1
|
Fiore VF, Almagro J, Fuchs E. Shaping epithelial tissues by stem cell mechanics in development and cancer. Nat Rev Mol Cell Biol 2025; 26:442-455. [PMID: 39881165 DOI: 10.1038/s41580-024-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function. Such coordination between stem cells and neighbouring cells dictates when cells divide, migrate and differentiate. Recent advances in measuring and manipulating the mechanical forces that act upon and are produced by stem cells are providing new insights into development and disease. In this Review, we discuss the mechanical forces involved when epithelial stem cells construct their microenvironment and what happens in cancer when stem cell niche mechanics are disrupted or dysregulated. As the skin has evolved to withstand the harsh mechanical pressures from the outside environment, we often use the stem cells of mammalian skin epithelium as a paradigm for adult stem cells shaping their surrounding tissues.
Collapse
Affiliation(s)
- Vincent F Fiore
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim, Ridgefield, CT, USA.
| | - Jorge Almagro
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Zhu H, Wang J, Liu Y, Wang X, Lu TJ, Xu F, Lin M. Estrogen attenuates stiffness-driven fibrotic signaling via transcriptional regulation. Biophys J 2025:S0006-3495(25)00286-3. [PMID: 40364520 DOI: 10.1016/j.bpj.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/19/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025] Open
Abstract
Fibrosis, marked by excessive extracellular matrix (ECM) accumulation, underlies functional decline in numerous diseases and often presents with sex-specific differences in severity. Although biochemical pathways have been widely studied, the contribution of mechanical cues-particularly ECM stiffness-to these disparities remains unclear. Here, we develop an integrative mechanobiological model to investigate how estrogen modulates stiffness-mediated fibrotic progression. The model reveals that ECM stiffness activates fibroblasts through two key pathways: a rapid nuclear translocation of mechanosensitive factors (MRTF and TAZ) and a delayed transforming growth factor β/Smad cascade, both of which enhance α-smooth muscle actin expression and matrix production. Moreover, we uncover a stiffness-induced "mechanical memory" effect, maintained through a miR-21/Smad feedback loop that sustains fibrotic signaling even after stiffness reduction. Estrogen, acting via estrogen receptor α, counteracts this process by promoting Smad degradation and interrupting the feedback loop, thereby dampening fibrosis. This work offers new insight into the mechanochemical regulation of sex-biased fibrosis and points to potential sex-specific therapeutic targets.
Collapse
Affiliation(s)
- Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Out-patient Department, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, P.R. China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|
3
|
Ly QK, Nguyen MT, Ngo THP, Lee W. Essential Role of Cortactin in Myogenic Differentiation: Regulating Actin Dynamics and Myocardin-Related Transcription Factor A-Serum Response Factor (MRTFA-SRF) Signaling. Int J Mol Sci 2024; 25:13564. [PMID: 39769327 PMCID: PMC11677934 DOI: 10.3390/ijms252413564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation. CTTN expression declined during myogenic differentiation, paralleling the reduction in MyoD, suggesting a potential role in the early stages of myogenesis. We also found that CTTN knockdown in C2C12 myoblasts reduced filamentous actin, enhanced globular actin levels, and inhibited the nuclear translocation of MRTFA, resulting in suppressed SRF activity. This led to the subsequent downregulation of myogenic regulatory factors, such as MyoD and MyoG. Furthermore, CTTN knockdown reduced the nuclear localization of YAP1, a mechanosensitive transcription factor, further supporting its regulatory roles in cell cycle and proliferation. Consequently, CTTN depletion impeded proliferation, differentiation, and myotube formation in C2C12 myoblasts, highlighting its dual role in the coordination of cell cycle regulation and myogenic differentiation of progenitor cells during myogenesis. This study identifies CTTN as an essential regulator of myogenic differentiation via affecting the actin remodeling-MRTFA-SRF signaling axis and cell proliferation.
Collapse
Affiliation(s)
- Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
| | - Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
| | - Thanh Huu Phan Ngo
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
- Section of Molecular and Cellular Medicine, Medical Institute of Dongguk University, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
4
|
West VC, Owen KE, Inguito KL, Ebron KMM, Reiner TN, Mirack CE, Le CH, de Cassia Marqueti R, Snipes S, Mousavizadeh R, King RE, Elliott DM, Parreno J. Actin Polymerization Status Regulates Tenocyte Homeostasis Through Myocardin-Related Transcription Factor-A. Cytoskeleton (Hoboken) 2024. [PMID: 39601363 DOI: 10.1002/cm.21962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
The actin cytoskeleton is a potent regulator of tenocyte homeostasis. However, the mechanisms by which actin regulates tendon homeostasis are not entirely known. This study examined the regulation of tenocyte molecule expression by actin polymerization via the globular (G-) actin-binding transcription factor, myocardin-related transcription factor-a (MRTF). We determined that decreasing the proportion of G-actin in tenocytes by treatment with TGFβ1 increases nuclear MRTF. These alterations in actin polymerization and MRTF localization coincided with favorable alterations to tenocyte gene expression. In contrast, latrunculin A increases the proportion of G-actin in tenocytes and reduces nuclear MRTF, causing cells to acquire a tendinosis-like phenotype. To parse out the effects of F-actin depolymerization from regulation by MRTF, we treated tenocytes with cytochalasin D. Exposure of cells to cytochalasin D increases the proportion of G-actin in tenocytes. However, as compared to latrunculin A, cytochalasin D has a differential effect on MRTF localization by increasing nuclear MRTF. This led to an opposing effect on the regulation of a subset of genes. The differential regulation of genes by latrunculin A and cytochalasin D suggests that actin signals through MRTF to regulate a specific subset of genes. By targeting the deactivation of MRTF through the inhibitor CCG1423, we verify that MRTF regulates Type I Collagen, Tenascin C, Scleraxis, and α-smooth muscle actin in tenocytes. Actin polymerization status is a potent regulator of tenocyte homeostasis through the modulation of several downstream pathways, including MRTF. Understanding the regulation of tenocyte homeostasis by actin may lead to new therapeutic interventions against tendinopathies, such as tendinosis.
Collapse
Affiliation(s)
- Valerie C West
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Kaelyn E Owen
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Kameron L Inguito
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Karl Matthew M Ebron
- Department of Kinesiology and Applied Physiology, University of DE, Newark, Delaware, USA
| | - Tori N Reiner
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Chloe E Mirack
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Christian H Le
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Steven Snipes
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Rouhollah Mousavizadeh
- Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Rylee E King
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Justin Parreno
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
5
|
Eder I, Yu V, Antonello J, Chen F, Gau D, Chawla P, Joy M, Lucas PC, Boone D, Lee AV, Roy P. mDia2 is an important mediator of MRTF-A-dependent regulation of breast cancer cell migration. Mol Biol Cell 2024; 35:ar133. [PMID: 39196658 PMCID: PMC11481706 DOI: 10.1091/mbc.e24-01-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/30/2024] Open
Abstract
Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type versus functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both two-dimensional and three-dimensional cell migration, while the SAP-domain function is important selectively for three-dimensional cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction with MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases versus primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human BC, justifying future development of specific small molecule inhibitors of the MRTF-SRF transcriptional complex as potential therapeutic agents in BC.
Collapse
Affiliation(s)
- Ian Eder
- Bioengineering, University of Pittsburgh, PA 15219
| | - Virginia Yu
- Bioengineering, University of Pittsburgh, PA 15219
| | | | - Fangyuan Chen
- School of Medicine, University of Pittsburgh, PA 15261
- School of Medicine, Tsinghua University, China, Beijing 100084
| | - David Gau
- Bioengineering, University of Pittsburgh, PA 15219
| | - Pooja Chawla
- Bioengineering, University of Pittsburgh, PA 15219
| | - Marion Joy
- Hillman Cancer Center, University of Pittsburgh, PA 15232
| | - Peter C. Lucas
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905
| | - David Boone
- Biomedical Informatics, University of Pittsburgh, PA 15206
| | | | - Partha Roy
- Bioengineering, University of Pittsburgh, PA 15219
- Pathology, University of Pittsburgh, PA 15213
| |
Collapse
|
6
|
West VC, Owen K, Inguito KL, Ebron KMM, Reiner T, Mirack CE, Le C, de Cassia Marqueti R, Snipes S, Mousavizadeh R, Elliott DM, Parreno J. Actin Polymerization Status Regulates Tendon Homeostasis through Myocardin-Related Transcription Factor-A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609684. [PMID: 39253450 PMCID: PMC11383320 DOI: 10.1101/2024.08.26.609684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The actin cytoskeleton is a potent regulator of tenocyte homeostasis. However, the mechanisms by which actin regulates tendon homeostasis are not entirely known. This study examined the regulation of tenocyte molecule expression by actin polymerization via the globular (G-) actin-binding transcription factor, myocardin-related transcription factor-a (MRTF). We determined that decreasing the proportion of G-actin in tenocytes by treatment with TGFβ1 increases nuclear MRTF. These alterations in actin polymerization and MRTF localization coincided with favorable alterations to tenocyte gene expression. In contrast, latrunculin A increases the proportion of G-actin in tenocytes and reduces nuclear MRTF, causing cells to acquire a tendinosis-like phenotype. To parse out the effects of F-actin depolymerization from regulation by MRTF, we treated tenocytes with cytochalasin D. Similar to latrunculin A treatment, exposure of cells to cytochalasin D increases the proportion of G-actin in tenocytes. However, unlike latrunculin A treatment, cytochalasin D increases nuclear MRTF. Compared to latrunculin A treatment, cytochalasin D led to opposing effects on the expression of a subset of genes. The differential regulation of genes by latrunculin A and cytochalasin D suggests that actin signals through MRTF to regulate a specific subset of genes. By targeting the deactivation of MRTF through the inhibitor CCG1423, we verify that MRTF regulates Type I Collagen, Tenascin C, Scleraxis, and α-smooth muscle actin in tenocytes. Actin polymerization status is a potent regulator of tenocyte homeostasis through the modulation of several downstream pathways, including MRTF. Understanding the regulation of tenocyte homeostasis by actin may lead to new therapeutic interventions against tendinopathies, such as tendinosis.
Collapse
Affiliation(s)
- Valerie C. West
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kaelyn Owen
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kameron L. Inguito
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | - Tori Reiner
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Chloe E. Mirack
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Christian Le
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Steven Snipes
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Rouhollah Mousavizadeh
- Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Justin Parreno
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
7
|
Eder I, Yu V, Antonello J, Chen F, Gau D, Chawla P, Joy M, Lucas P, Boone D, Lee AV, Roy P. mDia2 is an important mediator of MRTF-A-dependent regulation of breast cancer cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572883. [PMID: 38187641 PMCID: PMC10769385 DOI: 10.1101/2023.12.21.572883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type vs functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both 2D and 3D cell migration, while the SAP-domain function is important selectively for 3D cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction of MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases vs primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human breast cancer, justifying future development of a specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer. SIGNIFICANCE Actin cytoskeletal dysregulation gives rise to metastatic dissemination of cancer cells. This study mechanistically investigates the impact of specific functional disruption of MRTF (a transcriptional co-factor of SRF) on breast cancer cell migration.This study establishes a novel mechanism linking mDia2 to MRTF-dependent regulation of cell migration and provides clinical evidence for the association between MRTF activity and increased malignancy in human breast cancer.Findings from these studies justify future exploration of specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer.
Collapse
|
8
|
Panagaki F, Tapia-Rojo R, Zhu T, Milmoe N, Paracuellos P, Board S, Mora M, Walker J, Rostkova E, Stannard A, Infante E, Garcia-Manyes S. Structural anisotropy results in mechano-directional transport of proteins across nuclear pores. NATURE PHYSICS 2024; 20:1180-1193. [PMID: 39036650 PMCID: PMC11254768 DOI: 10.1038/s41567-024-02438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/08/2024] [Indexed: 07/23/2024]
Abstract
The nuclear pore complex regulates nucleocytoplasmic transport by means of a tightly synchronized suite of biochemical reactions. The physicochemical properties of the translocating cargos are emerging as master regulators of their shuttling dynamics. As well as being affected by molecular weight and surface-exposed amino acids, the kinetics of the nuclear translocation of protein cargos also depend on their nanomechanical properties, yet the mechanisms underpinning the mechanoselectivity of the nuclear pore complex are unclear. Here we show that proteins with locally soft regions in the vicinity of the nuclear-localization sequence exhibit higher nuclear-import rates, and that such mechanoselectivity is specifically impaired upon knocking down nucleoporin 153, a key protein in the nuclear pore complex. This allows us to design a short, easy-to-express and chemically inert unstructured peptide tag that accelerates the nuclear-import rate of stiff protein cargos. We also show that U2OS osteosarcoma cells expressing the peptide-tagged myocardin-related transcription factor import this mechanosensitive protein to the nucleus at higher rates and display faster motility. Locally unstructured regions lower the free-energy barrier of protein translocation and might offer a control mechanism for nuclear mechanotransduction.
Collapse
Affiliation(s)
- Fani Panagaki
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Rafael Tapia-Rojo
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Tong Zhu
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Natalie Milmoe
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Patricia Paracuellos
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Stephanie Board
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Marc Mora
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Jane Walker
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Elena Rostkova
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Andrew Stannard
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Elvira Infante
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Sergi Garcia-Manyes
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| |
Collapse
|
9
|
Guo Y, Cao Y, Jardin BD, Mazumdar N, Guo C, Yang L, Lin J, Chen Z, Ma Q, Zhao M, Dong E, Pu WT. A shared role of the myocardin-family transcriptional coactivators in cardiomyocyte maturation. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2939-2942. [PMID: 37574527 PMCID: PMC10914308 DOI: 10.1007/s11427-023-2385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 08/15/2023]
Affiliation(s)
- Yuxuan Guo
- Peking University Health Science Center, School of Basic Medical Sciences, Beijing, 100191, China.
- Peking University Institute of Cardiovascular Sciences, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| | - Yangpo Cao
- Boston Children's Hospital, Department of Cardiology, Boston, MA, 02115, USA
| | - Blake D Jardin
- Boston Children's Hospital, Department of Cardiology, Boston, MA, 02115, USA
| | - Neil Mazumdar
- Boston Children's Hospital, Department of Cardiology, Boston, MA, 02115, USA
| | - Congting Guo
- Peking University Health Science Center, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University Institute of Cardiovascular Sciences, Beijing, 100191, China
| | - Luzi Yang
- Peking University Health Science Center, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University Institute of Cardiovascular Sciences, Beijing, 100191, China
| | - Junsen Lin
- Peking University Health Science Center, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University Institute of Cardiovascular Sciences, Beijing, 100191, China
| | - Zhan Chen
- Peking University Health Science Center, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University Institute of Cardiovascular Sciences, Beijing, 100191, China
| | - Qing Ma
- Boston Children's Hospital, Department of Cardiology, Boston, MA, 02115, USA
| | - Mingming Zhao
- Peking University Third Hospital, Department of Cardiology and Institute of Vascular Medicine, Beijing, 100191, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Erdan Dong
- Peking University Institute of Cardiovascular Sciences, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
- Peking University Third Hospital, Department of Cardiology and Institute of Vascular Medicine, Beijing, 100191, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
| | - William T Pu
- Boston Children's Hospital, Department of Cardiology, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
10
|
Singh AK, Rai A, Weber A, Gericke M, Janssen KP, Moser M, Posern G. MRTF-A gain-of-function in mice impairs homeostatic renewal of the intestinal epithelium. Cell Death Dis 2023; 14:639. [PMID: 37770456 PMCID: PMC10539384 DOI: 10.1038/s41419-023-06158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
The actin-regulated transcription factor MRTF-A represents a central relay in mechanotransduction and controls a subset of SRF-dependent target genes. However, gain-of-function studies in vivo are lacking. Here we characterize a conditional MRTF-A transgenic mouse model. While MRTF-A gain-of-function impaired embryonic development, induced expression of constitutively active MRTF-A provoked rapid hepatocyte ballooning and liver failure in adult mice. Specific expression in the intestinal epithelium caused an erosive architectural distortion, villus blunting, cryptal hyperplasia and colonic inflammation, resulting in transient weight loss. Organoids from transgenic mice repeatedly induced in vitro showed impaired self-renewal and defective cryptal compartments. Mechanistically, MRTF-A gain-of-function decreased proliferation and increased apoptosis, but did not induce fibrosis. MRTF-A targets including Acta2 and Pai-1 were induced, whereas markers of stem cells and differentiated cells were reduced. Our results suggest that activated MRTF-A in the intestinal epithelium shifts the balance between proliferation, differentiation and apoptosis.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany.
| | - Amrita Rai
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Anja Weber
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Martin Gericke
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
- Institute of Anatomy, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, 81675, Munich, Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany.
| |
Collapse
|
11
|
Andrews JC, Mok JW, Kanca O, Jangam S, Tifft C, Macnamara EF, Russell BE, Wang LK, Nelson SF, Bellen HJ, Yamamoto S, Malicdan MCV, Wangler MF. De novo variants in MRTFB have gain-of-function activity in Drosophila and are associated with a novel neurodevelopmental phenotype with dysmorphic features. Genet Med 2023; 25:100833. [PMID: 37013900 PMCID: PMC11533975 DOI: 10.1016/j.gim.2023.100833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
PURPOSE Myocardin-related transcription factor B (MRTFB) is an important transcriptional regulator, which promotes the activity of an estimated 300 genes but is not known to underlie a Mendelian disorder. METHODS Probands were identified through the efforts of the Undiagnosed Disease Network. Because the MRTFB protein is highly conserved between vertebrate and invertebrate model organisms, we generated a humanized Drosophila model expressing the human MRTFB protein in the same spatial and temporal pattern as the fly gene. Actin binding assays were used to validate the effect of the variants on MRTFB. RESULTS Here, we report 2 pediatric probands with de novo variants in MRTFB (p.R104G and p.A91P) and mild dysmorphic features, intellectual disability, global developmental delays, speech apraxia, and impulse control issues. Expression of the variants within wing tissues of a fruit fly model resulted in changes in wing morphology. The MRTFBR104G and MRTFBA91P variants also display a decreased level of actin binding within critical RPEL domains, resulting in increased transcriptional activity and changes in the organization of the actin cytoskeleton. CONCLUSION The MRTFBR104G and MRTFBA91P variants affect the regulation of the protein and underlie a novel neurodevelopmental disorder. Overall, our data suggest that these variants act as a gain of function.
Collapse
Affiliation(s)
- Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Sharayu Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Cynthia Tifft
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Ellen F Macnamara
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Bianca E Russell
- Division of Genetics, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA; Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Lee-Kai Wang
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Stanley F Nelson
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - May Christine V Malicdan
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD.
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX.
| |
Collapse
|
12
|
Jeruzalska E, Mazur AJ. The Role of non-muscle actin paralogs in cell cycle progression and proliferation. Eur J Cell Biol 2023; 102:151315. [PMID: 37099935 DOI: 10.1016/j.ejcb.2023.151315] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Uncontrolled cell proliferation leads to several pathologies, including cancer. Thus, this process must be tightly regulated. The cell cycle accounts for cell proliferation, and its progression is coordinated with changes in cell shape, for which cytoskeleton reorganization is responsible. Rearrangement of the cytoskeleton allows for its participation in the precise division of genetic material and cytokinesis. One of the main cytoskeletal components is filamentous actin-based structures. Mammalian cells have at least six actin paralogs, four of which are muscle-specific, while two, named β- and γ-actin, are abundantly present in all types of cells. This review summarizes the findings that establish the role of non-muscle actin paralogs in regulating cell cycle progression and proliferation. We discuss studies showing that the level of a given non-muscle actin paralog in a cell influences the cell's ability to progress through the cell cycle and, thus, proliferation. Moreover, we elaborate on the non-muscle actins' role in regulating gene transcription, interactions of actin paralogs with proteins involved in controlling cell proliferation, and the contribution of non-muscle actins to different structures in a dividing cell. The data cited in this review show that non-muscle actins regulate the cell cycle and proliferation through varying mechanisms. We point to the need for further studies addressing these mechanisms.
Collapse
Affiliation(s)
- Estera Jeruzalska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| |
Collapse
|
13
|
Rubio LS, Gross DS. Dynamic coalescence of yeast Heat Shock Protein genes bypasses the requirement for actin. Genetics 2023; 223:iyad006. [PMID: 36659814 PMCID: PMC10319981 DOI: 10.1093/genetics/iyad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/22/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Nuclear actin has been implicated in dynamic chromatin rearrangements in diverse eukaryotes. In mammalian cells, it is required to reposition double-strand DNA breaks to enable homologous recombination repair and to enhance transcription by facilitating RNA Pol II recruitment to gene promoters. In the yeast Saccharomyces cerevisiae, nuclear actin modulates interphase chromosome dynamics and is required to reposition the induced INO1 gene to the nuclear periphery. Here, we have investigated the role of actin in driving intergenic interactions between Heat Shock Factor 1 (Hsf1)-regulated Heat Shock Protein (HSP) genes in budding yeast. These genes, dispersed on multiple chromosomes, dramatically reposition following exposure of cells to acute thermal stress, leading to their clustering within dynamic biomolecular condensates. Using an auxin-induced degradation strategy, we found that conditional depletion of nucleators of either linear or branched F-actin (Bni1/Bnr1 and Arp2, respectively) had little or no effect on heat shock-induced HSP gene coalescence or transcription. In addition, we found that pretreatment of cells with latrunculin A, an inhibitor of both filamentous and monomeric actin, failed to affect intergenic interactions between activated HSP genes and their heat shock-induced intragenic looping and folding. Moreover, latrunculin A pretreatment had little effect on HSP gene expression at either RNA or protein levels. In notable contrast, we confirmed that repositioning of activated INO1 to the nuclear periphery and its proper expression do require actin. Collectively, our work suggests that transcriptional activation and 3D genome restructuring of thermally induced, Hsf1-regulated genes can occur in the absence of actin.
Collapse
Affiliation(s)
- Linda S Rubio
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - David S Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
14
|
Lijuan T, Xiaolu C, Xin W, Yuying H, Xi L, Xiliang Y, Ting W, Zhenli M, Yu Z. Identification of ligustrazine-based analogs of piperlongumine as potential anti-ischemic stroke agents. Fitoterapia 2023; 165:105398. [PMID: 36563762 DOI: 10.1016/j.fitote.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Piper longum has a specific aroma and spicy taste. In addition to edible value, current studies have shown that piper longum also has pharmacological activities such as anti-platelet aggregation, anti-inflammation, anti-cancer, anti-diabetes and anti-depression. Piperlongumine is an alkaloid isolated from Piper longum. Based on our previous studies, four Piperlongumine analogs were synthesized, and their anti-platelet aggregation activities were evaluated. Among them, compound 8 has the strongest anti-platelet aggregation activity. Therefore, compound 8 was docked with stroke-related protein targets, and it was found that compound 8 had good binding affinity to MRTF-A complex and Bcl-2. Through animal experiments, it was found that compound 8 could significantly improve the pathological damage of brain tissue after ischemia and could increase the expression of MRTF-A and Bcl-2 in cerebral cortex in rats. These results suggest that compound 8 may have a good inhibitory effect on apoptosis and tissue structurel disorders induced by cerebral ischemia-reperfusion, so as to reduce the injury caused by ischemic stroke.
Collapse
Affiliation(s)
- Tan Lijuan
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Cao Xiaolu
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Wan Xin
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - He Yuying
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Lan Xi
- Sunshine Guojian Pharmaceutical (Shanghai) Co., Ltd., Shanghai 201203, China
| | - Yang Xiliang
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Wang Ting
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Min Zhenli
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Zou Yu
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China.
| |
Collapse
|
15
|
Faria L, Canato S, Jesus TT, Gonçalves M, Guerreiro PS, Lopes CS, Meireles I, Morais-de-Sá E, Paredes J, Janody F. Activation of an actin signaling pathway in pre-malignant mammary epithelial cells by P-cadherin is essential for transformation. Dis Model Mech 2023; 16:dmm049652. [PMID: 36808468 PMCID: PMC9983776 DOI: 10.1242/dmm.049652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Alterations in the expression or function of cell adhesion molecules have been implicated in all steps of tumor progression. Among those, P-cadherin is highly enriched in basal-like breast carcinomas, playing a central role in cancer cell self-renewal, collective cell migration and invasion. To establish a clinically relevant platform for functional exploration of P-cadherin effectors in vivo, we generated a humanized P-cadherin Drosophila model. We report that actin nucleators, Mrtf and Srf, are main P-cadherin effectors in fly. We validated these findings in a human mammary epithelial cell line with conditional activation of the SRC oncogene. We show that, prior to promoting malignant phenotypes, SRC induces a transient increase in P-cadherin expression, which correlates with MRTF-A accumulation, its nuclear translocation and the upregulation of SRF target genes. Moreover, knocking down P-cadherin, or preventing F-actin polymerization, impairs SRF transcriptional activity. Furthermore, blocking MRTF-A nuclear translocation hampers proliferation, self-renewal and invasion. Thus, in addition to sustaining malignant phenotypes, P-cadherin can also play a major role in the early stages of breast carcinogenesis by promoting a transient boost of MRTF-A-SRF signaling through actin regulation.
Collapse
Affiliation(s)
- Lídia Faria
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
- Master Programme in Oncology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Sara Canato
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
- Physiology and Cancer Program, Champalimaud Foundation, Avenida de Brasília, 1400-038 Lisboa, Portugal
| | - Tito T. Jesus
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
| | - Margarida Gonçalves
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Patrícia S. Guerreiro
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
- Vector B2B - Drug Developing - Associação Para Investigação em Biotecnologia, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Carla S. Lopes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Isabel Meireles
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
| | - Eurico Morais-de-Sá
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Paredes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
- FMUP, Medical Faculty of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Florence Janody
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, n 45, 4200-135 Porto, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780-156 Oeiras, Portugal
| |
Collapse
|
16
|
Regulation of nuclear actin levels and MRTF/SRF target gene expression during PC6.3 cell differentiation. Exp Cell Res 2022; 420:113356. [PMID: 36122768 DOI: 10.1016/j.yexcr.2022.113356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022]
Abstract
Actin has important functions in both cytoplasm and nucleus of the cell, with active nuclear transport mechanisms maintaining the cellular actin balance. Nuclear actin levels are subject to regulation during many cellular processes from cell differentiation to cancer. Here we show that nuclear actin levels increase upon differentiation of PC6.3 cells towards neuron-like cells. Photobleaching experiments demonstrate that this increase is due to decreased nuclear export of actin during cell differentiation. Increased nuclear actin levels lead to decreased nuclear localization of MRTF-A, a well-established transcription cofactor of SRF. In line with MRTF-A localization, transcriptomics analysis reveals that MRTF/SRF target gene expression is first transiently activated, but then substantially downregulated during PC6.3 cell differentiation. This study therefore describes a novel cellular context, where regulation of nuclear actin is utilized to tune MRTF/SRF target gene expression during cell differentiation.
Collapse
|
17
|
Matsuda A, Mofrad MRK. On the nuclear pore complex and its emerging role in cellular mechanotransduction. APL Bioeng 2022; 6:011504. [PMID: 35308827 PMCID: PMC8916845 DOI: 10.1063/5.0080480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear pore complex (NPC) is a large protein assembly that perforates the nuclear envelope and provides a sole gateway for traffic between the cytoplasm and the nucleus. The NPC controls the nucleocytoplasmic transport by selectively allowing cargoes such as proteins and mRNA to pass through its central channel, thereby playing a vital role in protecting the nuclear component and regulating gene expression and protein synthesis. The selective transport through the NPC originates from its exquisite molecular structure featuring a large scaffold and the intrinsically disordered central channel domain, but the exact mechanism underlying the selective transport remains elusive and is the subject of various, often conflicting, hypotheses. Moreover, recent studies have suggested a new role for the NPC as a mechanosensor, where the NPC changes its channel diameter depending on the nuclear envelope tension, altering the molecular transportability through this nanopore. In this mini-review, we summarize the current understandings of the selective nature of the NPC and discuss its emerging role in cellular mechanotransduction.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
18
|
Gao J, Nakamura F. Actin-Associated Proteins and Small Molecules Targeting the Actin Cytoskeleton. Int J Mol Sci 2022; 23:2118. [PMID: 35216237 PMCID: PMC8880164 DOI: 10.3390/ijms23042118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Actin-associated proteins (AAPs) act on monomeric globular actin (G-actin) and polymerized filamentous actin (F-actin) to regulate their dynamics and architectures which ultimately control cell movement, shape change, division; organelle localization and trafficking. Actin-binding proteins (ABPs) are a subset of AAPs. Since actin was discovered as a myosin-activating protein (hence named actin) in 1942, the protein has also been found to be expressed in non-muscle cells, and numerous AAPs continue to be discovered. This review article lists all of the AAPs discovered so far while also allowing readers to sort the list based on the names, sizes, functions, related human diseases, and the dates of discovery. The list also contains links to the UniProt and Protein Atlas databases for accessing further, related details such as protein structures, associated proteins, subcellular localization, the expression levels in cells and tissues, mutations, and pathology. Because the actin cytoskeleton is involved in many pathological processes such as tumorigenesis, invasion, and developmental diseases, small molecules that target actin and AAPs which hold potential to treat these diseases are also listed.
Collapse
Affiliation(s)
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
19
|
Sidorenko E, Sokolova M, Pennanen AP, Kyheröinen S, Posern G, Foisner R, Vartiainen MK. Lamina-associated polypeptide 2α is required for intranuclear MRTF-A activity. Sci Rep 2022; 12:2306. [PMID: 35145145 PMCID: PMC8831594 DOI: 10.1038/s41598-022-06135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2α neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2α is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2α. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2α in transcriptional regulation.
Collapse
Affiliation(s)
| | - Maria Sokolova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Antti P Pennanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Salla Kyheröinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Roland Foisner
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | | |
Collapse
|
20
|
Abstract
Actin is a highly conserved protein in mammals. The actin dynamics is regulated by actin-binding proteins and actin-related proteins. Nuclear actin and these regulatory proteins participate in multiple nuclear processes, including chromosome architecture organization, chromatin remodeling, transcription machinery regulation, and DNA repair. It is well known that the dysfunctions of these processes contribute to the development of cancer. Moreover, emerging evidence has shown that the deregulated actin dynamics is also related to cancer. This chapter discusses how the deregulation of nuclear actin dynamics contributes to tumorigenesis via such various nuclear events.
Collapse
Affiliation(s)
- Yuanjian Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
He ZQ, Yuan XW, Lu ZB, Li YH, Li YF, Liu X, Wang L, Zhang Y, Zhou Q, Li W. Pharmacological regulation of tissue fibrosis by targeting the mechanical contraction of myofibroblasts. FUNDAMENTAL RESEARCH 2022; 2:37-47. [PMID: 38933917 PMCID: PMC11197686 DOI: 10.1016/j.fmre.2021.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
Fibrosis can occur in almost all tissues and organs and affects normal physiological function, which may have serious consequences, such as organ failure. However, there are currently no effective, broad-spectrum drugs suitable for clinical application. Revealing the process of fibrosis is an important prerequisite for the development of new therapeutic targets and drugs. Studies have shown that the limiting of myofibroblast activation or the promoting of their elimination can ameliorate fibrosis. However, it has not been reported whether a direct decrease in cell contraction can inhibit fibrosis in vivo. Here, we have shown that (-)-blebbistatin (Ble), a non-muscle myosin Ⅱ inhibitor, displayed significant inhibition of liver fibrosis in different chronic injury mouse models in vivo. We found that Ble reduced the stiffness of fibrotic tissues from the early stage, which reduced the extent of myofibroblast activation induced by a stiffer extracellular matrix (ECM). Moreover, Ble also reduced the activation of myofibroblasts induced by TGF-β1, which is the most potent pro-fibrotic cytokine. Mechanistically, Ble reduced mechanical contraction, which inhibited the assembly of stress fibers, decreased the F/G-actin ratio, and led to the exnucleation of YAP1 and MRTF-A. Finally, we verified its broad-spectrum antifibrotic effect in multiple models of organ fibrosis. Our results highlighted the important role of mechanical contraction in myofibroblast activation and maintenance, rather than just a characteristic of activation, suggesting that it may be a potential target to explore broad-spectrum drugs for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng-Quan He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Wei Yuan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
| | - Zong-Bao Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Huan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- The First Hospital of Jilin University, Changchun Jilin 130021, China
| | - Yu-Fei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Marco S, Neilson M, Moore M, Perez-Garcia A, Hall H, Mitchell L, Lilla S, Blanco GR, Hedley A, Zanivan S, Norman JC. Nuclear-capture of endosomes depletes nuclear G-actin to promote SRF/MRTF activation and cancer cell invasion. Nat Commun 2021; 12:6829. [PMID: 34819513 PMCID: PMC8613289 DOI: 10.1038/s41467-021-26839-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Signals are relayed from receptor tyrosine kinases (RTKs) at the cell surface to effector systems in the cytoplasm and nucleus, and coordination of this process is important for the execution of migratory phenotypes, such as cell scattering and invasion. The endosomal system influences how RTK signalling is coded, but the ways in which it transmits these signals to the nucleus to influence gene expression are not yet clear. Here we show that hepatocyte growth factor, an activator of MET (an RTK), promotes Rab17- and clathrin-dependent endocytosis of EphA2, another RTK, followed by centripetal transport of EphA2-positive endosomes. EphA2 then mediates physical capture of endosomes on the outer surface of the nucleus; a process involving interaction between the nuclear import machinery and a nuclear localisation sequence in EphA2's cytodomain. Nuclear capture of EphA2 promotes RhoG-dependent phosphorylation of the actin-binding protein, cofilin to oppose nuclear import of G-actin. The resulting depletion of nuclear G-actin drives transcription of Myocardin-related transcription factor (MRTF)/serum-response factor (SRF)-target genes to implement cell scattering and the invasive behaviour of cancer cells.
Collapse
Affiliation(s)
- Sergi Marco
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | | | - Arantxa Perez-Garcia
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Holly Hall
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | - Sergio Lilla
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | - Ann Hedley
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | - Sara Zanivan
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Jim C Norman
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
23
|
Johnson RT, Solanki R, Warren DT. Mechanical programming of arterial smooth muscle cells in health and ageing. Biophys Rev 2021; 13:757-768. [PMID: 34745374 PMCID: PMC8553715 DOI: 10.1007/s12551-021-00833-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Arterial smooth muscle cells (ASMCs), the predominant cell type within the arterial wall, detect and respond to external mechanical forces. These forces can be derived from blood flow (i.e. pressure and stretch) or from the supporting extracellular matrix (i.e. stiffness and topography). The healthy arterial wall is elastic, allowing the artery to change shape in response to changes in blood pressure, a property known as arterial compliance. As we age, the mechanical forces applied to ASMCs change; blood pressure and arterial wall rigidity increase and result in a reduction in arterial compliance. These changes in mechanical environment enhance ASMC contractility and promote disease-associated changes in ASMC phenotype. For mechanical stimuli to programme ASMCs, forces must influence the cell's load-bearing apparatus, the cytoskeleton. Comprised of an interconnected network of actin filaments, microtubules and intermediate filaments, each cytoskeletal component has distinct mechanical properties that enable ASMCs to respond to changes within the mechanical environment whilst maintaining cell integrity. In this review, we discuss how mechanically driven cytoskeletal reorganisation programmes ASMC function and phenotypic switching.
Collapse
Affiliation(s)
| | - Reesha Solanki
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ UK
| | - Derek T. Warren
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ UK
| |
Collapse
|
24
|
Nucleocytoplasmic Shuttling of the Mechanosensitive Transcription Factors MRTF and YAP /TAZ. Methods Mol Biol 2021; 2299:197-216. [PMID: 34028745 DOI: 10.1007/978-1-0716-1382-5_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Myocardin-related transcription factor (MRTF) and the paralogous Hippo pathway effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are transcriptional co-activators that play pivotal roles in myofibroblast generation and activation, and thus the pathogenesis of organ fibrosis. They are regulated by a variety of chemical and mechanical fibrogenic stimuli, primarily at the level of their nucleocytoplasmic shuttling. In this chapter we describe the tools and protocols that allow for exact, quantitative, and automated determination and analysis of the nucleocytoplasmic distribution of endogenous or heterologously expressed MRTF and YAP/TAZ, measured in large cell populations. Dynamic monitoring of nucleocytoplasmic ratios of transcription factors is a novel and important approach, suitable to address both the structural requirements and the regulatory mechanisms underlying transcription factor traffic and the consequent reprogramming of gene expression during fibrogenesis.
Collapse
|
25
|
Record J, Saeed MB, Venit T, Percipalle P, Westerberg LS. Journey to the Center of the Cell: Cytoplasmic and Nuclear Actin in Immune Cell Functions. Front Cell Dev Biol 2021; 9:682294. [PMID: 34422807 PMCID: PMC8375500 DOI: 10.3389/fcell.2021.682294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Actin cytoskeletal dynamics drive cellular shape changes, linking numerous cell functions to physiological and pathological cues. Mutations in actin regulators that are differentially expressed or enriched in immune cells cause severe human diseases known as primary immunodeficiencies underscoring the importance of efficienct actin remodeling in immune cell homeostasis. Here we discuss recent findings on how immune cells sense the mechanical properties of their environement. Moreover, while the organization and biochemical regulation of cytoplasmic actin have been extensively studied, nuclear actin reorganization is a rapidly emerging field that has only begun to be explored in immune cells. Based on the critical and multifaceted contributions of cytoplasmic actin in immune cell functionality, nuclear actin regulation is anticipated to have a large impact on our understanding of immune cell development and functionality.
Collapse
Affiliation(s)
- Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Mezida B. Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
Miranda MZ, Lichner Z, Szászi K, Kapus A. MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci 2021; 22:ijms22116040. [PMID: 34204945 PMCID: PMC8199744 DOI: 10.3390/ijms22116040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022] Open
Abstract
A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. Acting through both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated) role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Maria Zena Miranda
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
27
|
Ulferts S, Prajapati B, Grosse R, Vartiainen MK. Emerging Properties and Functions of Actin and Actin Filaments Inside the Nucleus. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a040121. [PMID: 33288541 PMCID: PMC7919393 DOI: 10.1101/cshperspect.a040121] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent years have provided considerable insights into the dynamic nature of the cell nucleus, which is constantly reorganizing its genome, controlling its size and shape, as well as spatiotemporally orchestrating chromatin remodeling and transcription. Remarkably, it has become clear that the ancient and highly conserved cytoskeletal protein actin plays a crucial part in these processes. However, the underlying mechanisms, regulations, and properties of actin functions inside the nucleus are still not well understood. Here we summarize the diverse and distinct roles of monomeric and filamentous actin as well as the emerging roles for actin dynamics inside the nuclear compartment for genome organization and nuclear architecture.
Collapse
Affiliation(s)
- Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology I, University of Freiburg, 79104 Freiburg, Germany
| | - Bina Prajapati
- Institute of Biotechnology, Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology I, University of Freiburg, 79104 Freiburg, Germany,Centre for Integrative Biological Signalling Studies (CIBSS), 79104 Freiburg, Germany
| | - Maria K. Vartiainen
- Institute of Biotechnology, Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
28
|
Zhao B, Grosse R. Optogenetic Control of Myocardin-Related Transcription Factor A Subcellular Localization and Transcriptional Activity Steers Membrane Blebbing and Invasive Cancer Cell Motility. Adv Biol (Weinh) 2021; 5:e2000208. [PMID: 34028209 DOI: 10.1002/adbi.202000208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/08/2021] [Indexed: 11/12/2022]
Abstract
The myocardin-related transcription factor A (MRTF-A) controls the transcriptional activity of the serum response factor (SRF) in a tightly controlled actin-dependent manner. In turn, MRTF-A is crucial for many actin-dependent processes including adhesion, migration, and contractility and has emerged as a novel target for anti-tumor strategies. MRTF-A rapidly shuttles between cytoplasmic and nuclear compartment via dynamic actin interactions within its N-terminal RPEL domain. Here, optogenetics is used to spatiotemporally control MRTF-A nuclear localization by blue light using the light-oxygen-voltage-sensing domain 2-domain based system LEXY (light-inducible nuclear export system). It is found that light-regulated nuclear export of MRTF-A occurs within 10-20 min. Importantly, MRTF-A-LEXY shuttling is independent of perturbations of actin dynamics. Furthermore, light-regulation of MRTF-A-LEXY is reversible and repeatable for several cycles of illumination and its subcellular localization correlates with SRF transcriptional activity. As a consequence, optogenetic control of MRTF-A subcellular localization determines subsequent cytoskeletal dynamics such as non-apoptotic plasma membrane blebbing as well as invasive tumor-cell migration through 3D collagen matrix. This data demonstrates robust optogenetic regulation of MRTF as a powerful tool to control SRF-dependent transcription as well as cell motile behavior.
Collapse
Affiliation(s)
- Bing Zhao
- Institute of Experimental and Clinical Pharmacology and Toxicology I, University of Freiburg, Freiburg, 79104, Germany.,Centre for Integrative Biological Signaling Studies (CIBSS), Freiburg, 79104, Germany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology I, University of Freiburg, Freiburg, 79104, Germany.,Centre for Integrative Biological Signaling Studies (CIBSS), Freiburg, 79104, Germany
| |
Collapse
|
29
|
Superficial and deep zone articular chondrocytes exhibit differences in actin polymerization status and actin-associated molecules in vitro. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100071. [DOI: 10.1016/j.ocarto.2020.100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
|
30
|
Abstract
The presence of actin in the nucleus has been a matter of debate for many years. In recent years many important roles of actin in the nucleus (transcriptional regulation, chromatin remodeling, DNA repair, cell division, maintenance of nuclear architecture) have been identified, and the precise control of nuclear actin levels has been demonstrated. The vital importance of the actin driven processes in the cell make it highly likely that dysregulation of nuclear actin dynamics and structure can be linked to tumor induction and -progression. In this chapter I summarize our current knowledge about nuclear actin in the cancer context.
Collapse
|
31
|
Ishibashi Y, Shoji S, Ihara D, Kubo Y, Tanaka T, Tanabe H, Hakamata T, Miyata T, Satou N, Sakagami H, Mizuguchi M, Kikuchi K, Fukuchi M, Tsuda M, Takasaki I, Tabuchi A. Expression of SOLOIST/MRTFB i4, a novel neuronal isoform of the mouse serum response factor coactivator myocardin-related transcription factor-B, negatively regulates dendritic complexity in cortical neurons. J Neurochem 2020; 159:762-777. [PMID: 32639614 DOI: 10.1111/jnc.15122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/11/2019] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Megakaryoblastic leukemia 2 (MKL2)/myocardin-related transcription factor-B (MRTFB), a serum response factor (SRF) coactivator, is an important regulator of gene expression and neuronal morphology. Here, we show that different mouse MRTFB splice isoforms, including a novel fourth MRTFB isoform named spliced neuronal long isoform of SRF transcriptional coactivator (SOLOIST)/MRTFB isoform 4 (MRTFB i4), play distinct roles in this process. SOLOIST/MRTFB i4 has a short exon that encodes 21 amino acid residues ahead of the first RPXXXEL (RPEL) motif in MRTFB isoform 3. Quantitative PCR revealed that SOLOIST/MRTFB i4 and isoform 1 were enriched in the forebrain and neurons, and up-regulated during brain development. Conversely, isoform 3 was detected in various tissues, including both neurons and astrocytes, and was down-regulated in the developing brain. Reporter assays supported the SRF-coactivator function of SOLOIST/MRTFB i4 as well as isoform 1. Acute expression of MRTFB isoform 1, but not isoform 3 or SOLOIST/MRTFB i4, in neuronal cells within 24 hr drastically increased endogenous immediate early gene [c-fos, egr1, and activity-regulated cytoskeleton-associated protein] expression, but not endogenous actinin α1, β-actin, gelsolin, or srf gene expression measured by qPCR. Over-expression of SOLOIST/MRTFB i4 reduced the dendritic complexity of cortical neurons, whereas over-expression of isoform 1 increased this complexity. Co-expression of isoform 1 and SOLOIST/MRTFB i4 in cortical neurons revealed that isoform 1 competitively counteracted down-regulation by SOLOIST/MRTFB i4. Our findings indicate that MRTFB isoforms have unique expression patterns and differential effects on gene expression and dendritic complexity, which contribute to shaping neuronal circuits, at least in part.
Collapse
Affiliation(s)
- Yuta Ishibashi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shizuku Shoji
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Laboratory of Molecular Neurobiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yukimi Kubo
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takuro Tanaka
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroki Tanabe
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomoyuki Hakamata
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomoaki Miyata
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Natsumi Satou
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mineyuki Mizuguchi
- Laboratory of Structural Biology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Keietsu Kikuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Present affiliation: Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Laboratory of Molecular Neurobiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
32
|
Nuclear actin dynamics in gene expression and genome organization. Semin Cell Dev Biol 2020; 102:105-112. [DOI: 10.1016/j.semcdb.2019.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/28/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022]
|
33
|
Misek SA, Appleton KM, Dexheimer TS, Lisabeth EM, Lo RS, Larsen SD, Gallo KA, Neubig RR. Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells. Oncogene 2020; 39:1466-1483. [PMID: 31659259 PMCID: PMC7024013 DOI: 10.1038/s41388-019-1074-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 01/04/2023]
Abstract
Over half of cutaneous melanoma tumors have BRAFV600E/K mutations. Acquired resistance to BRAF inhibitors (BRAFi) remains a major hurdle in attaining durable therapeutic responses. In this study we demonstrate that ~50-60% of melanoma cell lines with vemurafenib resistance acquired in vitro show activation of RhoA family GTPases. In BRAFi-resistant melanoma cell lines and tumors, activation of RhoA is correlated with decreased expression of melanocyte lineage genes. Using a machine learning approach, we built gene expression-based models to predict drug sensitivity for 265 common anticancer compounds. We then projected these signatures onto the collection of TCGA cutaneous melanoma and found that poorly differentiated tumors were predicted to have increased sensitivity to multiple Rho kinase (ROCK) inhibitors. Two transcriptional effectors downstream of Rho, MRTF and YAP1, are activated in the RhoHigh BRAFi-resistant cell lines, and resistant cells are more sensitive to inhibition of these transcriptional mechanisms. Taken together, these results support the concept of targeting Rho-regulated gene transcription pathways as a promising therapeutic approach to restore sensitivity to BRAFi-resistant tumors or as a combination therapy to prevent the onset of drug resistance.
Collapse
Affiliation(s)
- S A Misek
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - K M Appleton
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - T S Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - E M Lisabeth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - R S Lo
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - S D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - R R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
- Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, 48824, MI, USA.
| |
Collapse
|
34
|
Infante E, Stannard A, Board SJ, Rico-Lastres P, Panagaki F, Beedle AE, Rajan VS, Rostkova E, Lezamiz A, Wang YJ, Breen SG, Shanahan C, Roca-Cusachs P, Garcia-Manyes S. The mechanical stability of proteins regulates their translocation rate into the cell nucleus. NATURE PHYSICS 2019; 15:973-981. [PMID: 37484710 PMCID: PMC7614795 DOI: 10.1038/s41567-019-0551-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/10/2019] [Indexed: 07/25/2023]
Abstract
The translocation of mechanosensitive transcription factors (TFs) across the nuclear envelope is a crucial step in cellular mechanotransduction. Yet the molecular mechanisms by which external mechanical cues control the nuclear shuttling dynamics of TFs through the nuclear pore complex (NPC) to activate gene expression are poorly understood. Here, we show that the nuclear import rate of myocardin-related transcription factor A (MRTFA) - a protein that regulates cytoskeletal dynamics via the activation of the TF serum response factor (SRF) - inversely correlates with the protein's nanomechanical stability and does not relate to its thermodynamic stability. Tagging MRTFA with mechanically resistant proteins results in the downregulation of SRF-mediated myosin light-chain 9 (MYL9) gene expression and subsequent slowing down of cell migration. We conclude that the mechanical unfolding of proteins regulates their nuclear translocation rate through the NPC, and highlight the role of the NPC as a selective mechanosensor able to discriminate forces as low as ~10 pN. The modulation of the mechanical stability of TFs may represent a new strategy for the control of gene expression.
Collapse
Affiliation(s)
- Elvira Infante
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
| | - Andrew Stannard
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
| | - Stephanie J. Board
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
| | - Palma Rico-Lastres
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
| | - Fani Panagaki
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
| | - Amy E.M. Beedle
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
| | - Vinoth Sundar Rajan
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
| | - Elena Rostkova
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
| | - Ainhoa Lezamiz
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
| | - Yong Jian Wang
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
| | - Samuel Gulaidi Breen
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
| | - Catherine Shanahan
- Cardiovascular Division, James Black Centre, King’s College London, London SE5 9NU, UK Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and
| | - Pere Roca-Cusachs
- Technology (BIST) and University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Garcia-Manyes
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, WC2R 2LS, London, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
35
|
Diring J, Mouilleron S, McDonald NQ, Treisman R. RPEL-family rhoGAPs link Rac/Cdc42 GTP loading to G-actin availability. Nat Cell Biol 2019; 21:845-855. [PMID: 31209295 PMCID: PMC6960015 DOI: 10.1038/s41556-019-0337-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/29/2019] [Indexed: 12/29/2022]
Abstract
RPEL proteins, which contain the G-actin-binding RPEL motif, coordinate cytoskeletal processes with actin dynamics. We show that the ArhGAP12- and ArhGAP32-family GTPase-activating proteins (GAPs) are RPEL proteins. We determine the structure of the ArhGAP12/G-actin complex, and show that G-actin contacts the RPEL motif and GAP domain sequences. G-actin inhibits ArhGAP12 GAP activity, and this requires the G-actin contacts identified in the structure. In B16 melanoma cells, ArhGAP12 suppresses basal Rac and Cdc42 activity, F-actin assembly, invadopodia formation and experimental metastasis. In this setting, ArhGAP12 mutants defective for G-actin binding exhibit more effective downregulation of Rac GTP loading following HGF stimulation and enhanced inhibition of Rac-dependent processes, including invadopodia formation. Potentiation or disruption of the G-actin/ArhGAP12 interaction, by treatment with the actin-binding drugs latrunculin B or cytochalasin D, has corresponding effects on Rac GTP loading. The interaction of G-actin with RPEL-family rhoGAPs thus provides a negative feedback loop that couples Rac activity to actin dynamics.
Collapse
Affiliation(s)
- Jessica Diring
- Signalling and Transcription Group, The Francis Crick Institute, London, UK
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Neil Q McDonald
- Signalling and Structural Biology Group, The Francis Crick Institute, London, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK
| | - Richard Treisman
- Signalling and Transcription Group, The Francis Crick Institute, London, UK.
| |
Collapse
|
36
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Sidorenko E, Vartiainen MK. Nucleoskeletal regulation of transcription: Actin on MRTF. Exp Biol Med (Maywood) 2019; 244:1372-1381. [PMID: 31142145 DOI: 10.1177/1535370219854669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF) form an essential transcriptional complex that regulates the expression of many cytoskeletal genes in response to dynamic changes in the actin cytoskeleton. The nucleoskeleton, a “dynamic network of networks,” consists of numerous proteins that contribute to nuclear shape and to its various functions, including gene expression. In this review, we will discuss recent work that has identified many nucleoskeletal proteins, such as nuclear lamina and lamina-associated proteins, nuclear actin, and the linker of the cytoskeleton and nucleoskeleton complex as important regulators of MRTF-A/SRF transcriptional activity, especially in the context of mechanical control of transcription. Impact statement Regulation of gene expression is a fundamental cellular process that ensures the appropriate response of a cell to its surroundings. Alongside biochemical signals, mechanical cues, such as substrate rigidity, have been recognized as key regulators of gene expression. Nucleoskeletal components play an important role in mechanoresponsive transcription, particularly in controlling the activity of MRTF-A/SRF transcription factors. This ensures that the cell can balance the internal and external mechanical forces by fine-tuning the expression of cytoskeletal genes.
Collapse
Affiliation(s)
- Ekaterina Sidorenko
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
38
|
Brand CS, Lighthouse JK, Trembley MA. Protective transcriptional mechanisms in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol 2019; 132:1-12. [PMID: 31042488 DOI: 10.1016/j.yjmcc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Heart failure is the leading cause of morbidity and mortality worldwide. Several lines of evidence suggest that physical activity and exercise can pre-condition the heart to improve the response to acute cardiac injury such as myocardial infarction or ischemia/reperfusion injury, preventing the progression to heart failure. It is becoming more apparent that cardioprotection is a concerted effort between multiple cell types and converging signaling pathways. However, the molecular mechanisms of cardioprotection are not completely understood. What is clear is that the mechanisms underlying this protection involve acute activation of transcriptional activators and their corresponding gene expression programs. Here, we review the known stress-dependent transcriptional programs that are activated in cardiomyocytes and cardiac fibroblasts to preserve function in the adult heart after injury. Focus is given to prominent transcriptional pathways such as mechanical stress or reactive oxygen species (ROS)-dependent activation of myocardin-related transcription factors (MRTFs) and transforming growth factor beta (TGFβ), and gene expression that positively regulates protective PI3K/Akt signaling. Together, these pathways modulate both beneficial and pathological responses to cardiac injury in a cell-specific manner.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California - San Diego, 9500 Gilman Drive, Biomedical Sciences Building, La Jolla, CA 92093, USA.
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14624, USA.
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Kassianidou E, Kalita J, Lim RYH. The role of nucleocytoplasmic transport in mechanotransduction. Exp Cell Res 2019; 377:86-93. [PMID: 30768931 DOI: 10.1016/j.yexcr.2019.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
Abstract
Cells integrate mechanical and biochemical signals via a process called mechanotransduction to generate essential gene expression patterns in space and time. This is vital for cell migration and proliferation as well as tissue morphogenesis and remodeling. While the force-sensing and force-transducing mechanisms are generally known, it remains unclear how mechanoresponsive transcription factors (TFs) are selectively translocated into the nucleus upon force activation. Such TFs include Yes-Associated Protein (YAP), Myocardin Related Transcription Factors (MRTFs), Hypoxia Induced Factors (HIFs) and others. Here, we discuss how the nucleocytoplasmic transport machinery intersects with mechanoresponsive TFs to facilitate their selective transport through nuclear pore complexes.
Collapse
Affiliation(s)
- Elena Kassianidou
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| |
Collapse
|
40
|
Kluge F, Weissbach J, Weber A, Stradal T, Posern G. Regulation of MRTF-A by JMY via a nucleation-independent mechanism. Cell Commun Signal 2018; 16:86. [PMID: 30463620 PMCID: PMC6249979 DOI: 10.1186/s12964-018-0299-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/13/2018] [Indexed: 11/23/2022] Open
Abstract
Background MRTF-A (myocardin-related transcription factor A) is a coactivator for SRF-mediated gene expression. The activity of MRTF-A is critically dependent on the dissociation of G-actin from N-terminal RPEL motifs. MRTF-SRF induction often correlates with enhanced polymerization of F-actin. Here we investigate MRTF regulation by the multifunctional JMY protein, which contains three WASP/verprolin homology 2 (WH2/V) domains and facilitates Arp2/3-dependent and -independent actin nucleation. Methods Co-immunoprecipitation experiments, immunofluorescence and luciferase reporter assays were combined with selective inhibitors to investigate the effect of JMY and its domains on MRTF-A in NIH 3 T3 mouse fibroblasts. Results JMY induced MRTF-A transcriptional activity and enhanced its nuclear translocation. Unexpectedly, MRTF-A was hyperactivated when the Arp2/3-recruiting CA region of JMY was deleted or mutated, suggesting an autoinhibitory mechanism for full-length JMY. Moreover, isolated WH2/V domains which are unable to nucleate actin were sufficient for nuclear accumulation and SRF activation. Recombinant WH2/V regions of JMY biochemically competed with MRTF-A for actin binding. Activation of MRTF-A by JMY was unaffected by Arp3 knockdown, by an Arp2/3 inhibitor, and by latrunculin which disassembles cellular F-actin. Restriction of JMY to the nucleus abrogated its MRTF-A activation. Finally, JMY RNAi reduced basal and stimulated transcriptional activation via MRTF-A. Conclusions Our results suggest that JMY activates MRTF-SRF independently of F-actin via WH2/V-mediated competition with the RPEL region for G-actin binding in the cytoplasm. Furthermore, the C-terminal region facilitates an autoinhibitory effect on full-length JMY, possibly by intramolecular folding.
Collapse
Affiliation(s)
- Franziska Kluge
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Julia Weissbach
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Anja Weber
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany.
| |
Collapse
|
41
|
Gau D, Roy P. SRF'ing and SAP'ing - the role of MRTF proteins in cell migration. J Cell Sci 2018; 131:131/19/jcs218222. [PMID: 30309957 DOI: 10.1242/jcs.218222] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Actin-based cell migration is a fundamental cellular activity that plays a crucial role in a wide range of physiological and pathological processes. An essential feature of the remodeling of actin cytoskeleton during cell motility is the de novo synthesis of factors involved in the regulation of the actin cytoskeleton and cell adhesion in response to growth-factor signaling, and this aspect of cell migration is critically regulated by serum-response factor (SRF)-mediated gene transcription. Myocardin-related transcription factors (MRTFs) are key coactivators of SRF that link actin dynamics to SRF-mediated gene transcription. In this Review, we provide a comprehensive overview of the role of MRTF in both normal and cancer cell migration by discussing its canonical SRF-dependent as well as its recently emerged SRF-independent functions, exerted through its SAP domain, in the context of cell migration. We conclude by highlighting outstanding questions for future research in this field.
Collapse
Affiliation(s)
- David Gau
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA .,Department of Pathology, University of Pittsburgh, PA, 15213, USA
| |
Collapse
|
42
|
Zhang Z, Jiang F, Zeng L, Wang X, Tu S. PHACTR1 regulates oxidative stress and inflammation to coronary artery endothelial cells via interaction with NF-κB/p65. Atherosclerosis 2018; 278:180-189. [PMID: 30293016 DOI: 10.1016/j.atherosclerosis.2018.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/06/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Genome-wide association studies have showed that genetic variants in phosphatase and actin regulator 1 (PHACTR1) are associated with coronary artery disease and myocardial infarction. However, the underlying mechanism of PHACTR1 in atherosclerosis remains unknown. METHODS Immunoblots were performed to evaluate the expression of PHACTR1 and phosphorylation of NF-κB signaling. Reactive oxygen species (ROS) labeled with DCFH-DA were assessed by flow cytometry. Fluorescence microscope was used to detect the translocation of p65 in human coronary artery endothelial cells (HACECs). Co-immunoprecipitation was performed to determine the interaction of PHACTR1 with MRTF-A. RESULTS The mRNA and protein levels of PHACTR1 were markedly increased in carotid plaquescompared with normal carotid arteries. Immunofluorescence staining indicated that PHACTR1 was constitutively expressed in endothelial cells in carotid plaques. Knockdown of PHACTR1 reduced excessive ICAM-1, VCAM-1 and VE-cadherin expression induced by oxidized low density lipoprotein (ox-LDL) in HCAECs. Additionally, silencing PHACTR1 alleviated p47phox phosphorylation and intracellular oxidative stress reflected by the reduction of ROS. Molecular experiments revealed that knockdown of PHACTR1 attenuated NF-κB activity without affecting IκBα and IKKα/β phosphorylation. In contrast, nuclear translation of p65 was blocked by depletion of PHACTR1. Furthermore, co-immunoprecipitation showed that PHACTR1 interacted with MRTF-A and p65 in HCAECs. Knockdown of MRTF-A suppressed the interaction of PHACTR1 with p65, subsequently blocking the nuclear translocation of p65. CONCLUSIONS Our finding suggest that silencing PHACTR1 alleviates the nuclear accumulation of p65 and NF-κB via interaction with MRTF-A, ensuing attenuating oxidative stress and inflammation in HCAECs.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, China
| | - Fenglin Jiang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, China
| | - Lixiong Zeng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, China
| | - Xiaoyan Wang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, China
| | - Shan Tu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, China.
| |
Collapse
|
43
|
Hinojosa LS, Holst M, Baarlink C, Grosse R. MRTF transcription and Ezrin-dependent plasma membrane blebbing are required for entotic invasion. J Cell Biol 2017; 216:3087-3095. [PMID: 28774893 PMCID: PMC5626544 DOI: 10.1083/jcb.201702010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/06/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
Entosis is a nonapoptotic form of cell death initiated by actomyosin-dependent homotypic cell-in-cell invasion that can be observed in malignant exudates during tumor progression. We previously demonstrated formin-mediated actin dynamics at the rear of the invading cell as well as nonapoptotic plasma membrane (PM) blebbing in this cellular motile process. Although the contractile actin cortex involved in bleb-driven motility is well characterized, a role for transcriptional regulation in this process has not been studied. Here, we explore the impact of the actin-controlled MRTF-SRF (myocardin-related transcription factor-serum response factor) pathway for sustained PM blebbing and entotic invasion. We find that cortical blebbing is tightly coupled to MRTF nuclear shuttling to promote the SRF transcriptional activity required for entosis. Furthermore, PM blebbing triggered SRF-mediated up-regulation of the metastasis-associated ERM protein Ezrin. Notably, Ezrin is sufficient and important to sustain bleb dynamics for cell-in-cell invasion when SRF is suppressed. Our results highlight the critical role of the actin-regulated MRTF transcriptional pathway for bleb-associated invasive motility, such as during entosis.
Collapse
Affiliation(s)
- Laura Soto Hinojosa
- Institute of Pharmacology, Biochemisch-Pharmakologisches Centrum Marburg, University of Marburg, Marburg, Germany.,Deutsche Forschungsgemeinschaft Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, University of Marburg, Marburg, Germany
| | - Manuel Holst
- Institute of Pharmacology, Biochemisch-Pharmakologisches Centrum Marburg, University of Marburg, Marburg, Germany
| | - Christian Baarlink
- Institute of Pharmacology, Biochemisch-Pharmakologisches Centrum Marburg, University of Marburg, Marburg, Germany
| | - Robert Grosse
- Institute of Pharmacology, Biochemisch-Pharmakologisches Centrum Marburg, University of Marburg, Marburg, Germany .,Deutsche Forschungsgemeinschaft Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, University of Marburg, Marburg, Germany
| |
Collapse
|
44
|
Seifert A, Posern G. Tightly controlled MRTF-A activity regulates epithelial differentiation during formation of mammary acini. Breast Cancer Res 2017; 19:68. [PMID: 28592291 PMCID: PMC5463372 DOI: 10.1186/s13058-017-0860-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/25/2017] [Indexed: 01/06/2023] Open
Abstract
Background Myocardin-related transcription factors (MRTF) A and B link actin dynamics and mechanotransduction to gene expression. In mice, MRTF-A is involved in mammary gland differentiation, but its role in human mammary epithelial cells remains unclear. Methods Three-dimensional cultures of human mammary epithelial MCF10A cells were used to model acinar morphogenesis. Stable MRTF-A knockdown, MRTF-A/B rescue and MRTF-A/B overexpression was established to characterize the functional role during morphogenesis using confocal microscopy and expression analysis. Breast cancer patient databases were analyzed for MRTF-A expression. Results We showed that a precise temporal control of MRTFs is required for normal morphogenesis of MCF10A mammary acini. MRTF transcriptional activity, but not their protein amounts, is transiently induced during 3D acini formation. MRTF-A knockdown dramatically reduces acini size and prevents lumen formation. These effects are rescued by re-expression of MRTF-A, and partially by MRTF-B. Conversely, overexpression of MRTF-A and MRTF-B increases acini size, resulting in irregular spheroids without lumen and defective apico-basal polarity. These phenotypes correlate with deregulated expression of cell cycle inhibitors p21/Waf1, p27/Kip1 and altered phosphorylation of retinoblastoma protein. In MRTF overexpressing spheroids, proliferation and apoptosis are simultaneously increased at late stages, whilst neither occurs in control acini. MRTFs interfere with anoikis of the inner cells and cause an integrin switch from α6 to α5, repression of E-cadherin and induction of mesenchymal markers vimentin, Snai2 and Zeb1. Moreover, MRTF-overexpressing spheroids are insensitive to alteration in matrix stiffness. In two breast cancer cohorts, high expression of MRTF-A and known target genes was associated with decreased patient survival. Conclusion MRTF-A is required for proliferation and formation of mammary acini from luminal epithelial cells. Conversely, elevated MRTF activity results in pre-malignant spheroid formation due to defective proliferation, polarity loss and epithelial-mesenchymal transition. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0860-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anja Seifert
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany.
| |
Collapse
|
45
|
Willer MK, Carroll CW. Substrate stiffness-dependent regulation of the SRF-Mkl1 co-activator complex requires the inner nuclear membrane protein Emerin. J Cell Sci 2017; 130:2111-2118. [PMID: 28576971 DOI: 10.1242/jcs.197517] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/13/2017] [Indexed: 01/05/2023] Open
Abstract
The complex comprising serum response factor (SRF) and megakaryoblastic leukemia 1 protein (Mkl1) promotes myofibroblast differentiation during wound healing. SRF-Mkl1 is sensitive to the mechanical properties of the extracellular environment; but how cells sense and transduce mechanical cues to modulate SRF-Mkl1-dependent gene expression is not well understood. Here, we demonstrate that the nuclear lamina-associated inner nuclear membrane protein Emerin stimulates SRF-Mkl1-dependent gene activity in a substrate stiffness-dependent manner. Specifically, Emerin was required for Mkl1 nuclear accumulation and maximal SRF-Mkl1-dependent gene expression in response to serum stimulation of cells grown on stiff substrates but was dispensable on more compliant substrates. Focal adhesion area was also reduced in cells lacking Emerin, consistent with a role for Emerin in sensing substrate stiffness. Expression of a constitutively active form of Mkl1 bypassed the requirement for Emerin in SRF-Mkl1-dependent gene expression and reversed the focal adhesion defects evident in EmdKO fibroblasts. Together, these data indicate that Emerin, a conserved nuclear lamina protein, couples extracellular matrix mechanics and SRF-Mkl1-dependent transcription.
Collapse
Affiliation(s)
- Margaret K Willer
- Dept. Of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
46
|
Herum KM, Lunde IG, McCulloch AD, Christensen G. The Soft- and Hard-Heartedness of Cardiac Fibroblasts: Mechanotransduction Signaling Pathways in Fibrosis of the Heart. J Clin Med 2017; 6:jcm6050053. [PMID: 28534817 PMCID: PMC5447944 DOI: 10.3390/jcm6050053] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Cardiac fibrosis, the excessive accumulation of extracellular matrix (ECM), remains an unresolved problem in most forms of heart disease. In order to be successful in preventing, attenuating or reversing cardiac fibrosis, it is essential to understand the processes leading to ECM production and accumulation. Cardiac fibroblasts are the main producers of cardiac ECM, and harbor great phenotypic plasticity. They are activated by the disease-associated changes in mechanical properties of the heart, including stretch and increased tissue stiffness. Despite much remaining unknown, an interesting body of evidence exists on how mechanical forces are translated into transcriptional responses important for determination of fibroblast phenotype and production of ECM constituents. Such mechanotransduction can occur at multiple cellular locations including the plasma membrane, cytoskeleton and nucleus. Moreover, the ECM functions as a reservoir of pro-fibrotic signaling molecules that can be released upon mechanical stress. We here review the current status of knowledge of mechanotransduction signaling pathways in cardiac fibroblasts that culminate in pro-fibrotic gene expression.
Collapse
Affiliation(s)
- Kate M Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
- Center for Heart Failure Research, Oslo University Hospital, 0450 Oslo, Norway.
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
- Center for Heart Failure Research, Oslo University Hospital, 0450 Oslo, Norway.
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
- Center for Heart Failure Research, Oslo University Hospital, 0450 Oslo, Norway.
| |
Collapse
|
47
|
Jehanno C, Flouriot G, Nicol-Benoît F, Le Page Y, Le Goff P, Michel D. Envisioning metastasis as a transdifferentiation phenomenon clarifies discordant results on cancer. Breast Dis 2017; 36:47-59. [PMID: 27177343 DOI: 10.3233/bd-150210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is generally conceived as a dedifferentiation process in which quiescent post-mitotic differentiated cells acquire stem-like properties and the capacity to proliferate. This view holds for the initial stages of carcinogenesis but is more questionable for advanced stages when the cells can transdifferentiate into the contractile phenotype associated to migration and metastasis. Singularly from this perspective, the hallmark of the most aggressive cancers would correspond to a genuine differentiation status, even if it is different from the original one. This seeming paradox could help reconciling discrepancies in the literature about the pro- or anti-tumoral functions of candidate molecules involved in cancer and whose actual effects depend on the tumoral grade. These ambiguities which are likely to concern a myriad of molecules and pathways, are illustrated here with the selected examples of chromatin epigenetics and myocardin-related transcription factors, using the human MCF10A and MCF7 breast cancer cells. Self-renewing stem like cells are characterized by a loose chromatin with low levels of the H3K9 trimetylation, but high levels of this mark can also appear in cancer cells acquiring a contractile-type differentiation state associated to metastasis. Similarly, the myocardin-related transcription factor MRTF-A is involved in metastasis and epithelial-mesenchymal transition, whereas this factor is naturally enriched in the quiescent cells which are precisely the most resistant to cancer: cardiomyocytes. These seeming paradoxes reflect the bistable epigenetic landscape of cancer in which dedifferentiated self-renewing and differentiated migrating states are incompatible at the single cell level, though coexisting at the population level.
Collapse
|
48
|
Kubiniok P, Lavoie H, Therrien M, Thibault P. Time-resolved Phosphoproteome Analysis of Paradoxical RAF Activation Reveals Novel Targets of ERK. Mol Cell Proteomics 2017; 16:663-679. [PMID: 28188228 DOI: 10.1074/mcp.m116.065128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Indexed: 12/19/2022] Open
Abstract
Small molecules targeting aberrant RAF activity, like vemurafenib (PLX4032), are highly effective against cancers harboring the V600E BRAF mutation and are now approved for clinical use against metastatic melanoma. However, in tissues showing elevated RAS activity and in RAS mutant tumors, these inhibitors stimulate RAF dimerization, resulting in inhibitor resistance and downstream "paradoxical" ERK activation. To understand the global signaling response of cancer cells to RAF inhibitors, we profiled the temporal changes of the phosphoproteome of two colon cancer cell lines (Colo205 and HCT116) that respond differently to vemurafenib. Comprehensive data mining and filtering identified a total of 37,910 phosphorylation sites, 660 of which were dynamically modulated upon treatment with vemurafenib. We established that 83% of these dynamic phosphorylation sites were modulated in accordance with the phospho-ERK profile of the two cell lines. Accordingly, kinase substrate prediction algorithms linked most of these dynamic sites to direct ERK1/2-mediated phosphorylation, supporting a low off-target rate for vemurafenib. Functional classification of target proteins indicated the enrichment of known (nuclear pore, transcription factors, and RAS-RTK signaling) and novel (Rho GTPases signaling and actin cytoskeleton) ERK-controlled functions. Our phosphoproteomic data combined with experimental validation established novel dynamic connections between ERK signaling and the transcriptional regulators TEAD3 (Hippo pathway), MKL1, and MKL2 (Rho serum-response elements pathway). We also confirm that an ERK-docking site found in MKL1 is directly antagonized by overlapping actin binding, defining a novel mechanism of actin-modulated phosphorylation. Altogether, time-resolved phosphoproteomics further documented vemurafenib selectivity and identified novel ERK downstream substrates.
Collapse
Affiliation(s)
- Peter Kubiniok
- From the ‡Institute for Research in Immunology and Cancer and.,Departments of §Chemistry
| | - Hugo Lavoie
- From the ‡Institute for Research in Immunology and Cancer and
| | - Marc Therrien
- From the ‡Institute for Research in Immunology and Cancer and .,‖Pathology and Cell Biology, and
| | - Pierre Thibault
- From the ‡Institute for Research in Immunology and Cancer and .,Departments of §Chemistry.,‡‡Biochemistry, Université de Montréal, C.P. 6128, Succursale Centreville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
49
|
Xia XD, Zhou Z, Yu XH, Zheng XL, Tang CK. Myocardin: A novel player in atherosclerosis. Atherosclerosis 2017; 257:266-278. [PMID: 28012646 DOI: 10.1016/j.atherosclerosis.2016.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
|
50
|
From morphogen to morphogenesis and back. Nature 2017; 541:311-320. [DOI: 10.1038/nature21348] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
|