1
|
Kajimura Y, Dong S, Tessari A, Orlacchio A, Thoms A, Cufaro MC, Di Marco F, Amari F, Chen M, Soliman SHA, Rizzotto L, Zhang L, Sunilkumar D, Amann JM, Carbone DP, Ahmed A, Fiermonte G, Freitas MA, Lodi A, Del Boccio P, Tessarollo L, Palmieri D, Coppola V. An in vivo "turning model" reveals new RanBP9 interactions in lung macrophages. Cell Death Discov 2025; 11:171. [PMID: 40223093 PMCID: PMC11994786 DOI: 10.1038/s41420-025-02456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
The biological functions of the scaffold protein Ran Binding Protein 9 (RanBP9) remain elusive in macrophages or any other cell type where this protein is expressed together with its CTLH (C-terminal to LisH) complex partners. We have engineered a new mouse model, named RanBP9-TurnX, where RanBP9 fused to three copies of the HA tag (RanBP9-3xHA) can be turned into RanBP9-V5 tagged upon Cre-mediated recombination. We created this model to enable stringent biochemical studies at cell type specific level throughout the entire organism. Here, we have used this tool crossed with LysM-Cre transgenic mice to identify RanBP9 interactions in lung macrophages. We show that RanBP9-V5 and RanBP9-3xHA can be both co-immunoprecipitated with the known members of the CTLH complex from the same whole lung lysates. However, more than ninety percent of the proteins pulled down by RanBP9-V5 differ from those pulled-down by RanBP9-HA. The lung RanBP9-V5 associated proteome includes previously unknown interactions with macrophage-specific proteins as well as with players of the innate immune response, DNA damage response, metabolism, and mitochondrial function. This work provides the first lung specific RanBP9-associated interactome in physiological conditions and reveals that RanBP9 and the CTLH complex could be key regulators of macrophage bioenergetics and immune functions.
Collapse
Affiliation(s)
- Yasuko Kajimura
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Division of Hematology, Diabetes, Metabolism and Endocrinology, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Shuxin Dong
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Oncology Unit, AULSS 5 Polesana, Rovigo, Italy
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Alexandra Thoms
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Pelotonia Summer Fellow, Kenyon College, CAMELOT Program, Gambier, OH, USA
| | - Maria Concetta Cufaro
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Federica Di Marco
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Min Chen
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Shimaa H A Soliman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lara Rizzotto
- Gene Editing Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Liwen Zhang
- Proteomic Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Damu Sunilkumar
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Joseph M Amann
- Division of Medical Oncology, Ohio State Wexner Medical Center, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - David P Carbone
- Division of Medical Oncology, Ohio State Wexner Medical Center, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Amer Ahmed
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125, Bari, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125, Bari, Italy
| | - Mike A Freitas
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Proteomic Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, NCI/Center for Cancer Research, NIH, Frederick, MD, 21702, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Gene Editing Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Takita S, Harikrishnan H, Miyagi M, Imanishi Y. Transcriptional downregulation of rhodopsin is associated with desensitization of rods to light-induced damage in a murine model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646684. [PMID: 40236225 PMCID: PMC11996569 DOI: 10.1101/2025.04.03.646684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Class I rhodopsin mutations are known for some of the most severe forms of vision impairments in dominantly inherited rhodopsin retinitis pigmentosa. They disrupt the VxPx transport signal, which is required for the proper localization of rhodopsin to the outer segments. While various studies have focused on the light-dependent toxicity of mutant rhodopsin, it remains unclear whether and how these mutations exert dominant-negative effects. Using the class I Rho Q344X rhodopsin knock-in mouse model, we characterized the expression of rhodopsin and other genes by RNA sequencing and qPCR. Those studies indicated that rhodopsin is the most prominently downregulated photoreceptor-specific gene in Rho Q344X/+ mice. Rhodopsin is downregulated significantly prior to the onset of rod degeneration, whereas downregulation of other phototransduction genes, transducin α , and Pde6α, occurs after the onset and correlate with the degree of rod cell loss. Those studies indicated that the mutant rhodopsin gene causes downregulation of wild-type rhodopsin, imposing an mRNA-level dominant negative effect. Moreover, it causes downregulation of the mutant mRNA itself, mitigating the toxicity. The observed dominant effect is likely common among rhodopsin retinitis pigmentosa as we found a similar rhodopsin downregulation in the major class II rhodopsin mutant model, Rho P23H/+ mice, in which mutant rhodopsin is prone to misfold. Potentially due to mitigated toxicity by reduced rhodopsin expression, Rho Q344X/+ mice did not exhibit light-dependent exacerbation of rod degeneration, even after continuous exposure of mice for 5 days at 3000 lux. Thus, this study describes a novel form of dominant negative effect in inherited neurodegenerative disorders.
Collapse
|
3
|
Roh T, Seo W, Won M, Yang WS, Sapkota A, Park EJ, Yun SH, Jeon SM, Kim KT, Lee B, Ryu G, Lee SH, Shin JM, Shin HJ, Kim YJ, Lee Y, Chung C, Song IC, Song HK, Jo EK. The inflammasome-activating poxvirus peptide IAMP29 promotes antimicrobial and anticancer responses. Exp Mol Med 2024; 56:2475-2490. [PMID: 39511430 PMCID: PMC11612179 DOI: 10.1038/s12276-024-01339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 11/15/2024] Open
Abstract
Poxviruses are implicated in a variety of infectious diseases; however, little is known about the molecular mechanisms that underlie the immune response during poxvirus infection. We investigated the function and mechanisms of the monkeypox virus envelope protein (A30L) and its core peptide (IAMP29) during the activation of innate immune responses. The A30L protein and its core peptide, IAMP29 (a 29-amino-acid inflammasome-activating peptide encompassing His40 to Asp69 of A30L), strongly activated the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome by inducing the production of mitochondrial reactive oxygen species in human monocytes. Specifically, IAMP29 triggered metabolic reprogramming toward glycolysis and interacted with pyruvate kinase M isoforms (PKM1 and PKM2), thus activating the NLRP3 inflammasome and interleukin (IL)-1β production in human monocytes and murine macrophages. In human primary monocyte-derived macrophages, IAMP29-induced inflammasome activation promoted an antimicrobial response to rapidly growing non-tuberculous mycobacteria. Furthermore, IAMP29 exhibited cytotoxic activity against leukemia cells, which was mediated by pyroptosis and apoptosis. These findings provide insights into the immunological function of the poxvirus envelope peptide and suggest its therapeutic potential.
Collapse
Affiliation(s)
- Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Wonhyoung Seo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Minho Won
- Department of Biochemistry, Chungnam National University College of Natural Sciences, Daejeon, Republic of Korea
| | - Woo Seok Yang
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sung-Ho Yun
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Kyung Tae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Bomi Lee
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Gyoungah Ryu
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jung-Min Shin
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyo Jung Shin
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Xiao L, Pi X, Goss AC, El-Baba T, Ehrmann JF, Grinkevich E, Bazua-Valenti S, Padovano V, Alper SL, Carey D, Udeshi ND, Carr SA, Pablo JL, Robinson CV, Greka A, Wu H. Molecular basis of TMED9 oligomerization and entrapment of misfolded protein cargo in the early secretory pathway. SCIENCE ADVANCES 2024; 10:eadp2221. [PMID: 39303030 PMCID: PMC11414720 DOI: 10.1126/sciadv.adp2221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Intracellular accumulation of misfolded proteins causes serious human proteinopathies. The transmembrane emp24 domain 9 (TMED9) cargo receptor promotes a general mechanism of cytotoxicity by entrapping misfolded protein cargos in the early secretory pathway. However, the molecular basis for this TMED9-mediated cargo retention remains elusive. Here, we report cryo-electron microscopy structures of TMED9, which reveal its unexpected self-oligomerization into octamers, dodecamers, and, by extension, even higher-order oligomers. The TMED9 oligomerization is driven by an intrinsic symmetry mismatch between the trimeric coiled coil domain and the tetrameric transmembrane domain. Using frameshifted Mucin 1 as an example of aggregated disease-related protein cargo, we implicate a mode of direct interaction with the TMED9 luminal Golgi-dynamics domain. The structures suggest and we confirm that TMED9 oligomerization favors the recruitment of coat protein I (COPI), but not COPII coatomers, facilitating retrograde transport and explaining the observed cargo entrapment. Our work thus reveals a molecular basis for TMED9-mediated misfolded protein retention in the early secretory pathway.
Collapse
Affiliation(s)
- Le Xiao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Xiong Pi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alissa C. Goss
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tarick El-Baba
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Julian F. Ehrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Elizabeth Grinkevich
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Silvana Bazua-Valenti
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Seth L. Alper
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Nephrology, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Dominique Carey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Juan Lorenzo Pablo
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Anna Greka
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
He J, Zhang L. The journey of STING: Guiding immune signaling through membrane trafficking. Cytokine Growth Factor Rev 2024; 78:25-36. [PMID: 39019665 DOI: 10.1016/j.cytogfr.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Stimulator of Interferon Genes (STING) serves as a pivotal mediator in the innate immune signaling pathway, transducing signals from various DNA receptors and playing a crucial role in natural immune processes. During cellular quiescence, STING protein resides in the endoplasmic reticulum (ER), and its activation typically occurs through the cGAS-STING signaling pathway. Upon activation, STING protein is transported to the Golgi apparatus, thereby initiating downstream signaling cascades. Vesicular transport serves as the primary mechanism for STING protein trafficking between the ER and Golgi apparatus, with COPII mediating anterograde transport from the ER to Golgi apparatus, while COPI is responsible for retrograde transport. Numerous factors influence these transport processes, thereby exerting either promoting or inhibitory effects on STING protein expression. Upon reaching the Golgi apparatus, to prevent over-activation, STING protein is transported to post-Golgi compartments for degradation. In addition to the conventional lysosomal degradation pathway, ESCRT has also been identified as one of the degradation pathways for STING protein. This review summarizes the recent findings on the membrane trafficking pathways of STING, highlighting their contributions to the regulation of cytokine production, the activation of immune cells, and the coordination of immune signaling pathways.
Collapse
Affiliation(s)
- Jingyi He
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Leiliang Zhang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
6
|
Kajimura Y, Tessari A, Orlacchio A, Thoms A, Cufaro MC, Marco FD, Amari F, Chen M, Soliman SHA, Rizzotto L, Zhang L, Amann J, Carbone DP, Ahmed A, Fiermonte G, Freitas M, Lodi A, Boccio PD, Palmieri D, Coppola V. An in vivo "turning model" reveals new RanBP9 interactions in lung macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595416. [PMID: 38826292 PMCID: PMC11142189 DOI: 10.1101/2024.05.22.595416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The biological functions of the scaffold protein Ran Binding Protein 9 (RanBP9) remain elusive in macrophages or any other cell type where this protein is expressed together with its CTLH (C-terminal to LisH) complex partners. We have engineered a new mouse model, named RanBP9-TurnX, where RanBP9 fused to three copies of the HA tag (RanBP9-3xHA) can be turned into RanBP9-V5 tagged upon Cre-mediated recombination. We created this model to enable stringent biochemical studies at cell type specific level throughout the entire organism. Here, we have used this tool crossed with LysM-Cre transgenic mice to identify RanBP9 interactions in lung macrophages. We show that RanBP9-V5 and RanBP9-3xHA can be both co-immunoprecipitated with the known members of the CTLH complex from the same whole lung lysates. However, more than ninety percent of the proteins pulled down by RanBP9-V5 differ from those pulled-down by RanBP9-HA. The lung RanBP9-V5 associated proteome includes previously unknown interactions with macrophage-specific proteins as well as with players of the innate immune response, DNA damage response, metabolism, and mitochondrial function. This work provides the first lung specific RanBP9-associated interactome in physiological conditions and reveals that RanBP9 and the CTLH complex could be key regulators of macrophage bioenergetics and immune functions.
Collapse
|
7
|
Yang K, Feng Z, Pastor-Pareja JC. p24-Tango1 interactions ensure ER-Golgi interface stability and efficient transport. J Cell Biol 2024; 223:e202309045. [PMID: 38470362 PMCID: PMC10932740 DOI: 10.1083/jcb.202309045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
The eukaryotic p24 family, consisting of α-, β-, γ- and δ-p24 subfamilies, has long been known to be involved in regulating secretion. Despite increasing interest in these proteins, fundamental questions remain about their role. Here, we systematically investigated Drosophila p24 proteins. We discovered that members of all four p24 subfamilies are required for general secretion and that their localizations between ER exit site (ERES) and Golgi are interdependent in an α→βδ→γ sequence. We also found that localization of p24 proteins and ERES determinant Tango1 requires interaction through their respective GOLD and SH3 lumenal domains, with Tango1 loss sending p24 proteins to the plasma membrane and vice versa. Finally, we show that p24 loss expands the COPII zone at ERES and increases the number of ER-Golgi vesicles, supporting a restrictive role of p24 proteins on vesicle budding for efficient transport. Our results reveal Tango1-p24 interplay as central to the generation of a stable ER-Golgi interface.
Collapse
Affiliation(s)
- Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Institute of Neurosciences, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
8
|
Erban T, Kadleckova D, Sopko B, Harant K, Talacko P, Markovic M, Salakova M, Kadlikova K, Tachezy R, Tachezy J. Varroa destructor parasitism and Deformed wing virus infection in honey bees are linked to peroxisome-induced pathways. Proteomics 2024; 24:e2300312. [PMID: 38446070 DOI: 10.1002/pmic.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-β signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Dominika Kadleckova
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Bruno Sopko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Martin Markovic
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Martina Salakova
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Klara Kadlikova
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| |
Collapse
|
9
|
Knopf JD, Steigleder SS, Korn F, Kühnle N, Badenes M, Tauber M, Theobald SJ, Rybniker J, Adrain C, Lemberg MK. RHBDL4-triggered downregulation of COPII adaptor protein TMED7 suppresses TLR4-mediated inflammatory signaling. Nat Commun 2024; 15:1528. [PMID: 38453906 PMCID: PMC10920636 DOI: 10.1038/s41467-024-45615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
The toll-like receptor 4 (TLR4) is a central regulator of innate immunity that primarily recognizes bacterial lipopolysaccharide cell wall constituents to trigger cytokine secretion. We identify the intramembrane protease RHBDL4 as a negative regulator of TLR4 signaling. We show that RHBDL4 triggers degradation of TLR4's trafficking factor TMED7. This counteracts TLR4 transport to the cell surface. Notably, TLR4 activation mediates transcriptional upregulation of RHBDL4 thereby inducing a negative feedback loop to reduce TLR4 trafficking to the plasma membrane. This secretory cargo tuning mechanism prevents the over-activation of TLR4-dependent signaling in an in vitro Mycobacterium tuberculosis macrophage infection model and consequently alleviates septic shock in a mouse model. A hypomorphic RHBDL4 mutation linked to Kawasaki syndrome, an ill-defined inflammatory disorder in children, further supports the pathophysiological relevance of our findings. In this work, we identify an RHBDL4-mediated axis that acts as a rheostat to prevent over-activation of the TLR4 pathway.
Collapse
Affiliation(s)
- Julia D Knopf
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Susanne S Steigleder
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Friederike Korn
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Nathalie Kühnle
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Marina Badenes
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University and Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Marina Tauber
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Jörgensen SK, Karnošová A, Mazzaferro S, Rowley O, Chen HJC, Robbins SJ, Christofides S, Merkle FT, Maletínská L, Petrik D. An analogue of the Prolactin Releasing Peptide reduces obesity and promotes adult neurogenesis. EMBO Rep 2024; 25:351-377. [PMID: 38177913 PMCID: PMC10897398 DOI: 10.1038/s44319-023-00016-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Hypothalamic Adult Neurogenesis (hAN) has been implicated in regulating energy homeostasis. Adult-generated neurons and adult Neural Stem Cells (aNSCs) in the hypothalamus control food intake and body weight. Conversely, diet-induced obesity (DIO) by high fat diets (HFD) exerts adverse influence on hAN. However, the effects of anti-obesity compounds on hAN are not known. To address this, we administered a lipidized analogue of an anti-obesity neuropeptide, Prolactin Releasing Peptide (PrRP), so-called LiPR, to mice. In the HFD context, LiPR rescued the survival of adult-born hypothalamic neurons and increased the number of aNSCs by reducing their activation. LiPR also rescued the reduction of immature hippocampal neurons and modulated calcium dynamics in iPSC-derived human neurons. In addition, some of these neurogenic effects were exerted by another anti-obesity compound, Liraglutide. These results show for the first time that anti-obesity neuropeptides influence adult neurogenesis and suggest that the neurogenic process can serve as a target of anti-obesity pharmacotherapy.
Collapse
Affiliation(s)
| | - Alena Karnošová
- First Faculty of Medicine, Charles University, Prague, 12108, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 16610, Czech Republic
| | - Simone Mazzaferro
- Wellcome-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Oliver Rowley
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Hsiao-Jou Cortina Chen
- Wellcome-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Sarah J Robbins
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | | | - Florian T Merkle
- Wellcome-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 16610, Czech Republic
| | - David Petrik
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
11
|
Holm JEJ, Soares SG, Symmons MF, Huddin AS, Moncrieffe MC, Gay NJ. Anterograde trafficking of Toll-like receptors requires the cargo sorting adaptors TMED-2 and 7. Traffic 2023; 24:508-521. [PMID: 37491993 PMCID: PMC10946956 DOI: 10.1111/tra.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
Toll-Like Receptors (TLRs) play a pivotal role in immunity by recognising conserved structural features of pathogens and initiating the innate immune response. TLR signalling is subject to complex regulation that remains poorly understood. Here we show that two small type I transmembrane receptors, TMED2 and 7, that function as cargo sorting adaptors in the early secretory pathway are required for transport of TLRs from the ER to Golgi. Protein interaction studies reveal that TMED7 interacts with TLR2, TLR4 and TLR5 but not with TLR3 and TLR9. On the other hand, TMED2 interacts with TLR2, TLR4 and TLR3. Dominant negative forms of TMED7 suppress the export of cell surface TLRs from the ER to the Golgi. By contrast TMED2 is required for the ER-export of both plasma membrane and endosomal TLRs. Together, these findings suggest that association of TMED2 and TMED7 with TLRs facilitates anterograde transport from the ER to the Golgi.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicholas J. Gay
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
12
|
Zhou L, Li H, Yao H, Dai X, Gao P, Cheng H. TMED family genes and their roles in human diseases. Int J Med Sci 2023; 20:1732-1743. [PMID: 37928880 PMCID: PMC10620864 DOI: 10.7150/ijms.87272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The members of the transmembrane emp24 domain-containing protein (TMED) family are summarized in human as four subfamilies, α (TMED 4, 9), β (TMED 2), γ (TMED1, 3, 5, 6, 7) and δ (TMED 10), with a total of nine members, which are important regulators of intracellular protein transport and are involved in normal embryonic development, as well as in the pathogenic processes of many human diseases. Here we systematically review the composition, structure and function of TMED family members, and describe the progress of TMED family in human diseases, including malignancies (head and neck tumors, lung cancer, breast cancer, ovarian cancer, endometrial cancer, gastrointestinal tumors, urological tumors, osteosarcomas, etc.), immune responses, diabetes, neurodegenerative diseases, and nonalcoholic fatty liver disease, dilated cardiomyopathy, mucin 1 nephropathy (MKD), and desiccation syndrome (SS). Finally, we discuss and prospect the potential of TMED for disease prognosis prediction and therapeutic targeting, with a view to laying the foundation for therapeutic research based on TMED family causative genes.
Collapse
Affiliation(s)
| | | | | | - Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Peng Gao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| |
Collapse
|
13
|
Kundu S, Lin C, Jaiswal M, Mullapudi VB, Craig KC, Chen S, Guo Z. Profiling Glycosylphosphatidylinositol (GPI)-Interacting Proteins in the Cell Membrane Using a Bifunctional GPI Analogue as the Probe. J Proteome Res 2023; 22:919-930. [PMID: 36700487 PMCID: PMC9992086 DOI: 10.1021/acs.jproteome.2c00728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchorage of cell surface proteins to the membrane is biologically important and ubiquitous in eukaryotes. However, GPIs do not contain long enough lipids to span the entire membrane bilayer. To transduce binding signals, GPIs must interact with other membrane components, but such interactions are difficult to define. Here, a new method was developed to explore GPI-interacting membrane proteins in live cell with a bifunctional analogue of the glucosaminylphosphatidylinositol motif conserved in all GPIs as a probe. This probe contained a diazirine functionality in the lipid and an alkynyl group on the glucosamine residue to respectively facilitate the cross-linkage of GPI-binding membrane proteins with the probe upon photoactivation and then the installation of biotin to the cross-linked proteins via a click reaction for affinity-based protein isolation and analysis. Profiling the proteins pulled down from the Hela cells revealed 94 unique and 18 overrepresented proteins compared to the control, and most of them are membrane proteins and many are GPI-related. The results have proved not only the concept of using the new bifunctional GPI probe to investigate GPI-binding membrane proteins but also the important role of inositol in the biological functions of GPI anchors and GPI-anchored proteins.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Kendall C. Craig
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Current Address: Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Roberts BS, Satpute-Krishnan P. The many hats of transmembrane emp24 domain protein TMED9 in secretory pathway homeostasis. Front Cell Dev Biol 2023; 10:1096899. [PMID: 36733337 PMCID: PMC9888432 DOI: 10.3389/fcell.2022.1096899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The secretory pathway is an intracellular highway for the vesicular transport of newly synthesized proteins that spans the endoplasmic reticulum (ER), Golgi, lysosomes and the cell surface. A variety of cargo receptors, chaperones, and quality control proteins maintain the smooth flow of cargo along this route. Among these is vesicular transport protein TMED9, which belongs to the p24/transmembrane emp24 domain (TMED) family of proteins, and is expressed across vertebrate species. The TMED family is comprised of structurally-related type I transmembrane proteins with a luminal N-terminal Golgi-dynamics domain, a luminal coiled-coil domain, a transmembrane domain and a short cytosolic C-terminal tail that binds COPI and COPII coat proteins. TMED9, like other members of the TMED family, was first identified as an abundant constituent of the COPI and COPII coated vesicles that mediate traffic between the ER and the Golgi. TMED9 is typically purified in hetero-oligomers together with TMED family members, suggesting that it may function as part of a complex. Recently, TMED family members have been discovered to play various roles in secretory pathway homeostasis including secreted protein processing, quality control and degradation of misfolded proteins, and post-Golgi trafficking. In particular, TMED9 has been implicated in autophagy, lysosomal sorting, viral replication and cancer, which we will discuss in this Mini-Review.
Collapse
|
15
|
Fang Z, Song YX, Wo GQ, Zhou HL, Li L, Yang SY, Chen X, Zhang J, Tang JH. Screening of the novel immune-suppressive biomarkers of TMED family and whether knockdown of TMED2/3/4/9 inhibits cell migration and invasion in breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1280. [PMID: 36618780 PMCID: PMC9816852 DOI: 10.21037/atm-22-5444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Background Transmembrane p24 trafficking protein (TMED) family members are implicated in several solid tumors, but their clinical relevance for breast cancer (BC) remains unclear. This study aimed to probe their prognostic values and relations with tumor immunity in BC. Methods TMED family mRNA expression was assessed in five microarray datasets (GSE65212, GSE42568, GSE5364, GSE22820 and GSE45827) from Gene Expression Omnibus (GEO) database and invasive breast cancer (BRCA) cohort from The Cancer Genome Atlas (TCGA). Receiver operating characteristic (ROC) curve was performed to determine the predictive values of filtered members of the TMED family. The protein expressions of screen genes were validated by Clinical Proteomic Tumor Analysis Consortium (CPTAC) data from University of ALabama at Birmingham CANcer data analysis portal (UALCAN) and detected in the clinical specimens by western blot assay. Clinicopathologic variables were analyzed with bc-GenExMiner, and patient prognostic data were obtained with Kaplan-Meier Plotter. In vitro wound healing and invasion assays were performed on siRNA-transfected BC cell lines. TIMER 2.0, SangerBox, and ImmPort were used to evaluate tumor immune infiltration, immune checkpoints, and other immune-related genes. CbioPortal, Metascape, Expression2kinases, and LinkedOmics were used to explore gene regulatory network. Results BC tissues expressed TMED2/3/4/9 at a higher level than normal tissues, providing diagnostic potential. All the areas under the ROC curve for TMED2/3/4/9 were more than 0.7. TMED2/3/4/9 correlated with numerous clinical variables, including lymph node status, Scarff-Bloom-Richardson score (SBR), Nottingham Prognostic Index (NPI), estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and triple-negative breast cancer (TNBC) status, and their high expression predicted the poor prognosis of BC patients. TMED2/3/4/9 knockdown drastically inhibited the migratory and invasive capacities of MDA-MB-231 and HCC1937 cells. TMED2/3/4/9 expressions correlated negatively with the infiltration of tumor-suppressive immune cells such as CD8+ T cells, dendritic cells, and natural killer cells, and was inversely related to a variety of immune checkpoint genes, including programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA4). A set of kinases, transcription factors, and microRNAs (miRNAs) may regulate TMED2/3/4/9 abnormalities at the genome level. Conclusions TMED2/3/4/9 may serve as diagnostic, prognostic, and immune-suppressive biomarkers in BC.
Collapse
Affiliation(s)
- Zheng Fang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Xin Song
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guan-Qun Wo
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Lei Zhou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Si-Yuan Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiu Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Ullah MA, Tabassum T, Farzana M, Moin AT, Zohora US, Rahman MS. Expression analysis, molecular characterization and prognostic evaluation on TMED4 and TMED9 gene expression in glioma. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Hooshmand K, Halliday GM, Pineda SS, Sutherland GT, Guennewig B. Overlap between Central and Peripheral Transcriptomes in Parkinson’s Disease but Not Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23095200. [PMID: 35563596 PMCID: PMC9104085 DOI: 10.3390/ijms23095200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022] Open
Abstract
Most neurodegenerative disorders take decades to develop, and their early detection is challenged by confounding non-pathological ageing processes. Therefore, the discovery of genes and molecular pathways in both peripheral and brain tissues that are highly predictive of disease evolution is necessary. To find genes that influence Alzheimer’s disease (AD) and Parkinson’s disease (PD) pathogenesis, human RNA-Seq transcriptomic data from Brodmann Area 9 (BA9) of the dorsolateral prefrontal cortex (DLPFC), whole blood (WB), and peripheral blood mononuclear cells (PBMC) were analysed using a combination of differential gene expression and a random forest-based machine learning algorithm. The results suggest that there is little overlap between PD and AD, and the AD brain signature is unique mainly compared to blood-based samples. Moreover, the AD-BA9 was characterised by changes in ‘nervous system development’ with Myocyte-specific enhancer factor 2C (Mef2C), encoding a transcription factor that induces microglia activation, a prominent feature. The peripheral AD transcriptome was associated with alterations in ‘viral process’, and FYN, which has been previously shown to link amyloid-beta and tau, was the prominent feature. However, in the absence of any overlap with the central transcriptome, it is unclear whether peripheral FYN levels reflect AD severity or progression. In PD, central and peripheral signatures are characterised by anomalies in ‘exocytosis’ and specific genes related to the SNARE complex, including Vesicle-associated membrane protein 2 (VAMP2), Syntaxin 1A (STX1A), and p21-activated kinase 1 (PAK1). This is consistent with our current understanding of the physiological role of alpha-synuclein and how alpha-synuclein oligomers compromise vesicle docking and neurotransmission. Overall, the results describe distinct disease-specific pathomechanisms, both within the brain and peripherally, for the two most common neurodegenerative disorders.
Collapse
Affiliation(s)
- Kosar Hooshmand
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; (K.H.); (G.M.H.); (S.S.P.)
| | - Glenda M. Halliday
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; (K.H.); (G.M.H.); (S.S.P.)
| | - Sandy S. Pineda
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; (K.H.); (G.M.H.); (S.S.P.)
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Greg T. Sutherland
- Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia;
| | - Boris Guennewig
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; (K.H.); (G.M.H.); (S.S.P.)
- Correspondence:
| |
Collapse
|
18
|
Wang RF, Hong YG, Hao LQ, Yu HT. Expression of TMED3 is independently associated with colorectal cancer prognosis. Exp Ther Med 2022; 23:286. [PMID: 35317448 PMCID: PMC8908477 DOI: 10.3892/etm.2022.11215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Rong-Fei Wang
- Department of Tumor, Anus and Intestine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Yong-Gang Hong
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Li-Qiang Hao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hai-Tao Yu
- Department of Oncology, Lanxi People's Hospital, Lanxi, Zhejiang 321100, P.R. China
| |
Collapse
|
19
|
Mendes LFS, Costa-Filho AJ. A gold revision of the Golgi Dynamics (GOLD) domain structure and associated cell functionalities. FEBS Lett 2022; 596:973-990. [PMID: 35099811 DOI: 10.1002/1873-3468.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/06/2022]
Abstract
The classical secretory pathway is the key membrane-based delivery system in eukaryotic cells. Several families of proteins involved in the secretory pathway, with functionalities going from cargo sorting receptors to the maintenance and dynamics of secretory organelles, share soluble globular domains predicted to mediate protein-protein interactions. One of them is "Golgi Dynamics" (GOLD) domain, named after its strong association with the Golgi apparatus. There are many GOLD-containing protein families, such as the Transmembrane emp24 domain-containing proteins (TMED/p24 family), animal SEC14-like proteins, Human Golgi resident protein ACBD3, a splice variant of TICAM2 called TRAM with GOLD domain and FYCO1. Here, we critically review the state-of-the-art knowledge of the structures and functions of the main representatives of GOLD-containing proteins in vertebrates. We provide the first unified description of the GOLD domain structure across different families since the first high-resolution structure was determined. With a brand-new update on the definition of the GOLD domain, we also discuss how its tertiary structure fits the β-sandwich-like fold map and give exciting new directions for forthcoming studies.
Collapse
Affiliation(s)
- Luis Felipe S Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
20
|
Zhang B, Li H, Zhang J, Hang Y, Xu Y. Overexpression of microRNA-340-5p Ameliorates Inflammatory Response and Intracellular Survival of Mycobacterium Tuberculosis in Alveolar Type II Cells. Infect Drug Resist 2021; 14:1573-1584. [PMID: 33911883 PMCID: PMC8071707 DOI: 10.2147/idr.s291867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background The importance of microRNAs (miRs) has been documented in infections. This study estimated the role of miR-340-5p in Mycobacterium tuberculosis (Mtb)-infected alveolar type II cells. Methods The microarray of GEO database was analyzed to find the differentially expressed miRs caused by Mtb infection, and miR-340-5p was selected as the research object. The effects of Mtb infection on A549 cells were studied by MTT, CFU, EdU, flow cytometry and ELISA assays. miR-340-5p expression was altered in Mtb-infected A549 cells. The downstream target of miR-340-5p was found by bioinformatics analysis and verified by the rescue experiment. The pathways regulated by miR-340-5p and its target gene were further studied. Results Mtb infection suppressed the activity of A549 cells and promoted the release of inflammatory factors. Mtb infection inhibited miR-340-5p expression. Overexpression of miR-340-5p enhanced the resistance of A549 cells to Mtb infection. Moreover, miR-340-5p targeted TMED7. Overexpression of TMED7 reversed the protective effect of miR-340-5p on Mtb-infected A549 cells. miR-340-5p inhibited the activation of NF-κB by targeting TMED7. Conclusion miR-340-5p inhibits the activation of NF-κB by targeting TMED7, thus alleviating the injury of A549 cells caused by Mtb infection. This study may offer a novel approach to Mtb infection.
Collapse
Affiliation(s)
- Bailing Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Honglang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jieling Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yaping Hang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yi Xu
- Department of Geriatric Medicine, People's Hospital of Jiangxi Province, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
21
|
Yadav K, Ali SA, Mohanty AK, Muthusamy E, Subaharan K, Kaul G. MSN, MWCNT and ZnO nanoparticle-induced CHO-K1 cell polarisation is linked to cytoskeleton ablation. J Nanobiotechnology 2021; 19:45. [PMID: 33579304 PMCID: PMC7881565 DOI: 10.1186/s12951-021-00779-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The cellular response to nanoparticles (NPs) for the mechanical clue and biochemical changes are unexplored. Here, we provide the comprehensive analysis of the Chinese Hamster Ovary (CHO-K1) cell line to study cell behaviour following the exposure of mesoporous silica nanoparticle (MSN), multiwall carbon nanotubes (MWCNTs), and zinc oxide (ZnO) NPs. RESULTS Through the high-throughput proteomic study, we observed that the effect of NPs is alone not restricted to cell viability but also on cell polarisation. In the case of MSN, no drastic changes were observed in cellular morphology, but it upregulated chaperons that might prevent protein aggregation. However, MWCNT showed elongated cell appearance with numerous cytoplasmic vacuoles, and induce lamellipodia formation through actin polymerisation. The cytoskeleton remodelling was accompanied by the increased expression of Dlc-1, cofilin and Rac1 proteins. While ZnO NPs resulted in the rounded cell morphology along with nuclear abnormalities. The proteome analysis revealed that UBXN11 control cell roundness and DOCK3 leads to actin stress fibre formation and finally, loss of cell adhesion. It enhances the expression of catastrophic DNA damage and apoptotic proteins, which was unrecoverable even after 72 h, as confirmed by the colony formation assay. All three NPs trigger over-expression of the endocytic pathway, ubiquitination, and proteasomal complex proteins. The data indicate that ZnO and MSN entered into the cells through clathrin-mediated pathways; whereas, MWCNT invades through ER-mediated phagocytosis. CONCLUSIONS Based on the incubation and concentration of NPs, our work provides evidence for the activation of Rac-Rho signalling pathway to alter cytoskeleton dynamics. Our results assist as a sensitive early molecular readout for nanosafety assessment.
Collapse
Affiliation(s)
- Karmveer Yadav
- N.T. Lab-1, Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashok Kumar Mohanty
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Eshwarmoorthy Muthusamy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Kesavan Subaharan
- Division of Germplasm, Conservation and Utilisation, National Bureau of Agricultural Insect Resources, Bangalore, 560024, India
| | - Gautam Kaul
- N.T. Lab-1, Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
22
|
Nie ZW, Niu YJ, Zhou W, Zhou DJ, Kim JY, Cui XS. AGS3-dependent trans-Golgi network membrane trafficking is essential for compaction in mouse embryos. J Cell Sci 2020; 133:jcs.243238. [PMID: 33148610 DOI: 10.1242/jcs.243238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, also known as GPSM1) regulates the trans-Golgi network. The AGS3 GoLoco motif binds to Gαi and thereby regulates the transport of proteins to the plasma membrane. Compaction of early embryos is based on the accumulation of E-cadherin (Cdh1) at cell-contacted membranes. However, how AGS3 regulates the transport of Cdh1 to the plasma membrane remains undetermined. To investigate this, AGS3 was knocked out using the Cas9-sgRNA system. Both trans-Golgi network protein 46 (TGN46, also known as TGOLN2) and transmembrane p24-trafficking protein 7 (TMED7) were tracked in early mouse embryos by tagging these proteins with a fluorescent protein label. We observed that the majority of the AGS3-edited embryos were developmentally arrested and were fragmented after the four-cell stage, exhibiting decreased accumulation of Cdh1 at the membrane. The trans-Golgi network and TMED7-positive vesicles were also dispersed and were not polarized near the membrane. Additionally, increased Gαi1 (encoded by GNAI1) expression could rescue AGS3-overexpressed embryos. In conclusion, AGS3 reinforces the dynamics of the trans-Golgi network and the transport of TMED7-positive cargo containing Cdh1 to the cell-contact surface during early mouse embryo development.
Collapse
Affiliation(s)
- Zheng-Wen Nie
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ying-Jie Niu
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Wenjun Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Dong-Jie Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ju-Yeon Kim
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| |
Collapse
|
23
|
Santos G, Barateiro A, Brites D, Fernandes A. S100B Impairs Oligodendrogenesis and Myelin Repair Following Demyelination Through RAGE Engagement. Front Cell Neurosci 2020; 14:279. [PMID: 33100970 PMCID: PMC7500156 DOI: 10.3389/fncel.2020.00279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/06/2020] [Indexed: 01/30/2023] Open
Abstract
Increased expression of S100B and its specific receptor for advanced glycation end products (RAGE) has been described in patients with multiple sclerosis (MS), being associated with an active demyelinating process. We previously showed that a direct neutralization of S100B reduces lysophosphatidylcholine (LPC)-induced demyelination and inflammation using an ex vivo demyelinating model. However, whether S100B actions occur through RAGE and how oligodendrogenesis and remyelination are affected are not clarified. To evaluate the role of the S100B–RAGE axis in the course of a demyelinating insult, organotypic cerebellar slice cultures (OCSC) were demyelinated with LPC in the presence or absence of RAGE antagonist FPS-ZM1. Then, we explored the effects of the S100B–RAGE axis inhibition on glia reactivity and inflammation, myelination and neuronal integrity, and on oligodendrogenesis and remyelination. In the present study, we confirmed that LPC-induced demyelination increased S100B and RAGE expression, while RAGE antagonist FPS-ZM1 markedly reduced their content and altered RAGE cellular localization. Furthermore, FPS-ZM1 prevented LPC-induced microgliosis and astrogliosis, as well as NF-κB activation and pro-inflammatory cytokine gene expression. In addition, RAGE antagonist reduced LPC-induced demyelination having a beneficial effect on axonal and synaptic protein preservation. We have also observed that RAGE engagement is needed for LPC-induced oligodendrocyte (OL) maturation arrest and loss of mature myelinating OL, with these phenomena being prevented by FPS-ZM1. Our data suggest that increased levels of mature OL in the presence of FPS-ZM1 are related to increased expression of microRNAs (miRs) associated with OL differentiation and remyelination, such as miR-23a, miR-219a, and miR-338, which are defective upon LPC incubation. Finally, our electron microscopy data show that inhibition of the S100B–RAGE axis prevents axonal damage and myelin loss, in parallel with enhanced functional remyelination, as observed by the presence of thinner myelin sheaths when compared with Control. Overall, our data implicate the S100B–RAGE axis in the extent of myelin and neuronal damage, as well as in the inflammatory response that follows a demyelinating insult. Thus, prevention of RAGE engagement may represent a novel strategy for promoting not only inflammatory reduction but also neuronal and myelin preservation and/or remyelination, improving recovery in a demyelinating condition as MS.
Collapse
Affiliation(s)
- Gisela Santos
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Barateiro
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Dora Brites
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Adelaide Fernandes
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Zhang W, Zhuang N, Liu X, He L, He Y, Mahinthichaichan P, Zhang H, Kang Y, Lu Y, Wu Q, Xu D, Shi L. The metabolic regulator Lamtor5 suppresses inflammatory signaling via regulating mTOR-mediated TLR4 degradation. Cell Mol Immunol 2020; 17:1063-1076. [PMID: 31467416 PMCID: PMC7608472 DOI: 10.1038/s41423-019-0281-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 01/10/2023] Open
Abstract
Comprehensive immune responses are essential for eliminating pathogens but must be tightly controlled to avoid sustained immune activation and potential tissue damage. The engagement of TLR4, a canonical pattern recognition receptor, has been proposed to trigger inflammatory responses with different magnitudes and durations depending on TLR4 cellular compartmentalization. In the present study, we identify an unexpected role of Lamtor5, a newly identified component of the amino acid-sensing machinery, in modulating TLR4 signaling and controlling inflammation. Specifically, Lamtor5 associated with TLR4 via their LZ/TIR domains and facilitated their colocalization at autolysosomes, preventing lysosomal tethering and the activation of mTORC1 upon LPS stimulation and thereby derepressing TFEB to promote autophagic degradation of TLR4. The loss of Lamtor5 was unable to trigger the TFEB-driven autolysosomal pathway and delay degradation of TLR4, leading to sustained inflammation and hence increased mortality among Lamtor5 haploinsufficient mice during endotoxic shock. Intriguingly, nutrient deprivation, particularly leucine deprivation, blunted inflammatory signaling and conferred protection to endotoxic mice. This effect, however, was largely abrogated upon Lamtor5 deletion. We thus propose a homeostatic function of Lamtor5 that couples pathogenic insults and nutrient availability to optimize the inflammatory response; this function may have implications for TLR4-associated inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, 210046, Nanjing, China
| | - Ningtong Zhuang
- Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, 310036, Zhejiang, China
| | - Xiaoyi Liu
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, 210046, Nanjing, China
| | - Long He
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, 210046, Nanjing, China
| | - Yan He
- Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, 310036, Zhejiang, China
| | | | - Hang Zhang
- Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, 310036, Zhejiang, China
| | - Yanhua Kang
- Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, 310036, Zhejiang, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210046, Nanjing, China
| | - Qinan Wu
- The College of Pharmacology, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Dakang Xu
- Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, 310036, Zhejiang, China
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 227 Chongqing Road South, 200025, Shanghai, China
- Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3800, Australia
| | - Liyun Shi
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, 210046, Nanjing, China.
- Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, 310036, Zhejiang, China.
| |
Collapse
|
25
|
Zhong H, Li X, Zhou S, Jiang P, Liu X, Ouyang M, Nie Y, Chen X, Zhang L, Liu Y, Tao T, Tang J. Interplay between RAGE and TLR4 Regulates HMGB1-Induced Inflammation by Promoting Cell Surface Expression of RAGE and TLR4. THE JOURNAL OF IMMUNOLOGY 2020; 205:767-775. [PMID: 32580932 DOI: 10.4049/jimmunol.1900860] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/21/2020] [Indexed: 01/21/2023]
Abstract
Receptor for advanced glycation end-products (RAGE) and TLR4 play an important role in the inflammatory response against High-mobility group box 1 protein (HMGB1), a late proinflammatory cytokine and a damage-associated molecular pattern. As cell surface receptors, both RAGE and TLR4 are constantly trafficking between the cytoplasm and plasma membrane. However, whether TLR4 is related to the intracellular transport of RAGE in HMGB1-induced inflammation remains unknown. In this study, we demonstrated that HMGB1 not only increased RAGE expression in both the cytoplasm and plasma membrane but also upregulated the expression of TLR4 in the plasma membrane. Knocking out of RAGE led to decreased MAPK activation, TLR4 cellular membrane expression, and corresponding inflammatory cytokine generation. Meanwhile, inhibiting MAPK activation also decreased TLR4 surface expression. These results indicated that HMGB1 may bind to cell surface RAGE receptors on the cell surface, leading to MAPK activation, thus promoting TLR4 translocation on the cell surface, but does not regulate its transcription and translation. In contrast, TLR4 can increase the transcription and translation of RAGE, which translocates to the cell surface and is able to bind to more HMGB1. The cell surface receptors TLR4 and RAGE bind to HMGB1, leading to the transcription and secretion of inflammatory cytokines. Finally, we also observed these results in the mice pseudofracture model, which is closely related to HMGB1-induced inflammatory response. All these results demonstrated that the interplay between RAGE and TLR4 are critical for HMGB1-induced inflammatory response.
Collapse
Affiliation(s)
- Hanhui Zhong
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China.,Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaolian Li
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Shuangnan Zhou
- Liver Transplantation Center, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ping Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xiaolei Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Mingwen Ouyang
- Department of Anesthesiology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Ying Nie
- Department of Anesthesiology, Guangdong 999 Brain Hospital, Guangzhou, Guangdong 510510, China
| | - Xinying Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangdong 510006, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518040, China; and
| | - Tao Tao
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China.,Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong 524037, China
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; .,Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
26
|
Ji X, Guo Y, Qiu Q, Wang Z, Wang Y, Ji J, Sun Q, Cai Y, Zhou G. [Molecular mechanism underlying the inhibitory effect of propofol on lipopolysaccharide-induced pyroptosis of mouse bone marrow-derived macrophages]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:525-530. [PMID: 32895145 DOI: 10.12122/j.issn.1673-4254.2020.04.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the molecular mechanism underlying the inhibitory effect of propofol on pyroptosis of macrophages. METHODS Macrophages derived from bone marrow were extracted and divided into three groups: control group, LPS+ATP group and propofol+LPS+ATP group. The control group was not given any treatment; LPS+ATP group was given LPS 1 μg/mL stimulation for 4 h, then ATP 4 mM stimulation for 1 h; Propofol+LPS+ATP group was given propofol+LPS 1 μg/mL stimulation for 4 h, then ATP stimulation for 1 h. After treatment, the supernatant and cells of cell culture were collected. the cell activity was detected by CCK8 and flow cytometry. The inflammatory cytokines IL-1βand IL-18 were detected by Elisa. Western blot was used to detect the expression of caspase-1 protein and TLR4 on cell membran Immunohistochemical fluorescence was used to detect apoptosis of cells. RESULTS LPS+ATP significantly decreased the viability of the macrophages and increased the cellular production of IL-1β and IL-18, activation of caspase-1 protein and the expression of TLR-4 on the cell membrane (P < 0.05). Treatment with propofol obviously reversed the changes induced by LPS+ATP. CONCLUSIONS LPS+ATP can induce pyroptosis of mouse bone marrow-derived macrophages, and propofol effectively inhibits such cell death, suggesting that propofol anesthesia is beneficial during operation and helps to regulate the immune function of in patients with sepsis.
Collapse
Affiliation(s)
- Xuexia Ji
- Department of Anesthesiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yuanbo Guo
- Department of Anesthesiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qianqi Qiu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Zhipeng Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yan Wang
- Department of Science and Education, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jinquan Ji
- Department of Anesthesiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qiang Sun
- Department of Anesthesiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yujing Cai
- Department of Anesthesiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Guobin Zhou
- Department of Anesthesiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
27
|
Sun MS, Zhang J, Jiang LQ, Pan YX, Tan JY, Yu F, Guo L, Yin L, Shen C, Shu HB, Liu Y. TMED2 Potentiates Cellular IFN Responses to DNA Viruses by Reinforcing MITA Dimerization and Facilitating Its Trafficking. Cell Rep 2019; 25:3086-3098.e3. [PMID: 30540941 DOI: 10.1016/j.celrep.2018.11.048] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/22/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Mediator of IRF3 activation (MITA), also known as stimulator of interferon genes (STING), plays a vital role in the innate immune responses to cytosolic dsDNA. The trafficking of MITA from the ER to perinuclear vesicles is necessary for its activation of the downstream molecules, which lead to the production of interferons and pro-inflammatory cytokines. However, the exact mechanism of MITA activation remains elusive. Here, we report that transmembrane emp24 protein transport domain containing 2 (TMED2) potentiates DNA virus-induced MITA signaling. The suppression or deletion of TMED2 markedly impairs the production of type I IFNs upon HSV-1 infection. TMED2-deficient cells harbor greater HSV-1 load than the control cells. Mechanistically, TMED2 associates with MITA only upon viral stimulation, and this process potentiates MITA activation by reinforcing its dimerization and facilitating its trafficking. These findings suggest an essential role of TMED2 in cellular IFN responses to DNA viruses.
Collapse
Affiliation(s)
- Ming-Shun Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Li-Qun Jiang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi-Xi Pan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiao-Yi Tan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Lin Guo
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chao Shen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Bing Shu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yu Liu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
28
|
Doyle JM, Willoughby JR, Bell DA, Bloom PH, Bragin EA, Fernandez NB, Katzner TE, Leonard K, DeWoody JA. Elevated Heterozygosity in Adults Relative to Juveniles Provides Evidence of Viability Selection on Eagles and Falcons. J Hered 2019; 110:696-706. [DOI: 10.1093/jhered/esz048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
AbstractViability selection yields adult populations that are more genetically variable than those of juveniles, producing a positive correlation between heterozygosity and survival. Viability selection could be the result of decreased heterozygosity across many loci in inbred individuals and a subsequent decrease in survivorship resulting from the expression of the deleterious alleles. Alternatively, locus-specific differences in genetic variability between adults and juveniles may be driven by forms of balancing selection, including heterozygote advantage, frequency-dependent selection, or selection across temporal and spatial scales. We use a pooled-sequencing approach to compare genome-wide and locus-specific genetic variability between 74 golden eagle (Aquila chrysaetos), 62 imperial eagle (Aquila heliaca), and 69 prairie falcon (Falco mexicanus) juveniles and adults. Although genome-wide genetic variability is comparable between juvenile and adult golden eagles and prairie falcons, imperial eagle adults are significantly more heterozygous than juveniles. This evidence of viability selection may stem from a relatively smaller imperial eagle effective population size and potentially greater genetic load. We additionally identify ~2000 single-nucleotide polymorphisms across the 3 species with extreme differences in heterozygosity between juveniles and adults. Many of these markers are associated with genes implicated in immune function or olfaction. These loci represent potential targets for studies of how heterozygote advantage, frequency-dependent selection, and selection over spatial and temporal scales influence survivorship in avian species. Overall, our genome-wide data extend previous studies that used allozyme or microsatellite markers and indicate that viability selection may be a more common evolutionary phenomenon than often appreciated.
Collapse
Affiliation(s)
- Jacqueline M Doyle
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
| | - Janna R Willoughby
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Douglas A Bell
- Department of Biological Sciences, Towson University, Baltimore, MD
- East Bay Regional Park District, Oakland, CA
- Department of Ornithology and Mammalogy, California Academy of Sciences, San Francisco, CA
| | - Peter H Bloom
- Department of Biological Sciences, Towson University, Baltimore, MD
- Bloom Research Inc., Los Angeles, CA
| | - Evgeny A Bragin
- Department of Biological Sciences, Towson University, Baltimore, MD
- Faculty of Natural Science, Kostanay State Pedagogical University, Kostanay, Kazakhstan
- The Peregrine Fund, Boise, ID
- Science Department, Naurzum National Nature Reserve, Kostanay Oblast, Naurzumski Raijon, Karamendy, Kazakhstan
| | - Nadia B Fernandez
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA
| | - Todd E Katzner
- Department of Biological Sciences, Towson University, Baltimore, MD
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID
| | - Kolbe Leonard
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Computer and Information Sciences, Towson University, Baltimore, MD
| | - J Andrew DeWoody
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
29
|
Mishra S, Bernal C, Silvano M, Anand S, Ruiz i Altaba A. The protein secretion modulator TMED9 drives CNIH4/TGFα/GLI signaling opposing TMED3-WNT-TCF to promote colon cancer metastases. Oncogene 2019; 38:5817-5837. [PMID: 31253868 PMCID: PMC6755966 DOI: 10.1038/s41388-019-0845-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/13/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
How cells in primary tumors initially become pro-metastatic is not understood. A previous genome-wide RNAi screen uncovered colon cancer metastatic suppressor and WNT promoting functions of TMED3, a member of the p24 ER-to-Golgi protein secretion family. Repression of canonical WNT signaling upon knockdown (kd) of TMED3 might thus be sufficient to drive metastases. However, searching for transcriptional influences on other family members here we find that TMED3 kd leads to enhanced TMED9, that TMED9 acts downstream of TMED3 and that TMED9 kd compromises metastasis. Importantly, TMED9 pro-metastatic function is linked to but distinct from the repression of TMED3-WNT-TCF signaling. Functional rescue of the migratory deficiency of TMED9 kd cells identifies TGFα as a mediator of TMED9 pro-metastatic activity. Moreover, TMED9 kd compromises the biogenesis, and thus function, of TGFα. Analyses in three colon cancer cell types highlight a TMED9-dependent gene set that includes CNIH4, a member of the CORNICHON family of TGFα exporters. Our data indicate that TGFA and CNIH4, which display predictive value for disease-free survival, promote colon cancer cell metastatic behavior, and suggest that TMED9 pro-metastatic function involves the modulation of the secretion of TGFα ligand. Finally, TMED9/TMED3 antagonism impacts WNT-TCF and GLI signaling, where TMED9 primacy over TMED3 leads to the establishment of a positive feedback loop together with CNIH4, TGFα, and GLI1 that enhances metastases. We propose that primary colon cancer cells can transition between two states characterized by secretion-transcription regulatory loops gated by TMED3 and TMED9 that modulate their metastatic proclivities.
Collapse
Affiliation(s)
- Sonakshi Mishra
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Carolina Bernal
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Marianna Silvano
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Santosh Anand
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland.
| |
Collapse
|
30
|
Ha M, Moon H, Choi D, Kang W, Kim JH, Lee KJ, Park D, Kang CD, Oh SO, Han ME, Kim YH, Lee D. Prognostic Role of TMED3 in Clear Cell Renal Cell Carcinoma: A Retrospective Multi-Cohort Analysis. Front Genet 2019; 10:355. [PMID: 31057605 PMCID: PMC6478656 DOI: 10.3389/fgene.2019.00355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/02/2019] [Indexed: 12/02/2022] Open
Abstract
Transmembrane p24 trafficking protein 3 (TMED3) is a metastatic suppressor in colon cancer and hepatocellular carcinoma. However, its function in the progression of clear cell renal cell carcinoma (ccRCC) is unknown. Here, we report that TMED3 could be a new prognostic marker for ccRCC. Patient data were extracted from cohorts in the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Differential expression of TMED3 was observed between the low stage (Stage I and II) and high stage (Stage III and IV) patients in the TCGA and ICGC cohorts and between the low grade (Grade I and II) and high grade (Grade III and IV) patients in the TCGA cohort. Further, we evaluated TMED3 expression as a prognostic gene using Kaplan-Meier survival analysis, multivariate analysis, the time-dependent area under the curve (AUC) of Uno’s C-index, and the AUC of the receiver operating characteristics at 5 years. The Kaplan-Meier analysis revealed that TMED3 overexpression was associated with poor prognosis for ccRCC patients. Analysis of the C-indices and area under the receiver operating characteristic curve further supported this. Multivariate analysis confirmed the prognostic significance of TMED3 expression levels (P = 0.005 and 0.006 for TCGA and ICGC, respectively). Taken together, these findings demonstrate that TMED3 is a potential prognostic factor for ccRCC.
Collapse
Affiliation(s)
- Mihyang Ha
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Hwan Moon
- Department of Premedicine, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Dongwook Choi
- Division of Drug Process Development, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Wonmo Kang
- Division of Drug Process Development, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Ji-Hong Kim
- Division of Drug Process Development, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Keon Jin Lee
- Division of Drug Process Development, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Center for Skeletal Medicine and Biology, Baylor College of Medicine, Houston, TX, United States
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, South Korea.,Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, South Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Yun Hak Kim
- Department of Anatomy, Biomedical Research Institute, School of Medicine, Pusan National University, Yangsan, South Korea.,Department of Biomedical Informatics, Biomedical Research Institute, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Dongjun Lee
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, South Korea
| |
Collapse
|
31
|
Pei J, Zhang J, Yang X, Wu Z, Sun C, Wang Z, Wang B. TMED3 promotes cell proliferation and motility in breast cancer and is negatively modulated by miR-188-3p. Cancer Cell Int 2019; 19:75. [PMID: 30976199 PMCID: PMC6441222 DOI: 10.1186/s12935-019-0791-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of TMED3 involved in cancers has been seldom described, let alone in breast cancer. To explore the clinicopathological significance of TMED3 expression and the biological roles involved in breast cancer cells, we undertook the study. METHODS Immunohistochemistry was performed to observe the pattern of TMED3 expression in breast cancer tissues, totaling 224 cases; followed by detailed statistical analysis between TMED3 expression versus clinicopathological information available. To explore the role of TMED3 involved in the malignant behaviors of breast cancer cells, wound-healing and Transwell assays were conducted to evaluate the variation of migration and invasion of MCF-7 and MDA-MB-231 cells whose TMED3 has been stably silenced using lenti-viral based short hairpin RNA (shRNA) vectors. MTT, clonogenic assay and xenograft nude mice model were undertaken to observe the variation of proliferation both in vitro and in vivo. RESULTS It was shown that elevated TMED3 markedly correlated with ER, PR, Her-2 status, and lymph nodes metastases in addition to significant association with poor overall prognosis. In vitro, TMED3 was shown to promote proliferation, migration and invasion of breast cancer cells. Moreover, miR-188-3p was identified as a novel negative regulator of TMED3 in breast cancer, which can slow down the proliferation, migration and invasion of MCF-7 cells. Results from in vivo xenograft nude mice models showed that lenti-viral based miR-188-3p re-expression can markedly impair the tumor growth. CONCLUSIONS Our data define and bolster the oncogenic role of TMED3 in breast cancer.
Collapse
Affiliation(s)
- Jing Pei
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Number 218, Jixi Road, Hefei, 230022 Anhui People’s Republic of China
| | - Jing Zhang
- Department of Breast Surgery, The Tumor Hospital of XuZhou, HuanCheng Road 131, Xuzhou, 221003 Jiangsu People’s Republic of China
| | - Xiaowei Yang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Number 218, Jixi Road, Hefei, 230022 Anhui People’s Republic of China
| | - Zhengsheng Wu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022 Anhui People’s Republic of China
| | - Chenyun Sun
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Number 218, Jixi Road, Hefei, 230022 Anhui People’s Republic of China
| | - Zhaorui Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Number 218, Jixi Road, Hefei, 230022 Anhui People’s Republic of China
| | - Benzhong Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Number 218, Jixi Road, Hefei, 230022 Anhui People’s Republic of China
| |
Collapse
|
32
|
Kinoshita D, Sakurai C, Morita M, Tsunematsu M, Hori N, Hatsuzawa K. Syntaxin 11 regulates the stimulus-dependent transport of Toll-like receptor 4 to the plasma membrane by cooperating with SNAP-23 in macrophages. Mol Biol Cell 2019; 30:1085-1097. [PMID: 30811271 PMCID: PMC6724512 DOI: 10.1091/mbc.e18-10-0653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syntaxin 11 (stx11) is a soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) that is selectively expressed in immune cells; however, its precise role in macrophages is unclear. We showed that stx11 knockdown reduces the phagocytosis of Escherichia coli in interferon-γ–activated macrophages. stx11 knockdown decreased Toll-like receptor 4 (TLR4) localization on the plasma membrane without affecting total expression. Plasma membrane–localized TLR4 was primarily endocytosed within 1 h by lipopolysaccharide (LPS) stimulation and gradually relocalized 4 h after removal of LPS. This relocalization was significantly impaired by stx11 knockdown. The lack of TLR4 transport to the plasma membrane is presumably related to TLR4 degradation in acidic endosomal organelles. Additionally, an immunoprecipitation experiment suggested that stx11 interacts with SNAP-23, a plasma membrane–localized SNARE protein, whose depletion also inhibits TLR4 replenishment in LPS-stimulated cells. Using an intramolecular Förster resonance energy transfer (FRET) probe for SNAP-23, we showed that the high FRET efficiency caused by LPS stimulation is reduced by stx11 knockdown. These findings suggest that stx11 regulates the stimulus-dependent transport of TLR4 to the plasma membrane by cooperating with SNAP-23 in macrophages. Our results clarify the regulatory mechanisms underlying intracellular transport of TLR4 and have implications for microbial pathogenesis and immune responses.
Collapse
Affiliation(s)
- Daiki Kinoshita
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Chiye Sakurai
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Maya Morita
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Masashi Tsunematsu
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Naohiro Hori
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| |
Collapse
|
33
|
Mathematical Modeling and Parameter Estimation of Intracellular Signaling Pathway: Application to LPS-induced NFκB Activation and TNFα Production in Macrophages. Processes (Basel) 2018. [DOI: 10.3390/pr6030021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
34
|
Fels Elliott DR, Perner J, Li X, Symmons MF, Verstak B, Eldridge M, Bower L, O’Donovan M, Gay NJ, the OCCAMS Consortium, Fitzgerald RC. Impact of mutations in Toll-like receptor pathway genes on esophageal carcinogenesis. PLoS Genet 2017; 13:e1006808. [PMID: 28531216 PMCID: PMC5460900 DOI: 10.1371/journal.pgen.1006808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/06/2017] [Accepted: 05/09/2017] [Indexed: 12/25/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) develops in an inflammatory microenvironment with reduced microbial diversity, but mechanisms for these influences remain poorly characterized. We hypothesized that mutations targeting the Toll-like receptor (TLR) pathway could disrupt innate immune signaling and promote a microenvironment that favors tumorigenesis. Through interrogating whole genome sequencing data from 171 EAC patients, we showed that non-synonymous mutations collectively affect the TLR pathway in 25/171 (14.6%, PathScan p = 8.7x10-5) tumors. TLR mutant cases were associated with more proximal tumors and metastatic disease, indicating possible clinical significance of these mutations. Only rare mutations were identified in adjacent Barrett's esophagus samples. We validated our findings in an external EAC dataset with non-synonymous TLR pathway mutations in 33/149 (22.1%, PathScan p = 0.05) tumors, and in other solid tumor types exposed to microbiomes in the COSMIC database (10,318 samples), including uterine endometrioid carcinoma (188/320, 58.8%), cutaneous melanoma (377/988, 38.2%), colorectal adenocarcinoma (402/1519, 26.5%), and stomach adenocarcinoma (151/579, 26.1%). TLR4 was the most frequently mutated gene with eleven mutations in 10/171 (5.8%) of EAC tumors. The TLR4 mutants E439G, S570I, F703C and R787H were confirmed to have impaired reactivity to bacterial lipopolysaccharide with marked reductions in signaling by luciferase reporter assays. Overall, our findings show that TLR pathway genes are recurrently mutated in EAC, and TLR4 mutations have decreased responsiveness to bacterial lipopolysaccharide and may play a role in disease pathogenesis in a subset of patients.
Collapse
Affiliation(s)
| | - Juliane Perner
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Xiaodun Li
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Martyn F. Symmons
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Brett Verstak
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lawrence Bower
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maria O’Donovan
- Department of Histopathology, Cambridge University Hospital NHS Trust, Cambridge, United Kingdom
| | - Nick J. Gay
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Rebecca C. Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Zheng H, Yang Y, Han J, Jiang WH, Chen C, Wang MC, Gao R, Li S, Tian T, Wang J, Ma LJ, Ren H, Zhou WP. TMED3 promotes hepatocellular carcinoma progression via IL-11/STAT3 signaling. Sci Rep 2016; 6:37070. [PMID: 27901021 PMCID: PMC5128793 DOI: 10.1038/srep37070] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Transmembrane p24 trafficking protein 3(TMED3) is a metastatic suppressor in colon cancer, but its function in the progression of hepatocellular carcinoma (HCC) is unknown. Here, we report that TMED3 was up-regulated in HCC and portal vein tumor thrombus. TMED3 up-regulation in HCC was significantly correlated with aggressive characteristics and predicted poor prognosis in HCC patients. TMED3 overexpression in HCC cell lines promoted cell migration and invasion. In contrast, TMED3 knockdown suppressed HCC metastasis both in vitro and in vivo. Gene microarray analysis revealed decreased IL-11 expression in TMED3-knockdown cells. We propose that TMED3 promotes HCC metastasis through IL-11/STAT3 signaling. Taken together, these findings demonstrate that TMED3 promotes HCC metastasis and is a potential prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Hao Zheng
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China.,Department of Health Statistics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jun Han
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China.,Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Wei-Hua Jiang
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University, 1111 Xianxia Road, Shanghai 200336, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, 305 Zhongshan East Road, Nanjing, Jiangsu 210000, China
| | - Meng-Chao Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Rong Gao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Shuai Li
- Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, United States
| | - Tao Tian
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Jian Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Li-Jun Ma
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University, 1111 Xianxia Road, Shanghai 200336, China
| | - Hao Ren
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| |
Collapse
|
36
|
3D Structure and Interaction of p24β and p24δ Golgi Dynamics Domains: Implication for p24 Complex Formation and Cargo Transport. J Mol Biol 2016; 428:4087-4099. [DOI: 10.1016/j.jmb.2016.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022]
|
37
|
Pastor-Cantizano N, Montesinos JC, Bernat-Silvestre C, Marcote MJ, Aniento F. p24 family proteins: key players in the regulation of trafficking along the secretory pathway. PROTOPLASMA 2016; 253:967-985. [PMID: 26224213 DOI: 10.1007/s00709-015-0858-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
p24 family proteins have been known for a long time, but their functions have remained elusive. However, they are emerging as essential regulators of protein trafficking along the secretory pathway, influencing the composition, structure, and function of different organelles in the pathway, especially the ER and the Golgi apparatus. In addition, they appear to modulate the transport of specific cargos, including GPI-anchored proteins, G-protein-coupled receptors, or K/HDEL ligands. As a consequence, they have been shown to play specific roles in signaling, development, insulin secretion, and the pathogenesis of Alzheimer's disease. The search of new putative ligands may open the way to discover new functions for this fascinating family of proteins.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Juan Carlos Montesinos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain.
| |
Collapse
|
38
|
Au CE, Hermo L, Byrne E, Smirle J, Fazel A, Kearney RE, Smith CE, Vali H, Fernandez-Rodriguez J, Simon PHG, Mandato C, Nilsson T, Bergeron JJM. Compartmentalization of membrane trafficking, glucose transport, glycolysis, actin, tubulin and the proteasome in the cytoplasmic droplet/Hermes body of epididymal sperm. Open Biol 2016; 5:rsob.150080. [PMID: 26311421 PMCID: PMC4554921 DOI: 10.1098/rsob.150080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Discovered in 1909 by Retzius and described mainly by morphology, the cytoplasmic droplet of sperm (renamed here the Hermes body) is conserved among all mammalian species but largely undefined at the molecular level. Tandem mass spectrometry of the isolated Hermes body from rat epididymal sperm characterized 1511 proteins, 43 of which were localized to the structure in situ by light microscopy and two by quantitative electron microscopy localization. Glucose transporter 3 (GLUT-3) glycolytic enzymes, selected membrane traffic and cytoskeletal proteins were highly abundant and concentrated in the Hermes body. By electron microscope gold antibody labelling, the Golgi trafficking protein TMED7/p27 localized to unstacked flattened cisternae of the Hermes body, as did GLUT-3, the most abundant protein. Its biogenesis was deduced through the mapping of protein expression for all 43 proteins during male germ cell differentiation in the testis. It is at the terminal step 19 of spermiogenesis that the 43 characteristic proteins accumulated in the nascent Hermes body.
Collapse
Affiliation(s)
- Catherine E Au
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Elliot Byrne
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Jeffrey Smirle
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Ali Fazel
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Robert E Kearney
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Charles E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy at the University of Gothenburg, PO Box 435, 40530 Gothenburg, Sweden
| | - Paul H G Simon
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Craig Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Tommy Nilsson
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - John J M Bergeron
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1 Royal Victoria Hospital, Center for Translational Biology, RI-MUHC, Glen Site, 1001 Decarie Blvd, Bloc E, Room E02.7210, Montreal, Quebec, Canada H4A 3J1
| |
Collapse
|
39
|
Walker A, Russmann V, Deeg CA, von Toerne C, Kleinwort KJH, Szober C, Rettenbeck ML, von Rüden EL, Goc J, Ongerth T, Boes K, Salvamoser JD, Vezzani A, Hauck SM, Potschka H. Proteomic profiling of epileptogenesis in a rat model: Focus on inflammation. Brain Behav Immun 2016; 53:138-158. [PMID: 26685804 DOI: 10.1016/j.bbi.2015.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/27/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023] Open
Abstract
Detailed knowledge about the patterns of molecular alterations during epileptogenesis is a presupposition for identifying targets for preventive or disease-modifying approaches, as well as biomarkers of the disease. Large-scale differential proteome analysis can provide unique and novel perspectives based on comprehensive data sets informing about the complex regulation patterns in the disease proteome. Thus, we have completed an elaborate differential proteome analysis based on label-free LC-MS/MS in a rat model of epileptogenesis. Hippocampus and parahippocampal cortex tissues were sampled and analyzed separately at three key time points chosen for monitoring disease development following electrically-induced status epilepticus, namely, the early post-insult phase, the latency phase, and the chronic phase with spontaneous recurrent seizures. We focused the bioinformatics analysis on proteins linked to immune and inflammatory responses, because of the emerging evidence of the specific pathogenic role of inflammatory signalings during epileptogenesis. In the early post-insult and the latency phases, pathway enrichment analysis revealed an extensive over-representation of Toll-like receptor signaling, pro-inflammatory cytokines, heat shock protein regulation, and transforming growth factor beta signaling and leukocyte transendothelial migration. The inflammatory response in the chronic phase proved to be more moderate with differential expression in the parahippocampal cortex exceeding that in the hippocampus. The data sets provide novel information about numerous differentially expressed proteins, which serve as interaction partners or modulators in key disease-associated inflammatory signaling events. Noteworthy, a set of proteins which act as modulators of the ictogenic Toll-like receptor signaling proved to be differentially expressed. In addition, we report novel data demonstrating the regulation of different Toll-like receptor ligands during epileptogenesis. Taken together, the findings deepen our understanding of modulation of inflammatory signaling during epileptogenesis providing an excellent and comprehensive basis for the identification of target and biomarker candidates.
Collapse
Affiliation(s)
- Andreas Walker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | | | - Kristina J H Kleinwort
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christoph Szober
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Maruja L Rettenbeck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Joanna Goc
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Tanja Ongerth
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Boes
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Annamaria Vezzani
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Neuroscience, Milano, Italy
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
40
|
Köberlin MS, Heinz LX, Superti-Furga G. Functional crosstalk between membrane lipids and TLR biology. Curr Opin Cell Biol 2016; 39:28-36. [PMID: 26895312 DOI: 10.1016/j.ceb.2016.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/16/2022]
Abstract
Toll-like receptors (TLRs) are important transmembrane proteins of the innate immune system that detect invading pathogens and subsequently orchestrate an immune response. The ensuing inflammatory processes are connected to lipid metabolism at multiple levels. Here, we describe different aspects of how membrane lipids can shape the response of TLRs. Recent reports have uncovered the role of individual lipid species on membrane protein function and mouse models have contributed to the understanding of how changes in lipid metabolism alter TLR signaling, endocytosis, and cytokine secretion. Finally, we discuss the importance of systematic approaches to identify the function of individual lipid species or the composition of membrane lipids in TLR-related processes.
Collapse
Affiliation(s)
- Marielle S Köberlin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
41
|
The role of N-glycans and the C-terminal loop of the subunit rBAT in the biogenesis of the cystinuria-associated transporter. Biochem J 2015; 473:233-44. [PMID: 26537754 DOI: 10.1042/bj20150846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022]
Abstract
The transport system b(0,+) mediates reabsorption of dibasic amino acids and cystine in the kidney. It is made up of two disulfide-linked membrane subunits: the carrier, b(0,+)AT and the helper, rBAT (related to b(0,+) amino acid transporter). rBAT mutations that impair biogenesis of the transporter cause type I cystinuria. It has been shown that upon assembly, b(0,+)AT prevents degradation and promotes folding of rBAT; then, rBAT traffics b(0,+)AT from the endoplasmic reticulum (ER) to the plasma membrane. The role of the N-glycans of rBAT and of its C-terminal loop, which has no homology to any other sequence, in biogenesis of system b(0,+) is unknown. In the present study, we studied these points. We first identified the five N-glycans of rBAT. Elimination of the N-glycan Asn(575), but not of the others, delayed transporter maturation, as measured by pulse chase experiments and endoglycosidase H assays. Moreover, a transporter with only the N-glycan Asn(575) displayed similar maturation compared with wild-type, suggesting that this N-glycan was necessary and sufficient to achieve the maximum rate of transporter maturation. Deletion of the rBAT C-terminal disulfide loop (residues 673-685) prevented maturation and prompted degradation of the transporter. Alanine-scanning mutagenesis uncovered loop residues important for stability and/or maturation of system b(0,+). Further, double-mutant cycle analysis showed partial additivity of the effects of the Asn(679) loop residue and the N-glycan Asn(575) on transporter maturation, indicating that they may interact during system b(0,+) biogenesis. These data highlight the important role of the N-glycan Asn(575) and the C-terminal disulfide loop of rBAT in biogenesis of the rBAT-b(0,+)AT heterodimer.
Collapse
|
42
|
Yu S, Gao N. Compartmentalizing intestinal epithelial cell toll-like receptors for immune surveillance. Cell Mol Life Sci 2015; 72:3343-53. [PMID: 26001904 DOI: 10.1007/s00018-015-1931-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 02/08/2023]
Abstract
Toll-like receptors (TLRs) are membrane-bound microbial sensors that mediate important host-to-microbe responses. Cell biology aspects of TLR function have been intensively studied in professional immune cells, in particular the macrophages and dendritic cells, but not well explored in other specialized epithelial cell types. The adult intestinal epithelial cells are in close contact with trillions of enteric microbes and engage in lifelong immune surveillance. Mature intestinal epithelial cells, in contrast to immune cells, are highly polarized. Recent studies suggest that distinct mechanisms may govern TLR traffic and compartmentalization in these specialized epithelial cells to establish and maintain precise signaling of individual TLRs. We, using immune cells as references, discuss here the shared and/or unique molecular machineries used by intestinal epithelial cells to control TLR transport, localization, processing, activation, and signaling. A better understanding of these mechanisms will certainly generate important insights into both the mechanism and potential intervention of leading digestive disorders, in particular inflammatory bowel diseases.
Collapse
Affiliation(s)
- Shiyan Yu
- Department of Biological Sciences, Rutgers University, Room 206, 195 University Ave., Newark, NJ, 07102, USA
| | | |
Collapse
|
43
|
Au CE, Hermo L, Byrne E, Smirle J, Fazel A, Simon PHG, Kearney RE, Cameron PH, Smith CE, Vali H, Fernandez-Rodriguez J, Ma K, Nilsson T, Bergeron JJM. Expression, sorting, and segregation of Golgi proteins during germ cell differentiation in the testis. Mol Biol Cell 2015; 26:4015-32. [PMID: 25808494 PMCID: PMC4710233 DOI: 10.1091/mbc.e14-12-1632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 12/14/2022] Open
Abstract
A total of 1318 proteins characterized in the male germ cell Golgi apparatus reveal a new germ cell–specific Golgi marker and a new pan-Golgi marker for all cells. The localization of these and other Golgi proteins reveals differential expression linked to mitosis, meiosis, acrosome formation, and postacrosome Golgi migration and destination in the late spermatid. The molecular basis of changes in structure, cellular location, and function of the Golgi apparatus during male germ cell differentiation is unknown. To deduce cognate Golgi proteins, we isolated germ cell Golgi fractions, and 1318 proteins were characterized, with 20 localized in situ. The most abundant protein, GL54D of unknown function, is characterized as a germ cell–specific Golgi-localized type II integral membrane glycoprotein. TM9SF3, also of unknown function, was revealed to be a universal Golgi marker for both somatic and germ cells. During acrosome formation, several Golgi proteins (GBF1, GPP34, GRASP55) localize to both the acrosome and Golgi, while GL54D, TM9SF3, and the Golgi trafficking protein TMED7/p27 are segregated from the acrosome. After acrosome formation, GL54D, TM9SF3, TMED4/p25, and TMED7/p27 continue to mark Golgi identity as it migrates away from the acrosome, while the others (GBF1, GPP34, GRASP55) remain in the acrosome and are progressively lost in later steps of differentiation. Cytoplasmic HSP70.2 and the endoplasmic reticulum luminal protein-folding enzyme PDILT are also Golgi recruited but only during acrosome formation. This resource identifies abundant Golgi proteins that are expressed differentially during mitosis, meiosis, and postacrosome Golgi migration, including the last step of differentiation.
Collapse
Affiliation(s)
- Catherine E Au
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Elliot Byrne
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Jeffrey Smirle
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Ali Fazel
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Paul H G Simon
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Robert E Kearney
- Department of Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada
| | - Pamela H Cameron
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Charles E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kewei Ma
- Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Tommy Nilsson
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - John J M Bergeron
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
44
|
Mortlock SA, Wei J, Williamson P. T-cell activation and early gene response in dogs. PLoS One 2015; 10:e0121169. [PMID: 25803042 PMCID: PMC4372360 DOI: 10.1371/journal.pone.0121169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/28/2015] [Indexed: 12/27/2022] Open
Abstract
T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR), and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA) (5μg/ml), including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2), early growth response 1 (EGR1), growth arrest and DNA damage-inducible gene (GADD45B), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS), early growth response 2 (EGR2), hemogen (HEMGN), polo-like kinase 2 (PLK2) and polo-like kinase 3 (PLK3). Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in cell cycle regulation. This study provides a comprehensive analysis of the early T-cell gene response to activation in dogs.
Collapse
Affiliation(s)
- Sally-Anne Mortlock
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
| | - Jerry Wei
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
- Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Peter Williamson
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Daringer NM, Schwarz KA, Leonard JN. Contributions of unique intracellular domains to switchlike biosensing by Toll-like receptor 4. J Biol Chem 2015; 290:8764-77. [PMID: 25694428 DOI: 10.1074/jbc.m114.610063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 01/23/2023] Open
Abstract
Toll-like receptors (TLRs) mediate immune recognition of both microbial infections and tissue damage. Aberrant TLR signaling promotes disease; thus, understanding the regulation of TLR signaling is of medical relevance. Although downstream mediators of TLR signaling have been identified, the detailed mechanism by which ligand binding-mediated dimerization induces downstream signaling remains poorly understood. Here, we investigate this question for TLR4, which mediates responsiveness to bacterial LPS and drives inflammatory disease. TLR4 exhibits structural and functional features that are unique among TLRs, including responsiveness to a wide variety of ligands. However, the connection between these structural features and the regulation of signaling is not clear. Here, we investigated how the unique intracellular structures of TLR4 contribute to receptor signaling. Key conclusions include the following. 1) The unique intracellular linker of TLR4 is important for achieving LPS-inducible signaling via Toll/IL-1 receptor (TIR) domain-containing adapter-inducing interferon-β (TRIF) but less so for signaling via myeloid differentiation primary response 88 (MyD88). 2) Membrane-bound TLR4 TIR domains were sufficient to induce signaling. However, introducing long, flexible intracellular linkers neither induced constitutive signaling nor ablated LPS-inducible signaling. Thus, the initiation of TLR4 signaling is regulated by a mechanism that does not require tight geometric constraints. Together, these observations necessitate refining the model of TLR4 signal initiation. We hypothesize that TLR4 may interact with an inhibitory partner in the absence of ligand, via both TIR and extracellular domains of TLR4. In this speculative model, ligand binding induces dissociation of the inhibitory partner, triggering spontaneous, switchlike TIR domain homodimerization to initiate downstream signaling.
Collapse
Affiliation(s)
| | | | - Joshua N Leonard
- From the Department of Chemical and Biological Engineering, the Chemistry of Life Processes Institute, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
46
|
Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 2014; 14:546-58. [PMID: 25060580 DOI: 10.1038/nri3713] [Citation(s) in RCA: 606] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signal transduction by the Toll-like receptors (TLRs) is central to host defence against many pathogenic microorganisms and also underlies a large burden of human disease. Thus, the mechanisms and regulation of signalling by TLRs are of considerable interest. In this Review, we discuss the molecular basis for the recognition of pathogen-associated molecular patterns, the nature of the protein complexes that mediate signalling, and the way in which signals are regulated and integrated at the level of allosteric assembly, post-translational modification and subcellular trafficking of the components of the signalling complexes. These fundamental molecular mechanisms determine whether the signalling output leads to a protective immune response or to serious pathologies such as sepsis. A detailed understanding of these processes at the molecular level provides a rational framework for the development of new drugs that can specifically target pathological rather than protective signalling in inflammatory and autoimmune disease.
Collapse
Affiliation(s)
- Nicholas J Gay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Martyn F Symmons
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
47
|
Liaunardy-Jopeace A, Gay NJ. Molecular and cellular regulation of toll-like receptor-4 activity induced by lipopolysaccharide ligands. Front Immunol 2014; 5:473. [PMID: 25339952 PMCID: PMC4186342 DOI: 10.3389/fimmu.2014.00473] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022] Open
Abstract
As well as being the primary signaling receptor for bacterial endotoxin or lipopolysaccharide Toll-like receptor-4 function is modulated by numerous factors not only in the context of microbial pathogenesis but also autoimmune and allergic diseases. TLR4 is subject to multiple levels of endogenous control and regulation from biosynthesis and trafficking to signal transduction and degradation. On the other hand regulation of TLR4 activity breaks down during Gram −ve sepsis leading to systemic damage, multi organ failure, and death. In this article, we review how TLR4 traffics from the early secretory pathway, the cis/trans Golgi to the cell surface and endolysosomal compartments. We will present evidence about how these processes influence signaling and can potentially lead to increased sensitivity to ligand-dependent activation as well as ligand-independent constitutive activation that may contribute to pathogenesis in sepsis. We will also discuss how sustained signaling may be coupled to endocytosis and consider the potential molecular mechanisms of immuno-modulators that modify TLR4 signaling function including the cat allergen FelD1 and endogenous protein ligands such as the extracellular matrix protein tenascin C and calprotectin (MRP8/14).
Collapse
Affiliation(s)
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge , Cambridge , UK
| |
Collapse
|
48
|
Gay NJ, VanHook AM. Science Signaling
Podcast: 29 July 2014. Sci Signal 2014. [DOI: 10.1126/scisignal.2005675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The adaptor protein TMED7 targets the pathogen-sensing receptor TLR4 to the plasma membrane.
Collapse
Affiliation(s)
- Nicholas J. Gay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road., Cambridge, CB2 1GA, UK
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
| |
Collapse
|