1
|
Rainwater RR, Azevedo-Pouly AC, Waldrip ZJ, Hicks BH, Callais NA, Koss B, Storey AJ, Burdine L, Burdine MS. DNA-PKcs governs LAT-dependent signaling in CD4 + and CD8 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641745. [PMID: 40161607 PMCID: PMC11952348 DOI: 10.1101/2025.03.06.641745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Formation of the immune synapse (IS) following T cell antigen recognition includes recruitment of the Linker for Activation of T cells (LAT). Once at the IS, LAT tyrosines are phosphorylated allowing it to serve as a scaffold for formation of the "signalosome", a multiprotein complex that drives TCR signaling. Here, we show that upon T cell activation, DNA dependent protein kinase catalytic subunit (DNA-PKcs) interacts with LAT and localizes to the IS. Inhibition of DNA-PKcs diminishes LAT localization at the IS. We identified two LAT serines phosphorylated by DNA-PKcs, S224 and S241, that impact LAT tyrosine phosphorylation, protein binding, and cytokine production. Using our mouse model designed to delete DNA-PKcs expression within mature CD4 + or CD8 + T cells, we show loss of DNA-PKcs results in T cells unable to control tumor growth or induce allogeneic graft rejection. These data bring to the forefront DNA-PKcs as a pivotal protein in T cell function.
Collapse
|
2
|
Pei Y, Liang H, Guo Y, Wang B, Wu H, Jin Z, Lin S, Zeng F, Wu Y, Shi Q, Xu J, Huang Y, Ren T, Liu J, Guo W. Liquid-liquid phase separation drives immune signaling transduction in cancer: a bibliometric and visualized study from 1992 to 2024. Front Oncol 2025; 15:1509457. [PMID: 40104511 PMCID: PMC11913689 DOI: 10.3389/fonc.2025.1509457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
Background Liquid-liquid phase separation (LLPS) is a novel concept that could explain how living cells precisely modulate internal spatial and temporal functions. However, a comprehensive bibliometric analysis on LLPS and immune signaling processes in cancer is still scarce. This study aims to perform a bibliometric assessment of research to explore the landscape of LLPS research in immune signaling pathways for cancer. Methods Utilizing the Web of Science Core Collection database and multiple analysis software, we performed quantitative and qualitative analyses of the study situation between LLPS and immune signaling in cancer from 1992 to 2024. Results The corresponding authors were primarily from China and the USA. The most relevant references were the "International Journal of Molecular Sciences", "Proteomics". The annual number of publications exhibited a fast upward tendency from 2020 to 2024. The most frequent key terms included expression, separation, activation, immunotherapy, and mechanisms. Qualitative evaluation emphasized the TCR, BCR, cGAS-STING, RIG-1, NF-κB signaling pathways associated with LLPS processes. Conclusion This research is the first to integratively map out the knowledge structure and forward direction in the area of immune transduction linked with LLPS over the past 30 years. In summary, although this research area is still in its infancy, illustrating the coordinated structures and communications between cancer and immune signaling with LLPS within a spatial framework will offer deeper insights into the molecular mechanisms of cancer development and further enhance the effectiveness of existing immunotherapies.
Collapse
Affiliation(s)
- Yanhong Pei
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Haijie Liang
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Yu Guo
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Boyang Wang
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Han Wu
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Zhijian Jin
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Shanyi Lin
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Fanwei Zeng
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Yifan Wu
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Qianyu Shi
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Jiuhui Xu
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Yi Huang
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Tingting Ren
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Wei Guo
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| |
Collapse
|
3
|
Rubin AJ, Dao TT, Schueppert AV, Regev A, Shalek AK. LAT encodes T cell activation pathway balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609683. [PMID: 39253472 PMCID: PMC11383308 DOI: 10.1101/2024.08.26.609683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune cells transduce environmental stimuli into responses essential for host health via complex signaling cascades. T cells, in particular, leverage their unique T cell receptors (TCRs) to detect specific Human Leukocyte Antigen (HLA)-presented peptides. TCR activation is then relayed via linker for activation of T cells (LAT), a TCR-proximal disordered adapter protein, which organizes protein partners and mediates the propagation of signals down diverse pathways including NFAT and AP-1. Here, we studied how balanced downstream pathway activation is encoded in the amino acid sequence of LAT. To comprehensively profile the sequence-function relationship of LAT, we developed a pooled, single-cell, high-content screening approach in which a large series of mutants in the LAT protein were analyzed to characterize their effects on T cell activation. Measuring epigenetic, transcriptomic, and cell surface protein dynamics of single cells harboring distinct LAT mutants, we found functional regions spanning over 40% of the LAT amino acid sequence. Conserved sequence motifs for protein interactions along with charge distribution are critical sequence features, and contribute to interpretation of human genetic variation in LAT. While mutant defect severity spans from moderate to complete loss of function, nearly all defective mutants, irrespective of their position in LAT, confer balanced defects across all downstream pathways. To understand the molecular basis for this observation, we performed proximal protein labeling which demonstrated that disruption of LAT interaction with a single partner protein indirectly disrupts other partner interactions, likely through the dual roles of these proteins as effectors of downstream pathways and bridging factors between LAT molecules. Overall, we report widely distributed functional regions throughout a disordered adapter and a precise physical organization of LAT and interacting molecules which constrains signaling outputs. More broadly, we describe an approach for interrogating sequence-function relationships for proteins with complex activities across regulatory layers of the cell.
Collapse
Affiliation(s)
- Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| | - Tyler T. Dao
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amelia V. Schueppert
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Current address: Genentech, South San Francisco, CA, 94080
| | - Alex K. Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Theard PL, Linke AJ, Sealover NE, Daley BR, Yang J, Cox K, Kortum RL. SOS2 modulates the threshold of EGFR signaling to regulate osimertinib efficacy and resistance in lung adenocarcinoma. Mol Oncol 2024; 18:641-661. [PMID: 38073064 PMCID: PMC10920089 DOI: 10.1002/1878-0261.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
Son of sevenless 1 and 2 (SOS1 and SOS2) are RAS guanine nucleotide exchange factors (RasGEFs) that mediate physiologic and pathologic receptor tyrosine kinase (RTK)-dependent RAS activation. Here, we show that SOS2 modulates the threshold of epidermal growth factor receptor (EGFR) signaling to regulate the efficacy of and resistance to the EGFR tyrosine kinase inhibitor (EGFR-TKI) osimertinib in lung adenocarcinoma (LUAD). SOS2 deletion (SOS2KO ) sensitized EGFR-mutated cells to perturbations in EGFR signaling caused by reduced serum and/or osimertinib treatment to inhibit phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation, oncogenic transformation, and survival. Bypassing RTK reactivation of PI3K/AKT signaling represents a common resistance mechanism to EGFR-TKIs; SOS2KO reduced PI3K/AKT reactivation to limit osimertinib resistance. In a forced HGF/MET-driven bypass model, SOS2KO inhibited hepatocyte growth factor (HGF)-stimulated PI3K signaling to block HGF-driven osimertinib resistance. Using a long-term in situ resistance assay, most osimertinib-resistant cultures exhibited a hybrid epithelial/mesenchymal phenotype associated with reactivated RTK/AKT signaling. In contrast, RTK/AKT-dependent osimertinib resistance was markedly reduced by SOS2 deletion; the few SOS2KO cultures that became osimertinib resistant primarily underwent non-RTK-dependent epithelial-mesenchymal transition (EMT). Since bypassing RTK reactivation and/or tertiary EGFR mutations represent most osimertinib-resistant cancers, these data suggest that targeting proximal RTK signaling, here exemplified by SOS2 deletion, has the potential to delay the development osimertinib resistance and enhance overall clinical responses for patients with EGFR-mutated LUAD.
Collapse
Affiliation(s)
- Patricia L. Theard
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Amanda J. Linke
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Brianna R. Daley
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Johnny Yang
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Katherine Cox
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Robert L. Kortum
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| |
Collapse
|
5
|
Barr VA, Piao J, Balagopalan L, McIntire KM, Schoenberg FP, Samelson LE. Heterogeneity of Signaling Complex Nanostructure in T Cells Activated Via the T Cell Antigen Receptor. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1503-1522. [PMID: 37488826 PMCID: PMC11230849 DOI: 10.1093/micmic/ozad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/26/2023]
Abstract
Activation of the T cell antigen receptor (TCR) is a key step in initiating the adaptive immune response. Single-molecule localization techniques have been used to investigate the arrangement of proteins within the signaling complexes formed around activated TCRs, but a clear picture of nanoscale organization in stimulated T cells has not emerged. Here, we have improved the examination of T cell nanostructure by visualizing individual molecules of six different proteins in a single sample of activated Jurkat T cells using the multiplexed antibody-size limited direct stochastic optical reconstruction microscopy (madSTORM) technique. We formally define irregularly shaped regions of interest, compare areas where signaling complexes are concentrated with other areas, and improve the statistical analyses of the locations of molecules. We show that nanoscale organization of proteins is mainly confined to the areas with dense concentrations of TCR-based signaling complexes. However, randomly distributed molecules are also found in some areas containing concentrated signaling complexes. These results are consistent with the view that the proteins within signaling complexes are connected by numerous weak interactions, leading to flexible, dynamic, and mutable structures which produce large variations in the nanostructure found in activated T cells.
Collapse
Affiliation(s)
- Valarie A Barr
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Juan Piao
- Department of Statistics, University of California at Los Angeles, 8965 Math Sciences Building, Los Angeles, CA 90095-1554, USA
| | - Lakshmi Balagopalan
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Katherine M McIntire
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Frederic P Schoenberg
- Department of Statistics, University of California at Los Angeles, 8965 Math Sciences Building, Los Angeles, CA 90095-1554, USA
| | - Lawrence E Samelson
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| |
Collapse
|
6
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
7
|
McAffee DB, O'Dair MK, Lin JJ, Low-Nam ST, Wilhelm KB, Kim S, Morita S, Groves JT. Discrete LAT condensates encode antigen information from single pMHC:TCR binding events. Nat Commun 2022; 13:7446. [PMID: 36460640 PMCID: PMC9718779 DOI: 10.1038/s41467-022-35093-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
LAT assembly into a two-dimensional protein condensate is a prominent feature of antigen discrimination by T cells. Here, we use single-molecule imaging techniques to resolve the spatial position and temporal duration of each pMHC:TCR molecular binding event while simultaneously monitoring LAT condensation at the membrane. An individual binding event is sufficient to trigger a LAT condensate, which is self-limiting, and neither its size nor lifetime is correlated with the duration of the originating pMHC:TCR binding event. Only the probability of the LAT condensate forming is related to the pMHC:TCR binding dwell time. LAT condenses abruptly, but after an extended delay from the originating binding event. A LAT mutation that facilitates phosphorylation at the PLC-γ1 recruitment site shortens the delay time to LAT condensation and alters T cell antigen specificity. These results identify a function for the LAT protein condensation phase transition in setting antigen discrimination thresholds in T cells.
Collapse
Affiliation(s)
- Darren B McAffee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mark K O'Dair
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jenny J Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shalini T Low-Nam
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kiera B Wilhelm
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sungi Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shumpei Morita
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
8
|
Lin CW, Nocka LM, Stinger BL, DeGrandchamp JB, Lew LJN, Alvarez S, Phan HT, Kondo Y, Kuriyan J, Groves JT. A two-component protein condensate of the EGFR cytoplasmic tail and Grb2 regulates Ras activation by SOS at the membrane. Proc Natl Acad Sci U S A 2022; 119:e2122531119. [PMID: 35507881 PMCID: PMC9181613 DOI: 10.1073/pnas.2122531119] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
We reconstitute a phosphotyrosine-mediated protein condensation phase transition of the ∼200 residue cytoplasmic tail of the epidermal growth factor receptor (EGFR) and the adaptor protein, Grb2, on a membrane surface. The phase transition depends on phosphorylation of the EGFR tail, which recruits Grb2, and crosslinking through a Grb2-Grb2 binding interface. The Grb2 Y160 residue plays a structurally critical role in the Grb2-Grb2 interaction, and phosphorylation or mutation of Y160 prevents EGFR:Grb2 condensation. By extending the reconstitution experiment to include the guanine nucleotide exchange factor, SOS, and its substrate Ras, we further find that the condensation state of the EGFR tail controls the ability of SOS, recruited via Grb2, to activate Ras. These results identify an EGFR:Grb2 protein condensation phase transition as a regulator of signal propagation from EGFR to the MAPK pathway.
Collapse
Affiliation(s)
- Chun-Wei Lin
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Laura M. Nocka
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | | | | | - L. J. Nugent Lew
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Henry T. Phan
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Yasushi Kondo
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - John Kuriyan
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- HHMI, Chevy Chase, MD 20815
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
9
|
Abstract
Immune signalling pathways convert pathogenic stimuli into cytosolic events that lead to the resolution of infection. Upon ligand engagement, immune receptors together with their downstream adaptors and effectors undergo substantial conformational changes and spatial reorganization. During this process, nanometre-to-micrometre-sized signalling clusters have been commonly observed that are believed to be hotspots for signal transduction. Because of their large size and heterogeneous composition, it remains a challenge to fully understand the mechanisms by which these signalling clusters form and their functional consequences. Recently, phase separation has emerged as a new biophysical principle for organizing biomolecules into large clusters with fluidic properties. Although the field is still in its infancy, studies of phase separation in immunology are expected to provide new perspectives for understanding immune responses. Here, we present an up-to-date view of how liquid-liquid phase separation drives the formation of signalling condensates and regulates immune signalling pathways, including those downstream of T cell receptor, B cell receptor and the innate immune receptors cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene I protein (RIG-I). We conclude with a summary of the current challenges the field is facing and outstanding questions for future studies.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Ceara K McAtee
- Yale Combined Program in the Biological and Biomedical Sciences, New Haven, CT, USA
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Nicolas P, Ollier J, Mori D, Voisinne G, Celis-Gutierrez J, Gregoire C, Perroteau J, Vivien R, Camus M, Burlet-Schiltz O, Gonzalez de Peredo A, Clémenceau B, Roncagalli R, Vié H, Malissen B. Systems-level conservation of the proximal TCR signaling network of mice and humans. J Exp Med 2022; 219:212976. [PMID: 35061003 PMCID: PMC8789201 DOI: 10.1084/jem.20211295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/11/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
We exploited traceable gene tagging in primary human T cells to establish the composition and dynamics of seven canonical TCR-induced protein signaling complexes (signalosomes) using affinity purification coupled with mass spectrometry (AP-MS). It unveiled how the LAT adaptor assembles higher-order molecular condensates and revealed that the proximal TCR-signaling network has a high degree of qualitative and quantitative conservation between human CD4+ and CD8+ T cells. Such systems-level conservation also extended across human and mouse T cells and unexpectedly encompassed protein–protein interaction stoichiometry. Independently of evolutionary considerations, our study suggests that a drug targeting the proximal TCR signaling network should behave similarly when applied to human and mouse T cells. However, considering that signaling differences likely exist between the distal TCR-signaling pathway of human and mouse, our fast-track AP-MS approach should be favored to determine the mechanism of action of drugs targeting human T cell activation. An opportunity is illustrated here using an inhibitor of the LCK protein tyrosine kinase as a proof-of-concept.
Collapse
Affiliation(s)
- Philippe Nicolas
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Jocelyn Ollier
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Daiki Mori
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Guillaume Voisinne
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Claude Gregoire
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Jeanne Perroteau
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Régine Vivien
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre national de la recherche scientifique Université Paul Sabatier, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre national de la recherche scientifique Université Paul Sabatier, Toulouse, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre national de la recherche scientifique Université Paul Sabatier, Toulouse, France
| | - Béatrice Clémenceau
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Romain Roncagalli
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| | - Henri Vié
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Université d'Angers, Université de Nantes, Nantes, France
- LabEx Immunotherapy–Graft–Oncology, Nantes, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Marseille, France
| |
Collapse
|
11
|
Fernández-Medarde A, Santos E. Ras GEF Mouse Models for the Analysis of Ras Biology and Signaling. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:361-395. [PMID: 33977490 DOI: 10.1007/978-1-0716-1190-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animal models have become in recent years a crucial tool to understand the physiological and pathological roles of many cellular proteins. They allow analysis of the functional consequences of [1] complete or partial (time- or organ-limited) removal of specific proteins (knockout animals), [2] the exchange of a wild-type allele for a mutant or truncated version found in human illnesses (knock-in), or [3] the effect of overexpression of a given protein in the whole body or in specific organs (transgenic mice). In this regard, the study of phenotypes in Ras GEF animal models has allowed researchers to find specific functions for otherwise very similar proteins, uncovering their role in physiological contexts such as memory formation, lymphopoiesis, photoreception, or body homeostasis. In addition, mouse models have been used to unveil the functional role of Ras GEFs under pathological conditions, including Noonan syndrome, skin tumorigenesis, inflammatory diseases, diabetes, or ischemia among others. In the following sections, we will describe the methodological approaches employed for Ras GEF animal model analyses, as well as the main discoveries made.
Collapse
Affiliation(s)
- Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain.
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain
| |
Collapse
|
12
|
Dine E, Reed EH, Toettcher JE. Positive feedback between the T cell kinase Zap70 and its substrate LAT acts as a clustering-dependent signaling switch. Cell Rep 2021; 35:109280. [PMID: 34161759 PMCID: PMC8292983 DOI: 10.1016/j.celrep.2021.109280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Protein clustering is pervasive in cell signaling, yet how signaling from higher-order assemblies differs from simpler forms of molecular organization is still poorly understood. We present an optogenetic approach to switch between oligomers and heterodimers with a single point mutation. We apply this system to study signaling from the kinase Zap70 and its substrate linker for activation of T cells (LAT), proteins that normally form membrane-localized condensates during T cell activation. We find that fibroblasts expressing synthetic Zap70:LAT clusters activate downstream signaling, whereas one-to-one heterodimers do not. We provide evidence that clusters harbor a positive feedback loop among Zap70, LAT, and Src-family kinases that binds phosphorylated LAT and further activates Zap70. Finally, we extend our optogenetic approach to the native T cell signaling context, where light-induced LAT clustering is sufficient to drive a calcium response. Our study reveals a specific signaling function for protein clusters and identifies a biochemical circuit that robustly senses protein oligomerization state. Dine et al. study how different modes of molecular organization contribute to cell signaling using the kinase Zap70 and its substrate LAT as a model system. Optogenetic manipulation reveals that LAT:Zap70 clusters—but not dimers—trigger potent signaling via localized positive feedback among LAT, Zap70, and Src-family kinases.
Collapse
Affiliation(s)
- Elliot Dine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ellen H Reed
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan.
| |
Collapse
|
13
|
Ditlev JA. Membrane-associated phase separation: organization and function emerge from a two-dimensional milieu. J Mol Cell Biol 2021; 13:319-324. [PMID: 33532844 PMCID: PMC8339363 DOI: 10.1093/jmcb/mjab010] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jonathon A Ditlev
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
14
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
15
|
Chung JK, Huang WYC, Carbone CB, Nocka LM, Parikh AN, Vale RD, Groves JT. Coupled membrane lipid miscibility and phosphotyrosine-driven protein condensation phase transitions. Biophys J 2020; 120:1257-1265. [PMID: 33080222 DOI: 10.1016/j.bpj.2020.09.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Lipid miscibility phase separation has long been considered to be a central element of cell membrane organization. More recently, protein condensation phase transitions, into three-dimensional droplets or in two-dimensional lattices on membrane surfaces, have emerged as another important organizational principle within cells. Here, we reconstitute the linker for activation of T cells (LAT):growth-factor-receptor-bound protein 2 (Grb2):son of sevenless (SOS) protein condensation on the surface of giant unilamellar vesicles capable of undergoing lipid phase separations. Our results indicate that the assembly of the protein condensate on the membrane surface can drive lipid phase separation. This phase transition occurs isothermally and is governed by tyrosine phosphorylation on LAT. Furthermore, we observe that the induced lipid phase separation drives localization of the SOS substrate, K-Ras, into the LAT:Grb2:SOS protein condensate.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - William Y C Huang
- Department of Chemistry, University of California, Berkeley, Berkeley, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Catherine B Carbone
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Laura M Nocka
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Atul N Parikh
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts.
| |
Collapse
|
16
|
Tremblay MM, Ollinger T, Houtman JCD. The membrane proximal proline-rich region and correct order of C-terminal tyrosines on the adaptor protein LAT are required for TCR-mediated signaling and downstream functions. Cell Signal 2020; 76:109790. [PMID: 32979494 DOI: 10.1016/j.cellsig.2020.109790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
The primary activating receptor for T cells is the T cell receptor (TCR), which is stimulated upon binding to an antigen/MHC complex. TCR activation results in the induction of regulated signaling pathways vital for T cell differentiation, cellular adhesion and cytokine release. A critical TCR-induced signaling protein is the adaptor protein LAT. Upon TCR stimulation, LAT is phosphorylated on conserved tyrosines, which facilitates the formation of multiprotein complexes needed for propagation of signaling pathways. Although the role of the conserved tyrosines in LAT-mediated signaling has been investigated, few studies have examined the role of larger regions of LAT in TCR-induced pathways. In this study, a sequence alignment of 97 mammalian LAT proteins was used to identify several "functional" domains on LAT. Using LAT mutants expressed in Jurkat E6.1 cells, we observed that the membrane proximal, proline-rich region of LAT and the correct order of domains containing conserved tyrosines are necessary for optimal TCR-mediated early signaling, cytokine production, and cellular adhesion. Together, these data show that LAT contains distinct regions whose presence and correct order are required for the propagation of TCR-mediated signaling pathways.
Collapse
Affiliation(s)
- Mikaela M Tremblay
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, USA
| | - Tomye Ollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, USA
| | - Jon C D Houtman
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, USA.
| |
Collapse
|
17
|
Clark DJ, McMillan LE, Tan SL, Bellomo G, Massoue C, Thompson H, Mykhaylechko L, Alibhai D, Ruan X, Singleton KL, Du M, Hedges A, Schwartzberg PL, Verkade P, Murphy RF, Wülfing C. Transient protein accumulation at the center of the T cell antigen-presenting cell interface drives efficient IL-2 secretion. eLife 2019; 8:e45789. [PMID: 31663508 PMCID: PMC6821493 DOI: 10.7554/elife.45789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023] Open
Abstract
Supramolecular signaling assemblies are of interest for their unique signaling properties. A µm scale signaling assembly, the central supramolecular signaling cluster (cSMAC), forms at the center of the interface of T cells activated by antigen-presenting cells. We have determined that it is composed of multiple complexes of a supramolecular volume of up to 0.5 µm3 and associated with extensive membrane undulations. To determine cSMAC function, we have systematically manipulated the localization of three adaptor proteins, LAT, SLP-76, and Grb2. cSMAC localization varied between the adaptors and was diminished upon blockade of the costimulatory receptor CD28 and deficiency of the signal amplifying kinase Itk. Reconstitution of cSMAC localization restored IL-2 secretion which is a key T cell effector function as dependent on reconstitution dynamics. Our data suggest that the cSMAC enhances early signaling by facilitating signaling interactions and attenuates signaling thereafter through sequestration of a more limited set of signaling intermediates.
Collapse
Affiliation(s)
- Danielle J Clark
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Laura E McMillan
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Sin Lih Tan
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Gaia Bellomo
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Clementine Massoue
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Harry Thompson
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Lidiya Mykhaylechko
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Dominic Alibhai
- School of BiochemistryUniversity of BristolBristolUnited Kingdom
| | - Xiongtao Ruan
- Computational Biology Department, School of Computer ScienceCarnegie Mellon UniversityPittsburghUnited States
| | - Kentner L Singleton
- Department of ImmunologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Minna Du
- Department of ImmunologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Alan Hedges
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Pamela L Schwartzberg
- Genetic Disease Research BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Paul Verkade
- School of BiochemistryUniversity of BristolBristolUnited Kingdom
| | - Robert F Murphy
- Computational Biology Department, School of Computer ScienceCarnegie Mellon UniversityPittsburghUnited States
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghUnited States
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUnited States
- Department of Machine LearningCarnegie Mellon UniversityPittsburghUnited States
- Freiburg Institute for Advanced StudiesAlbert Ludwig University of FreiburgFreiburgGermany
- Faculty of BiologyAlbert Ludwig University of FreiburgFreiburgGermany
| | - Christoph Wülfing
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
- Department of ImmunologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
18
|
Andersen TCB, Kristiansen PE, Huszenicza Z, Johansson MU, Gopalakrishnan RP, Kjelstrup H, Boyken S, Sundvold-Gjerstad V, Granum S, Sørli M, Backe PH, Fulton DB, Karlsson BG, Andreotti AH, Spurkland A. The SH3 domains of the protein kinases ITK and LCK compete for adjacent sites on T cell-specific adapter protein. J Biol Chem 2019; 294:15480-15494. [PMID: 31484725 DOI: 10.1074/jbc.ra119.008318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
T-cell activation requires stimulation of specific intracellular signaling pathways in which protein-tyrosine kinases, phosphatases, and adapter proteins interact to transmit signals from the T-cell receptor to the nucleus. Interactions of LCK proto-oncogene, SRC family tyrosine kinase (LCK), and the IL-2-inducible T cell kinase (ITK) with the T cell-specific adapter protein (TSAD) promotes LCK-mediated phosphorylation and thereby ITK activation. Both ITK and LCK interact with TSAD's proline-rich region (PRR) through their Src homology 3 (SH3) domains. Whereas LCK may also interact with TSAD through its SH2 domain, ITK interacts with TSAD only through its SH3 domain. To begin to understand on a molecular level how the LCK SH3 and ITK SH3 domains interact with TSAD in human HEK293T cells, here we combined biochemical analyses with NMR spectroscopy. We found that the ITK and LCK SH3 domains potentially have adjacent and overlapping binding sites within the TSAD PRR amino acids (aa) 239-274. Pulldown experiments and NMR spectroscopy revealed that both domains may bind to TSAD aa 239-256 and aa 257-274. Co-immunoprecipitation experiments further revealed that both domains may also bind simultaneously to TSAD aa 242-268. Accordingly, NMR spectroscopy indicated that the SH3 domains may compete for these two adjacent binding sites. We propose that once the associations of ITK and LCK with TSAD promote the ITK and LCK interaction, the interactions among TSAD, ITK, and LCK are dynamically altered by ITK phosphorylation status.
Collapse
Affiliation(s)
- Thorny Cesilie Bie Andersen
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | | | - Zsuzsa Huszenicza
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Maria U Johansson
- Swedish NMR Centre at the University of Gothenburg, Gothenburg 413 90, Sweden
| | | | - Hanna Kjelstrup
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Scott Boyken
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - Vibeke Sundvold-Gjerstad
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Stine Granum
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Morten Sørli
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Paul Hoff Backe
- Department of Microbiology, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - B Göran Karlsson
- Swedish NMR Centre at the University of Gothenburg, Gothenburg 413 90, Sweden
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - Anne Spurkland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
19
|
Abstract
Cell surface transmembrane receptors often form nanometer- to micrometer-scale clusters to initiate signal transduction in response to environmental cues. Extracellular ligand oligomerization, domain-domain interactions, and binding to multivalent proteins all contribute to cluster formation. Here we review the current understanding of mechanisms driving cluster formation in a series of representative receptor systems: glycosylated receptors, immune receptors, cell adhesion receptors, Wnt receptors, and receptor tyrosine kinases. We suggest that these clusters share properties of systems that undergo liquid-liquid phase separation and could be investigated in this light.
Collapse
Affiliation(s)
- Lindsay B Case
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Jonathon A Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| |
Collapse
|
20
|
Huang WYC, Alvarez S, Kondo Y, Lee YK, Chung JK, Lam HYM, Biswas KH, Kuriyan J, Groves JT. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science 2019; 363:1098-1103. [PMID: 30846600 PMCID: PMC6563836 DOI: 10.1126/science.aau5721] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) is a key Ras activator that is autoinhibited in the cytosol and activates upon membrane recruitment. Autoinhibition release involves structural rearrangements of the protein at the membrane and thus introduces a delay between initial recruitment and activation. In this study, we designed a single-molecule assay to resolve the time between initial receptor-mediated membrane recruitment and the initiation of GEF activity of individual SOS molecules on microarrays of Ras-functionalized supported membranes. The rise-and-fall shape of the measured SOS activation time distribution and the long mean time scale to activation (~50 seconds) establish a basis for kinetic proofreading in the receptor-mediated activation of Ras. We further demonstrate that this kinetic proofreading is modulated by the LAT (linker for activation of T cells)-Grb2-SOS phosphotyrosine-driven phase transition at the membrane.
Collapse
Affiliation(s)
- William Y C Huang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Steven Alvarez
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Yasushi Kondo
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Young Kwang Lee
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jean K Chung
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - Kabir H Biswas
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - John Kuriyan
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
Lin JJY, Low-Nam ST, Alfieri KN, McAffee DB, Fay NC, Groves JT. Mapping the stochastic sequence of individual ligand-receptor binding events to cellular activation: T cells act on the rare events. Sci Signal 2019; 12:12/564/eaat8715. [PMID: 30647147 DOI: 10.1126/scisignal.aat8715] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cell receptor (TCR) binding to agonist peptide major histocompatibility complex (pMHC) triggers signaling events that initiate T cell responses. This system is remarkably sensitive, requiring only a few binding events to successfully activate a cellular response. On average, activating pMHC ligands exhibit mean dwell times of at least a few seconds when bound to the TCR. However, a T cell accumulates pMHC-TCR interactions as a stochastic series of discrete, single-molecule binding events whose individual dwell times are broadly distributed. With activation occurring in response to only a handful of such binding events, individual cells are unlikely to experience the average binding time. Here, we mapped the ensemble of pMHC-TCR binding events in space and time while simultaneously monitoring cellular activation. Our findings revealed that T cell activation hinges on rare, long-dwell time binding events that are an order of magnitude longer than the average agonist pMHC-TCR dwell time. Furthermore, we observed that short pMHC-TCR binding events that were spatially correlated and temporally sequential led to cellular activation. These observations indicate that T cell antigen discrimination likely occurs by sensing the tail end of the pMHC-TCR binding dwell time distribution rather than its average properties.
Collapse
Affiliation(s)
- Jenny J Y Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shalini T Low-Nam
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Katherine N Alfieri
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Darren B McAffee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicole C Fay
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Cooperative assembly of a four-molecule signaling complex formed upon T cell antigen receptor activation. Proc Natl Acad Sci U S A 2018; 115:E11914-E11923. [PMID: 30510001 DOI: 10.1073/pnas.1817142115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The T cell antigen receptor encounters foreign antigen during the immune response. Receptor engagement leads to activation of specific protein tyrosine kinases, which then phosphorylate multiple enzymes and adapter proteins. One such enzyme, phospholipase-Cγ1, is responsible for cleavage of a plasma membrane lipid substrate, a phosphoinositide, into two second messengers, diacylglycerol, which activates several enzymes including protein kinase C, and an inositol phosphate, which induces intracellular calcium elevation. In T cells, phospholipase-Cγ1 is recruited to the plasma membrane as part of a four-protein complex containing three adapter molecules. We have used recombinant proteins and synthetic phosphopeptides to reconstitute this quaternary complex in vitro. Extending biophysical tools to study concurrent interactions of the four protein components, we demonstrated the formation and determined the composition of the quaternary complex using multisignal analytical ultracentrifugation, and we characterized the thermodynamic driving forces of assembly by isothermal calorimetry. We demonstrate that the four proteins reversibly associate in a circular arrangement of binding interfaces, each protein interacting with two others. Three interactions are of high affinity, and the fourth is of low affinity, with the assembly of the quaternary complex exhibiting significant enthalpy-entropy compensation as in an entropic switch. Formation of this protein complex enables subsequent recruitment of additional molecules needed to activate phospholipase-Cγ1. Understanding the formation of this complex is fundamental to full characterization of a central pathway in T cell activation. Such knowledge is critical to developing ways in which this pathway can be selectively inhibited.
Collapse
|
23
|
Balagopalan L, Yi J, Nguyen T, McIntire KM, Harned AS, Narayan K, Samelson LE. Plasma membrane LAT activation precedes vesicular recruitment defining two phases of early T-cell activation. Nat Commun 2018; 9:2013. [PMID: 29789604 PMCID: PMC5964120 DOI: 10.1038/s41467-018-04419-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
The relative importance of plasma membrane-localized LAT versus vesicular LAT for microcluster formation and T-cell receptor (TCR) activation is unclear. Here, we show the sequence of events in LAT microcluster formation and vesicle delivery, using lattice light sheet microscopy to image a T cell from the earliest point of activation. A kinetic lag occurs between LAT microcluster formation and vesicular pool recruitment to the synapse. Correlative 3D light and electron microscopy show an absence of vesicles at microclusters at early times, but an abundance of vesicles as activation proceeds. Using TIRF-SIM to look at the activated T-cell surface with high resolution, we capture directed vesicle movement between microclusters on microtubules. We propose a model in which cell surface LAT is recruited rapidly and phosphorylated at sites of T-cell activation, while the vesicular pool is subsequently recruited and dynamically interacts with microclusters.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA.
| | - Jason Yi
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Tiffany Nguyen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Katherine M McIntire
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Adam S Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 8560 Progress Drive, Frederick, MD, 21701, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 8560 Progress Drive, Frederick, MD, 21701, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
|
25
|
Guittard G, Gallardo DL, Li W, Melis N, Lui JC, Kortum RL, Shakarishvili NG, Huh S, Baron J, Weigert R, Kramer JA, Samelson LE, Sommers CL. Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice. Front Immunol 2017; 8:343. [PMID: 28386265 PMCID: PMC5362643 DOI: 10.3389/fimmu.2017.00343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
RAS signaling is central to many cellular processes and SOS proteins promote RAS activation. To investigate the role of SOS proteins in T cell biology, we crossed Sos1f/fSos2−/− mice to CD4-Cre transgenic mice. We previously reported an effect of these mutations on T cell signaling and T cell migration. Unexpectedly, we observed nodules on the joints of greater than 90% of these mutant mice at 5 months of age, especially on the carpal joints. As the mice aged further, some also displayed joint stiffness, hind limb paralysis, and lameness. Histological analysis indicated that the abnormal growth in joints originated from dysplastic chondrocytes. Second harmonic generation imaging of the carpal nodules revealed that nodules were encased by rich collagen fibrous networks. Nodules formed in mice also deficient in RAG2, indicating that conventional T cells, which undergo rearrangement of the T cell antigen receptor, are not required for this phenotype. CD4-Cre expression in a subset of cells, either immune lineage cells (e.g., non-conventional T cells) or non-immune lineage cells (e.g., chondrocytes) likely mediates the dramatic phenotype observed in this study. Disruptions of genes in the RAS signaling pathway are especially likely to cause this phenotype. These results also serve as a cautionary tale to those intending to use CD4-Cre transgenic mice to specifically delete genes in conventional T cells.
Collapse
Affiliation(s)
- Geoffrey Guittard
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH , Bethesda, MD , USA
| | - Devorah L Gallardo
- Laboratory Animal Sciences Program, Leidos Biomedical Research, NCI, NIH , Bethesda, MD , USA
| | - Wenmei Li
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH , Bethesda, MD , USA
| | - Nicolas Melis
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH , Bethesda, MD , USA
| | - Julian C Lui
- Section on Growth and Development, NICHD, NIH , Bethesda, MD , USA
| | - Robert L Kortum
- Department of Pharmacology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | | | - Sunmee Huh
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH , Bethesda, MD , USA
| | - Jeffrey Baron
- Section on Growth and Development, NICHD, NIH , Bethesda, MD , USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH , Bethesda, MD , USA
| | - Joshua A Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research, NCI, NIH , Bethesda, MD , USA
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH , Bethesda, MD , USA
| | - Connie L Sommers
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH , Bethesda, MD , USA
| |
Collapse
|
26
|
Barr VA, Sherman E, Yi J, Akpan I, Rouquette-Jazdanian AK, Samelson LE. Development of nanoscale structure in LAT-based signaling complexes. J Cell Sci 2016; 129:4548-4562. [PMID: 27875277 PMCID: PMC5201021 DOI: 10.1242/jcs.194886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/04/2016] [Indexed: 12/30/2022] Open
Abstract
The adapter molecule linker for activation of T cells (LAT) plays a crucial role in forming signaling complexes induced by stimulation of the T cell receptor (TCR). These multi-molecular complexes are dynamic structures that activate highly regulated signaling pathways. Previously, we have demonstrated nanoscale structure in LAT-based complexes where the adapter SLP-76 (also known as LCP2) localizes to the periphery of LAT clusters. In this study, we show that initially LAT and SLP-76 are randomly dispersed throughout the clusters that form upon TCR engagement. The segregation of LAT and SLP-76 develops near the end of the spreading process. The local concentration of LAT also increases at the same time. Both changes require TCR activation and an intact actin cytoskeleton. These results demonstrate that the nanoscale organization of LAT-based signaling complexes is dynamic and indicates that different kinds of LAT-based complexes appear at different times during T cell activation.
Collapse
Affiliation(s)
- Valarie A Barr
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Jason Yi
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Itoro Akpan
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Zhang MS, Sandouk A, Houtman JCD. Glycerol Monolaurate (GML) inhibits human T cell signaling and function by disrupting lipid dynamics. Sci Rep 2016; 6:30225. [PMID: 27456316 PMCID: PMC4960522 DOI: 10.1038/srep30225] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycerol Monolaurate (GML) is a naturally occurring fatty acid widely utilized in food, cosmetics, and homeopathic supplements. GML is a potent antimicrobial agent that targets a range of bacteria, fungi, and enveloped viruses but select findings suggest that GML also has immunomodulatory functions. In this study, we have mechanistically examined if GML affects the signaling and functional output of human primary T cells. We found that GML potently altered order and disorder dynamics in the plasma membrane that resulted in reduced formation of LAT, PLC-γ, and AKT microclusters. Altered membrane events induced selective inhibition of TCR-induced phosphorylation of regulatory P85 subunit of PI3K and AKT as well as abrogated calcium influx. Ultimately, GML treatment potently reduced TCR-induced production of IL-2, IFN-γ, TNF-α, and IL-10. Our data reveal that the widely used anti-microbial agent GML also alters the lipid dynamics of human T cells, leading to their defective signaling and function.
Collapse
Affiliation(s)
- Michael S Zhang
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Aline Sandouk
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jon C D Houtman
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
28
|
Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS. Proc Natl Acad Sci U S A 2016; 113:8218-23. [PMID: 27370798 DOI: 10.1073/pnas.1602602113] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.
Collapse
|
29
|
Radtke D, Lacher SM, Szumilas N, Sandrock L, Ackermann J, Nitschke L, Zinser E. Grb2 Is Important for T Cell Development, Th Cell Differentiation, and Induction of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2016; 196:2995-3005. [PMID: 26921310 DOI: 10.4049/jimmunol.1501764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/25/2016] [Indexed: 11/19/2022]
Abstract
The small adaptor protein growth factor receptor-bound protein 2 (Grb2) modulates and integrates signals from receptors on cellular surfaces in inner signaling pathways. In murine T cells, Grb2 is crucial for amplification of TCR signaling. T cell-specific Grb2(fl/fl) Lckcre(tg) Grb2-deficient mice show reduced T cell numbers due to impaired negative and positive selection. In this study, we found that T cell numbers in Grb2(fl/fl) CD4cre(tg) mice were normal in the thymus and were only slightly affected in the periphery. Ex vivo analysis of CD4(+) Th cell populations revealed an increased amount of Th1 cells within the CD4(+) population of Grb2(fl/fl) CD4cre(tg) mice. Additionally, Grb2-deficient T cells showed a greater potential to differentiate into Th17 cells in vitro. To test whether these changes in Th cell differentiation potential rendered Grb2(fl/fl) CD4cre(tg) mice more prone to inflammatory diseases, we used the murine Th1 cell- and Th17 cell-driven model of experimental autoimmune encephalomyelitis (EAE). In contrast to our expectations, Grb2(fl/fl) CD4cre(tg) mice developed a milder form of EAE. The impaired EAE disease can be explained by the reduced proliferation rate of Grb2-deficient CD4(+) T cells upon stimulation with IL-2 or upon activation by allogeneic dendritic cells, because the activation of T cells by dendritic cells and the subsequent T cell proliferation are known to be crucial factors for the induction of EAE. In summary, Grb2-deficient T cells show defects in T cell development, increased Th1 and Th17 cell differentiation capacities, and impaired proliferation after activation by dendritic cells, which likely reduce the clinical symptoms of EAE.
Collapse
Affiliation(s)
- Daniel Radtke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany; and
| | - Sonja M Lacher
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany; and
| | - Nadine Szumilas
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany; and
| | - Lena Sandrock
- Department of Immune Modulation, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Jochen Ackermann
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany; and
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany; and
| | - Elisabeth Zinser
- Department of Immune Modulation, University Hospital Erlangen, 91052 Erlangen, Germany
| |
Collapse
|
30
|
Malissen B, Bongrand P. Early T cell activation: integrating biochemical, structural, and biophysical cues. Annu Rev Immunol 2015; 33:539-61. [PMID: 25861978 DOI: 10.1146/annurev-immunol-032414-112158] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells carry out the formidable task of identifying small numbers of foreign antigenic peptides rapidly and specifically against a very noisy environmental background of endogenous self-peptides. Early steps in T cell activation have thus fascinated biologists and are among the best-studied models of cell stimulation. This remarkable process, critical in adaptive immune responses, approaches and even seems to exceed the limitations set by the physical laws ruling molecular behavior. Despite the enormous amount of information concerning the nature of molecules involved in the T cell antigen receptor (TCR) signal transduction network, and the description of the nanoscale organization and real-time analysis of T cell responses, the general principles of information gathering and processing remain incompletely understood. Here we review currently accepted key data on TCR function, discuss the limitations of current research strategies, and suggest a novel model of TCR triggering and a few promising ways of going further into the integration of available data.
Collapse
Affiliation(s)
- Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy and Centre d'Immunophénomique, Aix-Marseille Université, INSERM U1104 and US012, CNRS UMR7280 and UMS3367, 13288 Marseille Cedex 09, France;
| | | |
Collapse
|
31
|
Balagopalan L, Kortum RL, Coussens NP, Barr VA, Samelson LE. The linker for activation of T cells (LAT) signaling hub: from signaling complexes to microclusters. J Biol Chem 2015; 290:26422-9. [PMID: 26354432 DOI: 10.1074/jbc.r115.665869] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the cloning of the critical adapter, LAT (linker for activation of T cells), more than 15 years ago, a combination of multiple scientific approaches and techniques continues to provide valuable insights into the formation, composition, regulation, dynamics, and function of LAT-based signaling complexes. In this review, we will summarize current views on the assembly of signaling complexes nucleated by LAT. LAT forms numerous interactions with other signaling molecules, leading to cooperativity in the system. Furthermore, oligomerization of LAT by adapter complexes enhances intracellular signaling and is physiologically relevant. These results will be related to data from super-resolution microscopy studies that have revealed the smallest LAT-based signaling units and nanostructure.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Robert L Kortum
- the Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Nathan P Coussens
- the Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Valarie A Barr
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Lawrence E Samelson
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256,
| |
Collapse
|
32
|
Regions outside of conserved PxxPxR motifs drive the high affinity interaction of GRB2 with SH3 domain ligands. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2560-9. [PMID: 26079855 DOI: 10.1016/j.bbamcr.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/26/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022]
Abstract
SH3 domains are evolutionarily conserved protein interaction domains that control nearly all cellular processes in eukaryotes. The current model is that most SH3 domains bind discreet PxxPxR motifs with weak affinity and relatively low selectivity. However, the interactions of full-length SH3 domain-containing proteins with ligands are highly specific and have much stronger affinity. This suggests that regions outside of PxxPxR motifs drive these interactions. In this study, we observed that PxxPxR motifs were required for the binding of the adaptor protein GRB2 to short peptides from its ligand SOS1. Surprisingly, PxxPxR motifs from the proline rich region of SOS1 or CBL were neither necessary nor sufficient for the in vitro or in vivo interaction with full-length GRB2. Together, our findings show that regions outside of the consensus PxxPxR sites drive the high affinity association of GRB2 with SH3 domain ligands, suggesting that the binding mechanism for this and other SH3 domain interactions may be more complex than originally thought.
Collapse
|
33
|
Guittard G, Kortum RL, Balagopalan L, Çuburu N, Nguyen P, Sommers CL, Samelson LE. Absence of both Sos-1 and Sos-2 in peripheral CD4(+) T cells leads to PI3K pathway activation and defects in migration. Eur J Immunol 2015; 45:2389-95. [PMID: 25973715 DOI: 10.1002/eji.201445226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/07/2015] [Accepted: 05/12/2015] [Indexed: 11/10/2022]
Abstract
Sos-1 and Sos-2 are ubiquitously expressed Ras-guanine exchange factors involved in Erk-MAP kinase pathway activation. Using mice lacking genes encoding Sos-1 and Sos-2, we evaluated the role of these proteins in peripheral T-cell signaling and function. Our results confirmed that TCR-mediated Erk activation in peripheral CD4(+) T cells does not depend on Sos-1 and Sos-2, although IL-2-mediated Erk activation does. Unexpectedly, however, we show an increase in AKT phosphorylation in Sos-1/2dKO CD4(+) T cells upon TCR and IL-2 stimulation. Activation of AKT was likely a consequence of increased recruitment of PI3K to Grb2 upon TCR and/or IL-2 stimulation in Sos-1/2dKO CD4(+) T cells. The increased activity of the PI3K/AKT pathway led to downregulation of the surface receptor CD62L in Sos-1/2dKO T cells and a subsequent impairment in T-cell migration.
Collapse
Affiliation(s)
- Geoffrey Guittard
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Robert L Kortum
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nicolas Çuburu
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Phan Nguyen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Connie L Sommers
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
34
|
Bilal MY, Houtman JCD. GRB2 Nucleates T Cell Receptor-Mediated LAT Clusters That Control PLC-γ1 Activation and Cytokine Production. Front Immunol 2015; 6:141. [PMID: 25870599 PMCID: PMC4378308 DOI: 10.3389/fimmu.2015.00141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/14/2015] [Indexed: 12/16/2022] Open
Abstract
GRB2 is a ubiquitously expressed adaptor protein required for signaling downstream of multiple receptors. To address the role of GRB2 in receptor-mediated signaling, the expression of GRB2 was suppressed in human CD4+ T cells and its role downstream of the T cell receptor (TCR) was examined. Interestingly, GRB2 deficient T cells had enhanced signaling from complexes containing the TCR. However, GRB2 deficient T cells had substantially reduced production of IL-2 and IFN-γ. This defect was attributed to diminished formation of linker for activation of T cells (LAT) signaling clusters, which resulted in reduced MAP kinase activation, calcium flux, and PLC-γ1 recruitment to LAT signaling clusters. Add back of wild-type GRB2, but not a novel N-terminal SH3 domain mutant, rescued LAT microcluster formation, calcium mobilization, and cytokine release, providing the first direct evidence that GRB2, and its ability to bind to SH3 domain ligands, is required for establishing LAT microclusters. Our data demonstrate that the ability of GRB2 to facilitate protein clusters is equally important in regulating TCR-mediated functions as its capacity to recruit effector proteins. This highlights that GRB2 regulates signaling downstream of adaptors and receptors by both recruiting effector proteins and regulating the formation of signaling complexes.
Collapse
Affiliation(s)
- Mahmood Yousif Bilal
- Interdisciplinary Graduate Program in Immunology, University of Iowa , Iowa City, IA , USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa , Iowa City, IA , USA ; Department of Microbiology, Carver College of Medicine, University of Iowa , Iowa City, IA , USA
| |
Collapse
|
35
|
T cell exhaustion and Interleukin 2 downregulation. Cytokine 2015; 71:339-47. [DOI: 10.1016/j.cyto.2014.11.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/30/2023]
|
36
|
Malissen B, Grégoire C, Malissen M, Roncagalli R. Integrative biology of T cell activation. Nat Immunol 2014; 15:790-7. [PMID: 25137453 DOI: 10.1038/ni.2959] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022]
Abstract
The activation of T cells mediated by the T cell antigen receptor (TCR) requires the interaction of dozens of proteins, and its malfunction has pathological consequences. Our major focus is on new developments in the systems-level understanding of the TCR signal-transduction network. To make sense of the formidable complexity of this network, we argue that 'fine-grained' methods are needed to assess the relationships among a few components that interact on a nanometric scale, and those should be integrated with high-throughput '-omic' approaches that simultaneously capture large numbers of parameters. We illustrate the utility of this integrative approach with the transmembrane signaling protein Lat, which is a key signaling hub of the TCR signal-transduction network, as a connecting thread.
Collapse
Affiliation(s)
- Bernard Malissen
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France. [4] Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France. [5] INSERM US012, Marseille, France. [6] CNRS UMS3367, Marseille, France
| | - Claude Grégoire
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France
| | - Marie Malissen
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France. [4] Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France. [5] INSERM US012, Marseille, France. [6] CNRS UMS3367, Marseille, France
| | - Romain Roncagalli
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France
| |
Collapse
|
37
|
Crites TJ, Padhan K, Muller J, Krogsgaard M, Gudla PR, Lockett SJ, Varma R. TCR Microclusters pre-exist and contain molecules necessary for TCR signal transduction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:56-67. [PMID: 24860189 PMCID: PMC4096552 DOI: 10.4049/jimmunol.1400315] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TCR-dependent signaling events have been observed to occur in TCR microclusters. We found that some TCR microclusters are present in unstimulated murine T cells, indicating that the mechanisms leading to microcluster formation do not require ligand binding. These pre-existing microclusters increase in absolute number following engagement by low-potency ligands. This increase is accompanied by an increase in cell spreading, with the result that the density of TCR microclusters on the surface of the T cell is not a strong function of ligand potency. In characterizing their composition, we observed a constant number of TCRs in a microcluster, constitutive exclusion of the phosphatase CD45, and preassociation with the signaling adapters linker for activation of T cells and growth factor receptor-bound protein 2. The existence of TCR microclusters prior to ligand binding in a state that is conducive for the initiation of downstream signaling could explain, in part, the rapid kinetics with which TCR signal transduction occurs.
Collapse
Affiliation(s)
- Travis J Crites
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kartika Padhan
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - James Muller
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016; Department of Pathology, New York University School of Medicine, New York, NY 10026
| | - Michelle Krogsgaard
- Department of Pathology, New York University School of Medicine, New York, NY 10026; New York University Cancer Institute, New York University School of Medicine, New York, NY 10026; and
| | - Prabhakar R Gudla
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Fort Detrick, Frederick, MD 21702
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Fort Detrick, Frederick, MD 21702
| | - Rajat Varma
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|