1
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
2
|
Pei G, Hughes J. Plant-inspired decentralized controller for robust orientation control of soft robotic manipulators. BIOINSPIRATION & BIOMIMETICS 2025; 20:026019. [PMID: 39889344 DOI: 10.1088/1748-3190/adb116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/31/2025] [Indexed: 02/03/2025]
Abstract
Due to the complexity of deformations in soft manipulators, achieving precise control of their orientation is particularly challenging, especially in the presence of external disturbances and human interactions. Inspired by the decentralized growth mechanism of plant gravitropism, which enables plants' roots and stems to grow in the direction of gravity despite complex environmental interactions, this study proposes a decentralized control strategy for robust orientation control of multi-segment soft manipulators. This gravitropism-inspired decentralized controller was validated through simulations for convergence and robustness, and benchmarked against the traditional inverse Jacobian-based controller on a large-scale multi-segment soft manipulator. Experimental results demonstrate that the decentralized controller achieves comparable convergence and better control precision to the inverse Jacobian-based controller, while significantly outperforming it in disturbance rejection. Even in the presence of partial damage and human interaction, the decentralized controller provides robust control. This study provides a robust new approach for managing disturbances in complex environments, laying the foundation for further exploration of decentralized control strategies in soft robotics.
Collapse
|
3
|
Wei P, Zhang Z, Cheng S, Meng Y, Tong M, Emu L, Yan W, Zhang Y, Wang Y, Zhao J, Xu C, Zhai F, Lu J, Wang L, Jiang H. Biodegradable origami enables closed-loop sustainable robotic systems. SCIENCE ADVANCES 2025; 11:eads0217. [PMID: 39919175 PMCID: PMC11804903 DOI: 10.1126/sciadv.ads0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
Robots are increasingly integral across various sectors due to their efficiency and superior capabilities, which enable performance beyond human potential. However, the development of robotic systems often conflicts with the sustainable development goals set by the United Nations, as they generate considerable nondegradable waste and organic/inorganic pollutants throughout their life cycle. In this paper, we introduce a dual closed-loop robotic system that integrates biodegradable, sustainable materials such as plasticized cellulose films and NaCl-infused ionic conductive gelatin organogels. These materials undergo a closed-loop ecological cycle from processing to biodegradation, contributing to new growth, while the self-sensing, origami-based robot supports a seamless human-in-the-loop teleoperation system. This innovative approach represents a paradigm shift in the application of soft robotic systems, offering a path toward a more sustainable future by aligning advanced robotic functionalities with environmental stewardship.
Collapse
Affiliation(s)
- Pingdong Wei
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Zhuang Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Shaoru Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yao Meng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Mengjie Tong
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321000, China
| | - Luoqian Emu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Yan
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yanlin Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yunjie Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jingyang Zhao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Changyu Xu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Feng Zhai
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321000, China
| | - Junqiang Lu
- School of Mathematics Information, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Lei Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Zhejiang Key Laboratory of Low-Carbon Intelligent Synthetic Biology, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
4
|
Tian Y, Wang J, Chen H, Lin H, Wu S, Zhang Y, Tian M, Meng J, Saeed W, Liu W, Chen X. Electrospun multifunctional nanofibers for advanced wearable sensors. Talanta 2025; 283:127085. [PMID: 39490308 DOI: 10.1016/j.talanta.2024.127085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The multifunctional extension of fiber-based wearable sensors determines their integration and sustainable development, with electrospinning technology providing reliable, efficient, and scalable support for fabricating these sensors. Despite numerous studies on electrospun fiber-based wearable sensors, further attention is needed to leverage composite structural engineering for functionalizing electrospun fibers. This paper systematically reviews the research progress on fiber-based multifunctional wearable sensors in terms of design concept, device fabrication, mechanism exploration, and application potential. Firstly, the basics of electrospinning are briefly introduced, including its development, principles, parameters, and material selection. Tactile sensors, as crucial components of wearable sensors, are discussed in detail, encompassing their performance parameters, transduction mechanisms, and preparation strategies for pressure, strain, temperature, humidity, and bioelectrical signal sensors. The main focus of the article is on the latest research progress in multifunctional sensing design concepts, multimodal decoupling mechanisms, sensing mechanisms, and functional extensions. These extensions include multimodal sensing, self-healing, energy harvesting, personal thermal management, EMI shielding, antimicrobial properties, and other capabilities. Furthermore, the review assesses existing challenges and outlines future developments for multifunctional wearable sensors, highlighting the need for continued research and innovation.
Collapse
Affiliation(s)
- Ye Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China; The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Junhao Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haojie Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haibin Lin
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Shulei Wu
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| | - Yifan Zhang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Meng Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jiaqi Meng
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Waqas Saeed
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Wei Liu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Xing Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
5
|
Feliu-Talegon D, Abdullahi Adamu Y, Mathew AT, Alkayas AY, Renda F. Advancing Soft Robot Proprioception Through 6D Strain Sensors Embedding. Soft Robot 2025. [PMID: 39836010 DOI: 10.1089/soro.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Soft robots and bioinspired systems have revolutionized robot design by incorporating flexibility and deformable materials inspired by nature's ingenious designs. Similar to many robotic applications, sensing and perception are paramount to enable soft robots to adeptly navigate the unpredictable real world, ensuring safe interactions with both humans and the environment. Despite recent progress, soft robot sensorization still faces significant challenges due to the virtual infinite degrees of freedom of the system and the need for efficient computational models capable of estimating valuable information from sensor data. In this article, we present a new model-based proprioceptive system for slender soft robots based on strain sensing and a strain-based modeling approach called Geometric Variable-Strain (GVS). We develop a flexible 2-Plate 6D strain sensor (Flex-2P6D) capable of measuring the 6 dimensions (6D) strain at specific points of the soft robot with an accuracy higher than 95%. Coupled with the GVS approach, the proposed methodology is able to directly measure the configuration variables and reconstruct complex robot shapes with very high accuracy, even in very challenging conditions. The sensors are embedded inside the soft body, which makes them also suitable for underwater operation and physical interaction with the environment. Something that we also demonstrate experimentally. We believe that our approach has the potential to be applied across a wide variety of applications, including observation and exploration missions, as well as human-robot interaction, where the states of the system are required for implementing precise closed-loop control and estimation methods.
Collapse
Affiliation(s)
- Daniel Feliu-Talegon
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Yusuf Abdullahi Adamu
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Anup Teejo Mathew
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Abdulaziz Y Alkayas
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Federico Renda
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Yang C, Liu H, Ma J, Xu M. Multimodal Flexible Sensor for the Detection of Pressing-Bending-Twisting Mechanical Deformations. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2413-2424. [PMID: 39723727 DOI: 10.1021/acsami.4c13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Flexible sensors are increasingly significant in applications such as smart wearables and human-computer interactions. However, typical flexible sensors are spatially limited and can generally detect only one deformation mode. This study presents a novel multimodal flexible sensor that combines three sensing units: optoelectronics, ionic liquids, and conductive fabrics. It employs a sophisticated superposition and combination of the three sensing methods to achieve up to eight mechanical deformations, including pressing, bending, twisting, and combinations thereof, all within a very small sensor space. This sensor has excellent detection performance, high sensitivity (optoelectronics 4.312, ionic liquid 8.186, conductive fabric 2.438), a wide measurement range (pressing 0-75 kPa, bending 0-90°, and twisting 0-180°), and good consistency and repeatability. To address the signal coupling problem in multimode sensors, a deep learning method based on the Transformer is combined to provide precise decoupling of multimode signals and high-precision characterization of each mechanical deformation. Finally, the wrist joint experiments demonstrate the sensor's versatile uses in human-computer interaction.
Collapse
Affiliation(s)
- Chen Yang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hui Liu
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jin Ma
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ming Xu
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
7
|
Kim D, Kang S, Park YL. Optimal Sensor Placement for Motion Tracking of Soft Wearables Using Bayesian Sampling. Soft Robot 2024. [PMID: 39718942 DOI: 10.1089/soro.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Soft sensors integrated or attached to robots or human bodies enable rapid and accurate estimation of the physical states of the target systems, including position, orientation, and force. While the use of a number of sensors enhances precision and reliability in estimation, it may constrain the movement of the target system or make the entire system complex and bulky. This article proposes a rapid, efficient framework for determining where to place the sensors on the system given the limited number of available sensors. In particular, given m candidates in location for sensor placement, the algorithm recommends m 0 locations that guarantee the maximal estimation performance, based on Bayesian sampling. The sampling and optimization method aims to maximize the log-likelihood in nonparametric regression between the measured values of the selected sensors and the target references. The proposed approach for the optimal sensor placement is validated through two scenarios: full-body motion sensing with a soft wearable sensor suit and fingertip position tracking with a motion-capture system. The proposed algorithm successfully determines the sensor locations close to the optimum within 20 min of learning for both cases.
Collapse
Affiliation(s)
- DongWook Kim
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
- Institute of Artificial Intelligence and Robot, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seunghoon Kang
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
| | - Yong-Lae Park
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Peng Y, Wu H, Wang Z, Wang Y, Wang H. A Soft Inductive Bimodal Sensor for Proprioception and Tactile Sensing of Soft Machines. Soft Robot 2024; 11:1055-1067. [PMID: 38868951 DOI: 10.1089/soro.2023.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
The somatosensory system is crucial for living beings to survive and thrive in complex environments and to interact with their surroundings. Similarly, rapidly developed soft robots need to be aware of their own posture and detect external stimuli. Bending and force sensing are key for soft machines to achieve embodied intelligence. Here, we present a soft inductive bimodal sensor (SIBS) that uses the strain modulation of magnetic permeability and the eddy-current effect for simultaneous bidirectional bending and force sensing with only two wires. The SIBS is made of a flexible planar coil, a porous ferrite film, and a soft conductive film. By measuring the inductance at two different frequencies, the bending angle and force can be obtained and decoupled. Rigorous experiments revealed that the SIBS can achieve high resolution (0.44° bending and 1.09 mN force), rapid response, excellent repeatability, and high durability. A soft crawling robot embedded with one SIBS can sense its own shape and interact with and respond to external stimuli. Moreover, the SIBS is demonstrated as a wearable human-machine interaction to control a crawling robot via wrist bending and touching. This highlights that the SIBS can be readily implemented in diverse applications for reliable bimodal sensing.
Collapse
Affiliation(s)
- Yulian Peng
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Houping Wu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Zhengyan Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Yufeng Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Hongbo Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Liu X, Li K, Chen D, Wei A, Zhao Y, Pang Z. Superflexible Carbon Nanofibers for Multidimensional Complex Deformation Sensing in Soft Robots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62537-62546. [PMID: 39482262 DOI: 10.1021/acsami.4c13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Soft robots can make complex motions or deformations due to their infinite freedom, which poses great challenges for monitoring their motion and position. While previous investigations of flexible sensing either focused on stretchable or compression deformations in one or two directions, the complex multidimensional deformations that occur on the surfaces of soft robots have been frequently overlooked. In this work, inspired by spider silk, superflexible carbon nanofibers with a bundled structure were biomimetically designed and fabricated using electrospinning technology and carbonization treatment. The fabricated fibers can be microscopically folded at 180° and can sustain multidimensional shrinkage deformation without microstructural damage during 200,000 times of repeated folding. In addition, the fibers process ultrasmall bending resistance that is two orders of magnitude lower than that of A4 paper and commercial conductive fibers, demonstrating excellent flexibility that is ideal for fabricating sensors in soft robots. Combining the study of origami techniques and mechanical simulations, the bending resistance of the fibers was found to have a step change in response to different deformation angles and radii. As a demonstration, a sensor based on this flexible carbon nanofiber successfully monitors the irregular shrinkage deformation of soft parts, showing great potential in applications of grasping, recognition, and perception. This work sheds light on the design of ultraflexible conductive carbon materials and provides an avenue for the extreme shape-morphing monitoring of soft robots.
Collapse
Affiliation(s)
- Xiangqi Liu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Kunle Li
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Dihu Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Aixiang Wei
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhoujun Pang
- School of Electronic Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
10
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Jamil B, Rodrigue H. Ultrastretchable Segmented Sensors for Functional Human-Machine Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32784-32793. [PMID: 38862273 DOI: 10.1021/acsami.4c08547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The key feature that enables soft sensors to shorten the performance gap between robots and biological structures is their deformability, coupled with their capability to measure physical changes. Robots equipped with these sensors can interact safely and proprioceptively with their environments. This has sparked interest in developing novel sensors with high stretchability for application in human-robot interactions. This study presents a novel ultrasoft optoelectronic segmented sensor design capable of measuring strains exceeding 500%. The sensor features an ultrastretchable segment physically joined with an asymmetrically configured soft proprioceptive segment. This configuration enables it to measure high strain and to detect both the magnitude and direction of bending. Although the sensor cannot decouple these types of deformations, it can sense prescribed motions that combine stretching and bending. The proposed sensor was applied to a highly deformable scissor mechanism and a human-robot interface (HRI) device for a robotic arm, capable of quantifying parameters in complex interactions. The results from the experiments also demonstrate the potential of the proposed segmented sensor concept when used in tandem with machine learning, affording new dimensions of proprioception to robots during multilayered interactions with humans.
Collapse
Affiliation(s)
- Babar Jamil
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hugo Rodrigue
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
12
|
Lee JH, Cho K, Kim JK. Age of Flexible Electronics: Emerging Trends in Soft Multifunctional Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310505. [PMID: 38258951 DOI: 10.1002/adma.202310505] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/27/2023] [Indexed: 01/24/2024]
Abstract
With the commercialization of first-generation flexible mobiles and displays in the late 2010s, humanity has stepped into the age of flexible electronics. Inevitably, soft multifunctional sensors, as essential components of next-generation flexible electronics, have attracted tremendous research interest like never before. This review is dedicated to offering an overview of the latest emerging trends in soft multifunctional sensors and their accordant future research and development (R&D) directions for the coming decade. First, key characteristics and the predominant target stimuli for soft multifunctional sensors are highlighted. Second, important selection criteria for soft multifunctional sensors are introduced. Next, emerging materials/structures and trends for soft multifunctional sensors are identified. Specifically, the future R&D directions of these sensors are envisaged based on their emerging trends, namely i) decoupling of multiple stimuli, ii) data processing, iii) skin conformability, and iv) energy sources. Finally, the challenges and potential opportunities for these sensors in future are discussed, offering new insights into prospects in the fast-emerging technology.
Collapse
Affiliation(s)
- Jeng-Hun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Jang-Kyo Kim
- Department of Mechanical Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Lee BY, Kim S, Oh S, Lee Y, Park J, Ko H, Koo JC, Jung Y, Lim H. Human-Inspired Tactile Perception System for Real-Time and Multimodal Detection of Tactile Stimuli. Soft Robot 2024; 11:270-281. [PMID: 38112297 DOI: 10.1089/soro.2022.0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
A human can intuitively perceive and comprehend complicated tactile information because the cutaneous receptors distributed in the fingertip skin receive different tactile stimuli simultaneously and the tactile signals are immediately transmitted to the brain. Although many research groups have attempted to mimic the structure and function of human skin, it remains a challenge to implement human-like tactile perception process inside one system. In this study, we developed a real-time and multimodal tactile system that mimics the function of cutaneous receptors and the transduction of tactile stimuli from receptors to the brain, by using multiple sensors, a signal processing and transmission circuit module, and a signal analysis module. The proposed system is capable of simultaneously acquiring four types of decoupled tactile information with a compact system, thereby enabling differentiation between various tactile stimuli, texture characteristics, and consecutive complex motions. This skin-like three-dimensional integrated design provides further opportunities in multimodal tactile sensing systems.
Collapse
Affiliation(s)
- Bo-Yeon Lee
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Seonggi Kim
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Sunjong Oh
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Ja Choon Koo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youngdo Jung
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Hyuneui Lim
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Wang J, Chen R, Ji D, Xu W, Zhang W, Zhang C, Zhou W, Luo T. Integrating In-Plane Thermoelectricity and Out-Plane Piezoresistivity for Fully Decoupled Temperature-Pressure Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307800. [PMID: 37948417 DOI: 10.1002/smll.202307800] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Indexed: 11/12/2023]
Abstract
A flexible sensor that simultaneously senses temperature and pressure is crucial in various fields, such as human-machine interaction, artificial intelligence, and biomedical applications. Previous research has mainly focused on single-function flexible sensors for e-skins or smart devices, and integrated bimodal sensing of temperature and pressure without complex crosstalk decoupling algorithms remains challenging. In this work, a flexible bimodal sensor is proposed that utilizes spatial orthogonality between in-plane thermoelectricity and out-plane piezoresistivity, which enables fully decoupled temperature-pressure sensing. The proposed bimodal sensor exhibits a high sensitivity of 281.46 µV K-1 for temperature sensing and 2.181 kPa-1 for pressure sensing. In the bimodal sensing mode, the sensor exhibits negligible mutual interference, providing a measurement error of ± 7% and ± 8% for temperature and pressure, respectively, within a 120 kPa pressure range and a 40 K temperature variation. Additionally, simultaneous spatial mapping of temperature and pressure with a bimodal sensor array enables contact shape identification with enhanced accuracy beyond the limit imposed by the number of sensing units. The proposed integrated bimodal sensing strategy does not require complex crosstalk decoupling algorithms, which represents a significant advancement in flexible sensors for applications that necessitate simultaneous sensing of temperature and pressure.
Collapse
Affiliation(s)
- Jincheng Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen university, Xiamen, 361102, China
| | - Rui Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen university, Xiamen, 361102, China
| | - Dongsheng Ji
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen university, Xiamen, 361102, China
| | - Wenjun Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen university, Xiamen, 361102, China
| | - Wenzhuo Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen university, Xiamen, 361102, China
| | - Chen Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen university, Xiamen, 361102, China
| | - Wei Zhou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen university, Xiamen, 361102, China
| | - Tao Luo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen university, Xiamen, 361102, China
| |
Collapse
|
15
|
Hu J, Guo J, Zhao J, Chen Z, Kalulu M, Chen G, Fu G. Multifunctional, Degradable Wearable Sensors Prepared with an Initiator and Crosslinker-Free Method. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10671-10681. [PMID: 38359324 DOI: 10.1021/acsami.3c17132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The present zwitterionic hydrogel-based wearable sensor exhibits various limitations, such as limited degradation capacity, unavoidable toxicity resulting from initiators, and poor mechanical properties that cannot satisfy practical demands. Herein, we present an initiator and crosslinker-free approach to prepare polyethylene glycol (PEG)@poly[2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) (PSBMA) interpenetrating polymer network (IPN) hydrogels that are self-polymerized via sunlight-induced and non-covalent crosslinking through electrostatic interaction and hydrogen bonding among polymer chains. The PEG@PSBMA IPN hydrogel possesses tissue-like softness, superior stretchability (∼2344.6% elongation), enhanced fracture strength (∼39.5 kPa), excellent biocompatibility, antibacterial property, reliable adhesion, and ionic conductivity. Furthermore, the sensor based on the IPN hydrogel demonstrates good sensitivity and cyclic stability, enabling effective real-time monitoring of human body activities. Moreover, it is worth noting that the excellent degradability in the saline solution within 8 h makes the prepared hydrogel-based wearable sensor free from the electronic device contamination. We believe that the proposed strategy for preparing physical zwitterionic hydrogels will pave the way for fabricating eco-friendly wearable devices.
Collapse
Affiliation(s)
- Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Jiangping Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Junyan Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zixun Chen
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka 32379, Zambia
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| |
Collapse
|
16
|
Ngo DA, Nguyen NM, Tran CK, Van Tran TT, Thi Tran NH, Thao Bui TT, Duy LT, Dang VQ. A study on a broadband photodetector based on hybrid 2D copper oxide/reduced graphene oxide. NANOSCALE ADVANCES 2024; 6:1460-1466. [PMID: 38419870 PMCID: PMC10898423 DOI: 10.1039/d3na00796k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
These days, photodetectors are a crucial part of optoelectronic devices, ranging from environmental monitoring to international communication systems. Therefore, fabricating these devices at a low cost but obtaining high sensitivity in a wide range of wavelengths is of great interest. This report introduces a simple solution-processed hybrid 2D structure of CuO and rGO for broadband photodetector applications. Particularly, 2D CuO acts as the active material, absorbing light to generate electron-hole pairs, while 2D rGO plays the role of a transport layer, driving charge carriers between two electrodes. Our device exhibits remarkable sensitivity to a wide wavelength range from 395 nm to 945 nm (vis-NIR region). Interestingly, our devices' responsivity and photoconductive gain were calculated (under 395 nm wavelength excitation) to be up to 8 mA W-1 and 28 fold, respectively, which are comparable values with previous publications. Our hybrid 2D structure between rGO and CuO enables a potential approach for developing low-cost but high-performance optoelectronic devices, especially photodetectors, in the future.
Collapse
Affiliation(s)
- Duc Anh Ngo
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Nhat Minh Nguyen
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Cong Khanh Tran
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Thi Thanh Van Tran
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Thi Thu Thao Bui
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Le Thai Duy
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Vinh Quang Dang
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
17
|
Pyun KR, Kwon K, Yoo MJ, Kim KK, Gong D, Yeo WH, Han S, Ko SH. Machine-learned wearable sensors for real-time hand-motion recognition: toward practical applications. Natl Sci Rev 2024; 11:nwad298. [PMID: 38213520 PMCID: PMC10776364 DOI: 10.1093/nsr/nwad298] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 11/01/2023] [Indexed: 01/13/2024] Open
Abstract
Soft electromechanical sensors have led to a new paradigm of electronic devices for novel motion-based wearable applications in our daily lives. However, the vast amount of random and unidentified signals generated by complex body motions has hindered the precise recognition and practical application of this technology. Recent advancements in artificial-intelligence technology have enabled significant strides in extracting features from massive and intricate data sets, thereby presenting a breakthrough in utilizing wearable sensors for practical applications. Beyond traditional machine-learning techniques for classifying simple gestures, advanced machine-learning algorithms have been developed to handle more complex and nuanced motion-based tasks with restricted training data sets. Machine-learning techniques have improved the ability to perceive, and thus machine-learned wearable soft sensors have enabled accurate and rapid human-gesture recognition, providing real-time feedback to users. This forms a crucial component of future wearable electronics, contributing to a robust human-machine interface. In this review, we provide a comprehensive summary covering materials, structures and machine-learning algorithms for hand-gesture recognition and possible practical applications through machine-learned wearable electromechanical sensors.
Collapse
Affiliation(s)
- Kyung Rok Pyun
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
| | - Kangkyu Kwon
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Myung Jin Yoo
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
| | - Kyun Kyu Kim
- Department of Chemical Engineering, Stanford University, Stanford, CA94305, USA
| | - Dohyeon Gong
- Department of Mechanical Engineering, Ajou University, Suwon-si16499, South Korea
| | - Woon-Hong Yeo
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Seungyong Han
- Department of Mechanical Engineering, Ajou University, Suwon-si16499, South Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Seoul08826, South Korea
| |
Collapse
|
18
|
Kitagawa K, Tsuji K, Sagehashi K, Niiyama T, Sunada S. Optical hyperdimensional soft sensing: speckle-based touch interface and tactile sensor. OPTICS EXPRESS 2024; 32:3209-3220. [PMID: 38297547 DOI: 10.1364/oe.513802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
Hyperdimensional computing (HDC) is an emerging computing paradigm that exploits the distributed representation of input data in a hyperdimensional space, the dimensions of which are typically between 1,000-10,000. The hyperdimensional distributed representation enables energy-efficient, low-latency, and noise-robust computations with low-precision and basic arithmetic operations. In this study, we propose optical hyperdimensional distributed representations based on laser speckles for adaptive, efficient, and low-latency optical sensor processing. In the proposed approach, sensory information is optically mapped into a hyperdimensional space with >250,000 dimensions, enabling HDC-based cognitive processing. We use this approach for the processing of a soft-touch interface and a tactile sensor and demonstrate to achieve high accuracy of touch or tactile recognition while significantly reducing training data amount and computational burdens, compared with previous machine-learning-based sensing approaches. Furthermore, we show that this approach enables adaptive recalibration to keep high accuracy even under different conditions.
Collapse
|
19
|
Li X, Gao X, Yao D, Chen J, Lu C, Pang X. Flexible Sensors with a Multilayer Interlaced Tunnel Architecture for Distinguishing Different Strains. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38044869 DOI: 10.1021/acsami.3c14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The diversity of body joints and the complexity of joint motions cause flexible strain sensors to undergo complex strains such as stretching, compression, bending, and extrusion, which results in sensors that do not recognize different strains, facing great challenges in detecting the true motion characteristics of joints. Here, the monitoring of body joints' real motion characteristics has been realized by the sensor that can output response signals with different resistance trends for different strains. The sensor prepared by the sacrificial template method is characterized by a multilayered interlaced tunnel architecture and carbon black embedded in the inner wall of the tunnel. Stretching, compressive, and bending strains result in increasing, decreasing, and increasing resistance, followed by a decrease in resistance of the sensor, respectively. The sensor can still output distinguishable response signals, even in the presence of complex strains induced by squeezing. Low strain detection limits (0.03%) and wide detection ranges (>600%) are achieved due to the localized strain enhancement caused by the unique structure. The sensor can detect the motion characteristics of different joints in flexion-extension, abduction-adduction, and internal-external rotation, which, in turn, can be used for real-time monitoring of complex joint motions involved in limb rehabilitation. In addition, the sensor recognizes the 26 letters of the alphabet represented by sign language gestures. The above studies demonstrate the potential application of our prepared sensors in flexible, wearable devices.
Collapse
Affiliation(s)
- Xueyuan Li
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xiping Gao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Dahu Yao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Jing Chen
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Chang Lu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| |
Collapse
|
20
|
Choi H, Jeong U. Purposive Design of Stretchable Composite Electrodes for Strain-Negative, Strain-Neutral, and Strain-Positive Ionic Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306795. [PMID: 37689978 DOI: 10.1002/adma.202306795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/18/2023] [Indexed: 09/11/2023]
Abstract
Soft ionic sensors have emerged as a promising device form to accommodate various future electronic applications. One of the hurdles in ionic sensors is that the sensing signals by mechanical deformation and other stimuli are mixed up. Although the performance of the ionic sensors is highly dependent on the structure of electrodes, systematic investigation of purposive electrode design has been rarely explored. This study proposes a simple strategy for designing stretchable composite electrodes which make the ionic sensor strain-negative, strain-neutral, and strain-positive. This study reveals that such strain-responses can be obtained by adjusting the surface coverage of the electrically-effective conductive fillers. On the basis of the concept, deposition of a Au film on an elastomer composite and crack formation of the Au film are presented for the practical fabrication of a highly reproducible strain-neutral ionic sensor. A completely strain-independent temperature sensor is demonstrated by using the Au crack-based ionic sensor. In addition, this study demonstrates a two-terminal shear sensor capable of recognizing shear directions by combining the strain-positive and strain-negative electrodes.
Collapse
Affiliation(s)
- Hyeongseok Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
21
|
Shang C, Fu B, Tuo J, Guo X, Li Z, Wang Z, Xu L, Guo J. Soft Biomimetic Fiber-Optic Tactile Sensors Capable of Discriminating Temperature and Pressure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53264-53272. [PMID: 37934693 DOI: 10.1021/acsami.3c12712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Tactile sensors with high softness and multisensory functions are highly desirable for applications in humanoid robotics, smart prosthetics, and human-machine interfaces. Here, we report a soft biomimetic fiber-optic tactile (SBFT) sensor that offers skin-like tactile sensing abilities to perceive and discriminate temperature and pressure. The SBFT sensor is fabricated by encapsulating a macrobent fiber Bragg grating (FBG) in an elastomeric droplet-shaped structure that results in two optical resonances associated with the FBG and excited whispering gallery modes (WGMs) propagating along the bent region. Benefiting from the different thermo-optic and stress-optic effects of FBG and WGM resonances, the pressure and temperature can be fully decoupled with a high precision of 0.2 °C and 0.8 mN, respectively. To achieve a compact system for signal demodulation, a single-cavity dual-comb fiber laser is developed to interrogate the SBFT sensor based on dual-comb spectroscopy, which enables fast spectral sampling with a single photodiode. We show that the SBFT sensor is capable of perceiving pressure, temperature, and hardness in touching soft tissues and human skins, demonstrating great promise for soft tissue palpation and human-like robotic perception.
Collapse
Affiliation(s)
- Ce Shang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Bo Fu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jialin Tuo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Xiaoyan Guo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Zhuozhou Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Zhixin Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Lijun Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Jingjing Guo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
22
|
Baines R, Zuliani F, Chennoufi N, Joshi S, Kramer-Bottiglio R, Paik J. Multi-modal deformation and temperature sensing for context-sensitive machines. Nat Commun 2023; 14:7499. [PMID: 37980333 PMCID: PMC10657382 DOI: 10.1038/s41467-023-42655-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023] Open
Abstract
Owing to the remarkable properties of the somatosensory system, human skin compactly perceives myriad forms of physical stimuli with high precision. Machines, conversely, are often equipped with sensory suites constituted of dozens of unique sensors, each made for detecting limited stimuli. Emerging high degree-of-freedom human-robot interfaces and soft robot applications are delimited by the lack of simple, cohesive, and information-dense sensing technologies. Stepping toward biological levels of proprioception, we present a sensing technology capable of decoding omnidirectional bending, compression, stretch, binary changes in temperature, and combinations thereof. This multi-modal deformation and temperature sensor harnesses chromaticity and intensity of light as it travels through patterned elastomer doped with functional dyes. Deformations and temperature shifts augment the light chromaticity and intensity, resulting in a one-to-one mapping between stimulus modes that are sequentially combined and the sensor output. We study the working principle of the sensor via a comprehensive opto-thermo-mechanical assay, and find that the information density provided by a single sensing element permits deciphering rich and diverse human-robot and robot-environmental interactions.
Collapse
Affiliation(s)
- Robert Baines
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06520, USA
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Fabio Zuliani
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Neil Chennoufi
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Sagar Joshi
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Rebecca Kramer-Bottiglio
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06520, USA
| | - Jamie Paik
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland.
| |
Collapse
|
23
|
Li C, Schramma N, Wang Z, Qari NF, Jalaal M, Latz MI, Cai S. Ultrasensitive and robust mechanoluminescent living composites. SCIENCE ADVANCES 2023; 9:eadi8643. [PMID: 37862415 PMCID: PMC10588950 DOI: 10.1126/sciadv.adi8643] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
Mechanosensing, the transduction of extracellular mechanical stimuli into intracellular biochemical signals, is a fundamental property of living cells. However, endowing synthetic materials with mechanosensing capabilities comparable to biological levels is challenging. Here, we developed ultrasensitive and robust mechanoluminescent living composites using hydrogels embedded with dinoflagellates, unicellular microalgae with a near-instantaneous and ultrasensitive bioluminescent response to mechanical stress. Not only did embedded dinoflagellates retain their intrinsic mechanoluminescence, but with hydrophobic coatings, living composites had a lifetime of ~5 months under harsh conditions with minimal maintenance. We 3D-printed living composites into large-scale mechanoluminescent structures with high spatial resolution, and we also enhanced their mechanical properties with double-network hydrogels. We propose a counterpart mathematical model that captured experimental mechanoluminescent observations to predict mechanoluminescence based on deformation and applied stress. We also demonstrated the use of the mechanosensing composites for biomimetic soft actuators that emitted colored light upon magnetic actuation. These mechanosensing composites have substantial potential in biohybrid sensors and robotics.
Collapse
Affiliation(s)
- Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nico Schramma
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam 1098XH, Netherlands
| | - Zijun Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nada F. Qari
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maziyar Jalaal
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam 1098XH, Netherlands
| | - Michael I. Latz
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Kohls ND, Balak R, Ruddy BP, Mazumdar YC. Soft Electromagnetic Motor and Soft Magnetic Sensors for Synchronous Rotary Motion. Soft Robot 2023; 10:912-922. [PMID: 36976757 DOI: 10.1089/soro.2022.0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
To create fully-soft robots, fully-soft actuators are needed. Currently, soft rotary actuator topologies described in the literature exhibit low rotational speeds, which limit their applicability. In this work, we describe a novel, fully-soft synchronous rotary electromagnetic actuator and soft magnetic contact switch sensor concept. In this study, the actuator is constructed using gallium indium liquid metal conductors, compliant permanent magnetic composites, carbon black powders, and flexible polymers. The actuator also operates using low voltages (<20 V, ≤10 A), has a bandwidth of 10 Hz, a stall torque of 2.5-3 mN·m, and no-load speed of up to 4000 rpm. These values show that the actuator rotates at over two orders-of-magnitude higher speed with at least one order-of-magnitude higher output power than previously developed soft rotary actuators. This unique soft rotary motor is operated in a manner similar to traditional hard motors, but is also able to stretch and deform to enable new soft robot functions. To demonstrate fully-soft actuator application concepts, the motor is incorporated into a fully-soft air blower, fully-soft underwater propulsion system, fully-soft water pump, and squeeze-based sensor for a fully-soft fan. Hybrid hard and soft applications were also tested, including a geared robotic car, pneumatic actuator, and hydraulic pump. Overall, this work demonstrates how the fully-soft rotary electromagnetic actuator can bridge the gap between the capabilities of traditional hard motors and novel soft actuator concepts.
Collapse
Affiliation(s)
- Noah D Kohls
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Roman Balak
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Bryan P Ruddy
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Yi Chen Mazumdar
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Sun K, Wang Z, Liu Q, Chen H, Cui W. Low-Cost Distributed Optical Waveguide Shape Sensor Based on WTDM Applied in Bionics. SENSORS (BASEL, SWITZERLAND) 2023; 23:7334. [PMID: 37687790 PMCID: PMC10490180 DOI: 10.3390/s23177334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Bionic robotics, driven by advancements in artificial intelligence, new materials, and manufacturing technologies, is attracting significant attention from research and industry communities seeking breakthroughs. One of the key technologies for achieving a breakthrough in robotics is flexible sensors. This paper presents a novel approach based on wavelength and time division multiplexing (WTDM) for distributed optical waveguide shape sensing. Structurally designed optical waveguides based on color filter blocks validate the proposed approach through a cost-effective experimental setup. During data collection, it combines optical waveguide transmission loss and the way of controlling the color and intensity of the light source and detecting color and intensity variations for modeling. An artificial neural network is employed to model and demodulate a data-driven optical waveguide shape sensor. As a result, the correlation coefficient between the predicted and real bending angles reaches 0.9134 within 100 s. To show the parsing performance of the model more intuitively, a confidence accuracy curve is introduced to describe the accuracy of the data-driven model at last.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang University-Westlake University Joint Training, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLCER), School of Engineering, Westlake University, Hangzhou 310030, China
| | - Zhenhua Wang
- Zhejiang University-Westlake University Joint Training, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLCER), School of Engineering, Westlake University, Hangzhou 310030, China
| | - Qimeng Liu
- Zhejiang University-Westlake University Joint Training, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLCER), School of Engineering, Westlake University, Hangzhou 310030, China
| | - Hao Chen
- Zhejiang University-Westlake University Joint Training, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLCER), School of Engineering, Westlake University, Hangzhou 310030, China
| | - Weicheng Cui
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLCER), School of Engineering, Westlake University, Hangzhou 310030, China
| |
Collapse
|
26
|
Yang J, Chen Y, Liu S, Liu C, Ma T, Luo Z, Ge G. Single-Line Multi-Channel Flexible Stress Sensor Arrays. MICROMACHINES 2023; 14:1554. [PMID: 37630090 PMCID: PMC10456942 DOI: 10.3390/mi14081554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Flexible stress sensor arrays, comprising multiple flexible stress sensor units, enable accurate quantification and analysis of spatial stress distribution. Nevertheless, the current implementation of flexible stress sensor arrays faces the challenge of excessive signal wires, resulting in reduced deformability, stability, reliability, and increased costs. The primary obstacle lies in the electric amplitude modulation nature of the sensor unit's signal (e.g., resistance and capacitance), allowing only one signal per wire. To overcome this challenge, the single-line multi-channel signal (SLMC) measurement has been developed, enabling simultaneous detection of multiple sensor signals through one or two signal wires, which effectively reduces the number of signal wires, thereby enhancing stability, deformability, and reliability. This review offers a general knowledge of SLMC measurement beginning with flexible stress sensors and their piezoresistive, capacitive, piezoelectric, and triboelectric sensing mechanisms. A further discussion is given on different arraying methods and their corresponding advantages and disadvantages. Finally, this review categorizes existing SLMC measurement methods into RLC series resonant sensing, transmission line sensing, ionic conductor sensing, triboelectric sensing, piezoresistive sensing, and distributed fiber optic sensing based on their mechanisms, describes the mechanisms and characteristics of each method and summarizes the research status of SLMC measurement.
Collapse
Affiliation(s)
- Jiayi Yang
- College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China
- College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Yuanyuan Chen
- College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Shuoyan Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Chang Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Tian Ma
- College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China
- College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Zhenmin Luo
- College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Gang Ge
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
27
|
Zhang P, Teng Z, Zhao L, Liu Z, Yu X, Zhu X, Peng S, Wang T, Qiu J, Wang Q, Xu X. Multi-Dimensional Mechanical Mapping Sensor Based on Flexoelectric-Like and Optical Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301214. [PMID: 37078787 PMCID: PMC10323605 DOI: 10.1002/advs.202301214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Indexed: 05/03/2023]
Abstract
Mechanical sensors execute multi-mode response to external force, which are cornerstones for applications in human-machine interactions and smart wearable equipments. Nevertheless, an integrated sensor responding to mechanical stimulation variables and providing the information of the corresponding signals, as velocity, direction, and stress distribution, remains a challenge. Herein, a Nafion@Ag@ZnS/polydimethylsiloxanes (PDMS) composite sensor is explored, which realizes the description of mechanical action via optics and electronics signals simultaneously. Combined with the mechano-luminescence (ML) originated from ZnS/PDMS and the flexoelectric-like effect of Nafion@Ag, the corresponding explored sensor achieves the detection of magnitude, direction, velocity, mode of mechanical stimulation, and the visualization of the stress distribution. Moreover, the outstanding cyclic stability, linearity response character, and rapid response time are demonstrated. Accordingly, the intelligent recognition and manipulation of a target are realized, which indicate a smarter human-machine interface sensing applied for wearable devices and mechanical arms can be expected.
Collapse
Affiliation(s)
- Peng Zhang
- Faculty of Materials Science and EngineeringKey Laboratory of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093P. R. China
| | - Zhaowei Teng
- The Central Laboratory and Department of OrthopedicThe Second Affiliated Hospital of Kunming Medical UniversityKunming650106P. R. China
- Clinical Medical Research Center and Key Laboratory of Yunnan Provincial Innovative Application of Traditional Chinese MedicineThe First Peoples Hospital of Yunnan ProvinceAffiliated Hospital of Kunming University of Science and TechnologyKunming650034P. R. China
| | - Lei Zhao
- School of Physics and Opto‐Electronic TechnologyCollaborative Innovation Center of Rare‐Earth Optical Functional Materials and Devices DevelopmentBaoji University of Arts and SciencesBaoji721016P. R. China
- Pillar of Engineering Product DevelopmentSingapore University of Technology and DesignSingapore487372Singapore
| | - Zhichao Liu
- Faculty of Materials Science and EngineeringKey Laboratory of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093P. R. China
| | - Xue Yu
- School of Mechanical EngineeringInstitute for Advanced StudyChengdu UniversityChengdu610106P. R. China
| | - Xiaodie Zhu
- Faculty of Materials Science and EngineeringKey Laboratory of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093P. R. China
| | - Songcheng Peng
- Faculty of Materials Science and EngineeringKey Laboratory of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093P. R. China
| | - Ting Wang
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Jianbei Qiu
- Faculty of Materials Science and EngineeringKey Laboratory of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093P. R. China
| | - Qingyuan Wang
- School of Mechanical EngineeringInstitute for Advanced StudyChengdu UniversityChengdu610106P. R. China
| | - Xuhui Xu
- Faculty of Materials Science and EngineeringKey Laboratory of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093P. R. China
| |
Collapse
|
28
|
Abstract
Development and implementation of neuroprosthetic hands is a multidisciplinary field at the interface between humans and artificial robotic systems, which aims at replacing the sensorimotor function of the upper-limb amputees as their own. Although prosthetic hand devices with myoelectric control can be dated back to more than 70 years ago, their applications with anthropomorphic robotic mechanisms and sensory feedback functions are still at a relatively preliminary and laboratory stage. Nevertheless, a recent series of proof-of-concept studies suggest that soft robotics technology may be promising and useful in alleviating the design complexity of the dexterous mechanism and integration difficulty of multifunctional artificial skins, in particular, in the context of personalized applications. Here, we review the evolution of neuroprosthetic hands with the emerging and cutting-edge soft robotics, covering the soft and anthropomorphic prosthetic hand design and relating bidirectional neural interactions with myoelectric control and sensory feedback. We further discuss future opportunities on revolutionized mechanisms, high-performance soft sensors, and compliant neural-interaction interfaces for the next generation of neuroprosthetic hands.
Collapse
Affiliation(s)
- Guoying Gu
- Robotics Institute, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ningbin Zhang
- Robotics Institute, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Chen
- Robotics Institute, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haipeng Xu
- Robotics Institute, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyang Zhu
- Robotics Institute, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Peng S, Xia P, Wang T, Lu L, Zhang P, Zhou M, Zhao F, Hu S, Kim JT, Qiu J, Wang Q, Yu X, Xu X. Mechano-luminescence Behavior of Lanthanide-Doped Fluoride Nanocrystals for Three-Dimensional Stress Imaging. ACS NANO 2023; 17:9543-9551. [PMID: 37167417 DOI: 10.1021/acsnano.3c02298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pervasive mechanical force in nature and human activities is closely related to intriguing physics and widespread applications. However, describing stress distribution timely and precisely in three dimensions to avoid "groping in the dark" is still a formidable challenge, especially for nonplanar structures. Herein, we realize three-dimensional (3D) stress imaging for sharp arbitrary targets via advanced 3D printing, owing to the use of fluoride nanocrystal(NC)-based ink. Notably, a fascinating mechano-luminescence (ML) is observed for the homogeneously dispersed NaLuF4:Tb3+ NCs (∼25 nm) with rationally designed deep traps (at 0.88 and 1.02 eV) via incorporating Cs+ ions and using X-ray irradiation. Carriers captured in the corresponding traps are steadily released under mechanical stimulations, which enables a ratio metric luminescence intensity based on the applied force. As a result, a significant mechano-optical conversion and superior optical waveguide of the corresponding transparent printed targets demonstrate stress in 3D with a high spatial and temporal resolution based on stereovision. These results highlight the optical function of the 3D-printed fluoride NCs, which cast light into the black boxes of stress described in space, benefiting us in understanding the ubiquitous force relevant to most natural and engineering processes.
Collapse
Affiliation(s)
- Songcheng Peng
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Ping Xia
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ting Wang
- School of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Lan Lu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Peng Zhang
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Min Zhou
- College of Physical Science and Technology, Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Feng Zhao
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Shiqi Hu
- The University of Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong 999077, Hong Kong, China
| | - Ji Tae Kim
- The University of Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong 999077, Hong Kong, China
| | - Jianbei Qiu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xue Yu
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xuhui Xu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
30
|
Wang S, Liu C, Liu J, Li S, Xu F, Xu D, Zhang W, Wu Y, Shang J, Liu Y, Li RW. Highly Stable Liquid Metal Conductors with Superior Electrical Stability and Tough Interface Bonding for Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22291-22300. [PMID: 37127569 DOI: 10.1021/acsami.3c03182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ga-based liquid metal stretchable conductors have recently gained interest in flexible electronic devices such as electrodes, antennas, and sensors. It is essential to maintain electrical stability under strain or cyclic strain for reliable data acquisition and exhibit tough interfacial bonding between liquid metal and polymers to prevent performance loss and device failure. Herein, a highly stable conductor with superior electrical stability and tough interface bonding is introduced by casting curable polymers and a peeling-activated process from liquid metal particles. Based on the compensating effect of liquid metal, similar to the recharge relationship of water between rivers and lakes in nature, the conductor is not only strain-insensitive (ΔR/R0 < 10% for 100% strain) but also immune to cyclic deformation (ΔR/R0 < 7% with 5000 stretching cycles at 50% strain). Embedding liquid metal within the elastomer to create stretchable conductors effectively improves interfacial adhesion properties (the fluid-solid interfacial adhesion force increases from 0.48 to 0.62 mN/mm2). The constructed tough interface could even withstand sonication treatment. Finally, by combining strategies in material design and fabrication, an integrated array composed of vertical interconnect access and robust electrodes is fabricated, which simultaneously holds tough interfacial bonding with the upper and lower layers.
Collapse
Affiliation(s)
- Shengding Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jinyun Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shiying Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Xu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dan Xu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wuxu Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
31
|
Park MH, Imbrie-Moore AM, Zhu Y, Wilkerson RJ, Wang H, Park GH, Wu CA, Pandya PK, Mullis DM, Marin-Cuartas M, Woo YJ. The Critical Biomechanics of Aortomitral Angle and Systolic Anterior Motion: Engineering Native Ex Vivo Simulation. Ann Biomed Eng 2023; 51:794-805. [PMID: 36264407 PMCID: PMC10443832 DOI: 10.1007/s10439-022-03091-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Systolic anterior motion (SAM) of the mitral valve (MV) is a complex pathological phenomenon often occurring as an iatrogenic effect of surgical and transcatheter intervention. While the aortomitral angle has long been linked to SAM, the mechanistic relationship is not well understood. We developed the first ex vivo heart simulator capable of recreating native aortomitral biomechanics, and to generate models of SAM, we performed anterior leaflet augmentation and sequential undersized annuloplasty procedures on porcine aortomitral junctions (n = 6). Hemodynamics and echocardiograms were recorded, and echocardiographic analysis revealed significantly reduced coaptation-septal distances confirming SAM (p = 0.003) and effective manipulation of the aortomitral angle (p < 0.001). Upon increasing the angle in our pathological models, we recorded significant increases (p < 0.05) in both coaptation-septal distance and multiple hemodynamic metrics, such as aortic peak flow and effective orifice area. These results indicate that an increased aortomitral angle is correlated with more efficient hemodynamic performance of the valvular system, presenting a potential, clinically translatable treatment opportunity for reducing the risk and adverse effects of SAM. As the standard of care shifts towards surgical and transcatheter interventions, it is increasingly important to better understand SAM biomechanics, and our advances represent a significant step towards that goal.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Robert J Wilkerson
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Grant H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Catherine A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Pearly K Pandya
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Mateo Marin-Cuartas
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA.
| |
Collapse
|
32
|
Qiao Y, Luo J, Cui T, Liu H, Tang H, Zeng Y, Liu C, Li Y, Jian J, Wu J, Tian H, Yang Y, Ren TL, Zhou J. Soft Electronics for Health Monitoring Assisted by Machine Learning. NANO-MICRO LETTERS 2023; 15:66. [PMID: 36918452 PMCID: PMC10014415 DOI: 10.1007/s40820-023-01029-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Jinan Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Haidong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yingfen Zeng
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jinming Jian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingzhi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
33
|
Hu D, Giorgio-Serchi F, Zhang S, Yang Y. Stretchable e-skin and transformer enable high-resolution morphological reconstruction for soft robots. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
34
|
Xu J, Pan J, Cui T, Zhang S, Yang Y, Ren TL. Recent Progress of Tactile and Force Sensors for Human-Machine Interaction. SENSORS (BASEL, SWITZERLAND) 2023; 23:1868. [PMID: 36850470 PMCID: PMC9961639 DOI: 10.3390/s23041868] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Human-Machine Interface (HMI) plays a key role in the interaction between people and machines, which allows people to easily and intuitively control the machine and immersively experience the virtual world of the meta-universe by virtual reality/augmented reality (VR/AR) technology. Currently, wearable skin-integrated tactile and force sensors are widely used in immersive human-machine interactions due to their ultra-thin, ultra-soft, conformal characteristics. In this paper, the recent progress of tactile and force sensors used in HMI are reviewed, including piezoresistive, capacitive, piezoelectric, triboelectric, and other sensors. Then, this paper discusses how to improve the performance of tactile and force sensors for HMI. Next, this paper summarizes the HMI for dexterous robotic manipulation and VR/AR applications. Finally, this paper summarizes and proposes the future development trend of HMI.
Collapse
Affiliation(s)
- Jiandong Xu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jiong Pan
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Sheng Zhang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Li Z, Cheng L, Liu Z. Intentional Blocking Based Photoelectric Soft Pressure Sensor with High Sensitivity and Stability. Soft Robot 2023; 10:205-216. [PMID: 35605098 DOI: 10.1089/soro.2021.0186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soft pressure sensors have recently attracted considerable attention because of their applications in human-machine interface, soft robotics, and prosthetics. However, there remain some challenges in achieving satisfactory performance (e.g., high sensitivity, wide sensing range, high stability) for soft pressure sensors. This article reports an intentional blocking based photoelectric pressure sensor. Two different blocking methods are investigated: the single-row-pyramid blocking and the double-row-pyramid blocking. The sensor has a simple structure, which is made of a light-emitting diode, photosensitive element, and silicone sensor shell. Experiments demonstrate that the sensor has a high sensitivity (the maximum sensitivity is 48.07 kPa-1, and the minimum measurement pressure is 0.8 Pa), large pressure-sensing range (the sensing range is up to 120 kPa), superior stability (a drift about 0.4% over 12,130 repetitive cycles at 0-80 kPa), low drift (< ±0.2% in different 3-day testing), negligible hysteresis, and high signal-to-noise ratio (over 55 dB). By mounting the pressure sensor at the end of a robotic arm, the robot can detect subtle collisions (such as touching a balloon through a pinpoint). In addition, this article fabricates a tactile glove based on the proposed pressure sensor and shows the application of this glove for music playing and object weighing. This study provides a new structure for photoelectric sensors to increase sensitivity and also provides a more convenient way to fabricate photoelectric pressure sensors.
Collapse
Affiliation(s)
- Zhengwei Li
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Long Cheng
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zeyu Liu
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Sun K, Wang Z, Liu Q, Chen H, Li W, Cui W. Data-driven multi-joint waveguide bending sensor based on time series neural network. OPTICS EXPRESS 2023; 31:2359-2372. [PMID: 36785251 DOI: 10.1364/oe.476889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/24/2022] [Indexed: 06/18/2023]
Abstract
Due to the bulky interrogation devices, traditional fiber optic sensing system is mainly connected by wire or equipped only for large facilities. However, the advancement in neural network algorithms and flexible materials has broadened its application scenarios to bionics. In this paper, a multi-joint waveguide bending sensor based on color dyed filters is designed to detect bending angles, directions and positions. The sensors are fabricated by casting method using soft silicone rubber. Besides, required optical properties of sensor materials are characterized to better understand principles of the sensor design. Time series neural networks are utilized to predict bending position and angle quantitatively. The results confirm that the waveguide sensor demodulated by the data-driven neural network algorithm performs well and can be used for engineering applications.
Collapse
|
37
|
Dong H, Yang H, Ding S, Li T, Yu H. Bioinspired Amphibious Origami Robot with Body Sensing for Multimodal Locomotion. Soft Robot 2022; 9:1198-1209. [PMID: 35671518 DOI: 10.1089/soro.2021.0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Animals have long captured the inspirations of researchers in robotics with their unrivaled capabilities of multimodal locomotion on land and in water, achieved by functionally versatile limbs. Conventional soft robots show infinite degrees-of-freedom (DOFs), making it hard to be actuated and conduct multiple movements especially for multimodal locomotion in different environments. An origami robot, which is capable of reversibly transforming the robotic shape by simple creases folding/unfolding, reveals advantages for imitating flexible movements of animals, thus drawing more and more attention. However, it poses substantial technological challenges for bioinspired design, sensing, and actuation of origami robots that can generate multimodal locomotion through performing complex morphologic deformation in different scenarios such as land and water. To relieve this issue, we propose a novel bioinspired amphibious origami machine with body sensing for multimodal locomotion. In this work, inspired by the peristalsis of inchworm and human swimming behaviors, a unique origami body with legs and origami arms is developed to enable the integrated robot to move both on land and in water. Instead of traditional electronic sensors, we design highly stretchable and foldable layer resistive sensor with conductive polymers coated onto the origami body to achieve robotic sensing such as obstacle detection. In addition, with detailed analysis, a self-designed pneumatic system of time division, multiplexing, and serialization is adopted to efficiently control the robot with high DOF. We eventually demonstrate that the fabricated origami robot successfully moves in amphibious environments, which is capable of crawling forward, turning right/left, and swimming. We expect that this work indicates contributions to advanced origami design, actuation control, and body sensor of the bioinspired robot with multimodal locomotion for broadly practical applications.
Collapse
Affiliation(s)
- Huixu Dong
- Department of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Haitao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Shuo Ding
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Tong Li
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Haoyong Yu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| |
Collapse
|
38
|
Shu J, Wang J, Lau SCY, Su Y, Heung KHL, Shi X, Li Z, Tong RKY. Soft Robots' Dynamic Posture Perception Using Kirigami-Inspired Flexible Sensors with Porous Structures and Long Short-Term Memory (LSTM) Neural Networks. SENSORS (BASEL, SWITZERLAND) 2022; 22:7705. [PMID: 36298057 PMCID: PMC9611759 DOI: 10.3390/s22207705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Soft robots can create complicated structures and functions for rehabilitation. The posture perception of soft actuators is critical for performing closed-loop control for a precise location. It is essential to have a sensor with both soft and flexible characteristics that does not affect the movement of a soft actuator. This paper presents a novel end-to-end posture perception method that employs flexible sensors with kirigami-inspired structures and long short-term memory (LSTM) neural networks. The sensors were developed with conductive sponge materials. With one-step calibration from the sensor output, the posture of the soft actuator could be calculated by the LSTM network. The method was validated by attaching the developed sensors to a soft fiber-reinforced bending actuator. The results showed the accuracy of posture prediction of sponge sensors with three kirigami-inspired structures ranged from 0.91 to 0.97 in terms of R2. The sponge sensors only generated a resistive torque value of 0.96 mNm at the maximum bending position when attached to a soft actuator, which would minimize the effect on actuator movement. The kirigami-inspired flexible sponge sensor could in future enhance soft robotic development.
Collapse
Affiliation(s)
- Jing Shu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Junming Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | | | - Yujie Su
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Kelvin Ho Lam Heung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Xiangqian Shi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zheng Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Raymond Kai-yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
39
|
Li D, Liu W, Zhu B, Qu M, Zhang Q, Fu Y, Xie J. Machine Learning-Assisted Multifunctional Environmental Sensing Based on a Piezoelectric Cantilever. ACS Sens 2022; 7:2767-2777. [PMID: 36106454 DOI: 10.1021/acssensors.2c01423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multifunctional environmental sensing is crucial for various applications in agriculture, pollution monitoring, and disease diagnosis. However, most of these sensing systems consist of multiple sensors, leading to significantly increased dimensions, energy consumption, and structural complexity. They also often suffer from signal interferences among multiple sensing elements. Herein, we report a multifunctional environmental sensor based on one single sensing element. A MoS2 film was deposited on the surface of a piezoelectric microcantilever (300 × 1000 μm2) and used as both a sensing layer and top electrode to make full use of the changes in multiple properties of MoS2 after its exposure to various environments. The proposed sensor has been demonstrated for humidity detection and achieved high resolution (0.3% RH), low hysteresis (5.6%), and fast response (1 s) and recovery (2.8 s). Based on the analysis of the magnitude spectra for transmission using machine learning algorithms, the sensor accurately quantifies temperatures and CO2 concentrations in the interference of humidity with accuracies of 91.9 and 92.1%, respectively. Furthermore, the sensor has been successfully demonstrated for real-time detection of humidity and temperature or CO2 concentrations for various applications, revealing its great potential in human-machine interactions and health monitoring of plants and human beings.
Collapse
Affiliation(s)
- Dongsheng Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Weiting Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Boyi Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Mengjiao Qu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Qian Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - YongQing Fu
- Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne NE1 8ST, U.K
| | - Jin Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
40
|
Jamil B, Rodrigue H. Low-Powered and Resilient IR-Based Pigmented Soft Optoelectronic Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38144-38152. [PMID: 35943270 DOI: 10.1021/acsami.2c07318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft optoelectronic sensors capable of multimodal sensing have high repeatability, which makes them an attractive choice for applications requiring deformable sensors. A weakness of these sensors is the constant supply of electrical power input required to pass the light signal through their core, which can lead to excessive power requirements for portable devices. Using an infrared (IR) spectrum signal that requires very low power for signal propagation should help alleviate this issue. However, soft optoelectronic sensors can be easily disturbed by external light sources or even suffer from cross-interference, and IR-based sensors are more susceptible to such interferences since IR wavelengths can penetrate the cladding material generally used in soft optical waveguides. This paper presents a highly stretchable low-powered IR-based soft optoelectronic stretchable sensor with pigmented cladding capable of multimodal sensing. The use of an IR-spectrum signal makes it consume a fraction of the power of what a visible spectrum-based optoelectronic sensor would consume. Pigmented elastomers are used as the cladding of the waveguides of these sensors, which makes them highly resilient. These sensors are embedded in a resilient soft robotic gripper capable of controlling its contact force even with significant external disturbances.
Collapse
Affiliation(s)
- Babar Jamil
- School of Mechanical Engineering, Sungkyungwan University, Suwon 16419, South Korea
| | - Hugo Rodrigue
- School of Mechanical Engineering, Sungkyungwan University, Suwon 16419, South Korea
| |
Collapse
|
41
|
Aksoy B, Hao Y, Grasso G, Digumarti KM, Cacucciolo V, Shea H. Shielded soft force sensors. Nat Commun 2022; 13:4649. [PMID: 35945227 PMCID: PMC9363457 DOI: 10.1038/s41467-022-32391-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Force and strain sensors made of soft materials enable robots to interact intelligently with their surroundings. Capacitive sensing is widely adopted thanks to its low power consumption, fast response, and facile fabrication. Capacitive sensors are, however, susceptible to electromagnetic interference and proximity effects and thus require electrical shielding. Shielding has not been previously implemented in soft capacitive sensors due to the parasitic capacitance between the shield and sensing electrodes, which changes when the sensor is deformed. We address this crucial challenge by patterning the central sensing elastomer layer to control its compressibility. One design uses an ultrasoft silicone foam, and the other includes microchannels filled with liquid metal and air. The force resolution is sub-mN both in normal and shear directions, yet the sensor withstands large forces (>20 N), demonstrating a wide dynamic range. Performance is unaffected by nearby high DC and AC electric fields and even electric sparks. Capacitive soft force sensors require electrical shielding from electromagnetic interference, but this shielding can mess with the effectiveness of the sensing electrodes. Here, Aksoy et al. solve this problem by patterning the central sensing elastomer layer to control its compressibility.
Collapse
Affiliation(s)
- Bekir Aksoy
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Yufei Hao
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Giulio Grasso
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Krishna Manaswi Digumarti
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Vito Cacucciolo
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Herbert Shea
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland.
| |
Collapse
|
42
|
Shen Z, Zhang Z, Zhang N, Li J, Zhou P, Hu F, Rong Y, Lu B, Gu G. High-Stretchability, Ultralow-Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203650. [PMID: 35726439 DOI: 10.1002/adma.202203650] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/05/2022] [Indexed: 05/27/2023]
Abstract
Highly stretchable strain sensors based on conducting polymer hydrogel are rapidly emerging as a promising candidate toward diverse wearable skins and sensing devices for soft machines. However, due to the intrinsic limitations of low stretchability and large hysteresis, existing strain sensors cannot fully exploit their potential when used in wearable or robotic systems. Here, a conducting polymer hydrogel strain sensor exhibiting both ultimate strain (300%) and negligible hysteresis (<1.5%) is presented. This is achieved through a unique microphase semiseparated network design by compositing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanofibers with poly(vinyl alcohol) (PVA) and facile fabrication by combining 3D printing and successive freeze-thawing. The overall superior performances of the strain sensor including stretchability, linearity, cyclic stability, and robustness against mechanical twisting and pressing are systematically characterized. The integration and application of such strain sensor with electronic skins are further demonstrated to measure various physiological signals, identify hand gestures, enable a soft gripper for objection recognition, and remote control of an industrial robot. This work may offer both promising conducting polymer hydrogels with enhanced sensing functionalities and technical platforms toward stretchable electronic skins and intelligent robotic systems.
Collapse
Affiliation(s)
- Zequn Shen
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhilin Zhang
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Ningbin Zhang
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinhao Li
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peiwei Zhou
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Faqi Hu
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yu Rong
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baoyang Lu
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Guoying Gu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
43
|
Shimadera S, Kitagawa K, Sagehashi K, Miyajima Y, Niiyama T, Sunada S. Speckle-based high-resolution multimodal soft sensing. Sci Rep 2022; 12:13096. [PMID: 35907937 PMCID: PMC9338967 DOI: 10.1038/s41598-022-17026-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Skin-like soft sensors are key components for human–machine interfaces; however, the simultaneous sensing of several types of stimuli remains challenging because large-scale sensor integration is required with numerous wire connections. We propose an optical high-resolution multimodal sensing approach, which does not require integrating multiple sensors. This approach is based on the combination of an optical scattering phenomenon, which can encode the information of various stimuli as a speckle pattern, and a decoding technique using deep learning. We demonstrate the simultaneous sensing of three different physical quantities—contact force, contact location, and temperature—with a single soft material. Another unique capability of the proposed approach is spatially continuous sensing with an ultrahigh resolution of few tens of micrometers, in contrast to previous multimodal sensing approaches. Furthermore, a haptic soft device is presented for a human–machine interface. Our approach encourages the development of high-performance smart skin-like sensors.
Collapse
Affiliation(s)
- Sho Shimadera
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kei Kitagawa
- College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Koyo Sagehashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yoji Miyajima
- Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomoaki Niiyama
- Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Satoshi Sunada
- Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan. .,Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
44
|
Chen Z, Zhang Y, Zhu B, Wu Y, Du X, Lin L, Wu D. Laser-Sculptured Hierarchical Spinous Structures for Ultra-High-Sensitivity Iontronic Sensors with a Broad Operation Range. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19672-19682. [PMID: 35442620 DOI: 10.1021/acsami.2c01356] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tactile pressure sensing over a wide operation range (>1 MPa) is challenging for a variety of applications in fields such as aviation, oceanography, and biomedicine. Recently, innovative strategies have been utilized to improve the performances of tactile sensors using specially designed structures, dielectric layers, and electrodes. Here, a hierarchical structural design based on ionic gel films has been utilized to build iontronic pressure sensors with ultrahigh sensitivities and broad operation ranges. Sculptured patterns made by a controlled CO2 laser scanning process have been produced on polyimide films to achieve two kinds of protrusion structures for high specific surface areas and strength to withstand high pressure. The iontronic sensor has been constructed by adding two screen-printed electrodes of high surface areas to achieve an ultrahigh sensitivity of 2593 kPa-1 and a wide pressure range from 0 Pa to 3.36 MPa. The prototype device also has a fast response and recovery time of 26 and 13 ms, respectively, and an excellent mechanical durability in the endurance test of over 2700 repeated loading and unloading cycles under a pressure of 1 MPa. Several application examples have been demonstrated, including the detection of physiological signals on human volunteers, the feedback control of intelligent robots, the grasping operation of underwater soft grippers, and the environmental wind-speed monitoring. As such, this work demonstrates a versatile and economical methodology to produce high-performance flexible sensors for various potential applications.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Yang Zhang
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Bin Zhu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Yigen Wu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Xiaohui Du
- Sensor and Network Control Center, Instrumentation Technology and Economy Institute, Beijing 100055, China
| | - Liwei Lin
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Dezhi Wu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
45
|
Shin G, Lee S, Park YL. Selective Patterning of Conductive Elastomers Embedded With Silver Powders and Carbon Nanotubes for Stretchable Electronics. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3153707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
47
|
Schwab F, Wiesemüller F, Mucignat C, Park YL, Lunati I, Kovac M, Jusufi A. Undulatory Swimming Performance Explored With a Biorobotic Fish and Measured by Soft Sensors and Particle Image Velocimetry. Front Robot AI 2022; 8:791722. [PMID: 35071335 PMCID: PMC8778575 DOI: 10.3389/frobt.2021.791722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023] Open
Abstract
Due to the difficulty of manipulating muscle activation in live, freely swimming fish, a thorough examination of the body kinematics, propulsive performance, and muscle activity patterns in fish during undulatory swimming motion has not been conducted. We propose to use soft robotic model animals as experimental platforms to address biomechanics questions and acquire understanding into subcarangiform fish swimming behavior. We extend previous research on a bio-inspired soft robotic fish equipped with two pneumatic actuators and soft strain sensors to investigate swimming performance in undulation frequencies between 0.3 and 0.7 Hz and flow rates ranging from 0 to 20c m s in a recirculating flow tank. We demonstrate the potential of eutectic gallium-indium (eGaIn) sensors to measure the lateral deflection of a robotic fish in real time, a controller that is able to keep a constant undulatory amplitude in varying flow conditions, as well as using Particle Image Velocimetry (PIV) to characterizing swimming performance across a range of flow speeds and give a qualitative measurement of thrust force exerted by the physical platform without the need of externally attached force sensors. A detailed wake structure was then analyzed with Dynamic Mode Decomposition (DMD) to highlight different wave modes present in the robot's swimming motion and provide insights into the efficiency of the robotic swimmer. In the future, we anticipate 3D-PIV with DMD serving as a global framework for comparing the performance of diverse bio-inspired swimming robots against a variety of swimming animals.
Collapse
Affiliation(s)
- Fabian Schwab
- Locomotion in Biorobotic and Somatic Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Fabian Wiesemüller
- Aerial Robotics Lab (ARL), Department of Aeronautics, Imperial College London, London, United Kingdom
- Materials and Technology Center of Robotics, EMPA, Zürich, Switzerland
| | - Claudio Mucignat
- Laboratory for Multiscale Studies in Building Physics, EMPA, Zürich, Switzerland
| | - Yong-Lae Park
- Soft Robotics and Bionics Lab, Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Ivan Lunati
- Laboratory for Multiscale Studies in Building Physics, EMPA, Zürich, Switzerland
| | - Mirko Kovac
- Aerial Robotics Lab (ARL), Department of Aeronautics, Imperial College London, London, United Kingdom
- Materials and Technology Center of Robotics, EMPA, Zürich, Switzerland
| | - Ardian Jusufi
- Locomotion in Biorobotic and Somatic Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
48
|
Chen X, Zhang X, Huang Y, Cao L, Liu J. A review of soft manipulator research, applications, and opportunities. J FIELD ROBOT 2021. [DOI: 10.1002/rob.22051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoqian Chen
- National Innovation Institute of Defense Technology Academy of Military Sciences Beijing China
| | - Xiang Zhang
- National Innovation Institute of Defense Technology Academy of Military Sciences Beijing China
| | - Yiyong Huang
- National Innovation Institute of Defense Technology Academy of Military Sciences Beijing China
| | - Lu Cao
- National Innovation Institute of Defense Technology Academy of Military Sciences Beijing China
| | - Jinguo Liu
- Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China
| |
Collapse
|
49
|
Babič J, Laffranchi M, Tessari F, Verstraten T, Novak D, Šarabon N, Ugurlu B, Peternel L, Torricelli D, Veneman JF. Challenges and solutions for application and wider adoption of wearable robots. WEARABLE TECHNOLOGIES 2021; 2:e14. [PMID: 38486636 PMCID: PMC10936284 DOI: 10.1017/wtc.2021.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/25/2021] [Accepted: 09/18/2021] [Indexed: 03/17/2024]
Abstract
The science and technology of wearable robots are steadily advancing, and the use of such robots in our everyday life appears to be within reach. Nevertheless, widespread adoption of wearable robots should not be taken for granted, especially since many recent attempts to bring them to real-life applications resulted in mixed outcomes. The aim of this article is to address the current challenges that are limiting the application and wider adoption of wearable robots that are typically worn over the human body. We categorized the challenges into mechanical layout, actuation, sensing, body interface, control, human-robot interfacing and coadaptation, and benchmarking. For each category, we discuss specific challenges and the rationale for why solving them is important, followed by an overview of relevant recent works. We conclude with an opinion that summarizes possible solutions that could contribute to the wider adoption of wearable robots.
Collapse
Affiliation(s)
- Jan Babič
- Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Matteo Laffranchi
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Federico Tessari
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Tom Verstraten
- Robotics & Multibody Mechanics Research Group, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Domen Novak
- University of Wyoming, Laramie, Wyoming, USA
| | - Nejc Šarabon
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Barkan Ugurlu
- Biomechatronics Laboratory, Faculty of Engineering, Ozyegin University, Istanbul, Turkey
| | - Luka Peternel
- Delft Haptics Lab, Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands
| | - Diego Torricelli
- Cajal Institute, Spanish National Research Council, Madrid, Spain
| | | |
Collapse
|
50
|
Kim J, Jung H, Kim M, Bae H, Lee Y. Conductive Polymer Composites for Soft Tactile Sensors. Macromol Res 2021. [DOI: 10.1007/s13233-021-9092-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|