1
|
Qiu X, Li S, Fan T, Zhang Y, Wang B, Zhang B, Zhang M, Zhang L. Advances and prospects in tumor infiltrating lymphocyte therapy. Discov Oncol 2024; 15:630. [PMID: 39514075 PMCID: PMC11549075 DOI: 10.1007/s12672-024-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Tumor-infiltrating lymphocyte (TIL) therapy in adoptive T-cell therapy (ACT) has already caused durable regression in a variety of cancer types due to T-cell persistence, clinical activity, and duration of objective response and safety. TILs are composed of polyclonal effector T-cells specific to heterogenetic tumor antigens, reasonably providing a promising means for tumor therapy. In addition, their expansion in vitro can release them from the suppressive tumor microenvironment. Even though significant advances have been made in the procedure of TIL therapy, from TIL isolation, modification, expansion, and infusion back to the patient to target the tumor, strategy optimization is always ongoing to overcome drawbacks such as a complex process, options for the lineage differentiation status of TILs, and sufficient trafficking of TILs to the tumor. In this review, we summarize the current advances of TIL therapy, raise problem-based optimization strategies, and provide future perspectives on next-generation TIL therapy as a potential avenue for enhancing cell-based immunotherapy.
Collapse
Affiliation(s)
- Xu Qiu
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shengjun Li
- Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, Shandong, China
| | - Tianyu Fan
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Taian City Central Hospital, Taian, Shandong, China
| | - Yue Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- The Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Bei Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Mingzhe Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Grandhi TSP, Mebrahtu M, Musso R, Fullman A, Nifong B, Wisdom K, Roh TT, Sender M, Poore D, Macdougall CE, Oren R, Griffin S, Cheng AT, Ekert JE. A microphysiological assay for studying T-cell chemotaxis, trafficking and tumor killing. Biofabrication 2024; 17:015004. [PMID: 39378897 DOI: 10.1088/1758-5090/ad847f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Tumors in patients non-responsive to immunotherapy harbor a series of barriers that impede the efficacy of effector T-cells. Consequently, therapeutically modulating the chemotaxis machinery to enable effector T cell infiltration and function in the tumor could result in more successful therapeutic outcomes. Complexin-vitromodels allow re-creation ofin-vivotumor complexities in anin-vitrosetting, allowing improved translatability to patient biology at the laboratory scale. We identified a gap in available industrial scale microphysiological (MPS) assays for faster validation of targets and strategies that enable T-cell chemotaxis and effector function within tumor microenvironments. Using a commercially available, 96-chip 2-lane microfluidic assay system, we present a novel, scalable, complexin vitroMPS assay to study 3D T-cell chemotaxis and function within native, extracellular matrix (ECM)-rich multicellular tumor environments. Activated or naïve CD3+ T-cells stained with far-red nuclear stain responded to the chemokine gradients generated within the matrigel-collagen ECM by migrating into the microfluidic channel (∼5 mm horizontal window), in a concentration- and cell type-dependent manner. Furthermore, we observed and tracked chemotaxis and cancer cell killing function of antigen-specific CD4.CD8. chimeric antigen receptor (CAR)-T cells that responded to CXCR3 agonist gradient built through the expansive 5 mm of cancer cell colony containing stroma. The 2-lane assay system yielded useful information regarding donor and dose-dependent differences in CAR-T cell chemotaxis and tumor killing. The scalable assay system allows a granular window into immune cell migration and function in tissue spaces beyond endothelium, addressing a missing gap in studying tissue-specific immune cell chemotaxis and function to bring forward advancements in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Makda Mebrahtu
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Ryan Musso
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Alexis Fullman
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Brady Nifong
- Research Statistics, GSK, Collegeville, PA, United States of America
| | - Katrina Wisdom
- Complex In-Vitro Models, GSK, Collegeville, PA, United States of America
| | - Terrence T Roh
- Complex In-Vitro Models, GSK, Collegeville, PA, United States of America
| | - Matthew Sender
- Chemical Biology, GSK, Collegeville, PA, United States of America
| | - Derek Poore
- Immuno-Oncology and Combinations (IOC), GSK, Collegeville, PA, United States of America
| | | | - Ravit Oren
- Oncology Cell Therapy, GSK, Stevenage, United Kingdom
| | - Sue Griffin
- Oncology Translational Research, GSK, Stevenage, United Kingdom
| | - Aaron T Cheng
- Genome Biology, GSK, Collegeville, PA, United States of America
| | - Jason E Ekert
- Complex In-Vitro Models, GSK, Collegeville, PA, United States of America
| |
Collapse
|
3
|
Cao H, Xiao J, Baylink DJ, Nguyen V, Shim N, Lee J, Mallari DJR, Wasnik S, Mirshahidi S, Chen CS, Abdel-Azim H, Reeves ME, Xu Y. Development of a Competitive Nutrient-Based T-Cell Immunotherapy Designed to Block the Adaptive Warburg Effect in Acute Myeloid Leukemia. Biomedicines 2024; 12:2250. [PMID: 39457563 PMCID: PMC11504511 DOI: 10.3390/biomedicines12102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: T-cell-based adoptive cell therapies have emerged at the forefront of cancer immunotherapies; however, failed long-term survival and inevitable exhaustion of transplanted T lymphocytes in vivo limits clinical efficacy. Leukemia blasts possess enhanced glycolysis (Warburg effect), exploiting their microenvironment to deprive nutrients (e.g., glucose) from T cells, leading to T-cell dysfunction and leukemia progression. Methods: Thus, we explored whether genetic reprogramming of T-cell metabolism could improve their survival and empower T cells with a competitive glucose-uptake advantage against blasts and inhibit their uncontrolled proliferation. Results: Here, we discovered that high-glucose concentration reduced the T-cell expression of glucose transporter GLUT1 (SLC2A1) and TFAM (mitochondrion transcription factor A), an essential transcriptional regulator of mitochondrial biogenesis, leading to their impaired expansion ex vivo. To overcome the glucose-induced genetic deficiency in metabolism, we engineered T cells with lentiviral overexpression of SLC2A1 and/or TFAM transgene. Multi-omics analyses revealed that metabolic reprogramming promoted T-cell proliferation by increasing IL-2 release and reducing exhaustion. Moreover, the engineered T cells competitively deprived glucose from allogenic blasts and lessened leukemia burden in vitro. Conclusions: Our findings propose a novel T-cell immunotherapy that utilizes a dual strategy of starving blasts and cytotoxicity for preventing uncontrolled leukemia proliferation.
Collapse
Affiliation(s)
- Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Vinh Nguyen
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Nathan Shim
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jae Lee
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Dave J. R. Mallari
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Saied Mirshahidi
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Biospecimen Laboratory, Department of Medicine and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hisham Abdel-Azim
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Transplant and Cell Therapy, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Hematology and Oncology, Department of Pediatrics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
4
|
Fisher TM, Liddelow SA. Emerging roles of astrocytes as immune effectors in the central nervous system. Trends Immunol 2024; 45:824-836. [PMID: 39332912 DOI: 10.1016/j.it.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
The astrocyte, a major glial cell type in the central nervous system (CNS), is widely regarded as a functionally diverse mediator of homeostasis. During development and throughout adulthood, astrocytes have essential roles, such as providing neuron metabolic support, modulating synaptic function, and maintaining the blood-brain barrier (BBB). Recent evidence continues to underscore their functional heterogeneity and importance for CNS maintenance, as well as how these cells ensure optimal CNS and immune responses to disease, acute trauma, and infection. Advances in our understanding of neuroimmune interactions complement our knowledge of astrocyte functional heterogeneity, where astrocytes are now regarded as key effectors and propagators of immune signaling. This shift in perspective highlights the role of astrocytes not merely as support cells, but as active participants in CNS immune responses.
Collapse
Affiliation(s)
- Theodore M Fisher
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
de Winter N, Ji J, Sintou A, Forte E, Lee M, Noseda M, Li A, Koenig AL, Lavine KJ, Hayat S, Rosenthal N, Emanueli C, Srivastava PK, Sattler S. Persistent transcriptional changes in cardiac adaptive immune cells following myocardial infarction: New evidence from the re-analysis of publicly available single cell and nuclei RNA-sequencing data sets. J Mol Cell Cardiol 2024; 192:48-64. [PMID: 38734060 DOI: 10.1016/j.yjmcc.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION Chronic immunopathology contributes to the development of heart failure after a myocardial infarction. Both T and B cells of the adaptive immune system are present in the myocardium and have been suggested to be involved in post-MI immunopathology. METHODS We analyzed the B and T cell populations isolated from previously published single cell RNA-sequencing data sets (PMID: 32130914, PMID: 35948637, PMID: 32971526 and PMID: 35926050), of the mouse and human heart, using differential expression analysis, functional enrichment analysis, gene regulatory inferences, and integration with autoimmune and cardiovascular GWAS. RESULTS Already at baseline, mature effector B and T cells are present in the human and mouse heart, having increased activity in transcription factors maintaining tolerance (e.g. DEAF1, JDP2, SPI-B). Following MI, T cells upregulate pro-inflammatory transcript levels (e.g. Cd11, Gzmk, Prf1), while B cells upregulate activation markers (e.g. Il6, Il1rn, Ccl6) and collagen (e.g. Col5a2, Col4a1, Col1a2). Importantly, pro-inflammatory and fibrotic transcription factors (e.g. NFKB1, CREM, REL) remain active in T cells, while B cells maintain elevated activity in transcription factors related to immunoglobulin production (e.g. ERG, REL) in both mouse and human post-MI hearts. Notably, genes differentially expressed in post-MI T and B cells are associated with cardiovascular and autoimmune disease. CONCLUSION These findings highlight the varied and time-dependent dynamic roles of post-MI T and B cells. They appear ready-to-go and are activated immediately after MI, thus participate in the acute wound healing response. However, they subsequently remain in a state of pro-inflammatory activation contributing to persistent immunopathology.
Collapse
Affiliation(s)
- Natasha de Winter
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Jiahui Ji
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Amalia Sintou
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, United States
| | - Michael Lee
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Michela Noseda
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Aoxue Li
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrew L Koenig
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Kory J Lavine
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Nadia Rosenthal
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; The Jackson Laboratory, Bar Harbor, United States
| | - Costanza Emanueli
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Prashant K Srivastava
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Cardiology, Medical University of Graz, Austria; Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria.
| |
Collapse
|
6
|
Costa PAC, da Silva WN, Moura Prazeres PHD, Ferreira HAS, da Silva NJA, Figueiredo MM, da Silva Oliveira B, Scalzo Júnior SRA, Silva Santos FRD, Fernandes RA, Palanki R, Hamilton AG, Birbrair A, Santos VR, de Miranda AS, Mitchell MJ, Teixeira MM, Costa VV, Guimarães PPG. siRNA lipid nanoparticles for CXCL12 silencing modulate brain immune response during Zika infection. Biomed Pharmacother 2024; 170:115981. [PMID: 38091634 DOI: 10.1016/j.biopha.2023.115981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
CXCL12 is a key chemokine implicated in neuroinflammation, particularly during Zika virus (ZIKV) infection. Specifically, CXCL12 is upregulated in circulating cells of ZIKV infected patients. Here, we developed a lipid nanoparticle (LNP) to deliver siRNA in vivo to assess the impact of CXCL12 silencing in the context of ZIKV infection. The biodistribution of the LNP was assessed in vivo after intravenous injection using fluorescently tagged siRNA. Next, we investigated the ability of the developed LNP to silence CXCL12 in vivo and assessed the resulting effects in a murine model of ZIKV infection. The LNP encapsulating siRNA significantly inhibited CXCL12 levels in the spleen and induced microglial activation in the brain during ZIKV infection. This activation was evidenced by the enhanced expression of iNOS, TNF-α, and CD206 within microglial cells. Moreover, T cell subsets exhibited reduced secretion of IFN-ɣ and IL-17 following LNP treatment. Despite no observable alteration in viral load, CXCL12 silencing led to a significant reduction in type-I interferon production compared to both ZIKV-infected and uninfected groups. Furthermore, we found grip strength deficits in the group treated with siRNA-LNP compared to the other groups. Our data suggest a correlation between the upregulated pro-inflammatory cytokines and the observed decrease in strength. Collectively, our results provide evidence that CXCL12 silencing exerts a regulatory influence on the immune response in the brain during ZIKV infection. In addition, the modulation of T-cell activation following CXCL12 silencing provides valuable insights into potential protective mechanisms against ZIKV, offering novel perspectives for combating this infection.
Collapse
Affiliation(s)
- Pedro Augusto Carvalho Costa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Walison Nunes da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Pedro Henrique Dias Moura Prazeres
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heloísa Athaydes Seabra Ferreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Natália Jordana Alves da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Bruna da Silva Oliveira
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Sérgio Ricardo Aluotto Scalzo Júnior
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Felipe Rocha da Silva Santos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rúbia Aparecida Fernandes
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6321, United States
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6321, United States
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, WI 53706, United States
| | - Victor Rodrigues Santos
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Aline Silva de Miranda
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6321, United States
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Pedro Pires Goulart Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| |
Collapse
|
7
|
Macapagal SC, Bennani NN. Nodal peripheral T-cell lymphoma: Chemotherapy-free management, are we there yet? Blood Rev 2023; 60:101071. [PMID: 36898933 DOI: 10.1016/j.blre.2023.101071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Peripheral T-cell lymphomas (PTCLs) are a diverse and uncommon type of lymphoid malignancies with a dismal prognosis. Recent advances in genomic studies have shown recurring mutations that are changing our knowledge of the disease's molecular genetics and pathogenesis. As such, new targeted therapies and treatments to improve disease outcomes are currently being explored. In this review, we discussed the current understanding of the nodal PTCL biology with potential therapeutic implications and gave our insights on the promising novel therapies that are currently under study such as immunotherapy, chimeric antigen receptor T-cell therapy, and oncolytic virotherapy.
Collapse
Affiliation(s)
| | - N Nora Bennani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Majumdar S, Pontejo SM, Jaiswal H, Gao JL, Salancy A, Stassenko E, Yamane H, McDermott DH, Balabanian K, Bachelerie F, Murphy PM. Severe CD8+ T Lymphopenia in WHIM Syndrome Caused by Selective Sequestration in Primary Immune Organs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1913-1924. [PMID: 37133343 PMCID: PMC10247468 DOI: 10.4049/jimmunol.2200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is an ultra-rare combined primary immunodeficiency disease caused by heterozygous gain-of-function mutations in the chemokine receptor CXCR4. WHIM patients typically present with recurrent acute infections associated with myelokathexis (severe neutropenia due to bone marrow retention of mature neutrophils). Severe lymphopenia is also common, but the only associated chronic opportunistic pathogen is human papillomavirus and mechanisms are not clearly defined. In this study, we show that WHIM mutations cause more severe CD8 than CD4 lymphopenia in WHIM patients and WHIM model mice. Mechanistic studies in mice revealed selective and WHIM allele dose-dependent accumulation of mature CD8 single-positive cells in thymus in a cell-intrinsic manner due to prolonged intrathymic residence, associated with increased CD8 single-positive thymocyte chemotactic responses in vitro toward the CXCR4 ligand CXCL12. In addition, mature WHIM CD8+ T cells preferentially home to and are retained in the bone marrow in mice in a cell-intrinsic manner. Administration of the specific CXCR4 antagonist AMD3100 (plerixafor) in mice rapidly and transiently corrected T cell lymphopenia and the CD4/CD8 ratio. After lymphocytic choriomeningitis virus infection, we found no difference in memory CD8+ T cell differentiation or viral load between wild-type and WHIM model mice. Thus, lymphopenia in WHIM syndrome may involve severe CXCR4-dependent CD8+ T cell deficiency resulting in part from sequestration in the primary lymphoid organs, thymus, and bone marrow.
Collapse
Affiliation(s)
- Shamik Majumdar
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Sergio M. Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Hemant Jaiswal
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Abigail Salancy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Elizabeth Stassenko
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hidehiro Yamane
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Karl Balabanian
- Université Paris-Cité, Institut de Recherche Saint-Louis, OPALE Carnot Institute, EMiLy, INSERM U1160, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Molon B, Liboni C, Viola A. CD28 and chemokine receptors: Signalling amplifiers at the immunological synapse. Front Immunol 2022; 13:938004. [PMID: 35983040 PMCID: PMC9379342 DOI: 10.3389/fimmu.2022.938004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023] Open
Abstract
T cells are master regulators of the immune response tuning, among others, B cells, macrophages and NK cells. To exert their functions requiring high sensibility and specificity, T cells need to integrate different stimuli from the surrounding microenvironment. A finely tuned signalling compartmentalization orchestrated in dynamic platforms is an essential requirement for the proper and efficient response of these cells to distinct triggers. During years, several studies have depicted the pivotal role of the cytoskeleton and lipid microdomains in controlling signalling compartmentalization during T cell activation and functions. Here, we discuss mechanisms responsible for signalling amplification and compartmentalization in T cell activation, focusing on the role of CD28, chemokine receptors and the actin cytoskeleton. We also take into account the detrimental effect of mutations carried by distinct signalling proteins giving rise to syndromes characterized by defects in T cell functionality.
Collapse
Affiliation(s)
- Barbara Molon
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Barbara Molon,
| | - Cristina Liboni
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonella Viola
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Scherm MG, Wyatt RC, Serr I, Anz D, Richardson SJ, Daniel C. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol Metab 2022; 64:101565. [PMID: 35944899 PMCID: PMC9418549 DOI: 10.1016/j.molmet.2022.101565] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022] Open
Abstract
Background Scope of review Major conclusions
Collapse
|
11
|
Kim MS, Park D, Lee S, Park S, Kim KE, Kim TS, Park HJ, Cho D. Erythroid Differentiation Regulator 1 Strengthens TCR Signaling by Enhancing PLCγ1 Signal Transduction Pathway. Int J Mol Sci 2022; 23:ijms23020844. [PMID: 35055028 PMCID: PMC8776247 DOI: 10.3390/ijms23020844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Erythroid differentiation regulator 1 (Erdr1) has previously been reported to control thymocyte selection via TCR signal regulation, but the effect of Erdr1 as a TCR signaling modulator was not studied in peripheral T cells. In this report, it was determined whether Erdr1 affected TCR signaling strength in CD4 T cells. Results revealed that Erdr1 significantly enhanced the anti-TCR antibody-mediated activation and proliferation of T cells while failing to activate T cells in the absence of TCR stimulation. In addition, Erdr1 amplified Ca2+ influx and the phosphorylation of PLCγ1 in CD4 T cells with the TCR stimuli. Furthermore, NFAT1 translocation into nuclei in CD4 T cells was also significantly promoted by Erdr1 in the presence of TCR stimulation. Taken together, our results indicate that Erdr1 positively modulates TCR signaling strength via enhancing the PLCγ1/Ca2+/NFAT1 signal transduction pathway.
Collapse
Affiliation(s)
- Myun Soo Kim
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
| | - Dongmin Park
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
| | - Sora Lee
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
| | - Sunyoung Park
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
| | - Kyung Eun Kim
- Department of Cosmetic Sciences, Sookmyung Women’s University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul 04310, Korea;
| | - Tae Sung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul 02841, Korea;
| | - Hyun Jeong Park
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
| | - Daeho Cho
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
- Institute of Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-3290-3739; Fax: +82-2-928-8273
| |
Collapse
|
12
|
TGF-β signaling and the interaction between platelets and T-cells in tumor microenvironment: Foes or friends? Cytokine 2021; 150:155772. [PMID: 34814016 DOI: 10.1016/j.cyto.2021.155772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
T-cells, as the main immune cells in fighting against cancer cells, are usually overwhelmed by many factors. Tumor microenvironment (TME) changes are one of the factors that can limit T-cells functions. On the other hand, platelets which are known as the main source of transforming growth factor-β (TGF-β) in TME, are seemingly insignificant immune cells that can affect T-cell functions. There is a hypothesis that platelets might prevent tumor growth by stimulating cellular immunity, especially T-cells in pre-cancer status while they can inhibit T-cells and stimulate tumor growth in the advanced stage of cancer. Therefore, platelets could act as a double-edged sword in the activation of T-cells under pre-cancer and advanced stages of cancer conditions. In this review, the interaction between platelets and T cells in pre-cancer and advanced stages of cancer and the role of TGF-β signaling in different stages of cancer will be discussed.
Collapse
|
13
|
Valenzuela NM. IFNγ, and to a Lesser Extent TNFα, Provokes a Sustained Endothelial Costimulatory Phenotype. Front Immunol 2021; 12:648946. [PMID: 33936069 PMCID: PMC8082142 DOI: 10.3389/fimmu.2021.648946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Background Vascular endothelial cells (EC) are critical for regulation of local immune responses, through coordination of leukocyte recruitment from the blood and egress into the tissue. Growing evidence supports an additional role for endothelium in activation and costimulation of adaptive immune cells. However, this function remains somewhat controversial, and the full repertoire and durability of an enhanced endothelial costimulatory phenotype has not been wholly defined. Methods Human endothelium was stimulated with continuous TNFα or IFNγ for 1-48hr; or primed with TNFα or IFNγ for only 3hr, before withdrawal of stimulus for up to 45hr. Gene expression of cytokines, costimulatory molecules and antigen presentation molecules was measured by Nanostring, and publicly available datasets of EC stimulation with TNFα or IFNγ were leveraged to further corroborate the results. Cell surface protein expression was detected by flow cytometry, and secretion of cytokines was assessed by Luminex and ELISA. Key findings were confirmed in primary human endothelial cells from 4-6 different vascular beds. Results TNFα triggered mostly positive immune checkpoint molecule expression on endothelium, including CD40, 4-1BB, and ICOSLG but in the context of only HLA class I and immunoproteasome subunits. IFNγ promoted a more tolerogenic phenotype of high PD-L1 and PD-L2 expression with both HLA class I and class II molecules and antigen processing genes. Both cytokines elicited secretion of IL-15 and BAFF/BLyS, with TNFα stimulated EC additionally producing IL-6, TL1A and IL-1β. Moreover, endothelium primed for a short period (3hr) with TNFα mostly failed to alter the costimulatory phenotype 24-48hr later, with only somewhat augmented expression of HLA class I. In contrast, brief exposure to IFNγ was sufficient to cause late expression of antigen presentation, cytokines and costimulatory molecules. In particular HLA class I, PD-1 ligand and cytokine expression was markedly high on endothelium two days after IFNγ was last present. Conclusions Endothelia from multiple vascular beds possess a wide range of other immune checkpoint molecules and cytokines that can shape the adaptive immune response. Our results further demonstrate that IFNγ elicits prolonged signaling that persists days after initiation and is sufficient to trigger substantial gene expression changes and immune phenotype in vascular endothelium.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Felce JH, Parolini L, Sezgin E, Céspedes PF, Korobchevskaya K, Jones M, Peng Y, Dong T, Fritzsche M, Aarts D, Frater J, Dustin ML. Single-Molecule, Super-Resolution, and Functional Analysis of G Protein-Coupled Receptor Behavior Within the T Cell Immunological Synapse. Front Cell Dev Biol 2021; 8:608484. [PMID: 33537301 PMCID: PMC7848080 DOI: 10.3389/fcell.2020.608484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
A central process in immunity is the activation of T cells through interaction of T cell receptors (TCRs) with agonistic peptide-major histocompatibility complexes (pMHC) on the surface of antigen presenting cells (APCs). TCR-pMHC binding triggers the formation of an extensive contact between the two cells termed the immunological synapse, which acts as a platform for integration of multiple signals determining cellular outcomes, including those from multiple co-stimulatory/inhibitory receptors. Contributors to this include a number of chemokine receptors, notably CXC-chemokine receptor 4 (CXCR4), and other members of the G protein-coupled receptor (GPCR) family. Although best characterized as mediators of ligand-dependent chemotaxis, some chemokine receptors are also recruited to the synapse and contribute to signaling in the absence of ligation. How these and other GPCRs integrate within the dynamic structure of the synapse is unknown, as is how their normally migratory Gαi-coupled signaling is terminated upon recruitment. Here, we report the spatiotemporal organization of several GPCRs, focusing on CXCR4, and the G protein Gαi2 within the synapse of primary human CD4+ T cells on supported lipid bilayers, using standard- and super-resolution fluorescence microscopy. We find that CXCR4 undergoes orchestrated phases of reorganization, culminating in recruitment to the TCR-enriched center. This appears to be dependent on CXCR4 ubiquitination, and does not involve stable interactions with TCR microclusters, as viewed at the nanoscale. Disruption of this process by mutation impairs CXCR4 contributions to cellular activation. Gαi2 undergoes active exclusion from the synapse, partitioning from centrally-accumulated CXCR4. Using a CRISPR-Cas9 knockout screen, we identify several diverse GPCRs with contributions to T cell activation, most significantly the sphingosine-1-phosphate receptor S1PR1, and the oxysterol receptor GPR183. These, and other GPCRs, undergo organization similar to CXCR4; including initial exclusion, centripetal transport, and lack of receptor-TCR interactions. These constitute the first observations of GPCR dynamics within the synapse, and give insights into how these receptors may contribute to T cell activation. The observation of broad GPCR contributions to T cell activation also opens the possibility that modulating GPCR expression in response to cell status or environment may directly regulate responsiveness to pMHC.
Collapse
Affiliation(s)
- James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Erdinc Sezgin
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Pablo F Céspedes
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | - Mathew Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yanchun Peng
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Rosalind Franklin Institute, Didcot, United Kingdom
| | - Dirk Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Martín‐Leal A, Blanco R, Casas J, Sáez ME, Rodríguez‐Bovolenta E, de Rojas I, Drechsler C, Real LM, Fabrias G, Ruíz A, Castro M, Schamel WWA, Alarcón B, van Santen HM, Mañes S. CCR5 deficiency impairs CD4 + T-cell memory responses and antigenic sensitivity through increased ceramide synthesis. EMBO J 2020; 39:e104749. [PMID: 32525588 PMCID: PMC7396835 DOI: 10.15252/embj.2020104749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.
Collapse
Affiliation(s)
- Ana Martín‐Leal
- Department of Immunology and OncologyCentro Nacional de Biotecnología (CNB/CSIC)MadridSpain
| | - Raquel Blanco
- Department of Immunology and OncologyCentro Nacional de Biotecnología (CNB/CSIC)MadridSpain
| | - Josefina Casas
- Department of Biological ChemistryInstitute of Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaSpain
- CIBER Liver and Digestive Diseases (CIBER‐EDH)Instituto de Salud Carlos IIIMadridSpain
| | - María E Sáez
- Centro Andaluz de Estudios Bioinformáticos (CAEBi)SevilleSpain
| | - Elena Rodríguez‐Bovolenta
- Department of Cell Biology and ImmunologyCentro de Biología Molecular Severo Ochoa (CBMSO/CSIC)MadridSpain
| | - Itziar de Rojas
- Alzheimer Research CenterMemory Clinic of the Fundació ACEInstitut Català de Neurociències AplicadesBarcelonaSpain
| | - Carina Drechsler
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
- Department of ImmunologyFaculty of BiologyUniversity of FreiburgFreiburgGermany
- Institute for Pharmaceutical SciencesUniversity of FreiburgFreiburgGermany
| | - Luis Miguel Real
- Unit of Infectious Diseases and MicrobiologyHospital Universitario de ValmeSevilleSpain
- Department of Biochemistry, Molecular Biology and ImmunologySchool of MedicineUniversidad de MálagaMálagaSpain
| | - Gemma Fabrias
- Department of Biological ChemistryInstitute of Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaSpain
- CIBER Liver and Digestive Diseases (CIBER‐EDH)Instituto de Salud Carlos IIIMadridSpain
| | - Agustín Ruíz
- Alzheimer Research CenterMemory Clinic of the Fundació ACEInstitut Català de Neurociències AplicadesBarcelonaSpain
- CIBER Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Mario Castro
- Interdisciplinary Group of Complex SystemsEscuela Técnica Superior de IngenieríaUniversidad Pontificia ComillasMadridSpain
| | - Wolfgang WA Schamel
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
- Department of ImmunologyFaculty of BiologyUniversity of FreiburgFreiburgGermany
- Centre for Chronic Immunodeficiency (CCI)University of FreiburgFreiburgGermany
| | - Balbino Alarcón
- Department of Cell Biology and ImmunologyCentro de Biología Molecular Severo Ochoa (CBMSO/CSIC)MadridSpain
| | - Hisse M van Santen
- Department of Cell Biology and ImmunologyCentro de Biología Molecular Severo Ochoa (CBMSO/CSIC)MadridSpain
| | - Santos Mañes
- Department of Immunology and OncologyCentro Nacional de Biotecnología (CNB/CSIC)MadridSpain
| |
Collapse
|
16
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
17
|
Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 2019; 39:532-556. [PMID: 31313072 PMCID: PMC6698215 DOI: 10.1007/s10875-019-00665-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lymphopenia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Laufer JM, Kindinger I, Artinger M, Pauli A, Legler DF. CCR7 Is Recruited to the Immunological Synapse, Acts as Co-stimulatory Molecule and Drives LFA-1 Clustering for Efficient T Cell Adhesion Through ZAP70. Front Immunol 2019; 9:3115. [PMID: 30692994 PMCID: PMC6339918 DOI: 10.3389/fimmu.2018.03115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022] Open
Abstract
The chemokine receptor CCR7 guides T cells and dendritic cells to and within lymph nodes to launch the onset of adaptive immunity. Here, we demonstrate that CCR7 in addition acts as a potent co-stimulatory molecule in T cell activation. We found that antigen recognition and engagement of the TCR results in CCR7 accumulation at the immunological synapse where CCR7 and the TCR co-localize within sub-synaptic vesicles. We demonstrate that CCR7 triggering alone is sufficient to recruit and activate ZAP70, a critical kinase for T cell activation, through Src kinase, whereas TCR CCR7 co-stimulation results in increased and prolonged ZAP70 kinase activity. Finally, we show that ZAP70, acting as adapter molecule, is critical for CCR7-mediated inside-out signaling to integrins, thereby modulating LFA-1 valency regulation to promote cell adhesion, a key step in immunological synapse formation and efficient T cell activation.
Collapse
Affiliation(s)
- Julia M Laufer
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ilona Kindinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
19
|
Abstract
Cysteine-X-cysteine chemokine receptor 4 (CXCR4) is a broadly expressed and multifunctional G protein-coupled chemokine receptor critical for organogenesis, hematopoiesis, and antimicrobial host defense. In the hematopoietic system, the binding of CXCR4 to its cognate chemokine ligand, CXCL12, mediates leukocyte trafficking, distribution, survival, activation, and proliferation. Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare, autosomal dominant, combined immunodeficiency disorder caused by mutations in the C-terminus of CXCR4 that prevent receptor downregulation and therefore result in pathologically increased signaling. The "M" in the acronym WHIM refers to myelokathexis, the retention of neutrophils in the bone marrow resulting in neutropenia, which explains in part the increased susceptibility to bacterial infection. However, WHIM patients also present with B and T lymphopenia, which may explain the susceptibility to human papillomavirus (HPV), the cause of warts. The impact of WHIM mutations on lymphocytes and adaptive immunity has received less attention than myelokathexis and is the focus of this review.
Collapse
Affiliation(s)
- Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev 2018; 287:91-102. [DOI: 10.1111/imr.12719] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Affiliation(s)
- David H. McDermott
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| | - Philip M. Murphy
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
21
|
Dinkel BA, Kremer KN, Rollins MR, Medlyn MJ, Hedin KE. GRK2 mediates TCR-induced transactivation of CXCR4 and TCR-CXCR4 complex formation that drives PI3Kγ/PREX1 signaling and T cell cytokine secretion. J Biol Chem 2018; 293:14022-14039. [PMID: 30018141 DOI: 10.1074/jbc.ra118.003097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
The immune system includes abundant examples of biologically-relevant cross-regulation of signaling pathways by the T cell antigen receptor (TCR) and the G protein-coupled chemokine receptor, CXCR4. TCR ligation induces transactivation of CXCR4 and TCR-CXCR4 complex formation, permitting the TCR to signal via CXCR4 to activate a phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein (PREX1)-dependent signaling pathway that drives robust cytokine secretion by T cells. To understand this receptor heterodimer and its regulation, we characterized the molecular mechanisms required for TCR-mediated TCR-CXCR4 complex formation. We found that the cytoplasmic C-terminal domain of CXCR4 and specifically phosphorylation of Ser-339 within this region were required for TCR-CXCR4 complex formation. Interestingly, siRNA-mediated depletion of G protein-coupled receptor kinase-2 (GRK2) or inhibition by the GRK2-specific inhibitor, paroxetine, inhibited TCR-induced phosphorylation of CXCR4-Ser-339 and TCR-CXCR4 complex formation. Either GRK2 siRNA or paroxetine treatment of human T cells significantly reduced T cell cytokine production. Upstream, TCR-activated tyrosine kinases caused inducible tyrosine phosphorylation of GRK2 and were required for the GRK2-dependent events of CXCR4-Ser-339 phosphorylation and TCR-CXCR4 complex formation. Downstream of TCR-CXCR4 complex formation, we found that GRK2 and phosphatidylinositol 3-kinase γ (PI3Kγ) were required for TCR-stimulated membrane recruitment of PREX1 and for stabilization of cytokine mRNAs and robust cytokine secretion. Together, our results identify a novel role for GRK2 as a target of TCR signaling that is responsible for TCR-induced transactivation of CXCR4 and TCR-CXCR4 complex formation that signals via PI3Kγ/PREX1 to mediate cytokine production. Therapeutic regulation of GRK2 or PI3Kγ may therefore be useful for limiting cytokines produced by T cell malignancies or autoimmune diseases.
Collapse
Affiliation(s)
- Brittney A Dinkel
- From the Mayo IMM Ph.D. Training Program, Mayo Clinic Graduate School of Biomedical Sciences, and.,Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Kimberly N Kremer
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Meagan R Rollins
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Michael J Medlyn
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Karen E Hedin
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
22
|
Laufer JM, Legler DF. Beyond migration-Chemokines in lymphocyte priming, differentiation, and modulating effector functions. J Leukoc Biol 2018; 104:301-312. [PMID: 29668063 DOI: 10.1002/jlb.2mr1217-494r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
Chemokines and their receptors coordinate the positioning of leukocytes, and lymphocytes in particular, in space and time. Discrete lymphocyte subsets, depending on their activation and differentiation status, express various sets of chemokine receptors to be recruited to distinct tissues. Thus, the network of chemokines and their receptors ensures the correct localization of specialized lymphocyte subsets within the appropriate microenvironment enabling them to search for cognate antigens, to become activated, and to fulfill their effector functions. The chemokine system therefore is vital for the initiation as well as the regulation of immune responses to protect the body from pathogens while maintaining tolerance towards self. Besides the well investigated function of orchestrating directed cell migration, chemokines additionally act on lymphocytes in multiple ways to shape immune responses. In this review, we highlight and discuss the role of chemokines and chemokine receptors in controlling cell-to-cell contacts required for lymphocyte arrest on endothelial cells and immunological synapse formation, in lymphocyte priming and differentiation, survival, as well as in modulating effector functions.
Collapse
Affiliation(s)
- Julia M Laufer
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
23
|
Ramonell KM, Zhang W, Hadley A, Chen CW, Fay KT, Lyons JD, Klingensmith NJ, McConnell KW, Coopersmith CM, Ford ML. CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis. PLoS One 2017; 12:e0188882. [PMID: 29232699 PMCID: PMC5726761 DOI: 10.1371/journal.pone.0188882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation by CXCL12, directs cells to bone marrow niches and also plays an important role in T cell cosignaling and formation of the immunological synapse. Here, we investigated the expression and function of CXCR4 in a murine model of polymicrobial sepsis. Results indicate that CXCR4 is selectively upregulated on naïve CD4+ and CD8+ T cells and CD4+ central memory T cells following the induction of sepsis, and that CXCR4 antagonism resulted in a significant decrease in sepsis-induced mortality. We probed the mechanistic basis for these findings and found that CXCR4 antagonism significantly increased the number of peripheral CD4+ and CD8+ T cells following sepsis. Moreover, mice treated with the CXCR4 antagonist contained fewer PD-1+ LAG-3+ 2B4+ cells, suggesting that blockade of CXCR4 mitigates CD4+ T cell exhaustion during sepsis. Taken together, these results characterize CXCR4 as an important pathway that modulates immune dysfunction and mortality following sepsis, which may hold promise as a target for future therapeutic intervention in septic patients.
Collapse
Affiliation(s)
- Kimberly M Ramonell
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Wenxiao Zhang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Annette Hadley
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ching-Wen Chen
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Katherine T Fay
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John D Lyons
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nathan J Klingensmith
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kevin W McConnell
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America.,Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America.,Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
24
|
Kuropka B, Schraven B, Kliche S, Krause E, Freund C. Tyrosine-phosphorylation of the scaffold protein ADAP and its role in T cell signaling. Expert Rev Proteomics 2017; 13:545-54. [PMID: 27258783 DOI: 10.1080/14789450.2016.1187565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The Adhesion and Degranulation promoting Adaptor Protein (ADAP) is phosphorylated upon T cell activation and acts as a scaffold for the formation of a signaling complex that integrates molecular interactions between T cell or chemokine receptors, the actin cytoskeleton, and integrin-mediated cellular adhesion and migration. AREAS COVERED This article reviews current knowledge of the functions of the adapter protein ADAP in T cell signaling with a focus on the role of individual phosphotyrosine (pY) motifs for SH2 domain mediated interactions. The data presented was obtained from literature searches (PubMed) as well as the authors own research on the topic. Expert commentary: ADAP can be regarded as a paradigmatic example of how tyrosine phosphorylation sites serve as dynamic interaction hubs. Molecular crowding at unstructured and redundant sites (pY595, pY651) is contrasted by more specific interactions enabled by the three-dimensional environment of a particular phosphotyrosine motif (pY571).
Collapse
Affiliation(s)
- Benno Kuropka
- a Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry Group , Berlin , Germany.,b Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie , Berlin , Germany
| | - Burkhart Schraven
- c Institute of Molecular and Clinical Immunology , Otto-von-Guericke-University , Magdeburg , Germany.,d Department of Immune Control , Helmholtz Center for Infection Research (HZI) , Braunschweig , Germany
| | - Stefanie Kliche
- c Institute of Molecular and Clinical Immunology , Otto-von-Guericke-University , Magdeburg , Germany
| | - Eberhard Krause
- b Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie , Berlin , Germany
| | - Christian Freund
- a Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry Group , Berlin , Germany
| |
Collapse
|
25
|
Kremer KN, Dinkel BA, Sterner RM, Osborne DG, Jevremovic D, Hedin KE. TCR-CXCR4 signaling stabilizes cytokine mRNA transcripts via a PREX1-Rac1 pathway: implications for CTCL. Blood 2017; 130:982-994. [PMID: 28694325 PMCID: PMC5570680 DOI: 10.1182/blood-2017-03-770982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023] Open
Abstract
As with many immunopathologically driven diseases, the malignant T cells of cutaneous T-cell lymphomas (CTCLs), such as Sézary syndrome, display aberrant cytokine secretion patterns that contribute to pathology and disease progression. Targeting this disordered release of cytokines is complicated by the changing cytokine milieu that drives the phenotypic changes of CTCLs. Here, we characterize a novel signaling pathway that can be targeted to inhibit the secretion of cytokines by modulating either CXCR4 or CXCR4-mediated signaling. We demonstrate that upon ligation of the T-cell antigen receptor (TCR), the TCR associates with and transactivates CXCR4 via phosphorylation of S339-CXCR4 in order to activate a PREX1-Rac1-signaling pathway that stabilizes interleukin-2(IL-2), IL-4, and IL-10 messenger RNA (mRNA) transcripts. Pharmacologic inhibition of either TCR-CXCR4 complex formation or PREX1-Rac1 signaling in primary human T cells decreased mRNA stability and inhibited secretion of IL-2, IL-4, and IL-10. Applying this knowledge to Sézary syndrome, we demonstrate that targeting various aspects of this signaling pathway blocks both TCR-dependent and TCR-independent cytokine secretion from a Sézary syndrome-derived cell line and patient isolates. Together, these results identify multiple aspects of a novel TCR-CXCR4-signaling pathway that could be targeted to inhibit the aberrant cytokine secretion that drives the immunopathogenesis of Sézary syndrome and other immunopathological diseases.
Collapse
MESH Headings
- Benzylamines
- Cyclams
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Guanine Nucleotide Exchange Factors/metabolism
- Heterocyclic Compounds/pharmacology
- Humans
- Jurkat Cells
- Lymphocyte Subsets/drug effects
- Lymphocyte Subsets/metabolism
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/pathology
- Models, Biological
- RNA Stability/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CXCR4/metabolism
- Sezary Syndrome/pathology
- Signal Transduction/drug effects
- Transcriptional Activation/drug effects
- Transcriptional Activation/genetics
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
| | | | - Rosalie M Sterner
- Department of Immunology
- Mayo Clinic Medical Scientist Training Program, and
| | | | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
26
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
27
|
Taylor A, Harker JA, Chanthong K, Stevenson PG, Zuniga EI, Rudd CE. Glycogen Synthase Kinase 3 Inactivation Drives T-bet-Mediated Downregulation of Co-receptor PD-1 to Enhance CD8(+) Cytolytic T Cell Responses. Immunity 2016; 44:274-86. [PMID: 26885856 PMCID: PMC4760122 DOI: 10.1016/j.immuni.2016.01.018] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 05/12/2015] [Accepted: 11/11/2015] [Indexed: 01/22/2023]
Abstract
Despite the importance of the co-receptor PD-1 in T cell immunity, the upstream signaling pathway that regulates PD-1 expression has not been defined. Glycogen synthase kinase 3 (GSK-3, isoforms α and β) is a serine-threonine kinase implicated in cellular processes. Here, we identified GSK-3 as a key upstream kinase that regulated PD-1 expression in CD8(+) T cells. GSK-3 siRNA downregulation, or inhibition by small molecules, blocked PD-1 expression, resulting in increased CD8(+) cytotoxic T lymphocyte (CTL) function. Mechanistically, GSK-3 inactivation increased Tbx21 transcription, promoting enhanced T-bet expression and subsequent suppression of Pdcd1 (encodes PD-1) transcription in CD8(+) CTLs. Injection of GSK-3 inhibitors in mice increased in vivo CD8(+) OT-I CTL function and the clearance of murine gamma-herpesvirus 68 and lymphocytic choriomeningitis clone 13 and reversed T cell exhaustion. Our findings identify GSK-3 as a regulator of PD-1 expression and demonstrate the applicability of GSK-3 inhibitors in the modulation of PD-1 in immunotherapy.
Collapse
Affiliation(s)
- Alison Taylor
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK
| | - James A Harker
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kittiphat Chanthong
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Elina I Zuniga
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK.
| |
Collapse
|
28
|
Wasseff SK, Scherer SS. Activated immune response in an inherited leukodystrophy disease caused by the loss of oligodendrocyte gap junctions. Neurobiol Dis 2015; 82:86-98. [PMID: 26051537 PMCID: PMC4640986 DOI: 10.1016/j.nbd.2015.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/30/2015] [Accepted: 05/27/2015] [Indexed: 01/11/2023] Open
Abstract
Oligodendrocyte:oligodendrocyte (O:O) gap junction (GJ) coupling is a widespread and essential feature of the CNS, and is mediated by connexin47 (Cx47) and Cx32. Loss of function mutations affecting Cx47 results in a severe leukodystrophy, Pelizeus-Merzbacher-like disease (also known as Hypomyelinating Leukodystrophy 2), which can be reproduced in mice lacking both Cx47 and Cx32. Here we report the gene expression profile of the cerebellum--an affected brain region--in mice lacking both Cx47 and Cx32. Of the 43,174 mRNA probes examined, we find decreased expression of 23 probes (corresponding to 23 genes) and increased expression of 545 probes (corresponding to 348 genes). Many of the genes with reduced expression map to oligodendrocytes, and two of them (Fa2h and Ugt8a) are involved in the synthesis of myelin lipids. Many of the genes with increased expression map to lymphocytes and microglia, and involved in leukotrienes/prostaglandins synthesis and chemokines/cytokines interactions and signaling pathways. In accord, immunostaining showed T- and B-cells in the cerebella of mutant mice as well as activated microglia and astrocytes. Thus, in addition to the loss of GJ coupling, there is a prominent immune response in mice lacking both Cx47 and Cx32.
Collapse
Affiliation(s)
- Sameh K Wasseff
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, 450 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA USA 19104-6077.
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, 450 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA USA 19104-6077.
| |
Collapse
|
29
|
|
30
|
Williams JL, Holman DW, Klein RS. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front Cell Neurosci 2014; 8:154. [PMID: 24920943 PMCID: PMC4036130 DOI: 10.3389/fncel.2014.00154] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/15/2014] [Indexed: 12/15/2022] Open
Abstract
In the adult central nervous system (CNS), chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier (BBB) including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease.
Collapse
Affiliation(s)
- Jessica L Williams
- Department of Internal Medicine, Washington University School of Medicine St. Louis, MO, USA
| | - David W Holman
- Infectious Diseases Division, Decision Resources Group Burlington, MA, USA
| | - Robyn S Klein
- Department of Internal Medicine, Washington University School of Medicine St. Louis, MO, USA ; Department of Pathology and Immunology, Washington University School of Medicine St. Louis, MO, USA ; Department of Anatomy and Neurobiology, Washington University School of Medicine St. Louis, MO, USA
| |
Collapse
|
31
|
Negative regulation of chemokine receptor signaling and B-cell chemotaxis by p66Shc. Cell Death Dis 2014; 5:e1068. [PMID: 24556683 PMCID: PMC3944259 DOI: 10.1038/cddis.2014.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022]
Abstract
Shc (Src homology 2 domain containing) adaptors are ubiquitous components of the signaling pathways triggered by tyrosine kinase-coupled receptors. In lymphocytes, similar to other cell types, the p52 and p66 isoforms of ShcA/Shc participate in a self-limiting loop where p52Shc acts as a positive regulator of antigen receptor signaling by promoting Ras activation, whereas p66Shc limits this activity by competitively inhibiting p52Shc. Based on the fact that many signaling mediators are shared by antigen and chemokine receptors, including p52Shc, we have assessed the potential implication of p66Shc in the regulation of B-cell responses to chemokines, focusing on the homing receptors CXCR4 (C-X-C chemokine receptor type 4) and CXCR5 (C-X-C chemokine receptor type 5). The results identify p66Shc as a negative regulator of the chemotactic responses triggered by these receptors, including adhesion, polarization and migration. We also provide evidence that this function is dependent on the ability of p66Shc to interact with the chemokine receptors and promote the assembly of an inhibitory complex, which includes the phosphatases SHP-1 (Src homology phosphatase-1) and SHIP-1 (SH2 domain-containing inositol 5'-phosphatase-1), that results in impaired Vav-dependent reorganization of the actin cytoskeleton. This function maps to the phosphorylatable tyrosine residues in the collagen homology 1 (CH1) domain. The results identify p66Shc as a negative regulator of B-cell chemotaxis and suggest a role for this adaptor in the control of B-cell homing.
Collapse
|