1
|
Gao X, Jing D, Zhang Y, Zhu F, Yang Y, Zhou G. Unveiling the Role of GRK2: From Immune Regulation to Cancer Therapeutics. Mediators Inflamm 2025; 2025:8837640. [PMID: 40224487 PMCID: PMC11986179 DOI: 10.1155/mi/8837640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/04/2025] [Indexed: 04/15/2025] Open
Abstract
G protein-coupled receptors (GPCRs) represent humans' most prominent family of membrane proteins. In contrast, G protein-coupled receptor kinases (GRKs) play a pivotal role in the rapid desensitization of GPCRs. GRK2 is a particularly significant member of the GRK family. Recent studies have demonstrated that GRK2 primarily regulates immune cell function and homeostasis through receptor desensitization. Over the past decade, substantial progress has been made in elucidating the role of GRK2 in various human diseases. Notably, GRK2 is implicated in a range of autoimmune disorders, including rheumatoid arthritis (RA), inflammatory bowel disease (IBD), multiple sclerosis (MS), Sjögren's syndrome (SS), autoimmune myocarditis, hepatitis, and Graves' disease. Furthermore, emerging research has expanded our understanding of GRK2's involvement in cancer biology. Comprehensive investigations into the biological and pathological functions of GRK2 have facilitated the development of therapeutic strategies aimed at targeting the GRK2 signaling pathway in cancer, inflammation, and autoimmune diseases. Promising results have been observed with targeted biologics in preclinical and clinical trials. This review aims to elucidate the multifaceted role of GRK2 in immune function, autoimmune diseases, and cancer to uncover the remaining complexities associated with this kinase. A thorough understanding of GRK2 may position it as a potent therapeutic target in treating inflammation and cancer.
Collapse
Affiliation(s)
- Xizhuang Gao
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Yaowen Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| |
Collapse
|
2
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
3
|
Tosa M, Abe Y, Egawa S, Hatakeyama T, Iwaguro C, Mitsugi R, Moriyama A, Sano T, Ogawa R, Tanaka N. The HEDGEHOG-GLI1 pathway is important for fibroproliferative properties in keloids and as a candidate therapeutic target. Commun Biol 2023; 6:1235. [PMID: 38062202 PMCID: PMC10703807 DOI: 10.1038/s42003-023-05561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Keloids are benign fibroproliferative skin tumors caused by aberrant wound healing that can negatively impact patient quality of life. The lack of animal models has limited research on pathogenesis or developing effective treatments, and the etiology of keloids remains unknown. Here, we found that the characteristics of stem-like cells from keloid lesions and the surrounding dermis differ from those of normal skin. Furthermore, the HEDGEHOG (HH) signal and its downstream transcription factor GLI1 were upregulated in keloid patient-derived stem-like cells. Inhibition of the HH-GLI1 pathway reduced the expression of genes involved in keloids and fibrosis-inducing cytokines, including osteopontin. Moreover, the HH signal inhibitor vismodegib reduced keloid reconstituted tumor size and keloid-related gene expression in nude mice and the collagen bundle and expression of cytokines characteristic for keloids in ex vivo culture of keloid tissues. These results implicate the HH-GLI1 pathway in keloid pathogenesis and suggest therapeutic targets of keloids.
Collapse
Affiliation(s)
- Mamiko Tosa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yoshinori Abe
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Seiko Egawa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Tomoka Hatakeyama
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Chihiro Iwaguro
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ryotaro Mitsugi
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ayaka Moriyama
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Takumi Sano
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
4
|
Chen JF, Wu SW, Shi ZM, Hu B. Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 2023; 18:14. [PMID: 36782251 PMCID: PMC9923939 DOI: 10.1186/s13020-023-00719-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial-mesenchymal transition, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF-κB, MAPK, Wnt/β-catenin, epidermal growth factor receptors, p53, TGF-β, mTOR, Hedgehog, and immunomodulatory signaling pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new ideas for further exploring the pathogenesis of CRC and developing new anti-CRC drugs.
Collapse
Affiliation(s)
- Jin-Fang Chen
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Shi-Wei Wu
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Zi-Man Shi
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China. .,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Swiderska-Syn M, Mir-Pedrol J, Oles A, Schleuger O, Salvador AD, Greiner SM, Seward C, Yang F, Babcock BR, Shen C, Wynn DT, Sanchez-Mejias A, Gershon TR, Martin V, McCrea HJ, Lindsey KG, Krieg C, Rodriguez-Blanco J. Noncanonical activation of GLI signaling in SOX2 + cells drives medulloblastoma relapse. SCIENCE ADVANCES 2022; 8:eabj9138. [PMID: 35857834 PMCID: PMC9299538 DOI: 10.1126/sciadv.abj9138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/03/2022] [Indexed: 05/04/2023]
Abstract
SRY (sex determining region Y)-box 2 (SOX2)-labeled cells play key roles in chemoresistance and tumor relapse; thus, it is critical to elucidate the mechanisms propagating them. Single-cell transcriptomic analyses of the most common malignant pediatric brain tumor, medulloblastoma (MB), revealed the existence of astrocytic Sox2+ cells expressing sonic hedgehog (SHH) signaling biomarkers. Treatment with vismodegib, an SHH inhibitor that acts on Smoothened (Smo), led to increases in astrocyte-like Sox2+ cells. Using SOX2-enriched MB cultures, we observed that SOX2+ cells required SHH signaling to propagate, and unlike in the proliferative tumor bulk, the SHH pathway was activated in these cells downstream of Smo in an MYC-dependent manner. Functionally different GLI inhibitors depleted vismodegib-resistant SOX2+ cells from MB tissues, reduced their ability to further engraft in vivo, and increased symptom-free survival. Our results emphasize the promise of therapies targeting GLI to deplete SOX2+ cells and provide stable tumor remission.
Collapse
Affiliation(s)
- Marzena Swiderska-Syn
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Júlia Mir-Pedrol
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Alexander Oles
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Olga Schleuger
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - April D. Salvador
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sean M. Greiner
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Cara Seward
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Fan Yang
- Molecular Oncology Program, The Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Benjamin R. Babcock
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chen Shen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Daniel T. Wynn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Avencia Sanchez-Mejias
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Vanesa Martin
- Department of Anatomy and Cell Biology, University of Oviedo, Oviedo, Asturias 33006, Spain
| | - Heather J. McCrea
- Department of Clinical Neurological Surgery, University of Miami, Miami, FL 33136, USA
| | - Kathryn G. Lindsey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jezabel Rodriguez-Blanco
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Hashimoto M, Uesugi N, Osakabe M, Yanagawa N, Otsuka K, Kajiwara Y, Ueno H, Sasaki A, Sugai T. Expression Patterns of Microenvironmental Factors and Tenascin-C at the Invasive Front of Stage II and III Colorectal Cancer: Novel Tumor Prognostic Markers. Front Oncol 2021; 11:690816. [PMID: 34490089 PMCID: PMC8417423 DOI: 10.3389/fonc.2021.690816] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023] Open
Abstract
Background Biological markers expressed in cancer cells and the surrounding cancer-associated fibroblasts (CAF) can be used for prediction of patient prognosis in colorectal cancer (CRC). Here, we used immunohistochemical techniques to evaluate cancer cells’ expression of specific biomarkers that are closely associated with neoplastic progression. Methods Immunohistochemical markers included Ki-67, p53, β-catenin, MMP7, E-cadherin and HIF1-α. We also characterized microenvironmental markers expressed by CAF, including expression of α-smooth muscle actin, CD10, podoplanin, fibroblast specific protein 1, platelet derived growth factor β, fibroblast association protein, tenascin-C (TNC), ZEB1 and TWIST1. The study population consisted of 286 CRC patients with stage II and III disease. Stage II and III CRC were divided into a first and a second cohort (for validation). The CRCs were stratified using cluster analysis. To identify the utility of prognostic markers in stage II and III CRC, univariate and multivariate analyses were performed in both cohorts. Results Stage II and III CRCs were stratified into 3 subgroups. Specific subgroups were significantly correlated to disease-free survival using univariate and multivariate analyses in the first cohort. High expression of TNC was identified as a single prognostic marker in both cohorts by univariate and multivariate analyses. Conclusions We suggest that the presence of a specific subgroup defined by multiple markers can be used for prediction of CRC outcome in stages II and III. In addition, we showed that high expression of TNC was correlated with a poorer prognosis in stages II and III of CRC.
Collapse
Affiliation(s)
- Mai Hashimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan.,Department of Surgery, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Koki Otsuka
- Department of Surgery, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Yoshiki Kajiwara
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Akira Sasaki
- Department of Surgery, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun'yahabachou, Japan
| |
Collapse
|
7
|
Zárate AM, Espinosa-Bustos C, Guerrero S, Fierro A, Oyarzún-Ampuero F, Quest AFG, Di Marcotullio L, Loricchio E, Caimano M, Calcaterra A, González-Quiroz M, Aguirre A, Meléndez J, Salas CO. A New Smoothened Antagonist Bearing the Purine Scaffold Shows Antitumour Activity In Vitro and In Vivo. Int J Mol Sci 2021; 22:8372. [PMID: 34445078 PMCID: PMC8395040 DOI: 10.3390/ijms22168372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, synthesised, and biologically tested to provide an insight to their mechanism of action. Compound 4s was the most active and the best inhibitor of cell growth and selectively cytotoxic to cancer cells. 4s induced cell cycle arrest, apoptosis, a reduction in colony formation and downregulation of PTCH and GLI1 expression. BODIPY-cyclopamine displacement assays confirmed 4s is a SMO antagonist. In vivo, 4s strongly inhibited tumour relapse and metastasis of melanoma cells in mice. In vitro, 4s was more efficient than vismodegib to induce apoptosis in human cancer cells and that might be attributed to its dual ability to function as a SMO antagonist and apoptosis inducer.
Collapse
Affiliation(s)
- Ana María Zárate
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile;
| | - Simón Guerrero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad SEK (I3CBSEK), Fernando Manterola 0789, Providencia, Santiago 7520317, Chile
| | - Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| | - Felipe Oyarzún-Ampuero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Andrew F. G. Quest
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Program of Cellular and Molecular Biology, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Lucia Di Marcotullio
- Laboratory Affiliated to Insituto Pasteur Italia, Fondazione Cenci Bognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Elena Loricchio
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Miriam Caimano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Matías González-Quiroz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Adam Aguirre
- Laboratorio de Medicina Traslacional, Fundación Arturo López Pérez, Rancagua 878, Lower Fifth Floor, Providencia, Santiago 8320000, Chile;
| | - Jaime Meléndez
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile;
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| |
Collapse
|
8
|
Jiang C, Wang X, Teng B, Wang Z, Li F, Zhao Y, Guo Y, Zeng Q. Peptide-Targeted High-Density Lipoprotein Nanoparticles for Combinatorial Treatment against Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35248-35265. [PMID: 34284582 DOI: 10.1021/acsami.1c02074] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The sonic hedgehog (SHH) signaling pathway exhibits aberrant activation in triple-negative breast cancer (TNBC), wherein it regulates several malignant phenotypes related to tumor metastasis. GANT61, an inhibitor of the SHH signaling pathway, may offer promise when administered in combination with conventional chemotherapy to treat metastatic TNBC. However, poor bioavailability and substantial off-target toxicity limit its clinical application. To address these limitations, we designed a peptide-functionalized dual-targeting delivery system encapsulating paclitaxel and GANT61 in tLyP-1 peptide-modified reconstituted high-density lipoprotein nanoparticle (tLyP-1-rHDL-PTX/GANT61 NP) for metastatic TNBC treatment. The apolipoprotein A-1 and tLyP-1 peptide modified on the surface of nanoparticles enable the delivery system to target tumor cells by binding to the overexpressed scavenger receptor B type I and neuropilin-1 receptor. Moreover, the tLyP-1 peptide also enables the deep tumor penetration of nanoparticles further facilitating paclitaxel and GANT61 delivery. Increased cellular uptake of the nanoparticles was observed in both MDA-MB-231, BT-549 tumor cells, and their 3D tumor spheroids. A series of in vitro experiments reveal that GANT61 was able to suppress key metastasis-related tumor cell activities including angiogenesis, migration, invasion, and stemness. Owing to more effective drug administration, the metastasis suppression efficiency of GANT61 was significantly enhanced by the dual-targeting tLyP-1-rHDL delivery system. Meanwhile, the codelivery of paclitaxel and GANT61 by dual-targeting tLyP-1-rHDL nanoparticles demonstrated superior efficiency of disrupting proliferation and inducing apoptosis in tumor cells compared with drug solutions. In a spontaneous metastasis breast cancer NCG mice model, the tLyP-1-rHDL-PTX/GANT61 nanoparticles exhibited highly tumor-specific distribution and result in significant inhibition of the primary tumor growth and dramatic reduction of lung metastasis without obvious side effects. The present work suggests that a combination of the SHH signaling pathway suppression and chemotherapy assisted by peptide-functionalized targeting tLyP-1-rHDL nanoparticles may provide a promising strategy for metastatic TNBC treatment.
Collapse
Affiliation(s)
- Chuli Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xingyue Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Biyun Teng
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhe Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fenghe Li
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Guo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Qiu Zeng
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Ruan T, Sun J, Liu W, Prinz RA, Peng D, Liu X, Xu X. H1N1 Influenza Virus Cross-Activates Gli1 to Disrupt the Intercellular Junctions of Alveolar Epithelial Cells. Cell Rep 2021; 31:107801. [PMID: 32610119 DOI: 10.1016/j.celrep.2020.107801] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/26/2019] [Accepted: 06/01/2020] [Indexed: 02/09/2023] Open
Abstract
Influenza A virus (IAV) primarily infects the airway and alveolar epithelial cells and disrupts the intercellular junctions, leading to increased paracellular permeability. Although this pathological change plays a critical role in lung tissue injury and secondary infection, the molecular mechanism of IAV-induced damage to the alveolar barrier remains obscure. Here, we report that Gli1, a transcription factor in the sonic hedgehog (Shh) signaling pathway, is cross-activated by the MAP and PI3 kinase pathways in H1N1 virus (PR8)-infected A549 cells and in the lungs of H1N1 virus-infected mice. Gli1 activation induces Snail expression, which downregulates the expression of intercellular junction proteins, including E-cadherin, ZO-1, and Occludin, and increases paracellular permeability. Inhibition of the Shh pathway restores the levels of Snail and intercellular junction proteins in H1N1-infected cells. Our study suggests that Gli1 activation plays an important role in disrupting the intercellular junctions and in promoting the pathogenesis of H1N1 virus infections.
Collapse
Affiliation(s)
- Tao Ruan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL 60201, USA
| | - Daxin Peng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PRC; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PRC; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC; Institutes of Agricultural Science and Technology Development, Yangzhou University, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC.
| |
Collapse
|
10
|
Zhang J, Fan J, Zeng X, Nie M, Luan J, Wang Y, Ju D, Yin K. Hedgehog signaling in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment. Acta Pharm Sin B 2021; 11:609-620. [PMID: 33777671 PMCID: PMC7982428 DOI: 10.1016/j.apsb.2020.10.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
The Hedgehog (HH) signaling pathway plays important roles in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment (TME). Aberrant HH signaling activation may accelerate the growth of gastrointestinal tumors and lead to tumor immune tolerance and drug resistance. The interaction between HH signaling and the TME is intimately involved in these processes, for example, tumor growth, tumor immune tolerance, inflammation, and drug resistance. Evidence indicates that inflammatory factors in the TME, such as interleukin 6 (IL-6) and interferon-γ (IFN-γ), macrophages, and T cell-dependent immune responses, play a vital role in tumor growth by affecting the HH signaling pathway. Moreover, inhibition of proliferating cancer-associated fibroblasts (CAFs) and inflammatory factors can normalize the TME by suppressing HH signaling. Furthermore, aberrant HH signaling activation is favorable to both the proliferation of cancer stem cells (CSCs) and the drug resistance of gastrointestinal tumors. This review discusses the current understanding of the role and mechanism of aberrant HH signaling activation in gastrointestinal carcinogenesis, the gastrointestinal TME, tumor immune tolerance and drug resistance and highlights the underlying therapeutic opportunities.
Collapse
Key Words
- 5-Fu, 5-fluorouracil
- ALK5, TGF-β receptor I kinase
- ATO, arsenic trioxide
- BCC, basal cell carcinoma
- BCL-2, B cell lymphoma 2
- BMI-1, B cell-specific moloney murine leukemia virus insertion region-1
- CAFs, cancer-associated fibroblasts
- CSCs, cancer stem cells
- Cancer stem cells
- Carcinogenesis
- DHH, Desert Hedgehog
- Drug resistance
- EGF, epidermal growth factor
- FOLFOX, oxaliplatin
- G protein coupled receptor kinase 2, HH
- Gastrointestinal cancer
- Hedgehog
- Hedgehog, HIF-1α
- IHH, Indian Hedgehog
- IL-10/6, interleukin 10/6
- ITCH, itchy E3 ubiquitin ligase
- MDSCs, myeloid-derived suppressor cells
- NK, natural killer
- NOX4, NADPH Oxidase 4
- PD-1, programmed cell death-1
- PD-L1, programmed cell death ligand-1
- PKA, protein kinase A
- PTCH, Patched
- ROS, reactive oxygen species
- SHH, Sonic Hedgehog
- SMAD3, mothers against decapentaplegic homolog 3
- SMO, Smoothened
- SNF5, sucrose non-fermenting 5
- STAT3, signal transducer and activator of transcription 3
- SUFU, Suppressor of Fused
- TAMs, tumor-related macrophages
- TGF-β, transforming growth factor β
- TME, tumor microenvironment
- Tumor microenvironment
- VEGF, vascular endothelial growth factor
- WNT, Wingless/Integrated
- and leucovorin, GLI
- ch5E1, chimeric monoclonal antibody 5E1
- glioma-associated oncogene homologue, GRK2
- hypoxia-inducible factor 1α, IFN-γ: interferon-γ
- βArr2, β-arrestin2
Collapse
Affiliation(s)
- Jinghui Zhang
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Jiajun Fan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Xian Zeng
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Mingming Nie
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jingyun Luan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Yichen Wang
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
- Corresponding authors. Tel./fax: +86 21 65349106 (Kai Yin); Tel.: +86 21 5198 0037; Fax +86 21 5198 0036 (Dianwen Ju).
| | - Kai Yin
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Corresponding authors. Tel./fax: +86 21 65349106 (Kai Yin); Tel.: +86 21 5198 0037; Fax +86 21 5198 0036 (Dianwen Ju).
| |
Collapse
|
11
|
Esposito M, Ganesan S, Kang Y. Emerging strategies for treating metastasis. NATURE CANCER 2021; 2:258-270. [PMID: 33899000 PMCID: PMC8064405 DOI: 10.1038/s43018-021-00181-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
The systemic spread of tumor cells is the ultimate cause of the majority of deaths from cancer, yet few successful therapeutic strategies have emerged to specifically target metastasis. Here we discuss recent advances in our understanding of tumor-intrinsic pathways driving metastatic colonization and therapeutic resistance, as well as immune activating strategies to target metastatic disease. We focus on therapeutically exploitable mechanisms, promising strategies in preclinical and clinical development, and emerging areas with potential to become innovative treatments.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Liu W, Ruan T, Ji X, Ran D, Sun J, Shi H, Prinz RA, Sun J, Pan Z, Jiao X, Xu X. The Gli1-Snail axis contributes to Salmonella Typhimurium-induced disruption of intercellular junctions of intestinal epithelial cells. Cell Microbiol 2020; 22:e13211. [PMID: 32329192 DOI: 10.1111/cmi.13211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that damages gastrointestinal tissue and causes severe diarrhoea. The mechanisms by which Salmonella disrupts epithelial barrier and increases the paracellular permeability are incompletely understood. Our present study aims to determine the role of Gli1, a transcription factor activated in the sonic hedgehog (Shh) pathway, in decreasing the levels of apical junction proteins in a Salmonella-infected human colonic epithelial cancer cell line, Caco-2, and in the intestinal tissue of Salmonella-infected mice. Here, we report that S. Typhimurium increased the mRNA and protein levels of Gli1 and Snail, a downstream transcription factor that plays an important role in the epithelial-to-mesenchymal transition (EMT). S. Typhimurium also decreased the levels of E-cadherin and three tight junction proteins (ZO-1, claudin-1, and occludin). Gli1 siRNA and GANT61, a Gli1-specific inhibitor, blocked S. Typhimurium-induced Snail expression, restored the levels of E-cadherin and tight junction proteins, and prevented S. Typhimurium-increased paracellular permeability. Further study showed that Gli1 was cross-activated by the MAP and PI-3 kinase pathways. S. Typhimurium devoid of sopB, an effector of the Type 3 secretion system (T3SS) responsible for AKT activation, was unable to induce Snail expression and to decrease the expression of apical junction proteins. Our study uncovered a novel role of Gli1 in mediating the Salmonella-induced disruption of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Ruan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoyue Ji
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Di Ran
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huoying Shi
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, Illinois, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiulong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
13
|
Yang Z, Zhang C, Feng Y, Quan M, Cui Y, Xuan Y. Tenascin-C predicts poor outcomes for patients with colorectal cancer and drives cancer stemness via Hedgehog signaling pathway. Cancer Cell Int 2020; 20:122. [PMID: 32322169 PMCID: PMC7161260 DOI: 10.1186/s12935-020-01188-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Background Tenascin-C (TNC) is an extracellular matrix protein that is widely expressed in the stromal fibroblasts of various cancers. However, the roles of TNC in colorectal cancer (CRC) cells remain unclear. Methods The expression of TNC, cancer stem cell-like (CSC) and cell cycle markers, and Hedgehog (HH) signaling pathway genes were assessed in 100 paraffin embedded clinical CRC patient tissues using immunohistochemistry. The interaction between TNC and CSC marker or HH related genes in CRC cells were detected by immunofluorescence. Cell cycle distribution was measured by flow cytometry. Migration and invasion were evaluated by transwell assays. The expressions of TNC, CSC marker, and HH related proteins were analyzed by western blot. Results TNC expression was markedly upregulated in CRC tissues, and was associated with worse clinical outcomes. TNC overexpression was positively associated with CSC marker LSD1, cell cycle markers CDK4 and p16, and HH signaling pathway related genes SMO and GLI1 in clinical CRC tissue samples. TNC silencing downregulated the expression of the CSC marker LSD1, and the proliferation, migration, and invasion of CRC cells. Interestingly, the GLI1 inhibitor GANT61 strongly inhibited the expression of TNC in CRC cells. Conclusions TNC may drive tumor progression and is involved in CSC properties via the HH signaling pathway. TNC has potential value in the evaluation of poor prognosis in CRC.
Collapse
Affiliation(s)
- Zhaoting Yang
- 1Department of Pathology, Yanbian University College of Medicine, No. 977, Gongyuan Road, Yanji, 133002 China.,2Institute for Regenerative Medicine, Yanbian University College of Medicine, No. 977, Gongyuan Road, Yanji, 133002 China
| | - Chengye Zhang
- 2Institute for Regenerative Medicine, Yanbian University College of Medicine, No. 977, Gongyuan Road, Yanji, 133002 China
| | - Ying Feng
- 1Department of Pathology, Yanbian University College of Medicine, No. 977, Gongyuan Road, Yanji, 133002 China.,2Institute for Regenerative Medicine, Yanbian University College of Medicine, No. 977, Gongyuan Road, Yanji, 133002 China
| | - Mingji Quan
- 3Department of Oncology, Affiliated Hospital of Yanbian University, No. 1827, Juzi Road, Yanji, 133002 China
| | - Yan Cui
- 3Department of Oncology, Affiliated Hospital of Yanbian University, No. 1827, Juzi Road, Yanji, 133002 China
| | - Yanhua Xuan
- 1Department of Pathology, Yanbian University College of Medicine, No. 977, Gongyuan Road, Yanji, 133002 China.,2Institute for Regenerative Medicine, Yanbian University College of Medicine, No. 977, Gongyuan Road, Yanji, 133002 China
| |
Collapse
|
14
|
Ma S, Liu D, Tan W, Du B, Liu W, Li W, Jiao Y. Interference with SMO increases chemotherapy drug sensitivity of A2780/DDP cells by inhibiting the Hh/Gli signaling pathway. J Cell Biochem 2020; 121:3256-3265. [PMID: 31904145 DOI: 10.1002/jcb.29593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/11/2019] [Indexed: 12/25/2022]
Abstract
Aberrant activation of the Hedgehog (Hh)/Gli pathway contributes to the tumorigenesis of several human cancers, including ovarian cancers. We investigated the function of SMO on cell growth, drug resistance, and invasive ability in A2780/DDP cells. Moreover, we also tested the levels of the downstream target genes of the Hh/Gli pathway in SMO short hairpin RNA (shRNA) lentivirus-infected A2780/DDP cells. Western blot analysis results revealed that the Hh/Gli pathway was activated in cisplatin-resistant A2780/DDP cells. After infection by SMO shRNA lentivirus, the colony formation rate and invasive rate of cisplatin-resistant A2780/DDP cells were decreased. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that upon transfection with SMO shRNA, cell growth was decreased and drug sensitivity to cisplatin was upregulated. Moreover, interference with SMO decreased the expression of MMP-2, MMP-9, VEGF, and Snail in cisplatin-resistant cells. Thus, the Hh/Gli signaling pathway was aberrantly activated in A2780/DDP cells. The colony formation rate and invasive rate were decreased in SMO shRNA lentivirus-infected A2780/DDP cells. All results showed that inhibiting Hh/Gli signaling may negatively regulate the proliferation, invasion, and metastasis of cisplatin-resistant A2780/DDP cells, as well as increase the sensitivity of A2780/DDP to the chemotherapeutic drug of cisplatin.
Collapse
Affiliation(s)
- Shihong Ma
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dan Liu
- The Seventh Department of the Internal Medicine Harbin Medical, University Cancer Hospital, Harbin, Heilongjiang, China
| | - Wenhua Tan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Botao Du
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Weijia Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yufei Jiao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Grund-Gröschke S, Stockmaier G, Aberger F. Hedgehog/GLI signaling in tumor immunity - new therapeutic opportunities and clinical implications. Cell Commun Signal 2019; 17:172. [PMID: 31878932 PMCID: PMC6933925 DOI: 10.1186/s12964-019-0459-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Uncontrolled activation of the Hedgehog/Glioma-associated oncogene (HH/GLI) pathway is a potent oncogenic driver signal promoting numerous cancer hallmarks such as proliferation, survival, angiogenesis, metastasis and metabolic rewiring. Several HH pathway inhibitors have already been approved for medical therapy of advanced and metastatic basal cell carcinoma and acute myeloid leukemia with partially impressive therapeutic activity. However, de novo and acquired resistance as well as severe side effects and unexplained lack of therapeutic efficacy are major challenges that urgently call for improved treatment options with more durable responses. The recent breakthroughs in cancer immunotherapy have changed our current understanding of targeted therapy and opened up promising therapeutic opportunities including combinations of selective cancer pathway and immune checkpoint inhibitors. Although HH/GLI signaling has been intensely studied with respect to the classical hallmarks of cancer, its role in the modulation of the anti-tumoral immune response has only become evident in recent studies. These have uncovered HH/GLI regulated immunosuppressive mechanisms such as enhanced regulatory T-cell formation and production of immunosuppressive cytokines. In light of these exciting novel data on oncogenic HH/GLI signaling in immune cross-talk and modulation, we summarize and connect in this review the existing knowledge from different HH-related cancers and chronic inflammatory diseases. This is to provide a basis for the investigation and evaluation of novel treatments combining immunotherapeutic strategies with approved as well as next-generation HH/GLI inhibitors. Further, we also critically discuss recent studies demonstrating a possible negative impact of current HH/GLI pathway inhibitors on the anti-tumoral immune response, which may explain some of the disappointing results of several oncological trials with anti-HH drugs. Video abstract. (9500 kb)
Collapse
Affiliation(s)
- Sandra Grund-Gröschke
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Strasse, 34, 5020, Salzburg, Austria
| | - Georg Stockmaier
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Strasse, 34, 5020, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Strasse, 34, 5020, Salzburg, Austria.
| |
Collapse
|
16
|
Li E, Zhang T, Sun X, Li Y, Geng H, Yu D, Zhong C. Sonic hedgehog pathway mediates genistein inhibition of renal cancer stem cells. Oncol Lett 2019; 18:3081-3091. [PMID: 31452785 PMCID: PMC6704282 DOI: 10.3892/ol.2019.10657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 05/02/2019] [Indexed: 02/03/2023] Open
Abstract
Cancer stem cells (CSCs) have been implicated in the genesis, progression and recurrence of renal cancer. The sonic hedgehog (Shh) pathway serves a critical role in maintaining the stemness of CSCs. Genistein, a major isoflavone component extracted from soybeans and soy products, has been demonstrated to possess anticancer activity. However, the effects of genistein on renal CSCs and its underlying mechanisms remain to be fully elucidated. The aim of the present study was to investigate the role of the Shh pathway in genistein inhibition of renal CSCs. The results of the present study demonstrated that expression levels of renal CSC markers were markedly upregulated in the sphere-forming cells, which were isolated and enriched from 786-O and ACHN cells in a tumor sphere formation assay, and more cells were arrested at the G0/G1 phase instead of the S1 phase compared with the adherent cells. Furthermore, the present study demonstrated that genistein could effectively diminish the activity of renal CSCs by suppressing tumor sphere formation, decreasing renal CSCs markers, inhibiting proliferation and inducing apoptosis. Additionally, the downregulation of Shh pathway activity could inhibit renal CSCs. Genistein exhibited an inhibitory effect on renal CSCs by attenuating the activation of the Shh pathway. In conclusion, the results illustrated the role of the Shh pathway in regulating renal CSC traits and the intervention of renal CSCs by genistein, which could provide novel insights into the molecular mechanisms of renal CSC intervention.
Collapse
Affiliation(s)
- Enlai Li
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xianchao Sun
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
17
|
A novel reporter construct for screening small molecule inhibitors that specifically target self-renewing cancer cells. Exp Cell Res 2019; 383:111551. [PMID: 31401066 DOI: 10.1016/j.yexcr.2019.111551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a subset of cancer cells, which possess self-renewal ability, and lead to tumor progression, metastasis, and resistance to therapy. Live detection and isolation of CSCs are important to understand the biology of CSCs as well as to screen drugs that target them. Even though CSCs are detected using surface markers, there is a lot of inconsistencies for that in a given cancer type. At the same time, self-renewal markers like ALDH1A1, OCT4A and SOX2, which are intracellular molecules, are reliable markers for CSCs in different cancers. In the present study, we generated a reporter construct for self-renewing CSCs, based on ALDH1A1 expression. Oral cancer cells harboring ALDH1A1-DsRed2 were used to screen inhibitors that target CSCs. Our results showed that Comb1, a cocktail of inhibitors for EGF and TGF-β pathways and their intermediates, effectively reduced the DsRed2 population to 34%. Our immunohistochemical analysis on primary oral cancer corroborated the importance of EGF and TGF-β pathways in sustaining CSCs. Since these two pathways are also critical for the self-renewal and differentiation of normal stem cells, Comb1 might abolish them as well. On analysis of the effect of Comb1 on normal murine bone marrow cells, there was no significant change in the stem cell self-renewal and differentiation potential in the treated group compared to untreated cells. To conclude, we claim that ALDH1A1-DsRed2 is a useful tool to detect CSCs, and Comb1 is effective in targeting CSCs without affecting normal stem cells.
Collapse
|
18
|
RUNX3 suppresses metastasis and stemness by inhibiting Hedgehog signaling in colorectal cancer. Cell Death Differ 2019; 27:676-694. [PMID: 31278361 DOI: 10.1038/s41418-019-0379-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
Disabled tumor suppressor genes and hyperactive oncogenes greatly contribute to cell fates during cancer development because of their genetic alterations such as somatic mutations. However, little is known about how tumor suppressor genes react to diverse oncogenes during tumor progression. Our previous study showed that RUNX3 inhibits invasiveness by preventing vascular endothelial growth factor secretion and suppressed endothelial cell growth and tube formation in colorectal cancer (CRC). Hedgehog signaling is crucial for the physiological maintenance and self-renewal of stem cells, and its deregulation is responsible for their tumor development. The mechanisms that inhibit this pathway during proliferation remain poorly understood. Here, we found that the tumor suppressor RUNX3 modulates tumorigenesis in response to cancer cells induced by inhibiting oncogene GLI1 ubiquitination. Moreover, we demonstrated that RUNX3 and GLI1 expression were inversely correlated in CRC cells and tissues. We observed a direct interaction between RUNX3 and GLI1, promoting ubiquitination of GLI1 at the intracellular level. Increased ubiquitination of GLI1 was induced by the E3 ligase β-TrCP. This novel RUNX3-dependent regulatory loop may limit the extent and duration of Hedgehog signaling during extension of the tumor initiation capacity. On the basis of our results, identification of agents that induce RUNX3 may be useful for developing new and effective therapies for CRC.
Collapse
|
19
|
Zendehdel E, Abdollahi E, Momtazi‐Borojeni AA, Korani M, Alavizadeh SH, Sahebkar A. The molecular mechanisms of curcumin’s inhibitory effects on cancer stem cells. J Cell Biochem 2019; 120:4739-4747. [DOI: 10.1002/jcb.27757] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/06/2018] [Indexed: 08/30/2023]
Abstract
AbstractCurcumin is a dietary polyphenol and a bioactive phytochemical that possesses anti‐inflammatory, antioxidant, anticancer, and chemopreventive properties, which make it capable of affecting multiple sites along the stem cell pathways to induce apoptosis in these cells. Curcumin’s function is through suppression of cytokine release, especially the secretion of interleukins. Some of the predominant activities of stem cells include regeneration of identical cells and the ability to maintain the proliferation and multipotentiality. However, these cells could be stimulated to differentiate into specific cell types, leading to the development of tumors. Cancer stem cells (CSC) are capable of sustaining tumor formation and differentiation, and are normally characterized by self‐renewal mechanisms. Furthermore, these cells might be responsible for tumor relapse and resistance to therapy. Several studies have focused on the mechanisms of curcumin action in manipulating transcription factors, signaling pathways, CSC markers, microRNAs related to CSCs functions and apoptosis induction in various human cancer cells. In the present review, we aimed to summarize the reported molecular mechanisms of curcumin’s effects on CSCs.
Collapse
Affiliation(s)
- Elham Zendehdel
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch Islamic Azad University Mashhad Iran
| | - Elham Abdollahi
- Department of Medical Immunology, Student Research Committee, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Abbas Momtazi‐Borojeni
- Nanotechnology Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mitra Korani
- Nanotechnology Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
20
|
Bensalma S, Turpault S, Balandre AC, De Boisvilliers M, Gaillard A, Chadéneau C, Muller JM. PKA at a Cross-Road of Signaling Pathways Involved in the Regulation of Glioblastoma Migration and Invasion by the Neuropeptides VIP and PACAP. Cancers (Basel) 2019; 11:cancers11010123. [PMID: 30669581 PMCID: PMC6356933 DOI: 10.3390/cancers11010123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma (GBM) remains an incurable disease, mainly due to the high migration and invasion potency of GBM cells inside the brain. PI3K/Akt, Sonic Hedgehog (SHH), and PKA pathways play major regulatory roles in the progression of GBM. The vasoactive intestinal peptide (VIP) family of neuropeptides and their receptors, referred in this article as the “VIP-receptor system”, has been reported to regulate proliferation, differentiation, and migration in a number of tumor cell types and more particularly in GBM cells. These neuropeptides are potent activators of the cAMP/PKA pathway. The present study aimed to investigate the cross-talks between the above cited signaling cascades. Regulation by VIP-related neuropeptides of GBM migration and invasion was evaluated ex vivo in rat brain slices explanted in culture. Effects of different combinations of VIP-related neuropeptides and of pharmacological and siRNA inhibitors of PKA, Akt, and of the SHH/GLI1 pathways were tested on GBM migration rat C6 and human U87 GBM cell lines using the wound-healing technique. Quantification of nuclear GLI1, phospho-Akt, and phospho-PTEN was assessed by western-immunoblotting. The VIP-receptor system agonists VIP and PACAP-38 significantly reduced C6 cells invasion in the rat brain parenchyma ex vivo, and C6 and U87 migration in vitro. A VIP-receptor system antagonist, VIP10-28 increased C6 cell invasion in the rat brain parenchyma ex vivo, and C6 and migration in vitro. These effects on cell migration were abolished by selective inhibitors of the PI3K/Akt and of the SHH pathways. Furthermore, VIP and PACAP-38 reduced the expression of nuclear GLI1 while VIP10-28 increased this expression. Selective inhibitors of Akt and PKA abolished VIP, PACAP-38, and VIP10-28 effects on nuclear GLI1 expression in C6 cells. PACAP-38 induced a time-dependent inhibition of phospho-Akt expression and an increased phosphorylation of PTEN in C6 cells. All together, these data indicate that triggering the VIP-receptor system reduces migration and invasion in GBM cells through a PKA-dependent blockade of the PI3K/Akt and of the SHH/GLI1 pathways. Therefore, the VIP-receptor system displays anti-oncogenic properties in GBM cells and PKA is a central core in this process.
Collapse
Affiliation(s)
- Souheyla Bensalma
- Team Récepteurs, Régulations, Cellules Tumorales (2RCT), EA3842 CAPTuR, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Soumaya Turpault
- Team Récepteurs, Régulations, Cellules Tumorales (2RCT), EA3842 CAPTuR, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Annie-Claire Balandre
- STIM Laboratory, CNRS ERL 7003-EA7349, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Madryssa De Boisvilliers
- Team Récepteurs, Régulations, Cellules Tumorales (2RCT), EA3842 CAPTuR, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC)⁻INSERM UMR-S1084, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Corinne Chadéneau
- Team Récepteurs, Régulations, Cellules Tumorales (2RCT), EA3842 CAPTuR, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| | - Jean-Marc Muller
- Team Récepteurs, Régulations, Cellules Tumorales (2RCT), EA3842 CAPTuR, Pôle Biologie-Santé, Université de Poitiers, F-86022 Poitiers, France.
| |
Collapse
|
21
|
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018; 10:E181. [PMID: 30304861 PMCID: PMC6321593 DOI: 10.3390/pharmaceutics10040181] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood⁻brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| |
Collapse
|
22
|
Hedgehog signalling in the tumourigenesis and metastasis of osteosarcoma, and its potential value in the clinical therapy of osteosarcoma. Cell Death Dis 2018; 9:701. [PMID: 29899399 PMCID: PMC5999604 DOI: 10.1038/s41419-018-0647-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
The Hedgehog (Hh) signalling pathway is involved in cell differentiation, growth and tissue polarity. This pathway is also involved in the progression and invasion of various human cancers. Osteosarcoma, a subtype of bone cancer, is commonly seen in children and adolescents. Typically, pulmonary osteosarcoma metastases are especially difficult to control. In the present paper, we summarise recent studies on the regulation of osteosarcoma progression and metastasis by downregulating Hh signalling. We also summarise the crosstalk between the Hh pathway and other cancer-related pathways in the tumourigenesis of various cancers. We further summarise and highlight the therapeutic value of potential inhibitors of Hh signalling in the clinical therapy of human cancers.
Collapse
|
23
|
Rimkus TK, Carpenter RL, Sirkisoon S, Zhu D, Pasche BC, Chan MD, Lesser GJ, Tatter SB, Watabe K, Debinski W, Lo HW. Truncated Glioma-Associated Oncogene Homolog 1 (tGLI1) Mediates Mesenchymal Glioblastoma via Transcriptional Activation of CD44. Cancer Res 2018; 78:2589-2600. [PMID: 29463580 PMCID: PMC5955849 DOI: 10.1158/0008-5472.can-17-2933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 01/21/2023]
Abstract
The molecular pathways driving mesenchymal glioblastoma (GBM) are still not well understood. We report here that truncated glioma-associated oncogene homolog 1 (tGLI1) is a tumor-specific transcription factor that facilitates GBM growth, is enriched in the mesenchymal subtype of GBM and glioma stem cells (GSC), and promotes mesenchymal GSC by upregulating transcription of CD44. In an orthotopic GBM xenograft mouse model, tGLI1-overexpressing tumors grew more aggressively with increased proliferation and angiogenesis compared with control and GLI1-overexpressing xenografts. tGLI1 was highly expressed in GBM clinical specimens but undetectable in normal brains, whereas GLI1 was expressed in both tissues. A tGLI1 activation signature (tGAS) correlated with glioma grade, tumor angiogenesis, and poor overall survival, and GBMs with high tGAS were enriched with mesenchymal GBM/GSC gene signatures. Neurospheres contained increased levels of tGLI1, but not GLI1, compared with the monolayer culture; mesenchymal GSC expressed more tGLI1 than proneural GSC. Ectopic tGLI1 expression enhanced the ability of mesenchymal GSC to yield neurospheres in vitro and to form tumors in mouse brains. Selective tGLI1 knockdown reduced neurosphere formation of GBM cells. tGLI1 bound to and transactivated the promoter of the CD44 gene, a marker and mediator for mesenchymal GSC, leading to its expression. Collectively, these findings advance our understanding of GBM biology by establishing tGLI1 as a novel transcriptional activator of CD44 and a novel mediator of mesenchymal GBM and GSC.Significance: These findings highlight the role of a tumor-specific gain-of-function transcription factor tGLI1 in mesenchymal glioma stem cell maintenance and mesenchymal GBM growth. Cancer Res; 78(10); 2589-600. ©2018 AACR.
Collapse
Affiliation(s)
- Tadas K Rimkus
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Richard L Carpenter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Sherona Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Boris C Pasche
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Michael D Chan
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Glenn J Lesser
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Stephen B Tatter
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
24
|
Qian W, Kong X, Zhang T, Wang D, Song J, Li Y, Li X, Geng H, Min J, Kong Q, Liu J, Liu Z, Wang D, Zhang Z, Yu D, Zhong C. Cigarette smoke stimulates the stemness of renal cancer stem cells via Sonic Hedgehog pathway. Oncogenesis 2018; 7:24. [PMID: 29540668 PMCID: PMC5852977 DOI: 10.1038/s41389-018-0029-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/05/2017] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are essentially responsible for tumor initiation, growth, progression, metastasis and recurrence, and cigarette smoke (CS) is closely involved in the occurrence and development of kidney cancer. However, the effect of CS on renal CSCs has not been elucidated yet. In the present study, tumorsphere formation assay was used to enrich renal CSCs from 786-O and ACHN cells. We illustrated that CS effectively promoted renal CSCs stemness by enhancing tumorsphere formation, increasing the expression of renal CSCs markers (CD133, CD44, ALDHA1, Oct4, and Nanog) and elevating CD133+ cell population. Moreover, our results showed that CS triggered the activation of Sonic Hedgehog (SHH) pathway, while inhibition of SHH pathway dampened the promotive effects of CS on renal CSCs. Finally, higher levels of renal CSCs markers and SHH pathway-related proteins were observed in kidney cancer tissues from smokers than non-smoking cancer tissues. Taken together, these results demonstrated the important role of SHH pathway in regulating CS-induced renal CSCs stemness augment. Findings from this study could provide new insight into the molecular mechanisms of CS-elicited stemness of renal CSCs.
Collapse
Affiliation(s)
- Weiwei Qian
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiaochuan Kong
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Dengdian Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jin Song
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jie Min
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qi Kong
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jie Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhiqi Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Daming Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhiqiang Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
25
|
Wang R, Wei J, Zhang S, Wu X, Guo J, Liu M, Du K, Xu J, Peng L, Lv Z, You W, Xiong Y, Fu Z. Peroxiredoxin 2 is essential for maintaining cancer stem cell-like phenotype through activation of Hedgehog signaling pathway in colon cancer. Oncotarget 2018; 7:86816-86828. [PMID: 27894099 PMCID: PMC5349956 DOI: 10.18632/oncotarget.13559] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a key target for reducing tumor growth, metastasis, and recurrence. Redox status is a critical factor in the maintenance of CSCs, and the antioxidant enzyme Peroxiredoxin 2 (Prdx2) plays an important role in the development of colon cancer. Therefore, we investigated the contribution of Prdx2 to the maintenance of stemness of colon CSCs. Here, we used short-hairpin RNAs and a Prdx2-overexpression vector to determine the effects of Prdx2. We demonstrated that knockdown of Prdx2 reduced the self-renewal and sphere formation and resulted in increased 5-FU-induced apoptosis in human colon CSCs. Prdx2 overexpression induced reversion of the self-renewal and sphere formation. Furthermore, the effects of Prdx2 resulted in an altered expression of stemness associated with the Hh/Gli1 signaling pathway. Finally, knockdown of Prdx2 in CD133+ cells reduced the volume of xenograft tumors in BALB/c-nu mice. Taken together, colon CSCs overexpress Prdx2, which promotes their stem cell properties via the Hh/Gli1 signaling pathway. The results suggest that Prdx2 may be an effective therapeutic target for the elimination of CSCs in colorectal cancer.
Collapse
Affiliation(s)
- Rong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jinlai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Shouru Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xingye Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jinbao Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Maoxi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kunli Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jun Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Linglong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhenbing Lv
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wenxian You
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yongfu Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
26
|
Qin Y, Sukumaran SK, Jyotaki M, Redding K, Jiang P, Margolskee RF. Gli3 is a negative regulator of Tas1r3-expressing taste cells. PLoS Genet 2018; 14:e1007058. [PMID: 29415007 PMCID: PMC5819828 DOI: 10.1371/journal.pgen.1007058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 02/20/2018] [Accepted: 10/08/2017] [Indexed: 12/25/2022] Open
Abstract
Mouse taste receptor cells survive from 3-24 days, necessitating their regeneration throughout adulthood. In anterior tongue, sonic hedgehog (SHH), released by a subpopulation of basal taste cells, regulates transcription factors Gli2 and Gli3 in stem cells to control taste cell regeneration. Using single-cell RNA-Seq we found that Gli3 is highly expressed in Tas1r3-expressing taste receptor cells and Lgr5+ taste stem cells in posterior tongue. By PCR and immunohistochemistry we found that Gli3 was expressed in taste buds in all taste fields. Conditional knockout mice lacking Gli3 in the posterior tongue (Gli3CKO) had larger taste buds containing more taste cells than did control wild-type (Gli3WT) mice. In comparison to wild-type mice, Gli3CKO mice had more Lgr5+ and Tas1r3+ cells, but fewer type III cells. Similar changes were observed ex vivo in Gli3CKO taste organoids cultured from Lgr5+ taste stem cells. Further, the expression of several taste marker and Gli3 target genes was altered in Gli3CKO mice and/or organoids. Mirroring these changes, Gli3CKO mice had increased lick responses to sweet and umami stimuli, decreased lick responses to bitter and sour taste stimuli, and increased glossopharyngeal taste nerve responses to sweet and bitter compounds. Our results indicate that Gli3 is a suppressor of stem cell proliferation that affects the number and function of mature taste cells, especially Tas1r3+ cells, in adult posterior tongue. Our findings shed light on the role of the Shh pathway in adult taste cell regeneration and may help devise strategies for treating taste distortions from chemotherapy and aging.
Collapse
Affiliation(s)
- Yumei Qin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- School of Food Science and Biotechnology, Zhejiang Gonshang University, Hangzhou, Zhejiang, China
| | - Sunil K. Sukumaran
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Masafumi Jyotaki
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Kevin Redding
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Robert F. Margolskee
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
27
|
MacKintosh C, Ferrier DEK. Recent advances in understanding the roles of whole genome duplications in evolution. F1000Res 2017; 6:1623. [PMID: 28928963 PMCID: PMC5590085 DOI: 10.12688/f1000research.11792.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 01/21/2023] Open
Abstract
Ancient whole-genome duplications (WGDs)- paleopolyploidy events-are key to solving Darwin's 'abominable mystery' of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life.
Collapse
Affiliation(s)
- Carol MacKintosh
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, University of St Andrews, Scotland, KY16 8LB, UK
| |
Collapse
|
28
|
Wu C, Zhu X, Liu W, Ruan T, Tao K. Hedgehog signaling pathway in colorectal cancer: function, mechanism, and therapy. Onco Targets Ther 2017; 10:3249-3259. [PMID: 28721076 PMCID: PMC5501640 DOI: 10.2147/ott.s139639] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide. It is a complicated and often fatal cancer, and is related to a high disease-related mortality. Around 90% of mortalities are caused by the metastasis of CRC. Current treatment statistics shows a less than 5% 5-year survival for patients with metastatic disease. The development and metastasis of CRC involve multiple factors and mechanisms. The Hedgehog (Hh) signaling plays an important role in embryogenesis and somatic development. Abnormal activation of the Hh pathway has been proven to be related to several types of human cancers. The role of Hh signaling in CRC, however, remains controversial. In this review, we will go through previous literature on the Hh signaling and its functions in the formation, proliferation, and metastasis of CRC. We will also discuss the potential of targeting Hh signaling pathway in the treatment, prognosis, and prevention of CRC.
Collapse
Affiliation(s)
- Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Zhu JY, Yang X, Chen Y, Jiang Y, Wang SJ, Li Y, Wang XQ, Meng Y, Zhu MM, Ma X, Huang C, Wu R, Xie CF, Li XT, Geng SS, Wu JS, Zhong CY, Han HY. Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog Pathways. Phytother Res 2017; 31:680-688. [PMID: 28198062 DOI: 10.1002/ptr.5791] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/05/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are highly implicated in the progression of human cancers. Thus, targeting CSCs may be a promising strategy for cancer therapy. Wnt/β-catenin and Sonic Hedgehog pathways play an important regulatory role in maintaining CSC characteristics. Natural compounds, such as curcumin, possess chemopreventive properties. However, the interventional effect of curcumin on lung CSCs has not been clarified. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We showed that the levels of lung CSC markers (CD133, CD44, ALDHA1, Nanog and Oct4) and the number of CD133-positive cells were significantly elevated in the sphere-forming cells. We further illustrated that curcumin efficiently abolished lung CSC traits, as evidenced by reduced tumorsphere formation, reduced number of CD133-positive cells, decreased expression levels of lung CSC markers, as well as proliferation inhibition and apoptosis induction. Moreover, we demonstrated that curcumin suppressed the activation of both Wnt/β-catenin and Sonic Hedgehog pathways. Taken together, our data suggested that curcumin exhibited its interventional effect on lung CSCs via inhibition of Wnt/β-catenin and Sonic Hedgehog pathways. These novel findings could provide new insights into the potential therapeutic application of curcumin in lung CSC elimination and cancer intervention. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jian-Yun Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xue Yang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ye Jiang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shi-Jia Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Qian Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Meng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ming-Ming Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao Ma
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Cong Huang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rui Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chun-Feng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Ting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shan-Shan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jie-Shu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Cai-Yun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong-Yu Han
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| |
Collapse
|
30
|
Hedgehog Pathway Inhibition Hampers Sphere and Holoclone Formation in Rhabdomyosarcoma. Stem Cells Int 2017; 2017:7507380. [PMID: 28243259 PMCID: PMC5294584 DOI: 10.1155/2017/7507380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 01/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and can be divided into two main subtypes: embryonal (eRMS) and alveolar (aRMS). Among the cellular heterogeneity of tumors, the existence of a small fraction of cells called cancer stem cells (CSC), thought to be responsible for the onset and propagation of cancer, has been demonstrated in some neoplasia. Although the existence of CSC has been reported for eRMS, their existence in aRMS, the most malignant subtype, has not been demonstrated to date. Given the lack of suitable markers to identify this subpopulation in aRMS, we used cancer stem cell-enriched supracellular structures (spheres and holoclones) to study this subpopulation. This strategy allowed us to demonstrate the capacity of both aRMS and eRMS cells to form these structures and retain self-renewal capacity. Furthermore, cells contained in spheres and holoclones showed significant Hedgehog pathway induction, the inhibition of which (pharmacologic or genetic) impairs the formation of both holoclones and spheres. Our findings point to a crucial role of this pathway in the maintenance of these structures and suggest that Hedgehog pathway targeting in CSC may have great potential in preventing local relapses and metastases.
Collapse
|
31
|
Xu X, Lu Y, Li Y, Prinz RA. Sonic Hedgehog Signaling in Thyroid Cancer. Front Endocrinol (Lausanne) 2017; 8:284. [PMID: 29163356 PMCID: PMC5670164 DOI: 10.3389/fendo.2017.00284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer is the most common malignancy of the endocrine system. The initiation of thyroid cancer is often triggered by a genetic mutation in the phosphortidylinositol-3 kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathway, such as RAS and BRAF, or by the rearrangement of growth factor receptor tyrosine kinase genes such as RET/PTC. The sonic hedgehog (Shh) pathway is evolutionarily conserved and plays an important role in the embryonic development of normal tissues and organs. Gene mutations in the Shh pathway are involved in basal cell carcinomas (BCC). Activation of the Shh pathway due to overexpression of the genes encoding the components of this pathway stimulates the growth and spread of a wide range of cancer types. The Shh pathway also plays an important role in cancer stem cell (CSC) self-renewal. GDC-0449 and LDE-225, two inhibitors of this pathway, have been approved for treating BCC and are being tested as a single agent or in combination with other drugs for treating various other cancers. Here, we review the recent findings on activation of the Shh pathway in thyroid cancer and its role in maintaining thyroid CSC self-renewal. We also summarize the recent developments on crosstalk of the Shh pathway with the MAPK and PI3K oncogenic pathways, and its implications for combination therapy.
Collapse
Affiliation(s)
- Xiulong Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- *Correspondence: Xiulong Xu, ,
| | - Yurong Lu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Richard A. Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, United States
| |
Collapse
|
32
|
Koren E, Fuchs Y. The bad seed: Cancer stem cells in tumor development and resistance. Drug Resist Updat 2016; 28:1-12. [DOI: 10.1016/j.drup.2016.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/11/2016] [Accepted: 06/19/2016] [Indexed: 12/17/2022]
|
33
|
Martello M, Remondini D, Borsi E, Santacroce B, Procacci M, Pezzi A, Dico FA, Martinelli G, Zamagni E, Tacchetti P, Pantani L, Testoni N, Marzocchi G, Rocchi S, Zannetti BA, Mancuso K, Cavo M, Terragna C. Opposite activation of the Hedgehog pathway in CD138+ plasma cells and CD138-CD19+ B cells identifies two subgroups of patients with multiple myeloma and different prognosis. Leukemia 2016; 30:1869-76. [PMID: 27074969 DOI: 10.1038/leu.2016.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Hyperactivation of the Hedgehog (Hh) pathway, which controls refueling of multiple myeloma (MM) clones, might be critical to disease recurrence. Although several studies suggest the Hh pathway is activated in CD138- immature cells, differentiated CD138+ plasma cells might also be able to self-renew by producing themselves the Hh ligands. We studied the gene expression profiles of 126 newly diagnosed MM patients analyzed in both the CD138+ plasma cell fraction and CD138-CD19+ B-cell compartment. Results demonstrated that an Hh-gene signature was able to cluster patients in two subgroups characterized by the opposite Hh pathway expression in mature plasma cells and their precursors. Strikingly, patients characterized by Hh hyperactivation in plasma cells, but not in their B cells, displayed high genomic instability and an unfavorable outcome in terms of shorter progression-free survival (hazard ratio: 1.92; 95% confidence interval: 1.19-3.07) and overall survival (hazard ratio: 2.61; 95% confidence interval: 1.26-5.38). These results suggest that the mechanisms triggered by the Hh pathway ultimately led to identify a more indolent vs a more aggressive biological and clinical subtype of MM. Therefore, patient stratification according to their molecular background might help the fine-tuning of future clinical and therapeutic studies.
Collapse
Affiliation(s)
- M Martello
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - D Remondini
- Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy
| | - E Borsi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - B Santacroce
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - M Procacci
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - A Pezzi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - F A Dico
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - G Martinelli
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - E Zamagni
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - P Tacchetti
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - L Pantani
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - N Testoni
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - G Marzocchi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - S Rocchi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - B A Zannetti
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - K Mancuso
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - M Cavo
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - C Terragna
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| |
Collapse
|
34
|
Singovski G, Bernal C, Kuciak M, Siegl-Cachedenier I, Conod A, Ruiz i Altaba A. In vivo epigenetic reprogramming of primary human colon cancer cells enhances metastases. J Mol Cell Biol 2015; 8:157-73. [PMID: 26031752 PMCID: PMC4816146 DOI: 10.1093/jmcb/mjv034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/27/2015] [Indexed: 01/06/2023] Open
Abstract
How metastases develop is not well understood and no genetic mutations have been reported as specific metastatic drivers. Here we have addressed the idea that epigenetic reprogramming by GLI-regulated pluripotent stemness factors promotes metastases. Using primary human colon cancer cells engrafted in mice, we find that transient expression of OCT4, SOX2, KLF4 +/− cMYC establishes an enhanced pro-metastatic state in the primary tumor that is stable through sequential engraftments and is transmitted through clonogenic cancer stem cells. Metastatic reprogramming alters NANOG methylation and stably boosts NANOG and NANOGP8 expression. Metastases and reprogrammed EMT-like phenotypes require endogenous NANOG, but enhanced NANOG is not sufficient to induce these phenotypes. Finally, reprogrammed tumors enhance GLI2, and we show that GLI2high and AXIN2low, which are markers of the metastatic transition of colon cancers, are prognostic of poor disease outcome in patients. We propose that metastases arise through epigenetic reprogramming of cancer stem cells within primary tumors.
Collapse
Affiliation(s)
- Grigori Singovski
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Carolina Bernal
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Monika Kuciak
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Irene Siegl-Cachedenier
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Arwen Conod
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| |
Collapse
|
35
|
Abstract
Rapid progress in the field of adult cells reprogramming back into a stem cell-like fate revealed shared mechanisms of action with tumoural reprogramming. A hallmark of stem cells - self-renewal and differentiation potential - seems to be tightly interlaced with large proliferation capacity and cellular plasticity of cancer cells. In this review, we briefly summarise the core transcription factors critical to maintenance of ES cell signature and overexpressed in many types of cancer, as well as signalling pathways involved in both induced pluripotency and oncogenesis, with particular regard to the role of tumour suppressor p53.
Collapse
|
36
|
Duquet A, Melotti A, Mishra S, Malerba M, Seth C, Conod A, Ruiz i Altaba A. A novel genome-wide in vivo screen for metastatic suppressors in human colon cancer identifies the positive WNT-TCF pathway modulators TMED3 and SOX12. EMBO Mol Med 2015; 6:882-901. [PMID: 24920608 PMCID: PMC4119353 DOI: 10.15252/emmm.201303799] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The progression of tumors to the metastatic state involves the loss of metastatic suppressor functions. Finding these, however, is difficult as in vitro assays do not fully predict metastatic behavior, and the majority of studies have used cloned cell lines, which do not reflect primary tumor heterogeneity. Here, we have designed a novel genome-wide screen to identify metastatic suppressors using primary human tumor cells in mice, which allows saturation screens. Using this unbiased approach, we have tested the hypothesis that endogenous colon cancer metastatic suppressors affect WNT-TCF signaling. Our screen has identified two novel metastatic suppressors: TMED3 and SOX12, the knockdown of which increases metastatic growth after direct seeding. Moreover, both modify the type of self-renewing spheroids, but only knockdown of TMED3 also induces spheroid cell spreading and lung metastases from a subcutaneous xenograft. Importantly, whereas TMED3 and SOX12 belong to different families involved in protein secretion and transcriptional regulation, both promote endogenous WNT-TCF activity. Treatments for advanced or metastatic colon cancer may thus not benefit from WNT blockers, and these may promote a worse outcome.
Collapse
Affiliation(s)
- Arnaud Duquet
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Alice Melotti
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Sonakshi Mishra
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Monica Malerba
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Chandan Seth
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Arwen Conod
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
37
|
Fernández-Martínez P, Zahonero C, Sánchez-Gómez P. DYRK1A: the double-edged kinase as a protagonist in cell growth and tumorigenesis. Mol Cell Oncol 2015; 2:e970048. [PMID: 27308401 PMCID: PMC4905233 DOI: 10.4161/23723548.2014.970048] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023]
Abstract
DYRK1A (dual-specificity tyrosine-regulated kinase 1A) is a kinase with multiple implications for embryonic development, especially in the nervous system where it regulates the balance between proliferation and differentiation of neural progenitors. The DYRK1A gene is located in the Down syndrome critical region and may play a significant role in the developmental brain defects, early neurodegeneration, and cancer susceptibility of individuals with this syndrome. DYRK1A is also expressed in adults, where it might participate in the regulation of cell cycle, survival, and tumorigenesis, thus representing a potential therapeutic target for certain types of cancer. However, the final readout of DYRK1A overexpression or inhibition depends strongly on the cellular context, as it has both tumor suppressor and oncogenic activities. Here, we will discuss the functions and substrates of DYRK1A associated with the control of cell growth and tumorigenesis with a focus on the potential use of DYRK1A inhibitors in cancer therapy.
Collapse
Affiliation(s)
- P Fernández-Martínez
- Instituto de Medicina Molecular Aplicada; Universidad CEU-San Pablo ; Madrid, Spain
| | - C Zahonero
- Neuro-oncology Unit; Instituto de Salud Carlos III-UFIEC ; Madrid, Spain
| | - P Sánchez-Gómez
- Neuro-oncology Unit; Instituto de Salud Carlos III-UFIEC ; Madrid, Spain
| |
Collapse
|
38
|
Carpenter BS, Barry RL, Verhey KJ, Allen BL. The heterotrimeric kinesin-2 complex interacts with and regulates GLI protein function. J Cell Sci 2015; 128:1034-50. [PMID: 25588831 DOI: 10.1242/jcs.162552] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
GLI transport to the primary cilium and nucleus is required for proper Hedgehog (HH) signaling; however, the mechanisms that mediate these trafficking events are poorly understood. Kinesin-2 motor proteins regulate ciliary transport of cargo, yet their role in GLI protein function remains unexplored. To examine a role for the heterotrimeric KIF3A-KIF3B-KAP3 kinesin-2 motor complex in regulating GLI activity, we performed a series of structure-function analyses using biochemical, cell signaling and in vivo approaches that define novel specific interactions between GLI proteins and two components of this complex, KAP3 and KIF3A. We find that all three mammalian GLI proteins interact with KAP3 and we map specific interaction sites in both proteins. Furthermore, we find that GLI proteins interact selectively with KIF3A, but not KIF3B, and that GLI interacts synergistically with KAP3 and KIF3A. Using a combination of cell signaling assays and chicken in ovo electroporation, we demonstrate that KAP3 interactions restrict GLI activator function but not GLI repressor function. These data suggest that GLI interactions with KIF3A-KIF3B-KAP3 complexes are essential for proper GLI transcriptional activity.
Collapse
Affiliation(s)
- Brandon S Carpenter
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Renee L Barry
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Selbo PK, Bostad M, Olsen CE, Edwards VT, Høgset A, Weyergang A, Berg K. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics. Photochem Photobiol Sci 2015; 14:1433-50. [DOI: 10.1039/c5pp00027k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours.
Collapse
Affiliation(s)
- Pål Kristian Selbo
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Monica Bostad
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Cathrine Elisabeth Olsen
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Victoria Tudor Edwards
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Anders Høgset
- Cancer Stem Cell Innovation Center (SFI-CAST)
- Institute for Cancer Research
- Norwegian Radium Hospital
- Oslo University Hospital
- Oslo
| | - Anette Weyergang
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Kristian Berg
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| |
Collapse
|
40
|
Large differences in global transcriptional regulatory programs of normal and tumor colon cells. BMC Cancer 2014; 14:708. [PMID: 25253512 PMCID: PMC4182786 DOI: 10.1186/1471-2407-14-708] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/17/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Dysregulation of transcriptional programs leads to cell malfunctioning and can have an impact in cancer development. Our study aims to characterize global differences between transcriptional regulatory programs of normal and tumor cells of the colon. METHODS Affymetrix Human Genome U219 expression arrays were used to assess gene expression in 100 samples of colon tumor and their paired adjacent normal mucosa. Transcriptional networks were reconstructed using ARACNe algorithm using 1,000 bootstrap replicates consolidated into a consensus network. Networks were compared regarding topology parameters and identified well-connected clusters. Functional enrichment was performed with SIGORA method. ENCODE ChIP-Seq data curated in the hmChIP database was used for in silico validation of the most prominent transcription factors. RESULTS The normal network contained 1,177 transcription factors, 5,466 target genes and 61,226 transcriptional interactions. A large loss of transcriptional interactions in the tumor network was observed (11,585; 81% reduction), which also contained fewer transcription factors (621; 47% reduction) and target genes (2,190; 60% reduction) than the normal network. Gene silencing was not a main determinant of this loss of regulatory activity, since the average gene expression was essentially conserved. Also, 91 transcription factors increased their connectivity in the tumor network. These genes revealed a tumor-specific emergent transcriptional regulatory program with significant functional enrichment related to colorectal cancer pathway. In addition, the analysis of clusters again identified subnetworks in the tumors enriched for cancer related pathways (immune response, Wnt signaling, DNA replication, cell adherence, apoptosis, DNA repair, among others). Also multiple metabolism pathways show differential clustering between the tumor and normal network. CONCLUSIONS These findings will allow a better understanding of the transcriptional regulatory programs altered in colon cancer and could be an invaluable methodology to identify potential hubs with a relevant role in the field of cancer diagnosis, prognosis and therapy.
Collapse
|
41
|
Aberger F, Ruiz i Altaba A. Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Semin Cell Dev Biol 2014; 33:93-104. [PMID: 24852887 PMCID: PMC4151135 DOI: 10.1016/j.semcdb.2014.05.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/12/2014] [Indexed: 01/10/2023]
Abstract
Canonical Hedgehog (HH) signaling leads to the regulation of the GLI code: the sum of all positive and negative functions of all GLI proteins. In humans, the three GLI factors encode context-dependent activities with GLI1 being mostly an activator and GLI3 often a repressor. Modulation of GLI activity occurs at multiple levels, including by co-factors and by direct modification of GLI structure. Surprisingly, the GLI proteins, and thus the GLI code, is also regulated by multiple inputs beyond HH signaling. In normal development and homeostasis these include a multitude of signaling pathways that regulate proto-oncogenes, which boost positive GLI function, as well as tumor suppressors, which restrict positive GLI activity. In cancer, the acquisition of oncogenic mutations and the loss of tumor suppressors - the oncogenic load - regulates the GLI code toward progressively more activating states. The fine and reversible balance of GLI activating GLI(A) and GLI repressing GLI(R) states is lost in cancer. Here, the acquisition of GLI(A) levels above a given threshold is predicted to lead to advanced malignant stages. In this review we highlight the concepts of the GLI code, the oncogenic load, the context-dependency of GLI action, and different modes of signaling integration such as that of HH and EGF. Targeting the GLI code directly or indirectly promises therapeutic benefits beyond the direct blockade of individual pathways.
Collapse
Affiliation(s)
- Fritz Aberger
- Department of Molecular Biology, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, 8242 CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland.
| |
Collapse
|
42
|
Yang JJ, Tao H, Li J. Hedgehog signaling pathway as key player in liver fibrosis: new insights and perspectives. Expert Opin Ther Targets 2014; 18:1011-21. [PMID: 24935558 DOI: 10.1517/14728222.2014.927443] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the hedgehog signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. AREAS COVERED The aim of this review is to describe the present knowledge about the hedgehog signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of hedgehog signaling pathway research. Moreover, we will discuss the different interactions with hedgehog signaling pathway-regulated liver fibrosis. EXPERT OPINION The hedgehog pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the hedgehog pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of hedgehog signaling pathway activation in liver fibrosis and HSC fate, including DNA methylation, methyl CpG binding protein 2, microRNA, irradiation and metabolism that influence hedgehog signaling pathway transduction. These findings identify the hedgehog pathway as a potentially important for biomarker development and therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective hedgehog-based drugs.
Collapse
Affiliation(s)
- Jing-Jing Yang
- The Second Hospital of Anhui Medical University, Department of Pharmacology , Hefei 230601 , China
| | | | | |
Collapse
|
43
|
Gu W, Shou J, Gu S, Sun B, Che X. Identifying hedgehog signaling specific microRNAs in glioblastomas. Int J Med Sci 2014; 11:488-93. [PMID: 24688313 PMCID: PMC3970102 DOI: 10.7150/ijms.6764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 03/11/2014] [Indexed: 12/19/2022] Open
Abstract
Aberrant activation of hedgehog (Hh) signaling pathway plays an important role in the development and proliferation of glioblastoma (GBM) cells. However, its mechanism remains unknown. MicroRNAs (miRNAs) are short non-coding RNA molecules which are involved in the post-transcriptional regulation of genes, and enrolled in signaling transduction network in tumors. This study was designed to investigate the role of miRNAs targeting the Hh signaling pathway in GBMs. According to the expression level of Gli1 mRNA measured by real time PCR, GBM samples were assigned to Gli1 high or low expression group. MiRNA microarray was applied to screen the dysregulated miRNA. As a result, 17 miRNAs were differentially expressed between Gli1 high expression and low expression groups (p < 0.005). Thirteen miRNAs including miR-125b-1 were downregulated, while only 4 miRNAs including miR-144 were upregulated in Gli1 high expression group. In summary, our study presents a subset of miRNAs which target the Hh signaling pathway in GBMs, and throws some light on the aberrant activation mechanism.
Collapse
Affiliation(s)
- Wentao Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiajun Shou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shixin Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Bin Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaoming Che
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
44
|
Amable L, Gavin E, Kudo K, Meng E, Rocconi RP, Shevde LA, Reed E. GLI1 upregulates C-JUN through a specific 130-kDa isoform. Int J Oncol 2013; 44:655-61. [PMID: 24366538 PMCID: PMC3928471 DOI: 10.3892/ijo.2013.2222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/04/2013] [Indexed: 01/02/2023] Open
Abstract
The Hedgehog pathway is molecularly linked to increased resistance to cisplatin and increased repair of platinum-DNA damage, through C-JUN. GLI1, which has five known isoforms, is a positive transcriptional regulator in Hedgehog. Southwestern blot assay, EMSA and ChIP assays indicate that only one of five isoforms of GLI1 may be responsible for the Hedgehog link with C-JUN and thus, increased platinum-DNA adduct repair. Cancer tissues express this 130-kDa isoform at levels 6-fold higher than non-malignant tissues; and this isoform exists in abundance in six of seven ovarian cancer cell lines examined.
Collapse
Affiliation(s)
- Lauren Amable
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elaine Gavin
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Kenji Kudo
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Erhong Meng
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Rodney P Rocconi
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Lalita A Shevde
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Eddie Reed
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Shevde LA, Samant RS. Nonclassical hedgehog-GLI signaling and its clinical implications. Int J Cancer 2013; 135:1-6. [PMID: 23929208 DOI: 10.1002/ijc.28424] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/25/2013] [Indexed: 01/07/2023]
Abstract
Hedgehog (Hh) signaling regulates embryonic patterning and organ morphogenesis. It is also involved in regeneration and repair of tissues. Aberrant Hh pathway activation is a feature of many human malignancies. Classical Hh signaling is activated by Hh ligands that can signal in an autocrine or paracrine manner generating a tumor-stromal crosstalk. In contrast to canonical Hh signaling that culminates in the activation of GLI transcription factors, "noncanonical" Hh signaling does not involve GLI transcriptional activity. Several Hh pathway inhibitors have progressed to clinical trials, where the outcomes have not been very encouraging in many solid tumors. Here we discuss the likely role of "nonclassical" Hh-GLI signaling that is activated by growth factors and cytokines from the tumor and/or its microenvironment; these uncouple Hh signaling from the vital regulatory protein Smoothened, and result in the activation of GLI. While efforts are being made to target tumor-intrinsic Hh targets, it is imperative to acknowledge the role of the complex molecular networks and crosstalk between different components of the tumor microenvironment that can result in the emergence of resistance to conventional Hh therapy. These considerations have an important bearing on appreciating the need to mitigate the effects of tumor microenvironment to combat resistance to Hh inhibitors.
Collapse
Affiliation(s)
- Lalita A Shevde
- Department of Pathology, The UAB Comprehensive Cancer Center, University of Alabama, Birmingham, AL
| | | |
Collapse
|
46
|
Mazzà D, Infante P, Colicchia V, Greco A, Alfonsi R, Siler M, Antonucci L, Po A, De Smaele E, Ferretti E, Capalbo C, Bellavia D, Canettieri G, Giannini G, Screpanti I, Gulino A, Di Marcotullio L. PCAF ubiquitin ligase activity inhibits Hedgehog/Gli1 signaling in p53-dependent response to genotoxic stress. Cell Death Differ 2013; 20:1688-97. [PMID: 24013724 DOI: 10.1038/cdd.2013.120] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/09/2022] Open
Abstract
The Hedgehog (Hh) signaling regulates tissue development, and its aberrant activation is a leading cause of malignancies, including medulloblastoma (Mb). Hh-dependent tumorigenesis often occurs in synergy with other mechanisms, such as loss of p53, the master regulator of the DNA damage response. To date, little is known about mechanisms connecting DNA-damaging events to morphogen-dependent processes. Here, we show that genotoxic stress triggers a cascade of signals, culminating with inhibition of the activity of Gli1, the final transcriptional effector of Hh signaling. This inhibition is dependent on the p53-mediated elevation of the acetyltransferase p300/CBP-associated factor (PCAF). Notably, we identify PCAF as a novel E3 ubiquitin ligase of Gli1. Indeed PCAF, but not a mutant with a deletion of its ubiquitination domain, represses Hh signaling in response to DNA damage by promoting Gli1 ubiquitination and its proteasome-dependent degradation. Restoring Gli1 levels rescues the growth arrest and apoptosis effect triggered by genotoxic drugs. Consistently, DNA-damaging agents fail to inhibit Gli1 activity in the absence of either p53 or PCAF. Finally, Mb samples from p53-null mice display low levels of PCAF and upregulation of Gli1 in vivo, suggesting PCAF as potential therapeutic target in Hh-dependent tumors. Together, our data define a mechanism of inactivation of a morphogenic signaling in response to genotoxic stress and unveil a p53/PCAF/Gli1 circuitry centered on PCAF that limits Gli1-enhanced mitogenic and prosurvival response.
Collapse
Affiliation(s)
- D Mazzà
- Department of Molecular Medicine, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Merchant JL, Saqui-Salces M. Inhibition of Hedgehog signaling in the gastrointestinal tract: targeting the cancer microenvironment. Cancer Treat Rev 2013; 40:12-21. [PMID: 24007940 DOI: 10.1016/j.ctrv.2013.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 02/08/2023]
Abstract
This review summarizes emerging information regarding the Hedgehog (Hh) signaling pathway during neoplastic transformation in the gastrointestinal tract. Although there is a role for the well-established canonical pathway in which Hedgehog ligands interact with their receptor Patched, there is sufficient evidence that downstream components of the Hh pathway, e.g., Gli1, are hijacked by non-Hh signaling pathways to promote the conversion of the epithelium to dysplasia and carcinoma. We review the canonical pathway and involvement of primary cilia, and then focus on current evidence for Hh signaling in luminal bowel cancers as well as accessory organs, i.e., liver, pancreas and biliary ducts. We conclude that targeting the Hh pathway with small molecules, nutriceuticals and other mechanisms will likely require a combination of inhibitors that target Gli transcription factors in addition to canonical modulators such as Smoothened.
Collapse
Affiliation(s)
- Juanita L Merchant
- Departments of Internal Medicine and Molecular and Integrative Physiology, Division of Gastroenterology, University of Michigan, United States.
| | | |
Collapse
|
48
|
Joel M, Sandberg CJ, Boulland JL, Vik-Mo EO, Langmoen IA, Glover JC. Inhibition of tumor formation and redirected differentiation of glioblastoma cells in a xenotypic embryonic environment. Dev Dyn 2013; 242:1078-93. [DOI: 10.1002/dvdy.24001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 11/08/2022] Open
|
49
|
Huang H, Cotton JL, Wang Y, Rajurkar M, Zhu LJ, Lewis BC, Mao J. Specific requirement of Gli transcription factors in Hedgehog-mediated intestinal development. J Biol Chem 2013; 288:17589-96. [PMID: 23645682 PMCID: PMC3682558 DOI: 10.1074/jbc.m113.467498] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/01/2013] [Indexed: 11/06/2022] Open
Abstract
Hedgehog (Hh) signaling is involved in multiple aspects of embryonic gut development, including mesenchymal growth and smooth muscle differentiation. The Gli family transcription factors is thought to collectively mediate Hh signaling in mammals. However, the function of different Gli proteins in gut development remains uncharacterized. Here, we genetically dissect the contribution of Gli transcriptional activation and de-repression in intestinal growth and patterning. We find that removal of the Gli3 repressor is dispensable for intestinal development and does not play a major role in Hh-controlled gut development. However, Gli2 activation is able to fully rescue the Smoothened (Smo)-null intestinal phenotype, suggesting that the Gli2 transcription factor is the main effector for Hh signaling in the intestine. To understand further the molecular mechanism underlying Hh/Gli function in the developing gut, we identify a subset of small leucine-rich glycoproteins (SLRPs) that may function downstream of Hh signaling in the mesenchyme. We show that osteoglycin, a SLRP, inhibits Hh-induced differentiation toward the smooth muscle lineage in C3H10T1/2 pluripotent mesenchymal cells. Taken together, our study reveals, for the first time, the distinct roles of Gli proteins in intestine development and suggests SLRPs as novel regulators of smooth muscle cell differentiation.
Collapse
Affiliation(s)
- He Huang
- From the Department of Cancer Biology
- the Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China 410013, and
| | | | - Yang Wang
- the University of Massachusetts MassBiologics, Boston, Massachusetts 02126
| | | | - Lihua J. Zhu
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Brian C. Lewis
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | |
Collapse
|
50
|
Coni S, Antonucci L, D'Amico D, Di Magno L, Infante P, De Smaele E, Giannini G, Di Marcotullio L, Screpanti I, Gulino A, Canettieri G. Gli2 acetylation at lysine 757 regulates hedgehog-dependent transcriptional output by preventing its promoter occupancy. PLoS One 2013; 8:e65718. [PMID: 23762415 PMCID: PMC3675076 DOI: 10.1371/journal.pone.0065718] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/26/2013] [Indexed: 12/20/2022] Open
Abstract
The morphogenic Hedgehog (Hh) signaling regulates postnatal cerebellar development and its aberrant activation leads to medulloblastoma. The transcription factors Gli1 and Gli2 are the activators of Hh pathway and their function is finely controlled by different covalent modifications, such as phosphorylation and ubiquitination. We show here that Gli2 is endogenously acetylated and that this modification represents a key regulatory step for Hedgehog signaling. The histone acetyltransferase (HAT) coactivator p300, but not other HATs, acetylates Gli2 at the conserved lysine K757 thus inhibiting Hh target gene expression. By generating a specific anti acetyl-Gli2(Lys757) antisera we demonstrated that Gli2 acetylation is readily detectable at endogenous levels and is attenuated by Hh agonists. Moreover, Gli2 K757R mutant activity is higher than wild type Gli2 and is no longer enhanced by Hh agonists, indicating that acetylation represents an additional level of control for signal dependent activation. Consistently, in sections of developing mouse cerebella Gli2 acetylation correlates with the activation status of Hedgehog signaling. Mechanistically, acetylation at K757 prevents Gli2 entry into chromatin. Together, these data illustrate a novel mechanism of regulation of the Hh signaling whereby, in concert with Gli1, Gli2 acetylation functions as a key transcriptional checkpoint in the control of morphogen-dependent processes.
Collapse
Affiliation(s)
- Sonia Coni
- CNRS UMR 7277, Inserm 1091, Institut de Biologie Valrose (iBV), Centre de Biochimie, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
| | - Laura Antonucci
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Davide D'Amico
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Laura Di Magno
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Paola Infante
- Center for Life Nano, Istituto Italiano di Tecnologia, Rome, ItalyScience@Sapienza
- * E-mail: (AG); (GC)
| | - Enrico De Smaele
- Department of Experimental Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Giuseppe Giannini
- Department of Experimental Medicine, University of Rome “La Sapienza”, Rome, Italy
| | | | - Isabella Screpanti
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
- Center for Life Nano, Istituto Italiano di Tecnologia, Rome, ItalyScience@Sapienza
- * E-mail: (AG); (GC)
| | - Alberto Gulino
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- * E-mail: (AG); (GC)
| | - Gianluca Canettieri
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
- * E-mail: (AG); (GC)
| |
Collapse
|