1
|
Shimpi AA, Naegle KM. Linguistic networks uncover grammatical constraints of protein sentences comprised of domain-based words. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626803. [PMID: 39677636 PMCID: PMC11643033 DOI: 10.1101/2024.12.04.626803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Evolution has developed a set of principles that determine feasible domain combinations analogous to grammar within natural languages. Treating domains as words and proteins as sentences, made up of words, we apply a linguistic approach to represent the human proteome as an n-gram network. Combining this with network theory and application, we explore the functional language and rules of the human proteome. Additionally, we explored subnetwork languages by focusing on reversible post-translational modifications (PTMs) systems that follow a reader-writer-eraser paradigm. We find that PTM systems appear to sample grammar rules near the onset of the system expansion, but then convergently evolve towards similar grammar rules, which stabilize during the post-metazoan switch. For example, reader and writer domains are typically tightly connected through shared n-grams, but eraser domains are almost always loosely or completely disconnected from readers and writers. Additionally, after grammar fixation, domains with verb-like properties, such as writers and erasers, never appear - consistent with the idea of natural grammar that leads to clarity and limits futile enzymatic cycles. Then, given how some cancer fusion genes represent the possibility for the emergence of novel language, we investigate how cancer fusion genes alter the human proteome n-gram network. We find most cancer fusion genes follow existing grammar rules. Collectively, these results suggest that n-gram based analysis of proteomes is a complement to the more direct protein-protein interaction networks. N-grams can capture abstract functional connections in a more fully described manner, limited only by the definition of domains within the proteome and not by the combinatorial challenge of capturing all protein interaction connections.
Collapse
Affiliation(s)
- Adrian A. Shimpi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, 22903
| | - Kristen M. Naegle
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, 22903
| |
Collapse
|
2
|
Chen C, Jia H, Nakamura Y, Kanekura K, Hayamizu Y. Effect of Multivalency on Phase-Separated Droplets Consisting of Poly(PR) Dipeptide Repeats and RNA at the Solid/Liquid Interface. ACS OMEGA 2022; 7:19280-19287. [PMID: 35721931 PMCID: PMC9201888 DOI: 10.1021/acsomega.2c00811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Dipeptide repeat proteins (DRPs) are considered a significant cause of amyotrophic lateral sclerosis (ALS), and their liquid-liquid phase separation (LLPS) formation with other biological molecules has been studied both in vitro and in vivo. The immobilization and wetting of the LLPS droplets on glass surfaces are technically crucial for the measurement with optical microscopy. In this work, we characterized the surface diffusion of LLPS droplets of the DRPs with different lengths to investigate the multivalent effect on the interactions of their LLPS droplets with the glass surface. Using fluorescence microscopy and the single-particle tracking method, we observed that the large multivalency drastically changed the surface behavior of the droplets. The coalescence and wetting of the droplets were accelerated by increasing the multivalency of peptides in the LLPS system. Our findings on the effect of multivalency on interactions between droplets and glass surfaces could provide a new insight to enhance the understanding of LLPS formation and biophysical properties related to the solid/liquid interface.
Collapse
Affiliation(s)
- Chen Chen
- Department
of Materials Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Han Jia
- Department
of Materials Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yoshiki Nakamura
- Department
of Materials Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Kohsuke Kanekura
- Department
of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Yuhei Hayamizu
- Department
of Materials Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
3
|
Dionne U, Percival LJ, Chartier FJM, Landry CR, Bisson N. SRC homology 3 domains: multifaceted binding modules. Trends Biochem Sci 2022; 47:772-784. [PMID: 35562294 DOI: 10.1016/j.tibs.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
The assembly of complexes following the detection of extracellular signals is often controlled by signaling proteins comprising multiple peptide binding modules. The SRC homology (SH)3 family represents the archetypical modular protein interaction module, with ~300 annotated SH3 domains in humans that regulate an impressive array of signaling processes. We review recent findings regarding the allosteric contributions of SH3 domains host protein context, their phosphoregulation, and their roles in phase separation that challenge the simple model in which SH3s are considered to be portable domains binding to specific proline-rich peptide motifs.
Collapse
Affiliation(s)
- Ugo Dionne
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Lily J Percival
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Manchester, UK
| | - François J M Chartier
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Christian R Landry
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Institute of Integrative and Systems Biology, Université Laval, Quebec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, QC, Canada; Department of Biology, Université Laval, Quebec, QC, Canada.
| | - Nicolas Bisson
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
4
|
Liu J, Zhorabek F, Dai X, Huang J, Chau Y. Minimalist Design of an Intrinsically Disordered Protein-Mimicking Scaffold for an Artificial Membraneless Organelle. ACS CENTRAL SCIENCE 2022; 8:493-500. [PMID: 35505868 PMCID: PMC9052801 DOI: 10.1021/acscentsci.1c01021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 05/05/2023]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging and universal mechanism for intracellular organization, particularly, by forming membraneless organelles (MLOs) hosting intrinsically disordered proteins (IDPs) as scaffolds. Genetic engineering is generally applied to reconstruct IDPs harboring over 100 amino acid residues. Here, we report the first design of synthetic hybrids consisting of short oligopeptides of fewer than 10 residues as "stickers" and dextran as a "spacer" to recapitulate the characteristics of IDPs, as exemplified by the multivalent FUS protein. Hybrids undergo LLPS into micron-sized liquid droplets resembling LLPS in vitro and in living cells. Moreover, the droplets formed are capable of recruiting proteins and RNAs and providing a favorable environment for a biochemical reaction with highly enriched components, thereby mimicking the function of natural MLOs. This simple yet versatile model system can help elucidate the molecular interactions implicated in MLOs and pave ways to a new type of biomimetic materials.
Collapse
Affiliation(s)
- Jianhui Liu
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Fariza Zhorabek
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xin Dai
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon, Hong Kong SAR, China
| | - Jinqing Huang
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon, Hong Kong SAR, China
| | - Ying Chau
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
TDRD5 Is Required for Spermatogenesis and Oogenesis in Locusta migratoria. INSECTS 2022; 13:insects13030227. [PMID: 35323525 PMCID: PMC8953433 DOI: 10.3390/insects13030227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/13/2023]
Abstract
Tudor family proteins exist in all eukaryotic organisms and play a role in many cellular processes by recognizing and binding to proteins with methylated arginine or lysine residues. TDRD5, a member of Tudor domain-containing proteins (TDRDs), has been implicated in the P-element-induced wimpy testis-interacting RNA (piRNA) pathway and germ cell development in some model species, but little is known about its function in other species. Therefore, we identified and characterized LmTDRD5, the TDRD5 ortholog in Locusta migratoria, a hemimetabolous pest. The LmTdrd5 gene has 19 exons that encode a protein possessing a single copy of the Tudor domain and three LOTUS domains at its N-terminus. qRT-PCR analysis revealed a high LmTdrd5 expression level in genital glands. Using RNA interference, LmTdrd5 knockdown in males led to a lag in meiosis phase transition, decreased spermatid elongation and sperm production, and downregulated the expression of the two germ cell-specific transcription factors, LmCREM and LmACT, as well as the sperm tail marker gene LmQrich2.LmTdrd5 knockdown in females reduced the expression levels of vitellogenin (Vg) and Vg receptor (VgR) and impaired ovarian development and oocyte maturation, thus decreasing the hatchability rate. These results demonstrate that LmTdrd5 is essential for germ cell development and fertility in locusts, indicating a conserved function for TDRD5.
Collapse
|
6
|
Gilchrist CLM, Chooi YH. Synthaser: a CD-Search enabled Python toolkit for analysing domain architecture of fungal secondary metabolite megasynth(et)ases. Fungal Biol Biotechnol 2021; 8:13. [PMID: 34763725 PMCID: PMC8582187 DOI: 10.1186/s40694-021-00120-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungi are prolific producers of secondary metabolites (SMs), which are bioactive small molecules with important applications in medicine, agriculture and other industries. The backbones of a large proportion of fungal SMs are generated through the action of large, multi-domain megasynth(et)ases such as polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The structure of these backbones is determined by the domain architecture of the corresponding megasynth(et)ase, and thus accurate annotation and classification of these architectures is an important step in linking SMs to their biosynthetic origins in the genome. RESULTS Here we report synthaser, a Python package leveraging the NCBI's conserved domain search tool for remote prediction and classification of fungal megasynth(et)ase domain architectures. Synthaser is capable of batch sequence analysis, and produces rich textual output and interactive visualisations which allow for quick assessment of the megasynth(et)ase diversity of a fungal genome. Synthaser uses a hierarchical rule-based classification system, which can be extensively customised by the user through a web application ( http://gamcil.github.io/synthaser ). We show that synthaser provides more accurate domain architecture predictions than comparable tools which rely on curated profile hidden Markov model (pHMM)-based approaches; the utilisation of the NCBI conserved domain database also allows for significantly greater flexibility compared to pHMM approaches. In addition, we demonstrate how synthaser can be applied to large scale genome mining pipelines through the construction of an Aspergillus PKS similarity network. CONCLUSIONS Synthaser is an easy to use tool that represents a significant upgrade to previous domain architecture analysis tools. It is freely available under a MIT license from PyPI ( https://pypi.org/project/synthaser ) and GitHub ( https://github.com/gamcil/synthaser ).
Collapse
Affiliation(s)
- Cameron L M Gilchrist
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia.
| |
Collapse
|
7
|
Comprehensive Assessment of the Relationship Between Site -2 Specificity and Helix α2 in the Erbin PDZ Domain. J Mol Biol 2021; 433:167115. [PMID: 34171344 DOI: 10.1016/j.jmb.2021.167115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
PDZ domains are key players in signalling pathways. These modular domains generally recognize short linear C-terminal stretches of sequences in proteins that organize the formation of complex multi-component assemblies. The development of new methodologies for the characterization of the molecular principles governing these interactions is critical to fully understand the functional diversity of the family and to elucidate biological functions for family members. Here, we applied an in vitro evolution strategy to explore comprehensively the capacity of PDZ domains for specific recognition of different amino acids at a key position in C-terminal peptide ligands. We constructed a phage-displayed library of the Erbin PDZ domain by randomizing the binding site-2 and adjacent residues, which are all contained in helix α2, and we selected for variants binding to a panel of peptides representing all possible position-2 residues. This approach generated insights into the basis for the common natural class I and II specificities, demonstrated an alternative basis for a rare natural class III specificity for Asp-2, and revealed a novel specificity for Arg-2 that has not been reported in natural PDZ domains. A structure of a PDZ-peptide complex explained the minimum requirement for switching specificity from class I ligands containing Thr/Ser-2 to class II ligands containing hydrophobic residues at position-2. A second structure explained the molecular basis for the specificity for ligands containing Arg-2. Overall, the evolved PDZ variants greatly expand our understanding of site-2 specificities and the variants themselves may prove useful as building blocks for synthetic biology.
Collapse
|
8
|
Zeng L, Dehesh K. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria. BMC Genomics 2021; 22:137. [PMID: 33637041 PMCID: PMC7912892 DOI: 10.1186/s12864-021-07448-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Isoprenoids are the most ancient and essential class of metabolites produced in all organisms, either via mevalonate (MVA)-and/or methylerythritol phosphate (MEP)-pathways. The MEP-pathway is present in all plastid-bearing organisms and most eubacteria. However, no comprehensive study reveals the origination and evolutionary characteristics of MEP-pathway genes in eukaryotes. Results Here, detailed bioinformatics analyses of the MEP-pathway provide an in-depth understanding the evolutionary history of this indispensable biochemical route, and offer a basis for the co-existence of the cytosolic MVA- and plastidial MEP-pathway in plants given the established exchange of the end products between the two isoprenoid-biosynthesis pathways. Here, phylogenetic analyses establish the contributions of both cyanobacteria and Chlamydiae sequences to the plant’s MEP-pathway genes. Moreover, Phylogenetic and inter-species syntenic block analyses demonstrate that six of the seven MEP-pathway genes have predominantly remained as single-copy in land plants in spite of multiple whole-genome duplication events (WGDs). Substitution rate and domain studies display the evolutionary conservation of these genes, reinforced by their high expression levels. Distinct phenotypic variation among plants with reduced expression levels of individual MEP-pathway genes confirm the indispensable function of each nuclear-encoded plastid-targeted MEP-pathway enzyme in plant growth and development. Conclusion Collectively, these findings reveal the polyphyletic origin and restrict conservation of MEP-pathway genes, and reinforce the potential function of the individual enzymes beyond production of the isoprenoids intermediates. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07448-x.
Collapse
Affiliation(s)
- Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
9
|
Abstract
Intracellular proliferation of Legionella pneumophila within a vacuole in human alveolar macrophages is essential for manifestation of Legionnaires’ pneumonia. Intravacuolar growth of the pathogen is totally dependent on remodeling the L. pneumophila-containing vacuole (LCV) by the ER and on its evasion of the endosomal-lysosomal degradation pathway. Diversion of the Legionella pneumophila-containing vacuole (LCV) from the host endosomal-lysosomal degradation pathway is one of the main virulence features essential for manifestation of Legionnaires’ pneumonia. Many of the ∼350 Dot/Icm-injected effectors identified in L. pneumophila have been shown to interfere with various host pathways and processes, but no L. pneumophila effector has ever been identified to be indispensable for lysosomal evasion. While most single effector mutants of L. pneumophila do not exhibit a defective phenotype within macrophages, we show that the MavE effector is essential for intracellular growth of L. pneumophila in human monocyte-derived macrophages (hMDMs) and amoebae and for intrapulmonary proliferation in mice. The mavE null mutant fails to remodel the LCV with endoplasmic reticulum (ER)-derived vesicles and is trafficked to the lysosomes where it is degraded, similar to formalin-killed bacteria. During infection of hMDMs, the MavE effector localizes to the poles of the LCV membrane. The crystal structure of MavE, resolved to 1.8 Å, reveals a C-terminal transmembrane helix, three copies of tyrosine-based sorting motifs, and an NPxY eukaryotic motif, which binds phosphotyrosine-binding domains present on signaling and adaptor eukaryotic proteins. Two point mutations within the NPxY motif result in attenuation of L. pneumophila in both hMDMs and amoeba. The substitution defects of P78 and D64 are associated with failure of vacuoles harboring the mutant to be remodeled by the ER and results in fusion of the vacuole to the lysosomes leading to bacterial degradation. Therefore, the MavE effector of L. pneumophila is indispensable for phagosome biogenesis and lysosomal evasion.
Collapse
|
10
|
Bell RT, Wolf YI, Koonin EV. Modified base-binding EVE and DCD domains: striking diversity of genomic contexts in prokaryotes and predicted involvement in a variety of cellular processes. BMC Biol 2020; 18:159. [PMID: 33148243 PMCID: PMC7641849 DOI: 10.1186/s12915-020-00885-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND DNA and RNA of all cellular life forms and many viruses contain an expansive repertoire of modified bases. The modified bases play diverse biological roles that include both regulation of transcription and translation, and protection against restriction endonucleases and antibiotics. Modified bases are often recognized by dedicated protein domains. However, the elaborate networks of interactions and processes mediated by modified bases are far from being completely understood. RESULTS We present a comprehensive census and classification of EVE domains that belong to the PUA/ASCH domain superfamily and bind various modified bases in DNA and RNA. We employ the "guilt by association" approach to make functional inferences from comparative analysis of bacterial and archaeal genomes, based on the distribution and associations of EVE domains in (predicted) operons and functional networks of genes. Prokaryotes encode two classes of EVE domain proteins, slow-evolving and fast-evolving ones. Slow-evolving EVE domains in α-proteobacteria are embedded in conserved operons, potentially involved in coupling between translation and respiration, cytochrome c biogenesis in particular, via binding 5-methylcytosine in tRNAs. In β- and γ-proteobacteria, the conserved associations implicate the EVE domains in the coordination of cell division, biofilm formation, and global transcriptional regulation by non-coding 6S small RNAs, which are potentially modified and bound by the EVE domains. In eukaryotes, the EVE domain-containing THYN1-like proteins have been reported to inhibit PCD and regulate the cell cycle, potentially, via binding 5-methylcytosine and its derivatives in DNA and/or RNA. We hypothesize that the link between PCD and cytochrome c was inherited from the α-proteobacterial and proto-mitochondrial endosymbiont and, unexpectedly, could involve modified base recognition by EVE domains. Fast-evolving EVE domains are typically embedded in defense contexts, including toxin-antitoxin modules and type IV restriction systems, suggesting roles in the recognition of modified bases in invading DNA molecules and targeting them for restriction. We additionally identified EVE-like prokaryotic Development and Cell Death (DCD) domains that are also implicated in defense functions including PCD. This function was inherited by eukaryotes, but in animals, the DCD proteins apparently were displaced by the extended Tudor family proteins, whose partnership with Piwi-related Argonautes became the centerpiece of the Piwi-interacting RNA (piRNA) system. CONCLUSIONS Recognition of modified bases in DNA and RNA by EVE-like domains appears to be an important, but until now, under-appreciated, common denominator in a variety of processes including PCD, cell cycle control, antivirus immunity, stress response, and germline development in animals.
Collapse
Affiliation(s)
- Ryan T Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
11
|
Narykov O, Bogatov D, Korkin D. DISPOT: a simple knowledge-based protein domain interaction statistical potential. Bioinformatics 2020; 35:5374-5378. [PMID: 31350874 PMCID: PMC6954640 DOI: 10.1093/bioinformatics/btz587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION The complexity of protein-protein interactions (PPIs) is further compounded by the fact that an average protein consists of two or more domains, structurally and evolutionary independent subunits. Experimental studies have demonstrated that an interaction between a pair of proteins is not carried out by all domains constituting each protein, but rather by a select subset. However, determining which domains from each protein mediate the corresponding PPI is a challenging task. RESULTS Here, we present domain interaction statistical potential (DISPOT), a simple knowledge-based statistical potential that estimates the propensity of an interaction between a pair of protein domains, given their structural classification of protein (SCOP) family annotations. The statistical potential is derived based on the analysis of >352 000 structurally resolved PPIs obtained from DOMMINO, a comprehensive database of structurally resolved macromolecular interactions. AVAILABILITY AND IMPLEMENTATION DISPOT is implemented in Python 2.7 and packaged as an open-source tool. DISPOT is implemented in two modes, basic and auto-extraction. The source code for both modes is available on GitHub: https://github.com/korkinlab/dispot and standalone docker images on DockerHub: https://hub.docker.com/r/korkinlab/dispot. The web server is freely available at http://dispot.korkinlab.org/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Oleksandr Narykov
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Dmytro Bogatov
- Department of Computer Science, Boston University, Boston, MA, USA
| | - Dmitry Korkin
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, USA.,Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
12
|
Engineering selective competitors for the discrimination of highly conserved protein-protein interaction modules. Nat Commun 2019; 10:4521. [PMID: 31586061 PMCID: PMC6778148 DOI: 10.1038/s41467-019-12528-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/14/2019] [Indexed: 12/13/2022] Open
Abstract
Designing highly specific modulators of protein-protein interactions (PPIs) is especially challenging in the context of multiple paralogs and conserved interaction surfaces. In this case, direct generation of selective and competitive inhibitors is hindered by high similarity within the evolutionary-related protein interfaces. We report here a strategy that uses a semi-rational approach to separate the modulator design into two functional parts. We first achieve specificity toward a region outside of the interface by using phage display selection coupled with molecular and cellular validation. Highly selective competition is then generated by appending the more degenerate interaction peptide to contact the target interface. We apply this approach to specifically bind a single PDZ domain within the postsynaptic protein PSD-95 over highly similar PDZ domains in PSD-93, SAP-97 and SAP-102. Our work provides a paralog-selective and domain specific inhibitor of PSD-95, and describes a method to efficiently target other conserved PPI modules. Developing inhibitors that target specific protein-protein interactions (PPIs) is challenging. Here, the authors show that target selectivity and PPI blocking can be achieved simultaneously with PPI inhibitors that contain two functional modules, and create a paralog-selective PSD-95 inhibitor as proof-of-concept.
Collapse
|
13
|
Raimundo J, Sobral R, Laranjeira S, Costa MMR. Successive Domain Rearrangements Underlie the Evolution of a Regulatory Module Controlled by a Small Interfering Peptide. Mol Biol Evol 2019; 35:2873-2885. [PMID: 30203071 PMCID: PMC6278869 DOI: 10.1093/molbev/msy178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The establishment of new interactions between transcriptional regulators increases the regulatory diversity that drives phenotypic novelty. To understand how such interactions evolve, we have studied a regulatory module (DDR) composed by three MYB-like proteins: DIVARICATA (DIV), RADIALIS (RAD), and DIV-and-RAD-Interacting Factor (DRIF). The DIV and DRIF proteins form a transcriptional complex that is disrupted in the presence of RAD, a small interfering peptide, due to the formation of RAD–DRIF dimers. This dynamic interaction result in a molecular switch mechanism responsible for the control of distinct developmental processes in plants. Here, we have determined how the DDR regulatory module was established by analyzing the origin and evolution of the DIV, DRIF, and RAD protein families and the evolutionary history of their interactions. We show that duplications of a pre-existing MYB domain originated the DIV and DRIF protein families in the ancestral lineage of green algae, and, later, the RAD family in seed plants. Intraspecies interactions between the MYB domains of DIV and DRIF proteins are detected in green algae, whereas the earliest evidence of an interaction between DRIF and RAD proteins occurs in the gymnosperms, coincident with the establishment of the RAD family. Therefore, the DDR module evolved in a stepwise progression with the DIV–DRIF transcription complex evolving prior to the antagonistic RAD–DRIF interaction that established the molecular switch mechanism. Our results suggest that the successive rearrangement and divergence of a single protein domain can be an effective evolutionary mechanism driving new protein interactions and the establishment of novel regulatory modules.
Collapse
Affiliation(s)
- João Raimundo
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Rómulo Sobral
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal
| | - Sara Laranjeira
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal
| | - Maria Manuela R Costa
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal
| |
Collapse
|
14
|
Wang B, Wang H, Song H, Jin C, Peng M, Gao C, Yang F, Du X, Qi J, Zhang Q, Cheng J. Evolutionary significance and regulated expression of Tdrd family genes in gynogenetic Japanese flounder (Paralichthys olivaceus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100593. [PMID: 31125834 DOI: 10.1016/j.cbd.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/29/2022]
Abstract
Tudor domain-containing proteins (TDRDs) are highly conserved among organisms and have a function in gonads to regulate gametogenesis and genome stability through the piwi-interacting RNA (piRNA) pathway. With diverse sexual development patterns in teleost species, the evolution and function of Tdrd genes among teleosts remain unclear. Here, we identified and characterized 12 Tdrd genes (PoTdrds) in Japanese flounder (Paralichthys olivaceus) which represents dramatic sexual dimorphic metrics and sex reversal during sex differentiation. Phylogenetic and comparative synteny indicated the gain and loss of Tdrd genes after teleost-specific whole-genome duplication (3R-WGD). Tdrd1, Tdrd5, Tdrd6 and Ecat8 were abundantly expressed in their gonads. Four PoTdrds (Tdrd6, Tdrd7b, Tdrd9 and Ecat8) represented significant male-biased expression in gynogenetic and wild-type Japanese flounder gonads (p < .01). This finding indicated their important roles in spermatogenesis of P. olivaceus. Some PoTdrds were either highly up-regulated in gynogenetic testis (Tdrd3, Tdrd5, Tdrd7b and Ecat8) or down-regulated in gynogenetic ovary (Tdrkh, Tdrd3, Tdrd6l) compared with wild-type gonads (p < .05). Molecular evolution tests revealed that the selective pressure of Tdrd6/6l differed between ancestral aquatic and terrestrial organisms with 13 positively selected sites found in the ancestral lineages of teleost Tdrd6. Expression profile analysis suggested that PoTdrd6 differed significantly from PoTdrd6l, indicating sub-functionalization after 3R-WGD. All these results are important for the functional annotation of Tdrd genes and can benefit the further deciphering of Tdrd functions during gonadal development and gametogenesis of teleost fish.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Huizhen Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Haofei Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Meiting Peng
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Chen Gao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Fan Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
15
|
Igarashi Y, Mori D, Mitsuyama S, Yoshitake K, Ono H, Watanabe T, Taniuchi Y, Sakami T, Kuwata A, Kobayashi T, Ishino Y, Watabe S, Gojobori T, Asakawa S. A Preliminary Metagenome Analysis Based on a Combination of Protein Domains. Proteomes 2019; 7:proteomes7020019. [PMID: 31035705 PMCID: PMC6630717 DOI: 10.3390/proteomes7020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022] Open
Abstract
Metagenomic data have mainly been addressed by showing the composition of organisms based on a small part of a well-examined genomic sequence, such as ribosomal RNA genes and mitochondrial DNAs. On the contrary, whole metagenomic data obtained by the shotgun sequence method have not often been fully analyzed through a homology search because the genomic data in databases for living organisms on earth are insufficient. In order to complement the results obtained through homology-search-based methods with shotgun metagenomes data, we focused on the composition of protein domains deduced from the sequences of genomes and metagenomes, and we utilized them in characterizing genomes and metagenomes, respectively. First, we compared the relationships based on similarities in the protein domain composition with the relationships based on sequence similarities. We searched for protein domains of 325 bacterial species produced using the Pfam database. Next, the correlation coefficients of protein domain compositions between every pair of bacteria were examined. Every pairwise genetic distance was also calculated from 16S rRNA or DNA gyrase subunit B. We compared the results of these methods and found a moderate correlation between them. Essentially, the same results were obtained when we used partial random 100 bp DNA sequences of the bacterial genomes, which simulated raw sequence data obtained from short-read next-generation sequences. Then, we applied the method for analyzing the actual environmental data obtained by shotgun sequencing. We found that the transition of the microbial phase occurred because the seasonal change in water temperature was shown by the method. These results showed the usability of the method in characterizing metagenomic data based on protein domain compositions.
Collapse
Affiliation(s)
- Yoji Igarashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | - Daisuke Mori
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | - Susumu Mitsuyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | - Hiroaki Ono
- Japan Software Management Co, Ltd., Yokohama, Kanagawa 221-0056, Japan.
| | - Tsuyoshi Watanabe
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi 985-0001, Japan.
| | - Yukiko Taniuchi
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi 985-0001, Japan.
- Hokkaido National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Kushiro, Hokkaido 085-0802, Japan.
| | - Tomoko Sakami
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi 985-0001, Japan.
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Minami-ise, Mie 516-0193, Japan.
| | - Akira Kuwata
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi 985-0001, Japan.
| | - Takanori Kobayashi
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa 236-8648, Japan.
| | - Yoshizumi Ishino
- Graduate School of Bioresorce and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-0053, Japan.
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| | - Takashi Gojobori
- King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
16
|
Wang B, Du X, Wang H, Jin C, Gao C, Liu J, Zhang Q. Comparative studies on duplicated tdrd7 paralogs in teleosts: Molecular evolution caused neo-functionalization. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:347-357. [PMID: 31059868 DOI: 10.1016/j.cbd.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/03/2019] [Accepted: 04/24/2019] [Indexed: 11/27/2022]
Abstract
The third-round whole genome duplication (3R-WGD) event occurred in the stem lineage of teleost during evolution, and is considered to be responsible for the biological diversification of ray-finned fishes. TUDOR domain containing protein 7 (Tdrd7), which belongs to the Tudor family proteins has been widely discussed in mammals. However, information about this gene in teleost is still lacking. In this study, two teleost tdrd7 genes (tdrd7a and tdrd7b) were identified in the transcriptome of Japanese flounder (Paralichthys olivaceus). Through genomic structure, phylogenetic, synteny analysis and online bioinformatic mining of tdrd7 duplications in other selected species, we confirmed that tdrd7a/7b were originated from the teleost-specific 3R-WGD. The tdrd7a is specific to teleost except for spotted gar. The tdrd7a showed a higher molecular evolution rate than tdrd7b with longer branch-length in the phylogenetic tree and multiple positively selected sites. Interestingly, it showed gonad specific expression pattern in adult tissues and germ cell specific distribution in embryos and gonads. Its 3'-untranslated region (3'UTR) labeled eGFP/DsRED could visualize primordial germ cells (PGCs) in zebrafish embryos. The tdrd7b did not show similar tissue and cell type specificity. These characteristic differences between the duplicated tdrd7 paralogues suggest that tdrd7a and tdrd7b have undergone neofunctionalization in Japanese flounder. Our results provide novel insight into the evolution and functional diversification of teleost tdrd7 genes deserving further investigations.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Huizhen Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Chen Gao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
17
|
Bitard‐Feildel T, Lamiable A, Mornon J, Callebaut I. Order in Disorder as Observed by the "Hydrophobic Cluster Analysis" of Protein Sequences. Proteomics 2018; 18:e1800054. [PMID: 30299594 PMCID: PMC7168002 DOI: 10.1002/pmic.201800054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Hydrophobic cluster analysis (HCA) is an original approach for protein sequence analysis, which provides access to the foldable repertoire of the protein universe, including yet unannotated protein segments ("dark proteome"). Foldable segments correspond to ordered regions, as well as to intrinsically disordered regions (IDRs) undergoing disorder to order transitions. In this review, how HCA can be used to give insight into this last category of foldable segments is illustrated, with examples matching known 3D structures. After reviewing the HCA principles, examples of short foldable segments are given, which often contain short linear motifs, typically matching hydrophobic clusters. These segments become ordered upon contact with partners, with secondary structure preferences generally corresponding to those observed in the 3D structures within the complexes. Such small foldable segments are sometimes larger than the segments of known 3D structures, including flanking hydrophobic clusters that may be critical for interaction specificity or regulation, as well as intervening sequences allowing fuzziness. Cases of larger conditionally disordered domains are also presented, with lower density in hydrophobic clusters than well-folded globular domains or with exposed hydrophobic patches, which are stabilized by interaction with partners.
Collapse
Affiliation(s)
- Tristan Bitard‐Feildel
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
- Laboratoire de Biologie Computationnelle et Quantitative (LCQB)Institute of Biology Paris‐Seine (IBPS)Centre national de la recherche scientifique (CNRS)Sorbonne Université75005ParisFrance
| | - Alexis Lamiable
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| | - Jean‐Paul Mornon
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| | - Isabelle Callebaut
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| |
Collapse
|
18
|
Aamir M, Singh VK, Dubey MK, Meena M, Kashyap SP, Katari SK, Upadhyay RS, Umamaheswari A, Singh S. In silico Prediction, Characterization, Molecular Docking, and Dynamic Studies on Fungal SDRs as Novel Targets for Searching Potential Fungicides Against Fusarium Wilt in Tomato. Front Pharmacol 2018; 9:1038. [PMID: 30405403 PMCID: PMC6204350 DOI: 10.3389/fphar.2018.01038] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 08/27/2018] [Indexed: 12/31/2022] Open
Abstract
Vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici (FOL) is one of the most devastating diseases, that delimits the tomato production worldwide. Fungal short-chain dehydrogenases/reductases (SDRs) are NADP(H) dependent oxidoreductases, having shared motifs and common functional mechanism, have been demonstrated as biochemical targets for commercial fungicides. The 1,3,6,8 tetra hydroxynaphthalene reductase (T4HNR) protein, a member of SDRs family, catalyzes the naphthol reduction reaction in fungal melanin biosynthesis. We retrieved an orthologous member of T4HNR, (complexed with NADP(H) and pyroquilon from Magnaporthe grisea) in the FOL (namely; FOXG_04696) based on homology search, percent identity and sequence similarity (93% query cover; 49% identity). The hypothetical protein FOXG_04696 (T4HNR like) had conserved T-G-X-X-X-G-X-G motif (cofactor binding site) at N-terminus, similar to M. grisea (1JA9) and Y-X-X-X-K motif, as a part of the active site, bearing homologies with two fungal keto reductases T4HNR (M. grisea) and 17-β-hydroxysteroid dehydrogenase from Curvularia lunata (teleomorph: Cochliobolus lunatus PDB ID: 3IS3). The catalytic tetrad of T4HNR was replaced with ASN115, SER141, TYR154, and LYS158 in the FOXG_04696. The structural alignment and superposition of FOXG_04696 over the template proteins (3IS3 and 1JA9) revealed minimum RMSD deviations of the C alpha atomic coordinates, and therefore, had structural conservation. The best protein model (FOXG_04696) was docked with 37 fungicides, to evaluate their binding affinities. The Glide XP and YASARA docked complexes showed discrepancies in results, for scoring and ranking the binding affinities of fungicides. The docked complexes were further refined and rescored from their docked poses through 50 ns long MD simulations, and binding free energies (ΔGbind) calculations, using MM/GBSA analysis, revealed Oxathiapiprolin and Famoxadone as better fungicides among the selected one. However, Famoxadone had better interaction of the docked residues, with best protein ligand contacts, minimum RMSD (high accuracy of the docking pose) and RMSF (structural integrity and conformational flexibility of docking) at the specified docking site. The Famoxadone was found to be acceptable based on in silico toxicity and in vitro growth inhibition assessment. We conclude that the FOXG_04696, could be employed as a novel candidate protein, for structure-based design, and screening of target fungicides against the FOL pathogen.
Collapse
Affiliation(s)
- Mohd Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manish Kumar Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mukesh Meena
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement and Biotechnology, Indian Institute of Vegetable Research, Indian Council of Agricultural Research (ICAR), Varanasi, India
| | - Sudheer Kumar Katari
- Bioinformatics Centre, Department of Bioinformatics, Sri Venkateswara Institute of Medical Sciences University, Tirupati, India
| | - Ram Sanmukh Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Amineni Umamaheswari
- Bioinformatics Centre, Department of Bioinformatics, Sri Venkateswara Institute of Medical Sciences University, Tirupati, India
| | - Surendra Singh
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
19
|
Phosphorylation of NHERF1 S279 and S301 differentially regulates breast cancer cell phenotype and metastatic organotropism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:26-37. [PMID: 30326259 DOI: 10.1016/j.bbadis.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
Metastatic cancer cells are highly plastic for the expression of different tumor phenotype hallmarks and organotropism. This plasticity is highly regulated but the dynamics of the signaling processes orchestrating the shift from one cell phenotype and metastatic organ pattern to another are still largely unknown. The scaffolding protein NHERF1 has been shown to regulate the expression of different neoplastic phenotypes through its PDZ domains, which forms the mechanistic basis for metastatic organotropism. This reprogramming activity was postulated to be dependent on its differential phosphorylation patterns. Here, we show that NHERF1 phosphorylation on S279/S301 dictates several tumor phenotypes such as in vivo invasion, NHE1-mediated matrix digestion, growth and vasculogenic mimicry. Remarkably, injecting mice with cells having differential NHERF1 expression and phosphorylation drove a shift from the predominantly lung colonization (WT NHERF1) to predominately bone colonization (double S279A/S301A mutant), indicating that NHERF1 phosphorylation also acts as a signaling switch in metastatic organotropism.
Collapse
|
20
|
Engelmann BW, Hsiao CJ, Blischak JD, Fourne Y, Khan Z, Ford M, Gilad Y. A Methodological Assessment and Characterization of Genetically-Driven Variation in Three Human Phosphoproteomes. Sci Rep 2018; 8:12106. [PMID: 30108239 PMCID: PMC6092387 DOI: 10.1038/s41598-018-30587-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/17/2018] [Indexed: 11/12/2022] Open
Abstract
Phosphorylation of proteins on serine, threonine, and tyrosine residues is a ubiquitous post-translational modification that plays a key part of essentially every cell signaling process. It is reasonable to assume that inter-individual variation in protein phosphorylation may underlie phenotypic differences, as has been observed for practically any other molecular regulatory phenotype. However, we do not know much about the extent of inter-individual variation in phosphorylation because it is quite challenging to perform a quantitative high throughput study to assess inter-individual variation in any post-translational modification. To test our ability to address this challenge with SILAC-based mass spectrometry, we quantified phosphorylation levels for three genotyped human cell lines within a nested experimental framework, and found that genetic background is the primary determinant of phosphoproteome variation. We uncovered multiple functional, biophysical, and genetic associations with germline driven phosphopeptide variation. Variants affecting protein levels or structure were among these associations, with the latter presenting, on average, a stronger effect. Interestingly, we found evidence that is consistent with a phosphopeptide variability buffering effect endowed from properties enriched within longer proteins. Because the small sample size in this 'pilot' study may limit the applicability of our genetic observations, we also undertook a thorough technical assessment of our experimental workflow to aid further efforts. Taken together, these results provide the foundation for future work to characterize inter-individual variation in post-translational modification levels and reveal novel insights into the nature of inter-individual variation in phosphorylation.
Collapse
Affiliation(s)
- Brett W Engelmann
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.
- AbbVie, North Chicago, Illinois, USA.
| | | | - John D Blischak
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Yannick Fourne
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Zia Khan
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- Genentech, South San Francisco, California, USA
| | - Michael Ford
- MS Bioworks, LLC, 3950, Varsity Drive, Ann Arbor, Michigan, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
21
|
Klasberg S, Bitard-Feildel T, Callebaut I, Bornberg-Bauer E. Origins and structural properties of novel and de novo protein domains during insect evolution. FEBS J 2018; 285:2605-2625. [PMID: 29802682 DOI: 10.1111/febs.14504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 04/12/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022]
Abstract
Over long time scales, protein evolution is characterized by modular rearrangements of protein domains. Such rearrangements are mainly caused by gene duplication, fusion and terminal losses. To better understand domain emergence mechanisms we investigated 32 insect genomes covering a speciation gradient ranging from ~ 2 to ~ 390 mya. We use established domain models and foldable domains delineated by hydrophobic cluster analysis (HCA), which does not require homologous sequences, to also identify domains which have likely arisen de novo, that is, from previously noncoding DNA. Our results indicate that most novel domains emerge terminally as they originate from ORF extensions while fewer arise in middle arrangements, resulting from exonization of intronic or intergenic regions. Many novel domains rapidly migrate between terminal or middle positions and single- and multidomain arrangements. Young domains, such as most HCA-defined domains, are under strong selection pressure as they show signals of purifying selection. De novo domains, linked to ancient domains or defined by HCA, have higher degrees of intrinsic disorder and disorder-to-order transition upon binding than ancient domains. However, the corresponding DNA sequences of the novel domains of de novo origins could only rarely be found in sister genomes. We conclude that novel domains are often recruited by other proteins and undergo important structural modifications shortly after their emergence, but evolve too fast to be characterized by cross-species comparisons alone.
Collapse
Affiliation(s)
- Steffen Klasberg
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Germany
| | - Tristan Bitard-Feildel
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Germany
| |
Collapse
|
22
|
Kritzer JA, Freyzon Y, Lindquist S. Yeast can accommodate phosphotyrosine: v-Src toxicity in yeast arises from a single disrupted pathway. FEMS Yeast Res 2018; 18:4931722. [PMID: 29546391 PMCID: PMC6454501 DOI: 10.1093/femsyr/foy027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Tyrosine phosphorylation is a key biochemical signal that controls growth and differentiation in multicellular organisms. Saccharomyces cerevisiae and nearly all other unicellular eukaryotes lack intact phosphotyrosine signaling pathways. However, many of these organisms have primitive phosphotyrosine-binding proteins and tyrosine phosphatases, leading to the assumption that the major barrier for emergence of phosphotyrosine signaling was the negative consequences of promiscuous tyrosine kinase activity. In this work, we reveal that the classic oncogene v-Src, which phosphorylates many dozens of proteins in yeast, is toxic because it disrupts a specific spore wall remodeling pathway. Using genetic selections, we find that expression of a specific cyclic peptide, or overexpression of SMK1, a MAP kinase that controls spore wall assembly, both lead to robust growth despite a continuous high level of phosphotyrosine in the yeast proteome. Thus, minimal genetic manipulations allow yeast to tolerate high levels of phosphotyrosine. These results indicate that the introduction of tyrosine kinases within single-celled organisms may not have been a major obstacle to the evolution of phosphotyrosine signaling.
Collapse
Affiliation(s)
- Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford MA 02155, USA
| | - Yelena Freyzon
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| |
Collapse
|
23
|
Liu J, Zhang S, Liu M, Liu Y, Nshogoza G, Gao J, Ma R, Yang Y, Wu J, Zhang J, Li F, Ruan K. Structural plasticity of the TDRD3 Tudor domain probed by a fragment screening hit. FEBS J 2018; 285:2091-2103. [DOI: 10.1111/febs.14469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Jiuyang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Shuya Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Mingqing Liu
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Yaqian Liu
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Gilbert Nshogoza
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Jia Gao
- Center of Medical Physics and Technology Hefei Institute of Physical Science Chinese Academy of Science Hefei China
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Yang Yang
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Ke Ruan
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| |
Collapse
|
24
|
Mehrotra P, Ami VKG, Srinivasan N. Clustering of multi-domain protein sequences. Proteins 2018; 86:759-776. [PMID: 29675880 DOI: 10.1002/prot.25510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/06/2022]
Abstract
The overall function of a multi-domain protein is determined by the functional and structural interplay of its constituent domains. Traditional sequence alignment-based methods commonly utilize domain-level information and provide classification only at the level of domains. Such methods are not capable of taking into account the contributions of other domains in the proteins, and domain-linker regions and classify multi-domain proteins. An alignment-free protein sequence comparison tool, CLAP (CLAssification of Proteins) was previously developed in our laboratory to especially handle multi-domain protein sequences without a requirement of defining domain boundaries and sequential order of domains. Through this method we aim to achieve a biologically meaningful classification scheme for multi-domain protein sequences. In this article, CLAP-based classification has been explored on 5 datasets of multi-domain proteins and we present detailed analysis for proteins containing (1) Tyrosine phosphatase and (2) SH3 domain. At the domain-level CLAP-based classification scheme resulted in a clustering similar to that obtained from an alignment-based method. CLAP-based clusters obtained for full-length datasets were shown to comprise of proteins with similar functions and domain architectures. Our study demonstrates that multi-domain proteins could be classified effectively by considering full-length sequences without a requirement of identification of domains in the sequence.
Collapse
Affiliation(s)
- Prachi Mehrotra
- Indian Institute of Science Mathematics Initiative, Bangalore, 560012, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Vimla Kany G Ami
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, 560100, India
| | | |
Collapse
|
25
|
Global versus local mechanisms of temperature sensing in ion channels. Pflugers Arch 2018; 470:733-744. [PMID: 29340775 DOI: 10.1007/s00424-017-2102-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNaV) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.
Collapse
|
26
|
Lin Y, Currie SL, Rosen MK. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J Biol Chem 2017; 292:19110-19120. [PMID: 28924037 PMCID: PMC5704491 DOI: 10.1074/jbc.m117.800466] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/12/2017] [Indexed: 01/04/2023] Open
Abstract
Liquid–liquid phase separation (LLPS) is thought to contribute to the establishment of many biomolecular condensates, eukaryotic cell structures that concentrate diverse macromolecules but lack a bounding membrane. RNA granules control RNA metabolism and comprise a large class of condensates that are enriched in RNA-binding proteins and RNA molecules. Many RNA granule proteins are composed of both modular domains and intrinsically disordered regions (IDRs) having low amino acid sequence complexity. Phase separation of these molecules likely plays an important role in the generation and stability of RNA granules. To understand how folded domains and IDRs can cooperate to modulate LLPS, we generated a series of engineered proteins. These were based on fusions of an IDR derived from the RNA granule protein FUS (fused in sarcoma) to a multivalent poly-Src homology 3 (SH3) domain protein that phase-separates when mixed with a poly-proline–rich-motif (polyPRM) ligand. We found that the wild-type IDR promotes LLPS of the polySH3–polyPRM system, decreasing the phase separation threshold concentration by 8-fold. Systematic mutation of tyrosine residues in Gly/Ser-Tyr-Gly/Ser motifs of the IDR reduced this effect, depending on the number but not on the position of these substitutions. Mutating all tyrosines to non-aromatic residues or phosphorylating the IDR raised the phase separation threshold above that of the unmodified polySH3–polyPRM pair. These results show that low-complexity IDRs can modulate LLPS both positively and negatively, depending on the degree of aromaticity and phosphorylation status. Our findings provide plausible mechanisms by which these sequences could alter RNA granule properties on evolutionary and cellular timescales.
Collapse
Affiliation(s)
- Yuan Lin
- From the Department of Biophysics, University of Texas Southwestern Medical Center and.,the Howard Hughes Medical Institute, Dallas, Texas 75390
| | - Simon L Currie
- From the Department of Biophysics, University of Texas Southwestern Medical Center and.,the Howard Hughes Medical Institute, Dallas, Texas 75390
| | - Michael K Rosen
- From the Department of Biophysics, University of Texas Southwestern Medical Center and .,the Howard Hughes Medical Institute, Dallas, Texas 75390
| |
Collapse
|
27
|
Characterization of Eptesipoxvirus, a novel poxvirus from a microchiropteran bat. Virus Genes 2017; 53:856-867. [PMID: 28685222 PMCID: PMC6504846 DOI: 10.1007/s11262-017-1485-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/30/2017] [Indexed: 01/14/2023]
Abstract
The genome of Eptesipoxvirus (EPTV) is the first poxvirus genome isolated from a microbat. The 176,688 nt sequence, which is believed to encompass the complete coding region of the virus, is 67% A+T and is predicted to encode 191 genes. 11 of these genes have no counterpart in GenBank and are therefore unique to EPTV. The presence of a distantly related ortholog of Vaccinia virus F5L in EPTV uncovered a link with fragmented F5L orthologs in Molluscum contagiosum virus/squirrelpox and clade II viruses. Consistent with the unique position of EPTV approximately mid-point between the orthopoxviruses and the clade II viruses, EPTV has 11 genes that are specific to the orthopoxviruses and 13 genes that are typical, if not exclusive, to the clade II poxviruses. This mosaic nature of EPTV blurs the distinction between the old description of the orthopoxvirus and clade II groups. Genome annotation and characterization failed to find any common virulence genes shared with the other poxvirus isolated from bat (pteropoxvirus); however, EPTV encodes 3 genes that may have been transferred to or from deerpox and squirrelpox viruses; 2 of these, a putative endothelin-like protein and a MHC class I-like protein are likely to have immunomodulatory roles.
Collapse
|
28
|
Adler CE, Sánchez Alvarado A. PHRED-1 is a divergent neurexin-1 homolog that organizes muscle fibers and patterns organs during regeneration. Dev Biol 2017; 427:165-175. [PMID: 28461239 PMCID: PMC5497596 DOI: 10.1016/j.ydbio.2017.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/05/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
Regeneration of body parts requires the replacement of multiple cell types. To dissect this complex process, we utilized planarian flatworms that are capable of regenerating any tissue after amputation. An RNAi screen for genes involved in regeneration of the pharynx identified a novel gene, Pharynx regeneration defective-1 (PHRED-1) as essential for normal pharynx regeneration. PHRED-1 is a predicted transmembrane protein containing EGF, Laminin G, and WD40 domains, is expressed in muscle, and has predicted homologs restricted to other lophotrochozoan species. Knockdown of PHRED-1 causes abnormal regeneration of muscle fibers in both the pharynx and body wall muscle. In addition to defects in muscle regeneration, knockdown of PHRED-1 or the bHLH transcription factor MyoD also causes defects in muscle and intestinal regeneration. Together, our data demonstrate that muscle plays a key role in restoring the structural integrity of closely associated organs, and in planarians it may form a scaffold that facilitates normal intestinal branching.
Collapse
Affiliation(s)
- Carolyn E Adler
- Stowers Institute for Medical Research and Howard Hughes Medical Institute, 1000 E. 50th Street, Kansas City, MO 64110, USA; Department of Molecular Medicine, Cornell University, 930 Campus Road, VMC C3-167, Ithaca, NY 14853, USA.
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research and Howard Hughes Medical Institute, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
29
|
Chen F, Luo M, Lai F, Yu C, Cheng H, Zhou R. Biased Duplications and Loss of Members in Tdrd Family in Teleost Fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:727-736. [DOI: 10.1002/jez.b.22757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Feng Chen
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Majing Luo
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Chunlai Yu
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| |
Collapse
|
30
|
Spatiotemporal profile of postsynaptic interactomes integrates components of complex brain disorders. Nat Neurosci 2017; 20:1150-1161. [PMID: 28671696 DOI: 10.1038/nn.4594] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/17/2017] [Indexed: 12/30/2022]
Abstract
The postsynaptic density (PSD) contains a collection of scaffold proteins used for assembling synaptic signaling complexes. However, it is not known how the core-scaffold machinery associates in protein-interaction networks or how proteins encoded by genes involved in complex brain disorders are distributed through spatiotemporal protein complexes. Here using immunopurification, proteomics and bioinformatics, we isolated 2,876 proteins across 41 in vivo interactomes and determined their protein domain composition, correlation to gene expression levels and developmental integration to the PSD. We defined clusters for enrichment of schizophrenia, autism spectrum disorders, developmental delay and intellectual disability risk factors at embryonic day 14 and adult PSD in mice. Mutations in highly connected nodes alter protein-protein interactions modulating macromolecular complexes enriched in disease risk candidates. These results were integrated into a software platform, Synaptic Protein/Pathways Resource (SyPPRes), enabling the prioritization of disease risk factors and their placement within synaptic protein interaction networks.
Collapse
|
31
|
Chicote JU, DeSalle R, García-España A. Phosphotyrosine phosphatase R3 receptors: Origin, evolution and structural diversification. PLoS One 2017; 12:e0172887. [PMID: 28257417 PMCID: PMC5336234 DOI: 10.1371/journal.pone.0172887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/10/2017] [Indexed: 11/18/2022] Open
Abstract
Subtype R3 phosphotyrosine phosphatase receptors (R3 RPTPs) are single-spanning membrane proteins characterized by a unique modular composition of extracellular fibronectin repeats and a single cytoplasmatic protein tyrosine phosphatase (PTP) domain. Vertebrate R3 RPTPs consist of five members: PTPRB, PTPRJ, PTPRH and PTPRO, which dephosphorylate tyrosine residues, and PTPRQ, which dephosphorylates phophoinositides. R3 RPTPs are considered novel therapeutic targets in several pathologies such as ear diseases, nephrotic syndromes and cancer. R3 RPTP vertebrate receptors, as well as their known invertebrate counterparts from animal models: PTP52F, PTP10D and PTP4e from the fruitfly Drosophila melanogaster and F44G4.8/DEP-1 from the nematode Caenorhabditis elegans, participate in the regulation of cellular activities including cell growth and differentiation. Despite sharing structural and functional properties, the evolutionary relationships between vertebrate and invertebrate R3 RPTPs are not fully understood. Here we gathered R3 RPTPs from organisms covering a broad evolutionary distance, annotated their structure and analyzed their phylogenetic relationships. We show that R3 RPTPs (i) have probably originated in the common ancestor of animals (metazoans), (ii) are variants of a single ancestral gene in protostomes (arthropods, annelids and nematodes); (iii) a likely duplication of this ancestral gene in invertebrate deuterostomes (echinodermes, hemichordates and tunicates) generated the precursors of PTPRQ and PTPRB genes, and (iv) R3 RPTP groups are monophyletic in vertebrates and have specific conserved structural characteristics. These findings could have implications for the interpretation of past studies and provide a framework for future studies and functional analysis of this important family of proteins.
Collapse
Affiliation(s)
- Javier U. Chicote
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NewYork, United States of America
| | - Antonio García-España
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- * E-mail:
| |
Collapse
|
32
|
Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes. Methods Mol Biol 2017. [PMID: 28092027 DOI: 10.1007/978-1-4939-6762-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Today there exists a rapidly expanding number of sequenced genomes. Cataloging protein interaction domains such as the Src Homology 2 (SH2) domain across these various genomes can be accomplished with ease due to existing algorithms and predictions models. An evolutionary analysis of SH2 domains provides a step towards understanding how SH2 proteins integrated with existing signaling networks to position phosphotyrosine signaling as a crucial driver of robust cellular communication networks in metazoans. However organizing and tracing SH2 domain across organisms and understanding their evolutionary trajectory remains a challenge. This chapter describes several methodologies towards analyzing the evolutionary trajectory of SH2 domains including a global SH2 domain classification system, which facilitates annotation of new SH2 sequences essential for tracing the lineage of SH2 domains throughout eukaryote evolution. This classification utilizes a combination of sequence homology, protein domain architecture and the boundary positions between introns and exons within the SH2 domain or genes encoding these domains. Discrete SH2 families can then be traced across various genomes to provide insight into its origins. Furthermore, additional methods for examining potential mechanisms for divergence of SH2 domains from structural changes to alterations in the protein domain content and genome duplication will be discussed. Therefore a better understanding of SH2 domain evolution may enhance our insight into the emergence of phosphotyrosine signaling and the expansion of protein interaction domains.
Collapse
|
33
|
Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles. Adv Colloid Interface Sci 2017; 239:97-114. [PMID: 27291647 DOI: 10.1016/j.cis.2016.05.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
It is clear now that eukaryotic cells contain numerous membrane-less organelles, many of which are formed in response to changes in the cellular environment. Being typically liquid in nature, many of these organelles can be described as products of the reversible and highly controlled liquid-liquid phase transitions in biological systems. Many of these membrane-less organelles are complex coacervates containing (almost invariantly) intrinsically disordered proteins and often nucleic acids. It seems that the lack of stable structure in major proteinaceous constituents of these organelles is crucial for the formation of phase-separated droplets. This review considers several biologically relevant liquid-liquid phase transitions, introduces some general features attributed to intrinsically disordered proteins, represents several illustrative examples of intrinsic disorder-based phase separation, and provides some reasons for the abundance of intrinsically disordered proteins in organelles formed as a result of biological liquid-liquid phase transitions.
Collapse
|
34
|
Zhang W, Ben-David M, Sidhu SS. Engineering cell signaling modulators from native protein-protein interactions. Curr Opin Struct Biol 2016; 45:25-35. [PMID: 27866084 DOI: 10.1016/j.sbi.2016.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
Recent studies on genome sequencing and genetic screens with RNAi and CRISPR technology have revolutionized our understanding of aberrant signaling networks in human diseases. A strategy combining both genetic and protein-based technologies should be at the heart of modern drug-development efforts, particularly in the era of precision medicine. Thus, there is an urgent need for efficient platforms to develop probes that can modulate protein function in cells to validate drug targets and to develop therapeutic leads. Advanced protein engineering has enabled the rapid production of monoclonal antibodies and small protein scaffold affinity reagents for diverse protein targets. Here, we review the most recent progress on engineering natural protein-protein interactions for modulation of cell signaling.
Collapse
Affiliation(s)
- Wei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario, M5S3E1, Canada
| | - Moshe Ben-David
- The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario, M5S3E1, Canada
| | - Sachdev S Sidhu
- The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario, M5S3E1, Canada.
| |
Collapse
|
35
|
Kirubakaran P, Pfeiferová L, Boušová K, Bednarova L, Obšilová V, Vondrášek J. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins. Proteins 2016; 84:1358-74. [DOI: 10.1002/prot.25082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Palani Kirubakaran
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Lucie Pfeiferová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Kristýna Boušová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Veronika Obšilová
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| |
Collapse
|
36
|
Jain S, Bader GD. Predicting physiologically relevant SH3 domain mediated protein-protein interactions in yeast. Bioinformatics 2016; 32:1865-72. [PMID: 26861823 PMCID: PMC4908317 DOI: 10.1093/bioinformatics/btw045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/05/2015] [Accepted: 01/20/2016] [Indexed: 12/02/2022] Open
Abstract
MOTIVATION Many intracellular signaling processes are mediated by interactions involving peptide recognition modules such as SH3 domains. These domains bind to small, linear protein sequence motifs which can be identified using high-throughput experimental screens such as phage display. Binding motif patterns can then be used to computationally predict protein interactions mediated by these domains. While many protein-protein interaction prediction methods exist, most do not work with peptide recognition module mediated interactions or do not consider many of the known constraints governing physiologically relevant interactions between two proteins. RESULTS A novel method for predicting physiologically relevant SH3 domain-peptide mediated protein-protein interactions in S. cerevisae using phage display data is presented. Like some previous similar methods, this method uses position weight matrix models of protein linear motif preference for individual SH3 domains to scan the proteome for potential hits and then filters these hits using a range of evidence sources related to sequence-based and cellular constraints on protein interactions. The novelty of this approach is the large number of evidence sources used and the method of combination of sequence based and protein pair based evidence sources. By combining different peptide and protein features using multiple Bayesian models we are able to predict high confidence interactions with an overall accuracy of 0.97. AVAILABILITY AND IMPLEMENTATION Domain-Motif Mediated Interaction Prediction (DoMo-Pred) command line tool and all relevant datasets are available under GNU LGPL license for download from http://www.baderlab.org/Software/DoMo-Pred The DoMo-Pred command line tool is implemented using Python 2.7 and C ++. CONTACT gary.bader@utoronto.ca SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shobhit Jain
- Department of Computer Science and The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Computer Science and The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Huwe PJ, Xu Q, Shapovalov MV, Modi V, Andrake MD, Dunbrack RL. Biological function derived from predicted structures in CASP11. Proteins 2016; 84 Suppl 1:370-91. [PMID: 27181425 DOI: 10.1002/prot.24997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 01/10/2016] [Accepted: 01/18/2016] [Indexed: 12/26/2022]
Abstract
In CASP11, the organizers sought to bring the biological inferences from predicted structures to the fore. To accomplish this, we assessed the models for their ability to perform quantifiable tasks related to biological function. First, for 10 targets that were probable homodimers, we measured the accuracy of docking the models into homodimers as a function of GDT-TS of the monomers, which produced characteristic L-shaped plots. At low GDT-TS, none of the models could be docked correctly as homodimers. Above GDT-TS of ∼60%, some models formed correct homodimers in one of the largest docked clusters, while many other models at the same values of GDT-TS did not. Docking was more successful when many of the templates shared the same homodimer. Second, we docked a ligand from an experimental structure into each of the models of one of the targets. Docking to the models with two different programs produced poor ligand RMSDs with the experimental structure. Measures that evaluated similarity of contacts were reasonable for some of the models, although there was not a significant correlation with model accuracy. Finally, we assessed whether models would be useful in predicting the phenotypes of missense mutations in three human targets by comparing features calculated from the models with those calculated from the experimental structures. The models were successful in reproducing accessible surface areas but there was little correlation of model accuracy with calculation of FoldX evaluation of the change in free energy between the wild-type and the mutant. Proteins 2016; 84(Suppl 1):370-391. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter J Huwe
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111
| | - Qifang Xu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111
| | | | - Vivek Modi
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111
| | - Mark D Andrake
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111
| | | |
Collapse
|
38
|
Lees JG, Dawson NL, Sillitoe I, Orengo CA. Functional innovation from changes in protein domains and their combinations. Curr Opin Struct Biol 2016; 38:44-52. [DOI: 10.1016/j.sbi.2016.05.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
39
|
Rouka E, Simister PC, Janning M, Kumbrink J, Konstantinou T, Muniz JRC, Joshi D, O'Reilly N, Volkmer R, Ritter B, Knapp S, von Delft F, Kirsch KH, Feller SM. Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3). J Biol Chem 2015; 290:25275-92. [PMID: 26296892 DOI: 10.1074/jbc.m115.637207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 11/06/2022] Open
Abstract
CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3.
Collapse
Affiliation(s)
- Evgenia Rouka
- From the Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Philip C Simister
- From the Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom,
| | - Melanie Janning
- From the Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Joerg Kumbrink
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Tassos Konstantinou
- From the Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - João R C Muniz
- the Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Dhira Joshi
- the Peptide Chemistry Laboratory, London Research Institute Cancer Research UK, London WC2A 3LY, United Kingdom
| | - Nicola O'Reilly
- the Peptide Chemistry Laboratory, London Research Institute Cancer Research UK, London WC2A 3LY, United Kingdom
| | - Rudolf Volkmer
- the Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Brigitte Ritter
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Stefan Knapp
- the Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Frank von Delft
- the Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom, the Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and the Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Kathrin H Kirsch
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Stephan M Feller
- From the Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom, the Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany,
| |
Collapse
|
40
|
Feng S, Ollivier JF, Swain PS, Soyer OS. BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling. Nucleic Acids Res 2015; 43:e123. [PMID: 26101250 PMCID: PMC4627059 DOI: 10.1093/nar/gkv595] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 05/26/2015] [Indexed: 11/13/2022] Open
Abstract
Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx.
Collapse
Affiliation(s)
- Song Feng
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Peter S Swain
- SynthSys, The University of Edinburgh, Edinburgh, United Kingdom
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
41
|
Linkeviciute V, Rackham OJL, Gough J, Oates ME, Fang H. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution. Biochimie 2015; 119:269-77. [PMID: 25980317 PMCID: PMC4679076 DOI: 10.1016/j.biochi.2015.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/06/2015] [Indexed: 12/20/2022]
Abstract
To help evaluate how protein function impacts on genome evolution, we introduce a new concept of ‘architecture plasticity potential’ – the capacity to form distinct domain architectures – both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. A new concept to measure domain architecture plasticity potential in a genome. We reveal the function-selective role in eukaryotic genome evolution. Eukaryotic genomes expand signalling and regulations but reduce metabolism. We observe differential evolution between trans- and cis-acting regulations. We observe a unique role of channel regulators in separating eukaryotic kingdoms.
Collapse
Affiliation(s)
- Viktorija Linkeviciute
- Computational Genomics Group, Department of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, UK; School of Biological Sciences, University of Edinburgh, Darwin Building, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Owen J L Rackham
- Computational Genomics Group, Department of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, UK; Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Julian Gough
- Computational Genomics Group, Department of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, UK
| | - Matt E Oates
- Computational Genomics Group, Department of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, UK
| | - Hai Fang
- Computational Genomics Group, Department of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
42
|
Abstract
A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein-protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins.
Collapse
Affiliation(s)
- Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Matan Shanzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
43
|
Sato PM, Yoganathan K, Jung JH, Peisajovich SG. The robustness of a signaling complex to domain rearrangements facilitates network evolution. PLoS Biol 2014; 12:e1002012. [PMID: 25490747 PMCID: PMC4260825 DOI: 10.1371/journal.pbio.1002012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022] Open
Abstract
The broad tolerance of domain-rearranging mutations by a yeast signaling network suggests that signaling complexes have loose spatial constraints, making manipulation and perhaps evolution easier. The rearrangement of protein domains is known to have key roles in the evolution of signaling networks and, consequently, is a major tool used to synthetically rewire networks. However, natural mutational events leading to the creation of proteins with novel domain combinations, such as in frame fusions followed by domain loss, retrotranspositions, or translocations, to name a few, often simultaneously replace pre-existing genes. Thus, while proteins with new domain combinations may establish novel network connections, it is not clear how the concomitant deletions are tolerated. We investigated the mechanisms that enable signaling networks to tolerate domain rearrangement-mediated gene replacements. Using as a model system the yeast mitogen activated protein kinase (MAPK)-mediated mating pathway, we analyzed 92 domain-rearrangement events affecting 11 genes. Our results indicate that, while domain rearrangement events that result in the loss of catalytic activities within the signaling complex are not tolerated, domain rearrangements can drastically alter protein interactions without impairing function. This suggests that signaling complexes can maintain function even when some components are recruited to alternative sites within the complex. Furthermore, we also found that the ability of the complex to tolerate changes in interaction partners does not depend on long disordered linkers that often connect domains. Taken together, our results suggest that some signaling complexes are dynamic ensembles with loose spatial constraints that could be easily re-shaped by evolution and, therefore, are ideal targets for cellular engineering. Cells use complex protein interaction networks to sense and process external signals. Proteins involved in signaling are often composed of multiple functional units called domains. Because domains are modular, mutations that rearrange domains among proteins have the potential to result in the creation of novel proteins with altered functions. At an evolutionary timescale, domain rearrangements contribute to the functional diversification of signaling networks; at the shorter timescale of the life of an individual, domain rearrangements can impair cellular functions and lead to disease. Here, we investigated how domain-rearranging mutations alter the function of signaling networks, in particular when these mutations disrupt pre-existing proteins. We used as a model system the yeast mating signaling pathway, which shares many properties with more complex pathways active in human cells. Our results demonstrate that signaling networks are often robust to domain rearrangements that disrupt pre-existing genes. In addition, our experiments suggest a possible mechanism to explain this robustness: rather than being a rigid multi-protein machine, the yeast mating signaling complex is a dynamic ensemble with loose spatial constraints. Because of this, the changes in protein interaction partners caused by domain-rearrangement mutations can be accommodated without disrupting network function.
Collapse
Affiliation(s)
- Paloma M. Sato
- Department of Cell and Systems Biology, and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Kogulan Yoganathan
- Department of Cell and Systems Biology, and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Jae H. Jung
- Department of Cell and Systems Biology, and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Sergio G. Peisajovich
- Department of Cell and Systems Biology, and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
44
|
Abstract
Vertebrate adherens junctions mediate cell–cell adhesion via a “classical” cadherin–catenin “core” complex, which is associated with and regulated by a functional network of proteins, collectively named the cadherin adhesome (“cadhesome”). The most basal metazoans have been shown to conserve the cadherin–catenin “core”, but little is known about the evolution of the cadhesome. Using a bioinformatics approach based on both sequence and structural analysis, we have traced the evolution of this larger network in 26 organisms, from the uni-cellular ancestors of metazoans, through basal metazoans, to vertebrates. Surprisingly, we show that approximately 70% of the cadhesome, including proteins with similarity to the catenins, predate metazoans. We found that the transition to multicellularity was accompanied by the appearance of a small number of adaptor proteins, and we show how these proteins may have helped to integrate pre-metazoan sub-networks via PDZ domain–peptide interactions. Finally, we found the increase in network complexity in higher metazoans to have been driven primarily by expansion of paralogs. In summary, our analysis helps to explain how the complex protein network associated with cadherin at adherens junctions first came together in the first metazoan and how it evolved into the even more complex mammalian cadhesome.
Collapse
Affiliation(s)
- Paul S Murray
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA Center of Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, Irving Cancer Research Center, New York, NY 10032, USA
| | - Ronen Zaidel-Bar
- Mechanobiology Institute Singapore, National University of Singapore, Singapore 117411 Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| |
Collapse
|
45
|
Abstract
The hematopoietic stem cell (HSC) is a unique cell positioned highest in the hematopoietic hierarchical system. The HSC has the ability to stay in quiescence, to self-renew, or to differentiate and generate all lineages of blood cells. The path to be actualized is influenced by signals that derive from the cell's microenvironment, which activate molecular pathways inside the cell. Signaling pathways are commonly organized through inducible protein-protein interactions, mediated by adaptor proteins that link activated receptors to cytoplasmic effectors. This review will focus on the signaling molecules and how they work in concert to determine the HSC's fate.
Collapse
Affiliation(s)
- Igal Louria-Hayon
- Department of Hematology, Rambam Health Care Campus, Haifa, Israel ; Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| |
Collapse
|
46
|
Engelmann BW, Kim Y, Wang M, Peters B, Rock RS, Nash PD. The development and application of a quantitative peptide microarray based approach to protein interaction domain specificity space. Mol Cell Proteomics 2014; 13:3647-62. [PMID: 25135669 DOI: 10.1074/mcp.o114.038695] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein interaction domain (PID) linear peptide motif interactions direct diverse cellular processes in a specific and coordinated fashion. PID specificity, or the interaction selectivity derived from affinity preferences between possible PID-peptide pairs is the basis of this ability. Here, we develop an integrated experimental and computational cellulose peptide conjugate microarray (CPCMA) based approach for the high throughput analysis of PID specificity that provides unprecedented quantitative resolution and reproducibility. As a test system, we quantify the specificity preferences of four Src Homology 2 domains and 124 physiological phosphopeptides to produce a novel quantitative interactome. The quantitative data set covers a broad affinity range, is highly precise, and agrees well with orthogonal biophysical validation, in vivo interactions, and peptide library trained algorithm predictions. In contrast to preceding approaches, the CPCMAs proved capable of confidently assigning interactions into affinity categories, resolving the subtle affinity contributions of residue correlations, and yielded predictive peptide motif affinity matrices. Unique CPCMA enabled modes of systems level analysis reveal a physiological interactome with expected node degree value decreasing as a function of affinity, resulting in minimal high affinity binding overlap between domains; uncover that Src Homology 2 domains bind ligands with a similar average affinity yet strikingly different levels of promiscuity and binding dynamic range; and parse with unprecedented quantitative resolution contextual factors directing specificity. The CPCMA platform promises broad application within the fields of PID specificity, synthetic biology, specificity focused drug design, and network biology.
Collapse
Affiliation(s)
- Brett W Engelmann
- From the ‡The Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637;
| | - Yohan Kim
- ¶The La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Miaoyan Wang
- ‖The Department of Statistics, The University of Chicago, Chicago, Illinois 60637
| | - Bjoern Peters
- ¶The La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Ronald S Rock
- From the ‡The Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Piers D Nash
- **The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
47
|
Cong P, Li A, Ji Q, Chen Y, Mo D. Molecular analysis of porcine TDRD10 gene: a novel member of the TDRD family. Gene 2014; 548:190-7. [PMID: 25017056 DOI: 10.1016/j.gene.2014.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/03/2014] [Accepted: 07/09/2014] [Indexed: 12/01/2022]
Abstract
Tudor domain-containing proteins (TDRDs) are characterized by various numbers of Tudor domains, which are known to recognize and bind to symmetric methylated arginine residues. These proteins affect a wide variety of processes, including differentiation, genome stability and gametogenesis. In mammals, there are 12 members (TDRD1-TDRD12) in the TDRD protein family. Among them, the information about TDRD10 is less known. Here, we analyzed the sequence and structure properties of porcine TDRD10 gene, and examined its expression profile and subcellular distribution. Our data show that porcine TDRD10 has an opening reading frame (ORF) of 1068 bp, which encodes 355 amino acids. It localizes to chromosome 4. The gene product of porcine TDRD10 contains a Tudor domain and a RNA recognition motif (RRM). Serial deletion shows that the 5'-flanking sequence of porcine TDRD10 contains several negative and positive regulatory elements and identifies a 670-bp TATA-less region as an optimal promoter. Site-directed mutagenesis reveals that the nucleotides from -451 to -445 relative to the transcriptional start site forms one of the very important positive regulatory elements. Real time PCR detects the highest expression level of porcine TDRD10 gene in heart among 12 tissues. In PK15 cells, it mainly distributed in the cell nucleus, but also exhibited localization to the cytoplasm. These results increase our knowledge of TDRD10 gene, and provide basis for further investigation of its function.
Collapse
Affiliation(s)
- Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qianqian Ji
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
48
|
Skorokhod O, Panasyuk G, Nemazanyy I, Gout I, Filonenko V. Identification of Tudor domain containing 7 protein as a novel partner and a substrate for ribosomal protein S6 kinaseS – S6K1 and S6K2. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Di Roberto RB, Peisajovich SG. The role of domain shuffling in the evolution of signaling networks. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:65-72. [DOI: 10.1002/jez.b.22551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/28/2013] [Indexed: 01/05/2023]
|
50
|
Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Cell 2013; 152:1008-20. [PMID: 23452850 DOI: 10.1016/j.cell.2013.01.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/18/2012] [Accepted: 01/31/2013] [Indexed: 12/28/2022]
Abstract
Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.
Collapse
|