1
|
Nakanishi M, Tamagawa-Mineoka R, Nishigaki H, Arakawa Y, Ohtsuka S, Katoh N. Role of Siglec-E in MC903-Induced Atopic Dermatitis. Exp Dermatol 2025; 34:e70064. [PMID: 39967561 DOI: 10.1111/exd.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Atopic dermatitis (AD) is a common skin disease. Although AD pathogenesis has been widely researched, inhibitory mechanisms in AD are still unclear. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors recognising sialic acids; most Siglecs work as inhibitory receptors. Among Siglecs, Siglec-E is expressed on dendritic cells (DCs) and eosinophils, important immune cells in AD. Although Siglec-E inhibits Type 1 inflammatory diseases, how it influences AD is unknown. Thus, we investigated the role of Siglec-E in AD mouse model by using Siglec-E knockout (KO) mice. We demonstrated that Siglec-E attenuated AD-like inflammation of mice caused by topical application of MC903 on ear skin (MC903-induced AD). To reveal the role of Siglec-E in MC903-induced AD, we focused on Siglec-E on DCs and eosinophils. We first showed that Sigle-E was expressed on cutaneous DCs and migratory DCs of draining lymph nodes. Moreover, OX40L expression on cutaneous DCs was reduced in the presence of Siglec-E. In vitro experiments using cultured spleen DCs (SpDCs), highly expressing Siglec-E, revealed that IL-33 was involved in the induction of Siglec-E and confirmed that Siglec-E inhibited OX40L expression on SpDCs induced by IL-33. Moreover, CD4+ T cell-SpDC coculture revealed that Siglec-E inhibited Th2 polarisation under IL-33 stimulation. We finally revealed that Siglec-E was expressed on eosinophils and reduced the eosinophils infiltration to the MC903-treated ear skin with the suppression of CD49d, a necessary integrin for eosinophil migration to skin tissue [1], expression on eosinophils. These findings elucidated the inhibitory role of Siglec-E in MC903-induced AD.
Collapse
MESH Headings
- Animals
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/immunology
- Mice
- Eosinophils/metabolism
- Mice, Knockout
- Dendritic Cells/metabolism
- Disease Models, Animal
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Mice, Inbred C57BL
- Skin
- Interleukin-33/metabolism
Collapse
Affiliation(s)
- Mari Nakanishi
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Tamagawa-Mineoka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromi Nishigaki
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiyasu Arakawa
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Ohtsuka
- Laboratory for Experimental Animals, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norito Katoh
- North Campus, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Tashiro H, Kuwahara Y, Kurihara Y, Takahashi K. Molecular mechanisms and clinical impact of biologic therapies in severe asthma. Respir Investig 2025; 63:50-60. [PMID: 39642687 DOI: 10.1016/j.resinv.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Severe asthma is a critical condition for patients with asthma, characterized by frequent exacerbations, decreased pulmonary function, and unstable symptoms related to asthma. Consequently, the administration of systemic corticosteroids, which cause secondary damage because of their adverse effects, is considered. Recently, several types of molecular-targeted biological therapies have become available for patients with severe asthma, and they have a capacity to improve the pathophysiology of severe asthma. However, several clinical reports indicate that the effects differ depending on the biological targets of asthma in individual patients. In this review, the molecular mechanisms and clinical impact of biologic therapies in severe asthma are described. In addition, molecules targeted by possible future biologics are also addressed. Better understanding of the mechanistic basis for the role of biologics in severe asthma could lead to new therapeutic options for these patients.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Yuki Kuwahara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Yuki Kurihara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan.
| |
Collapse
|
3
|
Adhikary PP, Idowu T, Tan Z, Hoang C, Shanta S, Dumbani M, Mappalakayil L, Awasthi B, Bermudez M, Weiner J, Beule D, Wolber G, Page BD, Hedtrich S. Disrupting TSLP-TSLP receptor interactions via putative small molecule inhibitors yields a novel and efficient treatment option for atopic diseases. EMBO Mol Med 2024; 16:1630-1656. [PMID: 38877290 PMCID: PMC11250841 DOI: 10.1038/s44321-024-00085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a key player in atopic diseases, which has sparked great interest in therapeutically targeting TSLP. Yet, no small-molecule TSLP inhibitors exist due to the challenges of disrupting the protein-protein interaction between TSLP and its receptor. Here, we report the development of small-molecule TSLP receptor inhibitors using virtual screening and docking of >1,000,000 compounds followed by iterative chemical synthesis. BP79 emerged as our lead compound that effectively abrogates TSLP-triggered cytokines at low micromolar concentrations. For in-depth analysis, we developed a human atopic disease drug discovery platform using multi-organ chips. Here, topical application of BP79 onto atopic skin models that were co-cultivated with lung models and Th2 cells effectively suppressed immune cell infiltration and IL-13, IL-4, TSLP, and periostin secretion, while upregulating skin barrier proteins. RNA-Seq analysis corroborate these findings and indicate protective downstream effects on the lungs. To the best of our knowledge, this represents the first report of a potent putative small molecule TSLPR inhibitor which has the potential to expand the therapeutic and preventive options in atopic diseases.
Collapse
Affiliation(s)
- Partho Protim Adhikary
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Temilolu Idowu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Zheng Tan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Christopher Hoang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Selina Shanta
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Malti Dumbani
- Institute of Pharmacy, Freie Universität of Berlin, Berlin, Germany
| | - Leah Mappalakayil
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Bhuwan Awasthi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität of Berlin, Berlin, Germany
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - January Weiner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität of Berlin, Berlin, Germany
| | - Brent Dg Page
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| |
Collapse
|
4
|
Song C, Sun J, Zhao Z, Zhang X, Ding X, Liang X, Bai J, Xing L, Gong L, Li C, Lin B. Thymic Stromal Lymphopoietin Activates Mouse Dendritic Cells Through the JAK/SYK Pathway in Promoting Th17 Response in Psoriasis. Balkan Med J 2024; 41:174-185. [PMID: 38700313 PMCID: PMC11077931 DOI: 10.4274/balkanmedj.galenos.2024.2024-1-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Background Psoriasis is a chronic inflammatory skin disease that has no cure. While the specific cause of psoriasis is unknown, interactions between immune cells and inflammatory cytokines are believed to be important in its pathogenesis. Thymic stromal lymphopoietin (TSLP) is a cytokine produced by epithelial cells that profoundly affects dendritic cells (DCs) and is involved in allergy and inflammatory diseases. In some studies, its expression is higher in the skin of psoriasis patients, whereas it is increased in treated psoriasis patients when compared with untreated patients in others. Aims To investigate the role of TSLP in the pathogenesis of psoriasis. Study Design In vitro and in vivo study. Methods To investigate the effect of TSLP on psoriasis in vivo, a mouse psoriasis model and shRNA targeting TSLP to reduce its expression were used. Mouse primary bone marrow dendritic cells (BMDCs) were cultured in vitro and used to investigate the signaling pathways activated by TSLP. Results: We found that reducing TSLP expression in psoriasis skin alleviated disease severity. TSLP activated the Janus kinase (JAK)/SYK pathway in psoriatic skin. In vitro studies with BMDCs demonstrated that TSLP increased DC maturation through the JAK/SYK pathway and activated DCs-secreted cytokines that stimulated CD4+ T cells to develop into T helper 17 (Th17) cells by activating STAT3 signaling. The JAK/SYK pathway inhibitor reduced the effect of TSLP on activating BMDCs and promoting Th17 differentiation by CD4+ T cells. Conclusion These findings indicated that TSLP exerted its immune-modulating effect in psoriasis through the JAK/SYK pathway.
Collapse
Affiliation(s)
- Cuihao Song
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Jie Sun
- 305 Hospital of People’s Liberation Army, Beijing, China
| | - Zhenkai Zhao
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Clinical Laboratory, The First Medical Center of PLA General Hospital, Beijing, China
| | - Xiangyu Ding
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Xiaoqiang Liang
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Jia Bai
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Liyuan Xing
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Lingling Gong
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Chengxin Li
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Biwen Lin
- Department of Dermatology, PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Sohrabi S, Masoumi J, Naseri B, Ghorbaninezhad F, Alipour S, Kazemi T, Ahmadian Heris J, Aghebati Maleki L, Basirjafar P, Zandvakili R, Doustvandi MA, Baradaran B. STATs signaling pathways in dendritic cells: As potential therapeutic targets? Int Rev Immunol 2024; 43:138-159. [PMID: 37886903 DOI: 10.1080/08830185.2023.2274576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/17/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs), including heterogenous populations with phenotypic and functional diversity that coordinate bridging innate and adaptive immunity. Signal transducer and activator of transcriptions (STAT) factors as key proteins in cytokine signaling were shown to play distinct roles in the maturation and antigen presentation of DCs and play a pivotal role in modulating immune responses mediated by DCs such as differentiation of T cells to T helper (Th) 1, Th2 or regulatory T (Treg) cells. This review sheds light on the importance of STAT transcription factors' signaling pathways in different subtypes of DCs and highlights their targeting potential usages for improving DC-based immunotherapies for patients who suffer from cancer or diverse autoimmune conditions according to the type of the STAT transcription factor and its specific activating or inhibitory agent.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Pedram Basirjafar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Luo Y, Shreeder B, Jenkins JW, Shi H, Lamichhane P, Zhou K, Bahr DA, Kurian S, Jones KA, Daum JI, Dutta N, Necela BM, Cannon MJ, Block MS, Knutson KL. Th17-inducing dendritic cell vaccines stimulate effective CD4 T cell-dependent antitumor immunity in ovarian cancer that overcomes resistance to immune checkpoint blockade. J Immunother Cancer 2023; 11:e007661. [PMID: 37918918 PMCID: PMC10626769 DOI: 10.1136/jitc-2023-007661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC), a highly lethal cancer in women, has a 48% 5-year overall survival rate. Prior studies link the presence of IL-17 and Th17 T cells in the tumor microenvironment to improved survival in OC patients. To determine if Th17-inducing vaccines are therapeutically effective in OC, we created a murine model of Th17-inducing dendritic cell (DC) (Th17-DC) vaccination generated by stimulating IL-15 while blocking p38 MAPK in bone marrow-derived DCs, followed by antigen pulsing. METHODS ID8 tumor cells were injected intraperitoneally into mice. Mice were treated with Th17-DC or conventional DC (cDC) vaccine alone or with immune checkpoint blockade (ICB). Systemic immunity, tumor associated immunity, tumor size and survival were examined using a variety of experimental strategies. RESULTS Th17-DC vaccines increased Th17 T cells in the tumor microenvironment, reshaped the myeloid microenvironment, and improved mouse survival compared with cDC vaccines. ICB had limited efficacy in OC, but Th17-inducing DC vaccination sensitized it to anti-PD-1 ICB, resulting in durable progression-free survival by overcoming IL-10-mediated resistance. Th17-DC vaccine efficacy, alone or with ICB, was mediated by CD4 T cells, but not CD8 T cells. CONCLUSIONS These findings emphasize using biologically relevant immune modifiers, like Th17-DC vaccines, in OC treatment to reshape the tumor microenvironment and enhance clinical responses to ICB therapy.
Collapse
Affiliation(s)
- Yan Luo
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Barath Shreeder
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - James W Jenkins
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Huashan Shi
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | | | - Kexun Zhou
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Deborah A Bahr
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Sophia Kurian
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Katherine A Jones
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Joshua I Daum
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Navnita Dutta
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Brian M Necela
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Martin J Cannon
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Matthew S Block
- Divison of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| |
Collapse
|
7
|
Gauvreau GM, Bergeron C, Boulet LP, Cockcroft DW, Côté A, Davis BE, Leigh R, Myers I, O'Byrne PM, Sehmi R. Sounding the alarmins-The role of alarmin cytokines in asthma. Allergy 2023; 78:402-417. [PMID: 36463491 PMCID: PMC10108333 DOI: 10.1111/all.15609] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022]
Abstract
The alarmin cytokines thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 are epithelial cell-derived mediators that contribute to the pathobiology and pathophysiology of asthma. Released from airway epithelial cells exposed to environmental triggers, the alarmins drive airway inflammation through the release of predominantly T2 cytokines from multiple effector cells. The upstream positioning of the alarmins is an attractive pharmacological target to block multiple T2 pathways important in asthma. Blocking the function of TSLP inhibits allergen-induced responses including bronchoconstriction, airway hyperresponsiveness, and inflammation, and subsequent clinical trials of an anti-TSLP monoclonal antibody, tezepelumab, in asthma patients demonstrated improvements in lung function, airway responsiveness, inflammation, and importantly, a reduction in the rate of exacerbations. Notably, these improvements were observed in patients with T2-high and with T2-low asthma. Clinical trials blocking IL-33 and its receptor ST2 have also shown improvements in lung function and exacerbation rates; however, the impact of blocking the IL-33/ST2 axis in T2-high versus T2-low asthma is unclear. To date, there is no evidence that IL-25 blockade is beneficial in asthma. Despite the considerable overlap in the cellular functions of IL-25, IL-33, and TSLP, they appear to have distinct roles in the immunopathology of asthma.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Celine Bergeron
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Donald W Cockcroft
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andréanne Côté
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beth E Davis
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard Leigh
- Department of Medicine, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Irvin Myers
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Wang Y, Cao Z, Zhao H, Gu Z. Nonylphenol exacerbates ovalbumin-induced allergic rhinitis via the TSLP-TSLPR/IL-7R pathway and JAK1/2-STAT3 signaling in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114005. [PMID: 36029577 DOI: 10.1016/j.ecoenv.2022.114005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Nonylphenol (NP) can be widely used as a plasticizer, surfactant, antioxidant, textile printing, dyeing additive, and pesticide emulsifier. Animal studies have shown that NP aggravates ovalbumin (OVA)-induced allergic rhinitis (AR); however, the exact mechanism underlying its action has not yet been detailed. This study aimed to explore the aggravation of the AR inflammatory response following NP exposure and its possible mechanism. The AR mouse model was constructed using OVA. Under NP exposure, allergic nasal symptoms were observed, eosinophil infiltration was assessed by Sirius red staining, and the levels of IL-4, IL-5, and IL-13 in nasal mucosa samples were detected using cytometric bead array. The mRNA levels of OX40/OX40L and GATA3 in nasal mucosa were detected by qPCR, and the expression levels of the TSLP and JAK1/2-STAT3 signaling pathway components were also identified. Our results suggest that NP exposure exacerbated allergic nasal symptoms and that eosinophils accumulated in nasal mucosa after OVA challenge. The levels of the typical T helper 2 cytokines, as well as the mRNA levels of OX40/OX40L and GATA3, were elevated in the nasal mucosa of OVA-challenged mice exposed to NP. In addition, NP exposure elevated the TSLP, TSLPR, IL-7R, p-JAK1, p-JAK2, and p-STAT3 levels in the nasal mucosa after OVA stimulation. Overall, the present study suggests NP can exacerbate OVA-induced AR inflammatory responses; furthermore, this aggravating effect of NP may be related to the TSLP-TSLPR/IL-7R and JAK1/2-STAT3 signaling pathways.
Collapse
Affiliation(s)
- Yunxiu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, PR China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, PR China
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, PR China
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, PR China.
| |
Collapse
|
9
|
Nilsson M, Rhedin M, Hendrickx R, Berglund S, Piras A, Blomgran P, Cavallin A, Collins M, Dahl G, Dekkak B, Ericsson T, Hagberg N, Holmberg AA, Leffler A, Lundqvist AJ, Markou T, Pinkerton J, Rönnblom L, Siu S, Taylor V, Wennberg T, Zervas D, Laurence ADJ, Mitra S, Belvisi MG, Birrell M, Borde A. Characterization of Selective and Potent JAK1 Inhibitors Intended for the Inhaled Treatment of Asthma. Drug Des Devel Ther 2022; 16:2901-2917. [PMID: 36068788 PMCID: PMC9441147 DOI: 10.2147/dddt.s354291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Janus kinase 1 (JAK1) is implicated in multiple inflammatory pathways that are critical for the pathogenesis of asthma, including the interleukin (IL)-4, IL-5, IL-13, and thymic stromal lymphopoietin cytokine signaling pathways, which have previously been targeted to treat allergic asthma. Here, we describe the development of AZD0449 and AZD4604, two novel and highly selective JAK1 inhibitors with promising properties for inhalation. Methods The effects of AZD0449 and AZD4604 in JAK1 signaling pathways were assessed by measuring phosphorylation of signal transducer and activator of transcription (STAT) proteins and chemokine release using immunoassays of whole blood from healthy human volunteers and rats. Pharmacokinetic studies performed on rats evaluated AZD0449 at a lung deposited dose of 52 μg/kg and AZD4604 at 30 µg/kg. The efficacy of AZD0449 and AZD4604 was assessed by evaluating lung inflammation (cell count and cytokine levels) and the late asthmatic response (average enhanced pause [Penh]). Results Both compounds inhibited JAK1-dependent cytokine signaling pathways in a dose-dependent manner in human and rat leukocytes. After intratracheal administration in rats, both compounds exhibited low systemic exposures and medium-to-long terminal lung half-lives (AZD0449, 34 hours; AZD4604, 5 hours). Both compounds inhibited STAT3 and STAT5 phosphorylation in lung tissue from ovalbumin (OVA)-challenged rats. AZD0449 and AZD4604 also inhibited eosinophilia in the lung and reduced the late asthmatic response, measured as Penh in the OVA rat model. Conclusion AZD0449 and AZD4604 show potential as inhibitors of signaling pathways involved in asthmatic immune responses, with target engagement demonstrated locally in the lung. These findings support the clinical development of AZD0449 and AZD4604 for the treatment of patients with asthma.
Collapse
Affiliation(s)
- Magnus Nilsson
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Correspondence: Magnus Nilsson, Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, SE-431 83, Sweden, Tel +46722237222, Email
| | - Magdalena Rhedin
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ramon Hendrickx
- DMPK, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Susanne Berglund
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Antonio Piras
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Parmis Blomgran
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Cavallin
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mia Collins
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Göran Dahl
- Discovery Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Bilel Dekkak
- Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Therese Ericsson
- DMPK, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Niklas Hagberg
- Rheumatology and Science for Life Laboratories, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ann Aurell Holmberg
- DMPK, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Agnes Leffler
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders J Lundqvist
- DMPK, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Thomais Markou
- Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - James Pinkerton
- Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lars Rönnblom
- Rheumatology and Science for Life Laboratories, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stacey Siu
- Rigel Pharmaceuticals, South San Francisco, CA, USA
| | | | - Tiiu Wennberg
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Dimitrios Zervas
- Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Arian D J Laurence
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Suman Mitra
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mark Birrell
- Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Borde
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
10
|
Dong H, Feng C, Cai X, Hao Y, Gu X, Cai L, Wu S, Chen J, Liu Z, Xie W, Lu X, Qian H, Liu Y, Cao Y, Zhu J, Xu J, Zhou Y, Ma S, Yang S, Shi Y, Yu H, Shi M, Wang Y, Gu HF, Fan L, Wu L. 7-Methoxyisoflavone ameliorates atopic dermatitis symptoms by regulating multiple signaling pathways and reducing chemokine production. Sci Rep 2022; 12:8760. [PMID: 35610286 PMCID: PMC9130209 DOI: 10.1038/s41598-022-12695-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
7-Met, a derivative of soybean isoflavone, is a natural flavonoid compound that has been reported to have multiple signaling pathways regulation effects. This study investigated the therapeutic effects of 7-Met on mice with atopic dermatitis induced by fluorescein isothiocyanate (FITC), or oxazolone (OXZ). 7-Met ameliorated FITC or OXZ-induced atopic dermatitis symptoms by decreasing ear thickness, spleen index, mast cell activation, neutrophil infiltration and serum IgE levels in female BALB/c mice. In FITC-induced atopic dermatitis mice, 7-Met reduced Th1 cytokines production and regulated Th1/Th2 balance by downregulating the secretion of thymic stromal lymphopoietin (TSLP) via inactivation of the NF-κB pathway. In OXZ-induced atopic dermatitis, 7-Met functioned through the reduction of Th17 cytokine production. Our study showed that 7-Methoxyisoflavone alleviated atopic dermatitis by regulating multiple signaling pathways and downregulating chemokine production.
Collapse
Affiliation(s)
- Hao Dong
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Chenjie Feng
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiyunyi Cai
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yuanyuan Hao
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xinyue Gu
- Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lei Cai
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shuting Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jiamin Chen
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Zhou Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wen Xie
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xuanren Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Hongfa Qian
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yulin Liu
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yiming Cao
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Junlin Zhu
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jiayi Xu
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yanjie Zhou
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shuangyu Ma
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Sha Yang
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yufeng Shi
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Haojiang Yu
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Minjie Shi
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yurong Wang
- School of Basic Medicine and Clinical Pharmacy, Center for Pathophysiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Harvest F Gu
- School of Basic Medicine and Clinical Pharmacy, Center for Pathophysiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Lei Fan
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210009, People's Republic of China.
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
11
|
Klimek L, Hagemann J, Welkoborsky HJ, Cuevas M, Casper I, Förster-Ruhrmann U, Klimek F, Hintschich CA, Huppertz T, Bergmann C, Tomazic PV, Becker S. Epithelial immune regulation of inflammatory airway diseases: Chronic rhinosinusitis with nasal polyps (CRSwNP). Allergol Select 2022; 6:148-166. [PMID: 35572064 PMCID: PMC9097524 DOI: 10.5414/alx02296e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The epithelial immune regulation is an essential and protective feature of the barrier function of the mucous membranes of the airways. Damage to the epithelial barrier can result in chronic inflammatory diseases, such as chronic rhinosinusitis (CRS) or bronchial asthma. Thymic stromal lymphopoietin (TSLP) is a central regulator in the epithelial barrier function and is associated with type 2 (T2) and non-T2 inflammation. MATERIALS AND METHODS The immunology of chronic rhinosinusitis with polyposis nasi (CRSwNP) was analyzed in a literature search, and the existing evidence was determined through searches in Medline, Pubmed as well as the national and international study and guideline registers and the Cochrane Library. Human studies or studies on human cells that were published between 2010 and 2020 and in which the immune mechanisms of TSLP in T2 and non-T2 inflammation were examined were considered. RESULTS TSLP is an epithelial cytokine (alarmin) and a central regulator of the immune reaction, especially in the case of chronic airway inflammation. Induction of TSLP is implicated in the pathogenesis of many diseases like CRS and triggers a cascade of subsequent inflammatory reactions. CONCLUSION Treatment with TSLP-blocking monoclonal antibodies could therefore open up interesting therapeutic options. The long-term safety and effectiveness of TSLP blockade has yet to be investigated.
Collapse
Affiliation(s)
- Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden
- Clinic and Polyclinic for Otolaryngology, University Medical Center Mainz, Mainz
| | - Jan Hagemann
- Clinic and Polyclinic for Otolaryngology, University Medical Center Mainz, Mainz
| | - Hans-Jürgen Welkoborsky
- Clinic for Ear, Nose and Throat Medicine, Head and Neck Surgery, Nordstadt Clinic of the KRH, Hannover
| | - Mandy Cuevas
- Clinic and Polyclinic for Otolaryngology, University Hospital Carl Gustav Carus, TU Dresden, Dresden
| | | | | | | | - Constantin A Hintschich
- Clinic and Polyclinic for Ear, Nose and Throat Medicine, University Hospital Regensburg, Regensburg
| | - Tilman Huppertz
- Clinic and Polyclinic for Otolaryngology, University Medical Center Mainz, Mainz
| | | | | | | |
Collapse
|
12
|
Whetstone CE, Ranjbar M, Omer H, Cusack RP, Gauvreau GM. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells 2022; 11:1105. [PMID: 35406669 PMCID: PMC8997824 DOI: 10.3390/cells11071105] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The airway epithelium is the first line of defense for the lungs, detecting inhaled environmental threats through pattern recognition receptors expressed transmembrane or intracellularly. Activation of pattern recognition receptors triggers the release of alarmin cytokines IL-25, IL-33, and TSLP. These alarmins are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Many of the key effector cells in the allergic cascade also produce alarmins, thereby contributing to the airways disease by driving downstream type 2 inflammatory processes. Randomized controlled clinical trials have demonstrated benefit when blockade of TSLP and IL-33 were added to standard of care medications, suggesting these are important new targets for treatment of asthma. With genome-wide association studies demonstrating associations between single-nucleotide polymorphisms of the TSLP and IL-33 gene and risk of asthma, it will be important to understand which subsets of asthma patients will benefit most from anti-alarmin therapy.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.E.W.); (M.R.); (H.O.); (R.P.C.)
| |
Collapse
|
13
|
Almeida MS, Shibagaki S, Tahara-Hanaoka S, Shibayama S, Shibuya A. An inhibitory immunoreceptor, Allergin-1, suppresses FITC-induced type 2 contact hypersensitivity. Biochem Biophys Res Commun 2021; 579:146-152. [PMID: 34601199 DOI: 10.1016/j.bbrc.2021.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022]
Abstract
Although allergic contact dermatitis (ACD) is the most common T cell-mediated inflammatory responses against an allergen in the skin, the pathogenesis of ACD remains incompletely understood. In the sensitization phase in ACD, hapten-bearing dermal dendritic cells (DCs) play a pivotal role in the transport of an antigen to the lymph nodes (LNs), where they present the antigen to naïve T cells. Here we report that Allergin-1, an inhibitory immunoreceptor containing immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic region, is highly expressed on dermal DCs. Mice deficient in Allergin-1 exhibited exacerbated fluorescein isothiocyanate (FITC)-induced type 2 contact hypersensitivity (CHS) such as ear swelling and skin eosinophilia. Allergin-1-deficient mice also showed larger numbers of CD4+ T cells and FITC-bearing DCs and greater expressions of type 2 cytokines, including IL-5, IL-10 and IL-13, in the draining LNs than did wild type mice. In sharp contrast, Allergin-1-deficient mice showed comparable level of type 1 CHS induced by 2,4-dinitrofluorobenzene (DNFB). These results suggest that Allergin-1 on dermal DC inhibits type 2, but not type 1, immune responses in the sensitization phase of CHS.
Collapse
Affiliation(s)
- Mariana Silva Almeida
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Department of Immunology, Faculty of Medicine, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shohei Shibagaki
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Department of Immunology, Faculty of Medicine, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; R&D Center for Innovative Drug Discovery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoko Tahara-Hanaoka
- Department of Immunology, Faculty of Medicine, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; R&D Center for Innovative Drug Discovery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Shiro Shibayama
- Research Center of Immunology, Tsukuba Institute, ONO Pharmaceutical Company, Ltd., 17-2 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; R&D Center for Innovative Drug Discovery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
14
|
Toyama S, Tominaga M, Takamori K. Connections between Immune-Derived Mediators and Sensory Nerves for Itch Sensation. Int J Mol Sci 2021; 22:12365. [PMID: 34830245 PMCID: PMC8624544 DOI: 10.3390/ijms222212365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.
Collapse
Affiliation(s)
- Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Chiba 279-0021, Japan
| |
Collapse
|
15
|
Gu C, Upchurch K, Horton J, Wiest M, Zurawski S, Millard M, Kane RR, Joo H, Miller LA, Oh S. Dectin-1 Controls TSLP-Induced Th2 Response by Regulating STAT3, STAT6, and p50-RelB Activities in Dendritic Cells. Front Immunol 2021; 12:678036. [PMID: 34305908 PMCID: PMC8293820 DOI: 10.3389/fimmu.2021.678036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
The epithelium-associated cytokine thymic stromal lymphopoietin (TSLP) can induce OX40L and CCL17 expression by myeloid dendritic cells (mDCs), which contributes to aberrant Th2-type immune responses. Herein, we report that such TSLP-induced Th2-type immune response can be effectively controlled by Dectin-1, a C-type lectin receptor expressed by mDCs. Dectin-1 stimulation induced STAT3 activation and decreased the transcriptional activity of p50-RelB, both of which resulted in reduced OX40L expression on TSLP-activated mDCs. Dectin-1 stimulation also suppressed TSLP-induced STAT6 activation, resulting in decreased expression of the Th2 chemoattractant CCL17. We further demonstrated that Dectin-1 activation was capable of suppressing ragweed allergen (Amb a 1)-specific Th2-type T cell response in allergy patients ex vivo and house dust mite allergen (Der p 1)-specific IgE response in non-human primates in vivo. Collectively, this study provides a molecular explanation of Dectin-1-mediated suppression of Th2-type inflammatory responses and suggests Dectin-1 as a target for controlling Th2-type inflammation.
Collapse
Affiliation(s)
- Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Katherine Upchurch
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Joshua Horton
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Mathew Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | | | - Mark Millard
- Department of Pulmonology, Baylor University Medical Center, Dallas, TX, United States
| | - Robert R Kane
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States.,Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| |
Collapse
|
16
|
Immunomodulatory drugs suppress Th1-inducing ability of dendritic cells but enhance Th2-mediated allergic responses. Blood Adv 2021; 4:3572-3585. [PMID: 32761232 DOI: 10.1182/bloodadvances.2019001410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/01/2020] [Indexed: 11/20/2022] Open
Abstract
Immunomodulatory drugs (IMiDs), lenalidomide and pomalidomide, are widely used treatments for multiple myeloma; however, they occasionally lead to episodes of itchy skin and rashes. Here, we analyzed the effects of IMiDs on human myeloid dendritic cells (mDCs) as major regulators of Th1 or Th2 responses and the role they play in allergy. We found that lenalidomide and pomalidomide used at clinical concentrations did not affect the survival or CD86 and OX40-ligand expression of blood mDCs in response to lipopolysaccharide (LPS) and thymic stromal lymphopoietin (TSLP) stimulation. Both lenalidomide and pomalidomide dose-dependently inhibited interleukin-12 (IL-12) and TNF production and STAT4 expression, and enhanced IL-10 production in response to LPS. When stimulated with TSLP, both IMiDs significantly enhanced CCL17 production and STAT6 and IRF4 expression and promoted memory Th2-cell responses. In 46 myeloma patients, serum CCL17 levels at the onset of lenalidomide-associated rash were significantly higher than those without rashes during lenalidomide treatment and those before treatment. Furthermore, serum CCL17 levels in patients who achieved a very good partial response (VGPR) were significantly higher compared with a less than VGPR during lenalidomide treatment. The median time to next treatment was significantly longer in lenalidomide-treated patients with rashes than those without. Collectively, IMiDs suppressed the Th1-inducing capacity of DCs, instead promoting a Th2 response. Thus, the lenalidomide-associated rashes might be a result of an allergic response driven by Th2-axis activation. Our findings suggest clinical efficacy and rashes as a side effect of IMiDs are inextricably linked through immunostimulation.
Collapse
|
17
|
Protti MP, De Monte L. Thymic Stromal Lymphopoietin and Cancer: Th2-Dependent and -Independent Mechanisms. Front Immunol 2020; 11:2088. [PMID: 33042121 PMCID: PMC7524868 DOI: 10.3389/fimmu.2020.02088] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
The thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine originally cloned from a murine thymic stromal cell line, and subsequently a human homolog was identified using database search methods. Human TSLP is mostly expressed in epithelial cells, among which are keratinocytes as well as stromal cells such as fibroblasts and immune cells. Human TSLP was first described to activate myeloid dendritic cells, which prime naïve T helper cells to produce high concentrations of Th2 cytokines, thus representing a key cytokine in triggering dendritic cells-mediated allergic Th2 inflammation. TSLP and/or its receptor has been shown to be expressed in several tumor types, where TSLP expression is associated with functional activities that can be associated or not with the induction of a Th2-prone tumor microenvironment, i.e., Th2-dependent and Th2-independent mechanisms. These mechanisms involve tissue- and immune cell target-dependent tumor-promoting or tumor-suppressive functions in different or even the same tumor type. Here we report and discuss the Th2-dependent and Th2-independent roles of TSLP in cancer and possible therapeutic targeting.
Collapse
Affiliation(s)
- Maria Pia Protti
- Tumor Immunology Unit, Istituto di Ricerca a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Lucia De Monte
- Tumor Immunology Unit, Istituto di Ricerca a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Ohno T, Nakamura T, Nakae S, Morita H, Matsumoto K, Saito H, Takeda K, Okumura K, Azuma T. TSLP is a negative regulator of RANKL-induced osteoclastogenesis. Biochem Biophys Res Commun 2020; 530:508-512. [DOI: 10.1016/j.bbrc.2020.05.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/09/2020] [Indexed: 10/24/2022]
|
19
|
Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. Int J Mol Sci 2020; 21:ijms21144883. [PMID: 32664385 PMCID: PMC7402353 DOI: 10.3390/ijms21144883] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases, a side effect of drug applications, or a temporary sensation induced by invading pruritogens, as produced by the stinging nettle. Due to extensive research in recent years, it was possible to provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became apparent that pruritus is a complex symptom or disease in itself, which requires particular attention to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems to be of great advantage to understand and decipher the molecular mechanism of itch perception. Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify critical aspects of itch perception that require future investigation.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Correspondence:
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| |
Collapse
|
20
|
The discovery of human TSLP as a critical epithelial cytokine in type 2 immunity and allergic disease. Nat Immunol 2020; 21:1471-1473. [PMID: 32616863 DOI: 10.1038/s41590-020-0720-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets 2020; 24:777-792. [PMID: 32567399 DOI: 10.1080/14728222.2020.1783242] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Thymic stromal lymphopoietin (TSLP), an epithelial cytokine (alarmin), is a central regulator of the immune response to inhaled environmental insults such as allergens, viruses and pollutants, initiating a cascade of downstream inflammation. There is compelling evidence that TSLP plays a major role in the pathology of asthma, and therapies that aim to block its activity are in development. AREAS COVERED We review studies conducted in humans and human cells, largely published in PubMed January 2010-October 2019, that investigated the innate and adaptive immune mechanisms of TSLP in asthma relevant to type 2-driven (eosinophilic/allergic) inflammation and non-type 2-driven (non-eosinophilic/non-allergic) inflammation, and the role of TSLP as a mediator between immune cells and structural cells in the airway. Clinical data from studies evaluating TSLP blockade are also discussed. EXPERT OPINION The position of TSLP at the top of the inflammatory cascade makes it a promising therapeutic target in asthma. Systemic anti-TSLP monoclonal antibody therapy with tezepelumab has yielded positive results in clinical trials to date, reducing exacerbations and biomarkers of inflammation in patients across the spectrum of inflammatory endotypes. Inhaled anti-TSLP is an alternative route currently under evaluation. The long-term safety and efficacy of TSLP blockade need to be evaluated.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University , Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University , Hamilton, Ontario, Canada
| | | | - Janet M Griffiths
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D , Gaithersburg, MD, USA
| |
Collapse
|
22
|
Qu Z, Guo Y, Li M, Cao C, Wang J, Gao M. Recombinant ferritin nanoparticles can induce dendritic cell maturation through TLR4/NF-κB pathway. Biotechnol Lett 2020; 42:2489-2500. [PMID: 32567013 DOI: 10.1007/s10529-020-02944-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/14/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Immune response initiation and regulation require activation of dendritic cells (DCs). However, the mechanism by which ferritin, a carrier for immunogen, induces DCs maturation remains unclear. RESULTS Recombinant ferritin nanoparticle (RFNp), were prepared through the baculovirus expression vector system, formed spherical and hollow cage-liked proteins with a diameter of approximately 12.17 ± 0.87 nm. They induced bone marrow-derived DC (BMDC) maturation via surface molecules up-regulation of (MHC II, CD80, CD86 and CD40), increased pro-inflammatory cytokines production (IL-6, IL-12, TNF-α, and IFN-γ), and decreased antigen capturing capacity. They positively regulated IκBα and NF-κB (p65) phosphorylation, and facilitate NF-κB (p65) translocation into mature BMDCs nuclei. Following pre-treatment of RFNp-treated BMDCs with TLR4 and NF-κB (p65) inhibitors, respectively, surface molecule expression, pro-inflammatory cytokines production, and IκBα and NF-κB (p65) activities were suppressed. RFNp-treated BMDCs can also facilitate T-cell proliferation and differentiation into Th1 and Th2. CONCLUSION RFNps induced DCs maturation lends the potential application of RFNps as carrier platforms in DC-based vaccine.
Collapse
Affiliation(s)
- Zhehui Qu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, Henan, People's Republic of China
| | - Yongli Guo
- Animal Disease Prevention and Control Center of Heilongjiang Province, Harbin, 150069, Heilongjiang, People's Republic of China
| | - Mingzhu Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Chong Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Junwei Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China.
| | - Mingchun Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
23
|
Kitajima M, Kubo M, Ziegler SF, Suzuki H. Critical Role of TSLP Receptor on CD4 T Cells for Exacerbation of Skin Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 205:27-35. [PMID: 32444388 DOI: 10.4049/jimmunol.1900758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is a key cytokine that initiates and promotes allergic inflammation both in humans and mice. It is well known that TSLP is important in initial step of inflammation by stimulating dendritic cells to promote Th2 differentiation of naive T cells. However, TSLP is abundantly produced in the late phase of inflammation, as well; therefore, we focused on the function of TSLP in chronic Th2-type inflammation. By establishing a novel (to our knowledge) chronic allergic skin inflammation mouse model with repetitive challenges of hapten after sensitization, we demonstrated that CD4 T cell-specific deletion of TSLP receptor (TSLPR) resulted in near-complete ablation of ear swelling and infiltration of CD4 T cells and eosinophils, but after second challenge. Of note, TSLPR deletion on CD4 T cells did not affect acute inflammation. As expected, transfer of Ag-sensitized wild-type CD4T cells, but not of TSLPR-deficient CD4T cells, increased skin inflammation in the model upon challenge. Furthermore, production of IL-4 from TSLPR-deficient CD4T cells in inflamed ear lesions was markedly diminished, demonstrating that TSLP-dependent IL-4 production from CD4T cells was critical for the exacerbation of skin inflammation. Similar results were obtained in Th2-type allergic skin inflammation model using MC903. Collectively, these results indicate that TSLP acts directly on CD4 T cells to elicit pathogenesis of Th2 cells, thereby having a critical role in exacerbation of skin inflammation in the chronic phase.
Collapse
Affiliation(s)
- Masayuki Kitajima
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba 272-8516, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan.,Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101-2795; and.,Department of Immunology, University of Washington Medicine, Seattle, WA 98109
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba 272-8516, Japan;
| |
Collapse
|
24
|
Ashour D, Arampatzi P, Pavlovic V, Förstner KU, Kaisho T, Beilhack A, Erhard F, Lutz MB. IL-12 from endogenous cDC1, and not vaccine DC, is required for Th1 induction. JCI Insight 2020; 5:135143. [PMID: 32434994 PMCID: PMC7259537 DOI: 10.1172/jci.insight.135143] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Success of DC vaccines relies on the quality of antigen presentation, costimulation, lymph node migration, and the release of IL-12, in case of Th1 priming. Here, we provide evidence for interaction between the injected vaccine DCs with endogenous lymph node–resident DCs for Th1 induction. While migration of the injected DCs was essential for antigen delivery to the lymph node, the injected DCs contributed only partially to Th0 priming and were unable to instruct Th1 generation. Instead, we provide evidence that the lymph node–resident XCR1+ DCs are activated by the injected DCs to present the cognate antigen and release IL-12 for Th1 polarization. The timing of interactions in the draining lymph nodes appeared step-wise as (a) injected DCs with cognate T cells, (b) injected DCs with bystander DCs, and (c) bystander DCs with T cells. The transcriptome of the bystander DCs showed a downregulation of Treg- and Th2/Th9-inducing genes and self-antigen presentation, as well as upregulation of MHC class II and genes required for Th1 instruction. Together, these data show that injected mature lymph node migratory DCs direct T cell priming and bystander DC activation, but not Th1 polarization, which is mediated by endogenous IL-12p70+XCR1+ resident bystander DCs. Our results are of importance for clinical DC-based vaccinations against tumors where endogenous DCs may be functionally impaired by chemotherapy. Successful Th1 priming by DC vaccines in mice depends on IL-12 from endogenous and XCR1+ cDC1 population.
Collapse
Affiliation(s)
| | | | | | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Institute of Information Science, Cologne, Germany
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
25
|
Guo C, Liu J, Hao P, Wang Y, Sui S, Li L, Ying M, Han R, Wang L, Li X. The Potential Inhibitory Effects of miR-19b on Ocular Inflammation are Mediated Upstream of the JAK/STAT Pathway in a Murine Model of Allergic Conjunctivitis. Invest Ophthalmol Vis Sci 2020; 61:8. [PMID: 32150250 PMCID: PMC7401772 DOI: 10.1167/iovs.61.3.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/05/2020] [Indexed: 01/14/2023] Open
Abstract
Purpose Thymic stromal lymphopoietin (TSLP) is a pro-allergic cytokine that initiates allergic inflammatory reaction between epithelial and dendritic cells (DCs). miR-19b was reported to suppress TSLP expression. The present study aimed to examine miR-19b expression, regulation, and function in allergic conjunctivitis (AC). Methods A murine model of experimental AC was induced in BALB/c mice by short ragweed pollen. The serum, eye balls, conjunctiva, and cervical lymph nodes (CLN) were used for the study. Gene expression was determined by RT-PCR, whereas protein production and activation were evaluated by immunostaining, ELISA, and Western blotting. Results In the murine AC model, miR-19b was aberrantly downregulated, whereas the levels of TSLP and p-STAT3, as well as the number of CD11c+ pSTAT3+ DCs were increased. Moreover, Th2 inflammatory cytokine expression was significantly increased. These severe phenotypes could be counteracted by either applying exogenous miR-19b mimic microRNAs or the JAK/STAT inhibitor CYT387. Moreover, overexpression of miR-19b repressed p-STAT3 expression and the number of CD11c+ cells in AC eye and CLN tissues. Conclusions These findings suggested that miR-19b reduced ocular surface inflammation by inhibiting Stat3 signaling via TSLP downregulation in a murine AC model. Moreover, the present study further demonstrated the clinical potential of applying miR-19b and anti-JAK/STAT therapies in the treatment of AC.
Collapse
Affiliation(s)
- Chen Guo
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jinghua Liu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Peng Hao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Yuchuan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Shuangshuang Sui
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Linghan Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ming Ying
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Ruifang Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Liming Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Xuan Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| |
Collapse
|
26
|
Voskamp AL, Kormelink TG, van Wijk RG, Hiemstra PS, Taube C, de Jong EC, Smits HH. Modulating local airway immune responses to treat allergic asthma: lessons from experimental models and human studies. Semin Immunopathol 2020; 42:95-110. [PMID: 32020335 PMCID: PMC7066288 DOI: 10.1007/s00281-020-00782-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
With asthma affecting over 300 million individuals world-wide and estimated to affect 400 million by 2025, developing effective, long-lasting therapeutics is essential. Allergic asthma, where Th2-type immunity plays a central role, represents 90% of child and 50% of adult asthma cases. Research based largely on animal models of allergic disease have led to the generation of a novel class of drugs, so-called biologicals, that target essential components of Th2-type inflammation. Although highly efficient in subclasses of patients, these biologicals and other existing medication only target the symptomatic stage of asthma and when therapy is ceased, a flare-up of the disease is often observed. Therefore, it is suggested to target earlier stages in the inflammatory cascade underlying allergic airway inflammation and to focus on changing and redirecting the initiation of type 2 inflammatory responses against allergens and certain viral agents. This focus on upstream aspects of innate immunity that drive development of Th2-type immunity is expected to have longer-lasting and disease-modifying effects, and may potentially lead to a cure for asthma. This review highlights the current understanding of the contribution of local innate immune elements in the development and maintenance of inflammatory airway responses and discusses available leads for successful targeting of those pathways for future therapeutics.
Collapse
Affiliation(s)
- A L Voskamp
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA, Leiden, The Netherlands
| | - T Groot Kormelink
- Department of Experimental Immunology, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - R Gerth van Wijk
- Department of Internal Medicine, Section Allergology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - C Taube
- Department of Pulmonary Medicine, University Hospital Essen - Ruhrklinik, Essen, Germany
| | - E C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
27
|
Inagaki‐Katashiba N, Ito T, Inaba M, Azuma Y, Tanaka A, Phan V, Kibata K, Satake A, Nomura S. Statins can suppress DC-mediated Th2 responses through the repression of OX40-ligand and CCL17 expression. Eur J Immunol 2019; 49:2051-2062. [PMID: 31269241 PMCID: PMC6899642 DOI: 10.1002/eji.201847992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/16/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
DCs and epithelial cell-derived thymic stromal lymphopoietin (TSLP) have pivotal roles in allergic inflammation. TSLP stimulates myeloid DCs to express OX40-ligand (OX40L) and CCL17, which trigger and maintain Th2 cell responses. We have previously shown that statins, which are HMG-CoA reductase inhibitors, have the ability to suppress type I IFN production by plasmacytoid DCs. Here, we extended our previous work to examine the immunomodulatory effect of statins on allergic responses, particularly the TSLP-dependent Th2 pathway induced by myeloid DCs. We found that treatment of TSLP-stimulated DCs with either pitavastatin or simvastatin suppressed both the DC-mediated inflammatory Th2 cell differentiation and CRTH2+ CD4+ memory Th2 cell expansion and also repressed the expressions of OX40L and CCL17 by DCs. These inhibitory effects of statins were mimicked by treatment with either a geranylgeranyl-transferase inhibitor or Rho-kinase inhibitor and were counteracted by the addition of mevalonate, suggesting that statins induce geranylgeranylated Rho inactivation through a mevalonate-dependent pathway. We also found that statins inhibited the expressions of phosphorylated STA6 and NF-κB-p50 in TSLP-stimulated DCs. This study identified a specific ability of statins to control DC-mediated Th2 responses, suggesting their therapeutic potential for treating allergic diseases.
Collapse
Affiliation(s)
| | - Tomoki Ito
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Muneo Inaba
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Yoshiko Azuma
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Akihiro Tanaka
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Vien Phan
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Kayoko Kibata
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Atsushi Satake
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Shosaku Nomura
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| |
Collapse
|
28
|
Elder MJ, Webster SJ, Fitzmaurice TJ, Shaunak ASD, Steinmetz M, Chee R, Mallat Z, Cohen ES, Williams DL, Gaston JSH, Goodall JC. Dendritic Cell-Derived TSLP Negatively Regulates HIF-1α and IL-1β During Dectin-1 Signaling. Front Immunol 2019; 10:921. [PMID: 31139177 PMCID: PMC6519317 DOI: 10.3389/fimmu.2019.00921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/10/2019] [Indexed: 02/02/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a functionally pleotropic cytokine important in immune regulation, and TSLP dysregulation is associated with numerous diseases. TSLP is produced by many cell types, but has predominantly been characterized as a secreted factor from epithelial cells which activates dendritic cells (DC) that subsequently prime T helper (TH) 2 immunity. However, DC themselves make significant amounts of TSLP in response to microbial products, but the functional role of DC-derived TSLP remains unclear. We show that TSLPR signaling negatively regulates IL-1β production during dectin-1 stimulation of human DC. This regulatory mechanism functions by dampening Syk phosphorylation and is mediated via NADPH oxidase-derived ROS, HIF-1α and pro-IL-1β expression. Considering the profound effect TSLPR signaling has on the metabolic status and the secretome of dectin-1 stimulated DC, these data suggest that autocrine TSLPR signaling could have a fundamental role in modulating immunological effector responses at sites removed from epithelial cell production of TSLP.
Collapse
Affiliation(s)
- Matthew J. Elder
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom,Early Oncology R&D Division, AstraZeneca, Cambridge, United Kingdom
| | - Steve J. Webster
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Timothy J. Fitzmaurice
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Aran S. D. Shaunak
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Martin Steinmetz
- Unit 970, INSERM, Paris Cardiovascular Research Center, Paris, France
| | - Ronnie Chee
- Department of Immunology, Royal Free Hospital, London, United Kingdom
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - E. Suzanne Cohen
- Biopharmaceutical Research Division, AstraZeneca, Cambridge, United Kingdom
| | - David L. Williams
- Department of Surgery, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - J. S. Hill Gaston
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Jane C. Goodall
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Jane C. Goodall
| |
Collapse
|
29
|
Topical Application of JAK1/JAK2 Inhibitor Momelotinib Exhibits Significant Anti-Inflammatory Responses in DNCB-Induced Atopic Dermatitis Model Mice. Int J Mol Sci 2018; 19:ijms19123973. [PMID: 30544712 PMCID: PMC6321094 DOI: 10.3390/ijms19123973] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic recurrent skin disease dominated by T-helper 2 inflammation. Momelotinib (MMB) is a novel JAK1/JAK2 inhibitor suppressing the signal transduction of multiple pro-inflammatory cytokines. Recent studies indicated that JAK inhibitor could play a therapeutic role in AD disease. In this study, we evaluated the efficacy of MMB as a novel JAK1/JAK2 inhibitor in DNCB-induced AD mice and TSLP-activated dendritic cells. Our data showed that topical application of MMB reduced the skin severity scores and total serum IgE levels, and alleviated the histological indexes including epidermal thickness measurement and mast cell number. Also, it was demonstrated that MMB down-regulated the mRNA expression of IL-4, IL-5, IFN-γ and TSLP, and inhibited the phosphorylation of STAT1, STAT3 and STAT5 in skin lesions. Moreover, MMB reduced the expression of CD80, CD86, MHCII and mRNA of OX40L in TSLP-activated dendritic cells. In general, our study suggests that MMB can improve the symptoms of AD and topical application of MMB can become a promising new therapy strategy for AD.
Collapse
|
30
|
Lee S, Shan J, Aldossary H, Gaudreault V, Bazett M, Fixman ED. STAT6 inhibitory peptide reduces dendritic cell migration to the lymph nodes to control Th2 adaptive immunity in the mouse lung. Eur J Immunol 2018; 49:157-169. [PMID: 30427538 DOI: 10.1002/eji.201847534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022]
Abstract
Type 2 immunity in the lung is promoted through the release of innate cytokines, including TSLP, from lung structural cells. These cytokines drive Type 2 immunity in part through upregulation of OX40L on dendritic cells (DCs). DCs expressing OX40L are potent inducers of Th2 differentiation. We have shown previously that STAT6 inhibitory peptide (STAT6-IP), a cell penetrating peptide designed to inhibit the STAT6 transcription factor, reduces the induction of Th2 adaptive immunity in murine models of respiratory syncytial virus infection. Here we show that intranasal administration of STAT6-IP at the time of antigen priming with ovalbumin (OVA), in conjunction with the Nod2 agonist, MDP, reduced frequencies of CD11b+ lung DCs expressing OX40L. Consistent with these reductions, fewer activated DCs were localized to the lung draining lymph nodes in STAT6-IP-treated mice. Upon OVA challenge four weeks later, mice treated with STAT6-IP at the time of OVA/MDP priming did not develop airway hyperresponsiveness (AHR) and had reduced influx of eosinophils into the airways, mucus production, and serum OVA-specific IgE levels. Our findings provide evidence that the long-lasting inhibitory effects of STAT6-IP are due in part to inhibition of DC responses that drive maladaptive Th2 adaptive immunity and allergic airways disease.
Collapse
Affiliation(s)
- Soojin Lee
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Jichuan Shan
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Haya Aldossary
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Véronique Gaudreault
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Mark Bazett
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Elizabeth D Fixman
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
31
|
Knight JM, Mandal P, Morlacchi P, Mak G, Li E, Madison M, Landers C, Saxton B, Felix E, Gilbert B, Sederstrom J, Varadhachary A, Singh MM, Chatterjee D, Corry DB, McMurray JS. Small molecule targeting of the STAT5/6 Src homology 2 (SH2) domains to inhibit allergic airway disease. J Biol Chem 2018; 293:10026-10040. [PMID: 29739850 PMCID: PMC6028980 DOI: 10.1074/jbc.ra117.000567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/02/2018] [Indexed: 11/06/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the lungs and airways and one of the most burdensome of all chronic maladies. Previous studies have established that expression of experimental and human asthma requires the IL-4/IL-13/IL-4 receptor α (IL-4Rα) signaling pathway, which activates the transcription factor STAT6. However, no small molecules targeting this important pathway are currently in clinical development. To this end, using a preclinical asthma model, we sought to develop and test a small-molecule inhibitor of the Src homology 2 domains in mouse and human STAT6. We previously developed multiple peptidomimetic compounds on the basis of blocking the docking site of STAT6 to IL-4Rα and phosphorylation of Tyr641 in STAT6. Here, we expanded the scope of our initial in vitro structure-activity relationship studies to include central and C-terminal analogs of these peptides to develop a lead compound, PM-43I. Conducting initial dose range, toxicity, and pharmacokinetic experiments with PM-43I, we found that it potently inhibits both STAT5- and STAT6-dependent allergic airway disease in mice. Moreover, PM-43I reversed preexisting allergic airway disease in mice with a minimum ED50 of 0.25 μg/kg. Of note, PM-43I was efficiently cleared through the kidneys with no long-term toxicity. We conclude that PM-43I represents the first of a class of small molecules that may be suitable for further clinical development against asthma.
Collapse
Affiliation(s)
- J Morgan Knight
- From the Departments of Medicine,
- Pathology and Immunology, and
| | - Pijus Mandal
- the Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas
| | - Pietro Morlacchi
- the Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas
| | | | - Evan Li
- From the Departments of Medicine
- the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas 77030
| | - Matthew Madison
- the Translational Biology and Molecular Medicine Program, and
| | - Cameron Landers
- the Translational Biology and Molecular Medicine Program, and
| | | | - Ed Felix
- the Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas
| | | | - Joel Sederstrom
- the Flow Cytometry Core Facility, Baylor College of Medicine, Houston, Texas
| | - Atul Varadhachary
- Fannin Innovation Studio and Atrapos Therapeutics, LLC, Houston, Texas 77027
| | - Melissa M Singh
- Fannin Innovation Studio and Atrapos Therapeutics, LLC, Houston, Texas 77027
| | - Dev Chatterjee
- Fannin Innovation Studio and Atrapos Therapeutics, LLC, Houston, Texas 77027
| | - David B Corry
- From the Departments of Medicine,
- Pathology and Immunology, and
- the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas 77030
- the Translational Biology and Molecular Medicine Program, and
- the Michael E. Debakey Veterans Affairs Center for Translational Research in Inflammatory Diseases, Houston, Texas 77030, and
| | - John S McMurray
- the Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
32
|
Junttila IS. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front Immunol 2018; 9:888. [PMID: 29930549 PMCID: PMC6001902 DOI: 10.3389/fimmu.2018.00888] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/10/2018] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-4 and IL-13 are related cytokines that regulate many aspects of allergic inflammation. They play important roles in regulating the responses of lymphocytes, myeloid cells, and non-hematopoietic cells. In T-cells, IL-4 induces the differentiation of naïve CD4 T cells into Th2 cells, in B cells, IL-4 drives the immunoglobulin (Ig) class switch to IgG1 and IgE, and in macrophages, IL-4 and IL-13 induce alternative macrophage activation. This review gives a short insight into the functional formation of these cytokine receptors. I will discuss both the binding kinetics of ligand/receptor interactions and the expression of the receptor chains for these cytokines in various cell types; both of which are crucial factors in explaining the efficiency by which these cytokines induce intracellular signaling and gene expression. Work initiated in part by William (Bill) E. Paul on IL-4 some 30 years ago has now grown into a major building block of our current understanding of basic immunology and the immune response. This knowledge on IL-4 has growing clinical importance, as therapeutic approaches targeting the cytokine and its signal transduction are becoming a part of the clinical practice in treating allergic diseases. Just by reading the reference list of this short review, one can appreciate the enormous input Bill has had on shaping our understanding of the pathophysiology of allergic inflammation and in particular the role of IL-4 in this process.
Collapse
Affiliation(s)
- Ilkka S Junttila
- Cytokine Biology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Clinical Microbiology, Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
33
|
TSLP-activated dendritic cells induce T helper type 2 inflammation in Aspergillus fumigatus keratitis. Exp Eye Res 2018; 171:120-130. [DOI: 10.1016/j.exer.2018.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
|
34
|
Kim B, Kim TH. Fundamental role of dendritic cells in inducing Th2 responses. Korean J Intern Med 2018; 33:483-489. [PMID: 29502361 PMCID: PMC5943655 DOI: 10.3904/kjim.2016.227] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2017] [Indexed: 12/24/2022] Open
Abstract
A mysterious puzzle in immunology is how the immune system decides what types of immune response to initiate against various stimuli. Although much is known about control of T helper 1 (Th1) and Th17 responses, the mechanisms that initiate Th2 responses remain obscure. Antigen-presenting cells, particularly dendritic cells (DCs), are mandatory for the induction of a Th cell response. Numerous studies have documented the organizing role of DCs in this process. The present review summarizes the fundamental roles of DCs in inducing Th2 responses.
Collapse
Affiliation(s)
- Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul, Korea
- Allergy Immunology Center, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Kang J, Song J, Shen S, Li B, Yang X, Chen M. Diisononyl phthalate aggravates allergic dermatitis by activation of NF-kB. Oncotarget 2018; 7:85472-85482. [PMID: 27863430 PMCID: PMC5356750 DOI: 10.18632/oncotarget.13403] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/27/2016] [Indexed: 01/31/2023] Open
Abstract
Several epidemiological studies have suggested a possible link between exposure to Diisononyl phthalate (DINP) and the development of allergies. These findings remain controversial since there is insufficient scientific evidence to assess the ability of DINP to influence allergic immune responses. In addition, the mechanisms behind DINP-caused allergic diseases have not been fully elucidated. In this study, Balb/c mice were orally exposed to DINP for 3 weeks and were then sensitized with fluorescein isothiocyanate (FITC). We showed that oral exposure to DINP could aggravate allergic-dermatitis-like lesions, indicated by an increase in the number of mast cells, and in increased skin edema in FITC-induced contact hypersensitivity. This deterioration was concomitant with increased total serum immunoglobulin-E and Th2 cytokines. We determined the oxidative damage and the activation of nuclear factor-kb (NF-kB). The data demonstrated that DINP could promote oxidative damage and the activation of NF-kB in the skin. The expression of thymic stromal lymphopoietin and the activation of signal transducer and activator of transcriptions 3, 5 and 6 were enhanced concomitant with exacerbated allergic dermatitis effects and the activation of NF-kB induced by DINP. These effects were alleviated by pyrollidine dithiocarbamate, an inhibitor of NF-kB. The results suggest that oral exposure to DINP aggravated allergic contact dermatitis, which was positively regulated via NF-kB.
Collapse
Affiliation(s)
- Jun Kang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Jing Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Shiping Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Baizhan Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| |
Collapse
|
36
|
Interleukin-31 and thymic stromal lymphopoietin expression in plasma and lymph node from Hodgkin lymphoma patients. Oncotarget 2017; 8:85263-85275. [PMID: 29156718 PMCID: PMC5689608 DOI: 10.18632/oncotarget.19665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/21/2017] [Indexed: 12/22/2022] Open
Abstract
Hodgkin Lymphoma (HL) is a tumor of B-cell origin characterized by Hodgkin and Reed-Stenberg (H/RS) cells embedded in an inflammatory tissue where numerous cytokines/chemokines contribute to shape the microenvironment, leading to the typical clinical symptoms. We investigated: i) the expression of Interleukin-IL-31 (IL-31) and Thymic Stromal Lymphopoietin (TSLP), two Th2-related cytokines with tumor-promoting and pruritogenic functions, and of the respective receptors in HL invaded lymph nodes by flow cytometry, and ii) the potential association of IL-31/TSLP plasma concentrations with clinical characteristics by ELISA. H/RS cells and the major immune cell types infiltrating HL lymph nodes expressed intracytoplasmic and surface IL-31/TSLP, and their receptors. A subgroup of patients showing at diagnosis elevated IL-31 and TSLP plasma levels had an International Prognostic Score>2, indicative of high risk of relapse, and a subsequent positive interim PET-scan, indicative of insufficient response to chemotherapy. No correlation was found between IL-31/TSLP plasma levels and overall or event-free survival. In conclusion, IL-31/TSLP and their receptors are expressed in HL cells and in immune cells infiltrating affected lymph nodes, where both cytokines may contribute to local immune suppression. The clinical impact of IL-31 and TSLP plasma levels has to be further defined in larger patient cohorts.
Collapse
|
37
|
Kummola L, Ortutay Z, Chen X, Caucheteux S, Hämäläinen S, Aittomäki S, Yagi R, Zhu J, Pesu M, Paul WE, Junttila IS. IL-7Rα Expression Regulates Murine Dendritic Cell Sensitivity to Thymic Stromal Lymphopoietin. THE JOURNAL OF IMMUNOLOGY 2017; 198:3909-3918. [PMID: 28404633 DOI: 10.4049/jimmunol.1600753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) and IL-7 are related cytokines that mediate growth and differentiation events in the immune system. They signal through IL-7Rα-containing receptors. Target cells of TSLP in Th2 responses include CD4 T cells and dendritic cells (DCs). Although it has been reported that expression of TSLP receptor (TSLPR) on CD4 T cells is required for OVA-induced lung inflammation, DCs have also been shown to be target cells of TSLP. In this study, we show that murine ex vivo splenic DCs are unresponsive to TSLP, as they fail to phosphorylate STAT5, but in vitro overnight culture, especially in presence of IL-4, renders DCs responsive to both TSLP and IL-7. This induced responsiveness is accompanied by dramatic upregulation of IL-7Rα on DCs with little change in expression of TSLPR or of γc In splenic DCs, the induction of IL-7Rα occurs mainly in CD8- DCs. In vivo, we found that IL-4 has a differential regulatory role on expression of IL-7Rα depending on the cell type; IL-4 decreases IL-7Rα expression on CD4 T cells whereas it upregulates the expression on DCs. Our results indicate that the induction of IL-7Rα expression on DCs is critical for TSLP responsiveness and that IL-4 can upregulate IL-7Rα on DCs.
Collapse
Affiliation(s)
- Laura Kummola
- Faculty of Medicine and Life Sciences, University of Tampere, 33520 Tampere, Finland
| | - Zsuzsanna Ortutay
- Faculty of Medicine and Life Sciences, University of Tampere, 33520 Tampere, Finland
| | - Xi Chen
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Stephane Caucheteux
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | - Ryoji Yagi
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Marko Pesu
- Biomeditech, University of Tampere, 33014 Tampere, Finland.,Department of Dermatology, Tampere University Hospital, 33521 Tampere, Finland; and
| | - William E Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ilkka S Junttila
- Faculty of Medicine and Life Sciences, University of Tampere, 33520 Tampere, Finland; .,Fimlab Laboratories, 33520 Tampere, Finland
| |
Collapse
|
38
|
Verstraete K, Peelman F, Braun H, Lopez J, Van Rompaey D, Dansercoer A, Vandenberghe I, Pauwels K, Tavernier J, Lambrecht BN, Hammad H, De Winter H, Beyaert R, Lippens G, Savvides SN. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nat Commun 2017; 8:14937. [PMID: 28368013 PMCID: PMC5382266 DOI: 10.1038/ncomms14937] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/15/2017] [Indexed: 02/07/2023] Open
Abstract
The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) is pivotal to the pathophysiology of widespread allergic diseases mediated by type 2 helper T cell (Th2) responses, including asthma and atopic dermatitis. The emergence of human TSLP as a clinical target against asthma calls for maximally harnessing its therapeutic potential via structural and mechanistic considerations. Here we employ an integrative experimental approach focusing on productive and antagonized TSLP complexes and free cytokine. We reveal how cognate receptor TSLPR allosterically activates TSLP to potentiate the recruitment of the shared interleukin 7 receptor α-chain (IL-7Rα) by leveraging the flexibility, conformational heterogeneity and electrostatics of the cytokine. We further show that the monoclonal antibody Tezepelumab partly exploits these principles to neutralize TSLP activity. Finally, we introduce a fusion protein comprising a tandem of the TSLPR and IL-7Rα extracellular domains, which harnesses the mechanistic intricacies of the TSLP-driven receptor complex to manifest high antagonistic potency. The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) is a promising therapeutic target. Here the authors characterize the assembly mechanism of the receptor complex driven by human TSLP, and its antagonism by the monoclonal antibody Tezepelumab and a fusion protein comprising the TSLP receptors.
Collapse
Affiliation(s)
- Kenneth Verstraete
- VIB-UGent Center for Inflammation Research, Zwijnaarde, Ghent 9052, Belgium.,Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Frank Peelman
- VIB-UGent Center for Medical Biotechnology, Ghent 9000, Belgium
| | - Harald Braun
- VIB-UGent Center for Inflammation Research, Zwijnaarde, Ghent 9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde, Ghent 9052, Belgium
| | - Juan Lopez
- Unité de Glycobiologie Structurale et Fonctionnelle-CNRS UMR8576, Université de Lille, Villeneuve d'Ascq 59655, France.,Sciences Department-Chemistry, Pontifical Catholic University of Peru, Lima 32, Peru
| | - Dries Van Rompaey
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Ann Dansercoer
- VIB-UGent Center for Inflammation Research, Zwijnaarde, Ghent 9052, Belgium.,Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Isabel Vandenberghe
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Kris Pauwels
- VIB-VUB Center for Structural Biology, Brussels 1050, Belgium.,Structural Biology Brussels, Bio-Engineering Sciences Department, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Ghent 9000, Belgium
| | - Bart N Lambrecht
- VIB-UGent Center for Inflammation Research, Zwijnaarde, Ghent 9052, Belgium.,Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Hamida Hammad
- VIB-UGent Center for Inflammation Research, Zwijnaarde, Ghent 9052, Belgium.,Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Zwijnaarde, Ghent 9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde, Ghent 9052, Belgium
| | - Guy Lippens
- Unité de Glycobiologie Structurale et Fonctionnelle-CNRS UMR8576, Université de Lille, Villeneuve d'Ascq 59655, France.,LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse 31400, France
| | - Savvas N Savvides
- VIB-UGent Center for Inflammation Research, Zwijnaarde, Ghent 9052, Belgium.,Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
39
|
Borriello F, Iannone R, Di Somma S, Vastolo V, Petrosino G, Visconte F, Raia M, Scalia G, Loffredo S, Varricchi G, Galdiero MR, Granata F, Del Vecchio L, Portella G, Marone G. Lipopolysaccharide-Elicited TSLPR Expression Enriches a Functionally Discrete Subset of Human CD14+CD1c+Monocytes. THE JOURNAL OF IMMUNOLOGY 2017; 198:3426-3435. [DOI: 10.4049/jimmunol.1601497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/24/2017] [Indexed: 12/26/2022]
|
40
|
Qian J, Xu X, Ding J, Yin R, Sun Y, Xue C, Wang J, Ding C, Yu S, Liu X, Hu S, Wang C, Cong Y, Ding Z. Newcastle disease virus-like particles induce DC maturation through TLR4/NF-κB pathway and facilitate DC migration by CCR7-CCL19/CCL21 axis. Vet Microbiol 2017; 203:158-166. [PMID: 28619138 DOI: 10.1016/j.vetmic.2017.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 01/07/2023]
Abstract
Newcastle disease virus-like particles (NDV VLPs) are a potential candidate vaccine, as shown by eliciting specific immune response against NDV in mice and chickens. Activation of dendritic cells (DCs) is critical to initiate immune response. However, the mechanism of how NDV VLPs induce DC maturation and migration remains elusive. In this study, we found that NDV VLPs are efficient in DC activation by up-regulating surface MHC II and costimulatory molecules, and proinflammatory cytokines through the TLR4/NF-κB pathway. Furthermore, NDV VLPs elevated CCR7 expression on DCs, resulting in DC migration towards CCL19/CCL21 both in vitro and ex vivo. As a consequence of DC maturation and migration, CD4+ T cells were also activated in vivo, demonstrating increased intracellular IFN-γ and IL-4 levels. Together, these results present new insights for NDV VLPs induced DC maturation and migration, providing a better understanding of VLP-triggered innate immune responses.
Collapse
Affiliation(s)
- Jing Qian
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Xiaohong Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jiaxin Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Renfu Yin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yixue Sun
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Cong Xue
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jianzhong Wang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chunfeng Wang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| |
Collapse
|
41
|
Shi Z, Jiang W, Wang M, Wang X, Li X, Chen X, Qiao L. Inhibition of JAK/STAT pathway restrains TSLP-activated dendritic cells mediated inflammatory T helper type 2 cell response in allergic rhinitis. Mol Cell Biochem 2017; 430:161-169. [DOI: 10.1007/s11010-017-2963-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/28/2017] [Indexed: 12/24/2022]
|
42
|
Mining the Complex Family of Protein Tyrosine Phosphatases for Checkpoint Regulators in Immunity. Curr Top Microbiol Immunol 2017; 410:191-214. [PMID: 28929190 DOI: 10.1007/82_2017_68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The family of protein tyrosine phosphatases (PTPs) includes 107 genes in humans that are diverse in their structures and expression profiles. The majority are present in immune cells and play various roles in either inhibiting or promoting the duration and amplitude of signaling cascades. Several PTPs, including TC-PTP (PTPN2) and SHP-1 (PTPN6), have been recognized as being crucial for maintaining proper immune response and self-tolerance, and have gained recognition as true immune system checkpoint modulators. This chapter details the most recent literature on PTPs and immunity by examining their known functions in regulating signaling from either established checkpoint inhibitors or by their intrinsic properties, as modulators of the immune response. Notably, we review PTP regulatory properties in macrophages, antigen-presenting dendritic cells, and T cells. Overall, we present the PTP gene family as a remarkable source of novel checkpoint inhibitors wherein lies a great number of new targets for immunotherapies.
Collapse
|
43
|
Shen S, Li J, You H, Wu Z, Wu Y, Zhao Y, Zhu Y, Guo Q, Li X, Li R, Ma P, Yang X, Chen M. Oral exposure to diisodecyl phthalate aggravates allergic dermatitis by oxidative stress and enhancement of thymic stromal lymphopoietin. Food Chem Toxicol 2017; 99:60-69. [DOI: 10.1016/j.fct.2016.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/27/2016] [Accepted: 11/17/2016] [Indexed: 11/15/2022]
|
44
|
Zhang Y, Jin LP. Effects of TSLP on obstetrical and gynecological diseases. Am J Reprod Immunol 2016; 77. [PMID: 27976427 DOI: 10.1111/aji.12612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yuan Zhang
- Laboratory for Reproductive Immunology; Hospital of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Li-Ping Jin
- Laboratory for Reproductive Immunology; Hospital of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
- Clinical and Translational Research Center; Shanghai First Maternity and Infant Hospital; Tongji University School of Medicine; Shanghai China
| |
Collapse
|
45
|
Critical Role of Transcription Factor PU.1 in the Function of the OX40L/TNFSF4 Promoter in Dendritic Cells. Sci Rep 2016; 6:34825. [PMID: 27708417 PMCID: PMC5052589 DOI: 10.1038/srep34825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/19/2016] [Indexed: 11/15/2022] Open
Abstract
PU.1 is a hematopoietic lineage-specific transcription factor belonging to the Ets family. We investigated the role of PU.1 in the expression of OX40L in dendritic cells (DCs), because the regulatory mechanism of cell type-specific expression of OX40L, which is mainly restricted to antigen-presenting cells, is largely unknown despite the critical involvement in Th2 and Tfh development. PU.1 knockdown decreased the expression of OX40L in mouse DCs. Chromatin immunoprecipitation (ChIP) assays demonstrated that PU.1 constitutively bound to the proximal region of the OX40L promoter. Reporter assays and electrophoretic mobility shift assays revealed that PU.1 transactivated the OX40L promoter through direct binding to the most-proximal Ets motif. We found that this Ets motif is conserved between mouse and human, and that PU.1 bound to the human OX40L promoter in ChIP assay using human monocyte-derived DCs. ChIP assays based on ChIP-seq datasets revealed that PU.1 binds to several sites distant from the transcription start site on the OX40L gene in addition to the most-proximal site in mouse DCs. In the present study, the structure of the OX40L promoter regulated by PU.1 is determined. It is also suggested that PU.1 is involved in mouse OX40L expression via multiple binding sites on the gene.
Collapse
|
46
|
Irreversible electroporation inhibits pro-cancer inflammatory signaling in triple negative breast cancer cells. Bioelectrochemistry 2016; 113:42-50. [PMID: 27693939 DOI: 10.1016/j.bioelechem.2016.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022]
Abstract
Low-level electric fields have been demonstrated to induce spatial re-distribution of cell membrane receptors when applied for minutes or hours. However, there is limited literature on the influence on cell signaling with short transient high-amplitude pulses typically used in irreversible electroporation (IRE) for cancer treatment. Moreover, literature on signaling pertaining to immune cell trafficking after IRE is conflicting. We hypothesized that pulse parameters (field strength and exposure time) influence cell signaling and subsequently impact immune-cell trafficking. This hypothesis was tested in-vitro on triple negative breast cancer cells treated with IRE, where the effects of pulse parameters on key cell signaling factors were investigated. Importantly, real time PCR mRNA measurements and ELISA protein analyses revealed that thymic stromal lymphopoietin (TSLP) signaling was down regulated by electric field strengths above a critical threshold, irrespective of exposure times spanning those typically used clinically. Comparison with other treatments (thermal shock, chemical poration, kinase inhibitors) revealed that IRE has a unique effect on TSLP. Because TSLP signaling has been demonstrated to drive pro-cancerous immune cell phenotypes in breast and pancreatic cancers, our finding motivates further investigation into the potential use of IRE for induction of an anti-tumor immune response in vivo.
Collapse
|
47
|
Krämer B, Finnemann C, Sastre B, Lutz P, Glässner A, Wolter F, Goeser F, Kokordelis P, Kaczmarek D, Nischalke HD, Strassburg CP, Spengler U, Nattermann J. IL-28B Genetic Variants Determine the Extent of Monocyte-Induced Activation of NK Cells in Hepatitis C. PLoS One 2016; 11:e0162068. [PMID: 27583440 PMCID: PMC5008784 DOI: 10.1371/journal.pone.0162068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/17/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immuno-genetic studies suggest a functional link between NK cells and λ-IFNs. We recently showed that NK cells are negative for the IFN-λ receptor IFN-λR1 and do not respond to IFN-λ, suggesting a rather indirect association between IL-28B genotype and NK cell activity. METHODS A total of 75 HCV(+) patients and 67 healthy controls were enrolled into this study. IL-28B (rs12979860) and IFNL-4 (rs368234815) genotypes were determined by rtPCR. Total PBMC, monocytes, and NK cells were stimulated with IL-29, the TLR-7/8 agonist R848, or a combination of both. NK cell IFN-γ response was analysed by FACS. IL-12 and IL-18 secretion of monocytes was studied by ELISA. In blocking experiments anti-IL-12/anti-IL-18 were used. RESULTS Following stimulation of total PBMCs with R848 we found NK cell IFN- γ responses to vary with the IL-28B genotype, with carriers of a T/T genotype displaying the lowest frequency of IFN-γ(+)NK cells. When isolated NK cells were studied no such associations were observed, indicating an indirect association between IL-28B genotype and NK cell activity. Accordingly, we found R848-stimulated monocytes of patients with a T/T genotype to be significantly less effective in triggering NK cell IFN- γ production than monocytes from carriers of a non-T/T genotype. In line with these findings we observed monocytes from T/T patients to secrete significantly lower concentrations of IL-12 than monocytes from non-T/T individuals. CONCLUSIONS Our data indicate that monocytes from carriers of an IL-28B T/T genotype display a reduced ability to stimulate NK cell activity and, thus, provide a link between IL-28B genotype and NK functions.
Collapse
Affiliation(s)
- Benjamin Krämer
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Claudia Finnemann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Beatriz Sastre
- Department of Infectious Diseases, Institute for Health Research (IRYCIS), University Hospital Ramón y Cajal, Madrid, Spain
- AIDS Research Network (RIS-RETICS), Madrid, Spain
| | - Philipp Lutz
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Andreas Glässner
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Franziska Wolter
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Felix Goeser
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Pavlos Kokordelis
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Dominik Kaczmarek
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Hans-Dieter Nischalke
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Christian P. Strassburg
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| |
Collapse
|
48
|
Khan F, Niaz K, Maqbool F, Ismail Hassan F, Abdollahi M, Nagulapalli Venkata KC, Nabavi SM, Bishayee A. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update. Nutrients 2016; 8:529. [PMID: 27589790 PMCID: PMC5037516 DOI: 10.3390/nu8090529] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed.
Collapse
Affiliation(s)
- Fazlullah Khan
- Pharmaceutical Sciences Research Center, International Campus, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Kamal Niaz
- Pharmaceutical Sciences Research Center, International Campus, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Faheem Maqbool
- Pharmaceutical Sciences Research Center, International Campus, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Fatima Ismail Hassan
- Pharmaceutical Sciences Research Center, International Campus, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center, International Campus, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Kalyan C Nagulapalli Venkata
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL 33169, USA.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL 33169, USA.
| |
Collapse
|
49
|
Minderman H, Maguire O, O'Loughlin KL, Muhitch J, Wallace PK, Abrams SI. Total cellular protein presence of the transcription factor IRF8 does not necessarily correlate with its nuclear presence. Methods 2016; 112:84-90. [PMID: 27582125 DOI: 10.1016/j.ymeth.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/09/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023] Open
Abstract
The transcription factor interferon regulatory factor-8 (IRF8) plays an essential role in myeloid differentiation and lineage commitment, based largely on molecular and genetic studies. The detection of IRF8 in specific cell populations by flow cytometry (FCM) has the potential to provide new insights into normal and pathologic myelopoiesis, but critical validation of this protein-based approach, particularly in human samples, is lacking. In this study, the assessment of total cellular IRF8 presence was compared to its specific nuclear presence as assessed by imaging flow cytometry (IFC) analysis. Peptide neutralization of the IRF8-specific antibody that has been predominantly used to date in the literature served as a negative control for the immunofluorescent labeling. Expression of total IRF8 was analyzed by total cellular fluorescence analogous to the mean fluorescence intensity readout of conventional FCM. Additionally, specific nuclear fluorescence and the similarity score between the nuclear image (DAPI) and the corresponding IRF8 image for each cell were analyzed as parameters for nuclear localization of IRF8. IFC showed that peptide blocking eliminated binding of the IRF8 antibody in the nucleus. It also reduced cytoplasmic binding of the antibody but not to the extent observed in the nucleus. In agreement with the similarity score data, the total cellular IRF8 as well as nuclear IRF8 intensities decreased with peptide blocking. In healthy donor peripheral blood subpopulations and a positive control cell line (THP-1), the assessment of IRF8 by total cellular presence correlated well with its specific nuclear presence and correlated with the known distribution of IRF8 in these cells. In clinical samples of myeloid-derived suppressors cells derived from patients with renal carcinoma, however, total cellular IRF8 did not necessarily correlate with its nuclear presence. Discordance was primarily associated with peptide blocking having a proportionally greater effect on the IRF8 nuclear localization versus total fluorescence assessment. The data thus indicate that IRF8 can have cytoplasmic presence and that during disease its nuclear-cytoplasmic distribution may be altered, which may provide a basis for potential myeloid defects during certain pathologies.
Collapse
Affiliation(s)
- Hans Minderman
- Flow and Image Cytometry Shared Resource, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States.
| | - Orla Maguire
- Flow and Image Cytometry Shared Resource, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States
| | - Kieran L O'Loughlin
- Flow and Image Cytometry Shared Resource, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States
| | - Jason Muhitch
- Dept of Urology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States
| | - Paul K Wallace
- Flow and Image Cytometry Shared Resource, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States
| | - Scott I Abrams
- Dept of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States
| |
Collapse
|
50
|
Asahina R, Maeda S. A review of the roles of keratinocyte-derived cytokines and chemokines in the pathogenesis of atopic dermatitis in humans and dogs. Vet Dermatol 2016; 28:16-e5. [DOI: 10.1111/vde.12351] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Ryota Asahina
- Department of Veterinary Medicine; Faculty of Applied Biological Sciences; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| | - Sadatoshi Maeda
- Department of Veterinary Medicine; Faculty of Applied Biological Sciences; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|