: 10.1002/adma.202003013] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Indexed: 05/19/2023]
Abstract
Microrobots offer transformative solutions for non-invasive medical interventions due to their small size and untethered operation inside the human body. However, they must face the immune system as a natural protection mechanism against foreign threats. Here, non-immunogenic stealth zwitterionic microrobots that avoid recognition from immune cells are introduced. Fully zwitterionic photoresists are developed for two-photon polymerization 3D microprinting of hydrogel microrobots with ample functionalization: tunable mechanical properties, anti-biofouling and non-immunogenic properties, functionalization for magnetic actuation, encapsulation of biomolecules, and surface functionalization for drug delivery. Stealth microrobots avoid detection by macrophage cells of the innate immune system after exhaustive inspection (>90 hours), which has not been achieved in any microrobotic platform to date. These versatile zwitterionic materials eliminate a major roadblock in the development of biocompatible microrobots, and will serve as a toolbox of non-immunogenic materials for medical microrobot and other device technologies for bioengineering and biomedical applications.
Collapse
Affiliation(s)
- Pol Cabanach
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany; Grup d‘Enginyeria de Materials Institut Químic de Sarrià Universitat Ramon Llull Barcelona 08017, Spain
| | - Abdon Pena-Francesch
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany; Department of Materials Science and Engineering Robotics Institute University of Michigan Ann Arbor, MI 48109, USA
| | - Devin Sheehan
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany
| | - Ugur Bozuyuk
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany
| | - Oncay Yasa
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany
| | - Salvador Borros
- Grup d‘Enginyeria de Materials Institut Químic de Sarrià Universitat Ramon Llull Barcelona 08017, Spain
| | - Metin Sitti
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany; School of Medicine and School of Engineering Koç University Istanbul 34450, Turkey; Institute for Biomedical Engineering ETH Zurich Zurich 8092, Switzerland
| |
Collapse
|
18
|
Vorselen D, Labitigan RLD, Theriot JA. A mechanical perspective on phagocytic cup formation. Curr Opin Cell Biol 2020; 66:112-122. [PMID: 32698097 DOI: 10.1016/j.ceb.2020.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/23/2022]
Abstract
Phagocytosis is a widespread and evolutionarily conserved process with diverse biological functions, ranging from engulfment of invading microbes during infection to clearance of apoptotic debris in tissue homeostasis. Along with differences in biochemical composition, phagocytic targets greatly differ in physical attributes, such as size, shape, and rigidity, which are now recognized as important regulators of this process. Force exertion at the cell-target interface and cellular mechanical changes during phagocytosis are emerging as crucial factors underlying sensing of such target properties. With technological developments, mechanical aspects of phagocytosis are increasingly accessible experimentally, revealing remarkable organizational complexity of force exertion. An increasingly high-resolution picture is emerging of how target physical cues and cellular mechanical properties jointly govern important steps throughout phagocytic engulfment.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Ramon Lorenzo D Labitigan
- Department of Biology, University of Washington, Seattle, WA 98105, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Julie A Theriot
- Department of Biology, University of Washington, Seattle, WA 98105, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
19
|
Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2020; 21:267-297. [PMID: 31167103 DOI: 10.1146/annurev-bioeng-062117-121224] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.
Collapse
Affiliation(s)
- Nikhil Jain
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
20
|
Lu H, Hong Y, Yang Y, Yang Z, Shen Y. Battery-Less Soft Millirobot That Can Move, Sense, and Communicate Remotely by Coupling the Magnetic and Piezoelectric Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000069. [PMID: 32670756 PMCID: PMC7341101 DOI: 10.1002/advs.202000069] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Indexed: 05/19/2023]
Abstract
The soft millirobot is a promising candidate for emerging applications in various in-vivo/vitro biomedical settings. Despite recent success in its design and actuation, the absence of sensing ability makes it still far from being a reality. Here, a radio frequency identification (RFID) based battery-less soft millirobot that can move, sense, and communicate remotely by coupling the magnetic and piezoelectric effects is reported. This design integrates the robot actuation and power generation units within a thin multilayer film (<0.5 mm), i.e., a lower magnetic composite limb decorated with multiple feet imparts locomotion and a flexible piezoceramic composite film recovers energy simultaneously. Under a trigger of external magnetic guidance, the millirobot can achieve remote locomotion, environment monitoring, and wireless communication with no requirement of any on-board battery or external wired power supply. Furthermore, this robot demonstrates the sensing capability in measuring environment temperature and contact interface by two different sensing models, i.e., carried-on and build-in sensing mode, respectively. This research represents a remarkable advance in the emerging area of untethered soft robotics, benefiting a broad spectrum of promising applications, such as in-body monitoring, diagnosis, and drug delivery.
Collapse
Affiliation(s)
- Haojian Lu
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Ying Hong
- Department of Mechanical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Yuanyuan Yang
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Zhengbao Yang
- Department of Mechanical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
- Shenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Yajing Shen
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
- Shenzhen Research Institute of City University of Hong KongShenzhen518057China
| |
Collapse
|
21
|
Yasa IC, Ceylan H, Bozuyuk U, Wild AM, Sitti M. Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci Robot 2020; 5:5/43/eaaz3867. [DOI: 10.1126/scirobotics.aaz3867] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/19/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
The structural design parameters of a medical microrobot, such as the morphology and surface chemistry, should aim to minimize any physical interactions with the cells of the immune system. However, the same surface-borne design parameters are also critical for the locomotion performance of the microrobots. Understanding the interplay of such parameters targeting high locomotion performance and low immunogenicity at the same time is of paramount importance yet has so far been overlooked. Here, we investigated the interactions of magnetically steerable double-helical microswimmers with mouse macrophage cell lines and splenocytes, freshly harvested from mouse spleens, by systematically changing their helical morphology. We found that the macrophages and splenocytes can recognize and differentially elicit an immune response to helix turn numbers of the microswimmers that otherwise have the same size, bulk physical properties, and surface chemistries. Our findings suggest that the structural optimization of medical microrobots for the locomotion performance and interactions with the immune cells should be considered simultaneously because they are highly entangled and can demand a substantial design compromise from one another. Furthermore, we show that morphology-dependent interactions between macrophages and microswimmers can further present engineering opportunities for biohybrid microrobot designs. We demonstrate immunobots that can combine the steerable mobility of synthetic microswimmers and the immunoregulatory capability of macrophages for potential targeted immunotherapeutic applications.
Collapse
Affiliation(s)
- Immihan Ceren Yasa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Hakan Ceylan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Anna-Maria Wild
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and School of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
22
|
Wang X, Law J, Luo M, Gong Z, Yu J, Tang W, Zhang Z, Mei X, Huang Z, You L, Sun Y. Magnetic Measurement and Stimulation of Cellular and Intracellular Structures. ACS NANO 2020; 14:3805-3821. [PMID: 32223274 DOI: 10.1021/acsnano.0c00959] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
From single-pole magnetic tweezers to robotic magnetic-field generation systems, the development of magnetic micromanipulation systems, using electromagnets or permanent magnets, has enabled a multitude of applications for cellular and intracellular measurement and stimulation. Controlled by different configurations of magnetic-field generation systems, magnetic particles have been actuated by an external magnetic field to exert forces/torques and perform mechanical measurements on the cell membrane, cytoplasm, cytoskeleton, nucleus, intracellular motors, etc. The particles have also been controlled to generate aggregations to trigger cell signaling pathways and produce heat to cause cancer cell apoptosis for hyperthermia treatment. Magnetic micromanipulation has become an important tool in the repertoire of toolsets for cell measurement and stimulation and will continue to be used widely for further explorations of cellular/intracellular structures and their functions. Existing review papers in the literature focus on fabrication and position control of magnetic particles/structures (often termed micronanorobots) and the synthesis and functionalization of magnetic particles. Differently, this paper reviews the principles and systems of magnetic micromanipulation specifically for cellular and intracellular measurement and stimulation. Discoveries enabled by magnetic measurement and stimulation of cellular and intracellular structures are also summarized. This paper ends with discussions on future opportunities and challenges of magnetic micromanipulation in the exploration of cellular biophysics, mechanotransduction, and disease therapeutics.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Mengxi Luo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Jiangfan Yu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zhuoran Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Xueting Mei
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Lidan You
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
23
|
Hsu A, Zhao H, Gaudreault M, Foy AW, Pelrine R. Magnetic Milli-Robot Swarm Platform: A Safety Barrier Certificate Enabled, Low-Cost Test Bed. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2974713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Hausmann MK, Hauser A, Siqueira G, Libanori R, Vehusheia SL, Schuerle S, Zimmermann T, Studart AR. Cellulose-Based Microparticles for Magnetically Controlled Optical Modulation and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904251. [PMID: 31805220 DOI: 10.1002/smll.201904251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Responsive materials with birefringent optical properties have been exploited for the manipulation of light in several modern electronic devices. While electrical fields are often utilized to achieve optical modulation, magnetic stimuli may offer an enticing complementary approach for controlling and manipulating light remotely. Here, the synthesis and characterization of magnetically responsive birefringent microparticles with unusual magneto-optical properties are reported. These functional microparticles are prepared via a microfluidic emulsification process, in which water-based droplets are generated in a flow-focusing device and stretched into anisotropic shapes before conversion into particles via photopolymerization. Birefringence properties are achieved by aligning cellulose nanocrystals within the microparticles during droplet stretching, whereas magnetic responsiveness results from the addition of superparamagnetic nanoparticles to the initial droplet template. When suspended in a fluid, the microparticles can be controllably manipulated via an external magnetic field to result in unique magneto-optical coupling effects. Using a remotely actuated magnetic field coupled to a polarized optical microscope, these microparticles can be employed to convert magnetic into optical signals or to estimate the viscosity of the suspending fluid through magnetically driven microrheology.
Collapse
Affiliation(s)
- Michael K Hausmann
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Cellulose & Wood Materials Laboratory, 8600, Dübendorf, Switzerland
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Alina Hauser
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Cellulose & Wood Materials Laboratory, 8600, Dübendorf, Switzerland
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Gilberto Siqueira
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Cellulose & Wood Materials Laboratory, 8600, Dübendorf, Switzerland
| | - Rafael Libanori
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Signe Lin Vehusheia
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Simone Schuerle
- Institute for Translational Medicine, Department of Health Science and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Tanja Zimmermann
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Cellulose & Wood Materials Laboratory, 8600, Dübendorf, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
25
|
Singh AV, Ansari MHD, Laux P, Luch A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin Drug Deliv 2019; 16:1259-1275. [DOI: 10.1080/17425247.2019.1676228] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ajay Vikram Singh
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Soto F, Chrostowski R. Frontiers of Medical Micro/Nanorobotics: in vivo Applications and Commercialization Perspectives Toward Clinical Uses. Front Bioeng Biotechnol 2018; 6:170. [PMID: 30488033 PMCID: PMC6246686 DOI: 10.3389/fbioe.2018.00170] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
The field of medical micro/nanorobotics holds considerable promise for advancing medical diagnosis and treatment due to their unique ability to move and perform complex task at small scales. Nevertheless, the grand challenge of the field remains in its successful translation towards widespread patient use. We critically address the frontiers of the current methodologies for in vivo applications and discuss the current and foreseeable perspectives of their commercialization. Although no "killer application" that would catalyze rapid commercialization has yet emerged, recent engineering breakthroughs have led to the successful in vivo operation of medical micro/nanorobots. We also highlight how standardizing report summaries of micro/nanorobotics is essential not only for increasing the quality of research but also for minimizing investment risk in their potential commercialization. We review current patents and commercialization efforts based on emerging proof-of-concept applications. We expect to inspire future research efforts in the field of micro/nanorobotics toward future medical diagnosis and treatment.
Collapse
Affiliation(s)
- Fernando Soto
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, United States
| | - Robert Chrostowski
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
27
|
Xuan M, Shao J, Gao C, Wang W, Dai L, He Q. Self-Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angew Chem Int Ed Engl 2018; 57:12463-12467. [DOI: 10.1002/anie.201806759] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Mingjun Xuan
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Jingxin Shao
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Changyong Gao
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Wei Wang
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Luru Dai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; Beiyitiao 11 Beijing 100190 China
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| |
Collapse
|
28
|
Xuan M, Shao J, Gao C, Wang W, Dai L, He Q. Self-Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806759] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingjun Xuan
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Jingxin Shao
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Changyong Gao
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Wei Wang
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Luru Dai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; Beiyitiao 11 Beijing 100190 China
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| |
Collapse
|
29
|
Xuan M, Mestre R, Gao C, Zhou C, He Q, Sánchez S. Noncontinuous Super-Diffusive Dynamics of a Light-Activated Nanobottle Motor. Angew Chem Int Ed Engl 2018; 57:6838-6842. [DOI: 10.1002/anie.201801910] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/17/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Mingjun Xuan
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
- Max Planck Institute for Intelligent Systems; Heisenbergstraße 3 70569 Stuttgart Germany
| | - Changyong Gao
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Chang Zhou
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
- Max Planck Institute for Intelligent Systems; Heisenbergstraße 3 70569 Stuttgart Germany
- Institució Catalana de Recerca i Estudis Avancats (ICREA); Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
30
|
Xuan M, Mestre R, Gao C, Zhou C, He Q, Sánchez S. Noncontinuous Super-Diffusive Dynamics of a Light-Activated Nanobottle Motor. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mingjun Xuan
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
- Max Planck Institute for Intelligent Systems; Heisenbergstraße 3 70569 Stuttgart Germany
| | - Changyong Gao
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Chang Zhou
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
- Max Planck Institute for Intelligent Systems; Heisenbergstraße 3 70569 Stuttgart Germany
- Institució Catalana de Recerca i Estudis Avancats (ICREA); Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
31
|
Lin Z, Fan X, Sun M, Gao C, He Q, Xie H. Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning. ACS NANO 2018; 12:2539-2545. [PMID: 29443501 DOI: 10.1021/acsnano.7b08344] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a magnetically actuated peanut-shaped hematite colloid motor that can not only move in a rolling or wobbling mode in fluids but also perform single cell manipulation and patterning in a noncontact way. The peanut motor in a rolling mode can reach a maximal velocity of 10.6 μm s-1 under a rotating magnetic field of 130 Hz and 6.3 mT and achieve a more precisely controllable motion in predefined tracks. While in a wobbling mode, the motor reaches a maximal velocity of 14.5 μm s-1 under a conical rotating magnetic field of 80 Hz and 6.3 mT and can climb over steep slopes to adapt the motor for more complex environments. The fluid flow simulation results reveal that the difference between two movement modes mostly comes from the distribution discrepancy of the flow fields near the motors. Through the integration of the rolling and wobbling movement, these peanut motors can autonomously transport and release cells to a predefined site and thus form complex cell patterns without a physical contact. Such magnetically actuated peanut colloid motors afford a biofriendly technique for manipulation and patterning of cells, cell measurements, and intracellular communication investigations.
Collapse
Affiliation(s)
- Zhihua Lin
- State Key Laboratory of Robotics and Systems, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) , Harbin Institute of Technology , Harbin 150080 , China
| | - Xinjian Fan
- State Key Laboratory of Robotics and Systems, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) , Harbin Institute of Technology , Harbin 150080 , China
| | - Mengmeng Sun
- State Key Laboratory of Robotics and Systems, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) , Harbin Institute of Technology , Harbin 150080 , China
| | - Changyong Gao
- State Key Laboratory of Robotics and Systems, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) , Harbin Institute of Technology , Harbin 150080 , China
| | - Qiang He
- State Key Laboratory of Robotics and Systems, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) , Harbin Institute of Technology , Harbin 150080 , China
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) , Harbin Institute of Technology , Harbin 150080 , China
| |
Collapse
|
32
|
Serrà A, Vázquez-Mariño G, García-Torres J, Bosch M, Vallés E. Magnetic Actuation of Multifunctional Nanorobotic Platforms to Induce Cancer Cell Death. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Albert Serrà
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (Ge-CPN); Departament de Ciència de Materials i Química Física; Universitat de Barcelona; Martí i Franquès, 1 E-08028 Barcelona Catalonia Spain
- Institute of Nanoscience and Nanotechnology (IN2UB); Universitat de Barcelona; Martí i Franquès, 1 E-08028 Barcelona Catalonia Spain
| | - Gonzalo Vázquez-Mariño
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (Ge-CPN); Departament de Ciència de Materials i Química Física; Universitat de Barcelona; Martí i Franquès, 1 E-08028 Barcelona Catalonia Spain
- Institute of Nanoscience and Nanotechnology (IN2UB); Universitat de Barcelona; Martí i Franquès, 1 E-08028 Barcelona Catalonia Spain
| | - José García-Torres
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (Ge-CPN); Departament de Ciència de Materials i Química Física; Universitat de Barcelona; Martí i Franquès, 1 E-08028 Barcelona Catalonia Spain
- Institute of Nanoscience and Nanotechnology (IN2UB); Universitat de Barcelona; Martí i Franquès, 1 E-08028 Barcelona Catalonia Spain
- Departament de Física de la Matèria Condensada; Martí i Franquès, 1 E-08028 Barcelona Catalonia Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada; Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB); E-08028 Barcelona Catalonia Spain
| | - Elisa Vallés
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (Ge-CPN); Departament de Ciència de Materials i Química Física; Universitat de Barcelona; Martí i Franquès, 1 E-08028 Barcelona Catalonia Spain
- Institute of Nanoscience and Nanotechnology (IN2UB); Universitat de Barcelona; Martí i Franquès, 1 E-08028 Barcelona Catalonia Spain
| |
Collapse
|
33
|
Li T, Chang X, Wu Z, Li J, Shao G, Deng X, Qiu J, Guo B, Zhang G, He Q, Li L, Wang J. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments. ACS NANO 2017; 11:9268-9275. [PMID: 28803481 DOI: 10.1021/acsnano.7b04525] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
Collapse
Affiliation(s)
- Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Xiaocong Chang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Zhiguang Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Jinxing Li
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Guangbin Shao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - Xinghong Deng
- State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - Jianbin Qiu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - Bin Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - Guangyu Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - Qiang He
- State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - Longqiu Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| |
Collapse
|
34
|
Li J, Esteban-Fernández de Ávila B, Gao W, Zhang L, Wang J. Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification. Sci Robot 2017; 2:eaam6431. [PMID: 31552379 PMCID: PMC6759331 DOI: 10.1126/scirobotics.aam6431] [Citation(s) in RCA: 711] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Micro- and nanoscale robots that can effectively convert diverse energy sources into movement and force represent a rapidly emerging and fascinating robotics research area. Recent advances in the design, fabrication, and operation of micro/nanorobots have greatly enhanced their power, function, and versatility. The new capabilities of these tiny untethered machines indicate immense potential for a variety of biomedical applications. This article reviews recent progress and future perspectives of micro/nanorobots in biomedicine, with a special focus on their potential advantages and applications for directed drug delivery, precision surgery, medical diagnosis and detoxification. Future success of this technology, to be realized through close collaboration between robotics, medical and nanotechnology experts, should have a major impact on disease diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Jinxing Li
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Wei Gao
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|