1
|
Guo L, Kong D, Liu J, Luo L, Zheng W, Chen C, Sun S. Searching for Essential Genes and Targeted Drugs Common to Breast Cancer and Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:238-255. [PMID: 37157194 DOI: 10.2174/1386207326666230508113036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND It is documented that osteoarthritis can promote the progression of breast cancer (BC). OBJECTIVE This study aims to search for the essential genes associated with breast cancer (BC) and osteoarthritis (OA), explore the relationship between epithelial-mesenchymal transition (EMT)- related genes and the two diseases, and identify the candidate drugs. METHODS The genes related to both BC and OA were determined by text mining. Protein-protein Interaction (PPI) analysis was carried out, and as a result, the exported genes were found to be related to EMT. PPI and the correlation of mRNA of these genes were also analyzed. Different kinds of enrichment analyses were performed on these genes. A prognostic analysis was performed on these genes for examining their expression levels at different pathological stages, in different tissues, and in different immune cells. Drug-gene interaction database was employed for potential drug discovery. RESULTS A total number of 1422 genes were identified as common to BC and OA and 58 genes were found to be related to EMT. We found that HDAC2 and TGFBR1 were significantly poor in overall survival. High expression of HDAC2 plays a vital role in the increase of pathological stages. Four immune cells might play a role in this process. Fifty-seven drugs were identified that could potentially have therapeutic effects. CONCLUSION EMT may be one of the mechanisms by which OA affects BC. Using the drugs can have potential therapeutic effects, which may benefit patients with both diseases and broaden the indications for drug use.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Lan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
2
|
Zheng HL, Sun SY, Jin T, Zhang M, Zeng Y, Liu Q, Yang K, Wei R, Pan Z, Lin F. Transcription factor ETS proto-oncogene 1 contributes to neuropathic pain by regulating histone deacetylase 1 in primary afferent neurons. Mol Pain 2023; 19:17448069231152125. [PMID: 36604795 PMCID: PMC9909074 DOI: 10.1177/17448069231152125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Nerve injury can induce aberrant changes in ion channels, enzymes, and cytokines/chemokines in the dorsal root ganglia (DRGs); these changes are due to or at least partly governed by transcription factors that contribute to the genesis of neuropathic pain. However, the involvement of transcription factors in neuropathic pain is poorly understood. In this study, we report that transcription factor (TF) ETS proto-oncogene 1 (ETS1) is required for the initiation and development of neuropathic pain. Sciatic nerve chronic constrictive injury (CCI, a clinical neuropathic pain model) increases ETS1 expression in the injured male mouse DRG. Blocking this upregulation alleviated CCI-induced mechanical allodynia and thermal hyperalgesia, with no apparent effect on locomotor function. Mimicking this upregulation results in the genesis of nociception hypersensitivity; mechanistically, nerve injury-induced ETS1 upregulation promotes the expression of histone deacetylase 1 (HDAC1, a key initiator of pain) via enhancing its binding activity to the HDAC1 promotor, leading to the elevation of spinal central sensitization, as evidenced by increased expression of p-ERK1/2 and GFAP in the dorsal spinal horn. It appears that the ETS1/HDAC1 axis in DRG may have a critical role in the development and maintenance of neuropathic pain, and ETS1 is a potential therapeutic target in neuropathic pain.
Collapse
Affiliation(s)
- Hong-Li Zheng
- Graduate School, Wannan Medical College, Wuhu, China
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Shi-Yu Sun
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Tong Jin
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Ying Zeng
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Fuqing Lin
- Graduate School, Wannan Medical College, Wuhu, China
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Xu M, Xia S, Wang M, Liu X, Li X, Chen W, Wang Y, Li H, Xia C, Chen J, Wu J. Enzymatic independent role of sphingosine kinase 2 in regulating the expression of type I interferon during influenza A virus infection. PLoS Pathog 2022; 18:e1010794. [PMID: 36070294 PMCID: PMC9451060 DOI: 10.1371/journal.ppat.1010794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Influenza virus has the ability to circumvent host innate immune system through regulating certain host factors for its effective propagation. However, the detailed mechanism is still not fully understood. Here, we report that a host sphingolipid metabolism-related factor, sphingosine kinase 2 (SPHK2), upregulated during influenza A virus (IAV) infection, promotes IAV infection in an enzymatic independent manner. The enhancement of the virus replication is not abolished in the catalytic-incompetent SPHK2 (G212E) overexpressing cells. Intriguingly, the sphingosine-1-phosphate (S1P) related factor HDAC1 also plays a crucial role in SPHK2-mediated IAV infection. We found that SPHK2 cannot facilitate IAV infection in HDAC1 deficient cells. More importantly, SPHK2 overexpression diminishes the IFN-β promoter activity upon IAV infection, resulting in the suppression of type I IFN signaling. Furthermore, ChIP-qPCR assay revealed that SPHK2 interacts with IFN-β promoter through the binding of demethylase TET3, but not with the other promoters regulated by TET3, such as TGF-β1 and IL6 promoters. The specific regulation of SPHK2 on IFN-β promoter through TET3 can in turn recruit HDAC1 to the IFN-β promoter, enhancing the deacetylation of IFN-β promoter, therefore leading to the inhibition of IFN-β transcription. These findings reveal an enzymatic independent mechanism on host SPHK2, which associates with TET3 and HDAC1 to negatively regulate type I IFN expression and thus facilitates IAV propagation.
Collapse
Affiliation(s)
- Mengqiong Xu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Sisi Xia
- Department of Biological Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mei Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xiaolian Liu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xin Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yaohao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Hongjian Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Chuan Xia
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Jun Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
- * E-mail: (HL); (CX); (JC); (JW)
| |
Collapse
|
4
|
van den Brand AD, Bajard L, Steffensen IL, Brantsæter AL, Dirven HAAM, Louisse J, Peijnenburg A, Ndaw S, Mantovani A, De Santis B, Mengelers MJB. Providing Biological Plausibility for Exposure-Health Relationships for the Mycotoxins Deoxynivalenol (DON) and Fumonisin B1 (FB1) in Humans Using the AOP Framework. Toxins (Basel) 2022; 14:279. [PMID: 35448888 PMCID: PMC9030459 DOI: 10.3390/toxins14040279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Humans are chronically exposed to the mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1), as indicated by their widespread presence in foods and occasional exposure in the workplace. This exposure is confirmed by human biomonitoring (HBM) studies on (metabolites of) these mycotoxins in human matrices. We evaluated the exposure-health relationship of the mycotoxins in humans by reviewing the available literature. Since human studies did not allow the identification of unequivocal chronic health effects upon exposure to DON and FB1, the adverse outcome pathway (AOP) framework was used to structure additional mechanistic evidence from in vitro and animal studies on the identified adverse effects. In addition to a preliminary AOP for DON resulting in the adverse outcome (AO) 'reduced body weight gain', we developed a more elaborated AOP for FB1, from the molecular initiating event (MIE) 'inhibition of ceramide synthases' leading to the AO 'neural tube defects'. The mechanistic evidence from AOPs can be used to support the limited evidence from human studies, to focus FB1- and DON-related research in humans to identify related early biomarkers of effect. In order to establish additional human exposure-health relationships in the future, recommendations are given to maximize the information that can be obtained from HBM.
Collapse
Affiliation(s)
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic;
| | - Inger-Lise Steffensen
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Anne Lise Brantsæter
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Hubert A. A. M. Dirven
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), 6708 WB Wageningen, The Netherlands; (J.L.); (A.P.)
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), 6708 WB Wageningen, The Netherlands; (J.L.); (A.P.)
| | - Sophie Ndaw
- Institut National de Recherche et de Sécurité (INRS), 54500 Vandoeuvre-Lés-Nancy, France;
| | - Alberto Mantovani
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (A.M.); (B.D.S.)
| | - Barbara De Santis
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (A.M.); (B.D.S.)
| | - Marcel J. B. Mengelers
- Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| |
Collapse
|
5
|
Wang Z, Zhou N, Wang W, Yu Y, Xia L, Li N. HDAC2 interacts with microRNA-503-5p to regulate SGK1 in osteoarthritis. Arthritis Res Ther 2021; 23:78. [PMID: 33750441 PMCID: PMC7941997 DOI: 10.1186/s13075-020-02373-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Background Osteoarthritis (OA) is a disabling joint disease that causes articular cartilage degeneration. It has been implicated that altered expression of histone deacetylase 2 (HDAC2) is found in patients with OA. However, the specific role of HDAC2 in the development of OA still remains enigmatic. Hence, we sought to characterize the functional relevance of HDAC2 in the development of OA. Methods Anterior cruciate ligament surgery was performed to generate the rat model of OA. Luciferase assay was performed to evaluate the relationship between microRNA-503-5p (miR-503-5p) and serum- and glucocorticoid-inducible kinase-1 (SGK1). Functional experiments were conducted to examine the functional significance of miR-503-5p, histone deacetylase 2 (HDAC2), and SGK1 on the progression of OA by determining proliferation, apoptosis, and expression of apoptosis-associated proteins and inflammatory cytokines. Results HDAC2 could inhibit miR-503-5p expression. SGK1 was the target gene of miR-503-5p. Upregulation of miR-503-5p or silencing of HDAC2 contributed to enhanced proliferation, suppressed apoptosis (reduced expression of Caspase-3 and Bax but elevated expression of Bcl2), and promoted inflammation in chondrocytes of OA rats. Conclusion In conclusion, our study demonstrated that HDAC2 could promote OA through miR-503-5p/SGK1 axis, which might function as a therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Nan Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Wengang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Yangke Yu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Lei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou, 450000, Henan Province, People's Republic of China.
| | - Ning Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou, 450000, Henan Province, People's Republic of China.
| |
Collapse
|
6
|
A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22020582. [PMID: 33430140 PMCID: PMC7826574 DOI: 10.3390/ijms22020582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are characterized by adverse cellular environments and pathological alterations causing neurodegeneration in distinct brain regions. This development is triggered or facilitated by conditions such as hypoxia, ischemia or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Targeting intracellular downstream consequences to specifically reverse these pathological changes proved difficult to translate to clinical settings. Here, we discuss the potential of more holistic approaches with the purpose to re-establish a healthy cellular environment and to promote cellular resilience. We review the involvement of important molecular pathways (e.g., the sphingosine, δ-opioid receptor or N-Methyl-D-aspartate (NMDA) receptor pathways) in neuroprotective hypoxic conditioning effects and how these pathways can be targeted for chemical conditioning. Despite the present scarcity of knowledge on the efficacy of such approaches in neurodegeneration, the specific characteristics of Huntington’s disease may make it particularly amenable for such conditioning techniques. Not only do classical features of neurodegenerative diseases like mitochondrial dysfunction, oxidative stress and inflammation support this assumption, but also specific Huntington’s disease characteristics: a relatively young age of neurodegeneration, molecular overlap of related pathologies with hypoxic adaptations and sensitivity to brain hypoxia. The aim of this review is to discuss several molecular pathways in relation to hypoxic adaptations that have potential as drug targets in neurodegenerative diseases. We will extract the relevance for Huntington’s disease from this knowledge base.
Collapse
|
7
|
Xiao L, Zhou Y, Friis T, Beagley K, Xiao Y. S1P-S1PR1 Signaling: the "Sphinx" in Osteoimmunology. Front Immunol 2019; 10:1409. [PMID: 31293578 PMCID: PMC6603153 DOI: 10.3389/fimmu.2019.01409] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
The fundamental interaction between the immune and skeletal systems, termed as osteoimmunology, has been demonstrated to play indispensable roles in the maintenance of balance between bone resorption and formation. The pleiotropic sphingolipid metabolite, sphingosine 1-phosphate (S1P), together with its cognate receptor, sphingosine-1-phosphate receptor-1 (S1PR1), are known as key players in osteoimmunology due to the regulation on both immune system and bone remodeling. The role of S1P-S1PR1 signaling in bone remodeling can be directly targeting both osteoclastogenesis and osteogenesis. Meanwhile, inflammatory cell function and polarization in both adaptive immune (T cell subsets) and innate immune cells (macrophages) are also regulated by this signaling axis, suggesting that S1P-S1PR1 signaling could aslo indirectly regulate bone remodeling via modulating the immune system. Therefore, it could be likely that S1P-S1PR1 signaling might take part in the maintenance of continuous bone turnover under physiological conditions, while lead to the pathogenesis of bone deformities during inflammation. In this review, we summarized the immunological regulation of S1P-S1PR1 signal axis during bone remodeling with an emphasis on how osteo-immune regulators are affected by inflammation, an issue with relevance to chronical bone disorders such as rheumatoid arthritis, spondyloarthritis and periodontitis.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Abstract
Purpose Chronic myeloid leukemia (CML) accounts for ~10% of leukemia cases, and its progression involves epigenetic gene regulation. This study investigated epigenetic regulation of HOTAIR and its target microRNA, miR-143, in advanced CML. Patients and methods We first isolated bone marrow mononuclear cells from 70 patients with different phases of CML and from healthy donors as normal control; we also cultured K562 and KCL22 cells, treated with demethylation drug; MTT assay, flow cytometry, quantitative real-time polymerase chain reaction (qPCR), methylation-specific polymerase chain reaction (MSP), Western blot, luciferase assay, RNA pull-down assay and RNA-binding protein immunoprecipitation (RIP) assay were performed. Result As measured by qPCR, HOTAIR expression in K562 cells, KCL22 cells, and samples from cases of advanced-stage CML increased with levels of several DNA methyltransferases and histone deacetylates, including DNMT1, DNMT3A, HDAC1, EZH2, and LSD1, and miR-143 levels were decreased and HOTAIR levels were increased. Treatment with 5-azacytidine, a DNA methylation inhibitor, decreased DNMT1, DNMT3A, HDAC1, EZH2, LSD1 mRNA, protein levels, and HOTAIR mRNA levels but increased miR-143 levels. HOTAIR knockdown and miR-143 overexpression both inhibited proliferation and promoted apoptosis in KCL22 and K562 cells through the PI3K/AKT pathway. RNA pull-down, mass spectrometry, and RIP assays showed that HOTAIR interacted with EZH2 and LSD1. A dual-luciferase assay demonstrated that HOTAIR interacted with miR-143. Conclusion Our findings demonstrate the key epigenetic interactions of HOTAIR related to CML progression and suggest HOTAIR as a potential therapeutic target for advanced CML. Furthermore, our results support the use of demethylation drugs as a CML treatment strategy.
Collapse
Affiliation(s)
- Ziye Li
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China,
| | - Jianmin Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China,
| |
Collapse
|
9
|
Barra G, Lepore A, Gagliardi M, Somma D, Matarazzo MR, Costabile F, Pasquale G, Mazzoni A, Gallo C, Nuzzo G, Annunziato F, Fontana A, Leonardi A, De Palma R. Sphingosine Kinases promote IL-17 expression in human T lymphocytes. Sci Rep 2018; 8:13233. [PMID: 30185808 PMCID: PMC6125344 DOI: 10.1038/s41598-018-31666-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) has a role in many cellular processes. S1P is involved in cell growth and apoptosis, regulation of cell trafficking, production of cytokines and chemokines. The kinases SphK1 and SphK2 (SphKs) phosphorilate Sphingosine (Sph) to S1P and several phosphatases revert S1P to sphingosine, thus assuring a balanced pool that can be depleted by a Sphingosine lyase in hexadecenal compounds and aldehydes. There are evidences that SphK1 and 2 may per se control cellular processes. Here, we report that Sph kinases regulate IL-17 expression in human T cells. SphKs inhibition impairs the production of IL-17, while their overexpression up-regulates expression of the cytokine through acetylation of IL-17 promoter. SphKs were up-regulated also in PBMCs of patients affected by IL-17 related diseases. Thus, S1P/S1P kinases axis is a mechanism likely to promote IL-17 expression in human T cells, representing a possible therapeutic target in human inflammatory diseases.
Collapse
Affiliation(s)
- Giusi Barra
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy
| | - Alessio Lepore
- Univeristy of Naples "Federico II", Department of Molecular Medicine and Medical Biotechnology, Napoli, Italy
| | - Miriam Gagliardi
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Napoli, 80131, Italy
| | - Domenico Somma
- Univeristy of Naples "Federico II", Department of Molecular Medicine and Medical Biotechnology, Napoli, Italy
| | | | - Francesca Costabile
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy
| | - Giuseppe Pasquale
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Antonio Leonardi
- Univeristy of Naples "Federico II", Department of Molecular Medicine and Medical Biotechnology, Napoli, Italy
| | - Raffaele De Palma
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy. .,Institute of Protein Biochemistry-CNR, via P. Castellino, 111, 80131, Napoli, Italy.
| |
Collapse
|
10
|
Li ZY, Yang L, Liu XJ, Wang XZ, Pan YX, Luo JM. The Long Noncoding RNA MEG3 and its Target miR-147 Regulate JAK/STAT Pathway in Advanced Chronic Myeloid Leukemia. EBioMedicine 2018; 34:61-75. [PMID: 30072211 PMCID: PMC6117736 DOI: 10.1016/j.ebiom.2018.07.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Background Long non-coding (lnc) RNAs plays an important role in chronic myeloid leukemia (CML). In this study, we aimed to uncover the mechanism of the lncRNA maternally expressed 3 (MEG3) and its target microRNA-147 (miR-147) in CML. Methods Sixty CML patients and 10 healthy donors were included in the study. The methylation of MEG3 and miR-147 promoter was determined by methylation-specific PCR. The relationship of MEG3 and miR-147 was explored by luciferase assay. The interactions of proteins were studied by RNA pull-down assay, RNA immunoprecipitation and co-immunoprecipitation. Findings Patients in accelerated phase CML (CML-AP) and blast phase CML (CML-BP) showed lower expressions of MEG3 and miR-147 and higher expressions of DNMT1, DNMT3B, MBD2, MECP2 and HDAC1 compared to the controls. These patients also showed a higher degree of methylation of MEG3 and miR-147 while there was a reduction after chidamide treatment. Furthermore, the overexpression of MEG3 and miR-147 inhibited cell proliferation both in vivo and in vitro, promoted apoptosis and decreased the expressions of DNMT1, DNMT3A, DNMT3B, MBD2, HDAC1 and MECP2. We also found MEG3 interacted with DNMT1, JAK2, STAT3, HDAC1, and TYK2, and JAK2 was bound to STAT3, STAT5 and MYC. More interestingly, JAK2 was bound to TYK2 by the bridge of MEG3. Interpretation LncRNA MEG3 and its target miR-147 may serve as a novel therapeutic target for CML blast crisis, and chidamide might have a potential clinical application in treating CML blast crisis.
Collapse
Affiliation(s)
- Zi-Ye Li
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Lin Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiao-Jun Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xing-Zhe Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yu-Xia Pan
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jian-Min Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
11
|
Di Pardo A, Maglione V. Sphingolipid Metabolism: A New Therapeutic Opportunity for Brain Degenerative Disorders. Front Neurosci 2018; 12:249. [PMID: 29719499 PMCID: PMC5913346 DOI: 10.3389/fnins.2018.00249] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/29/2018] [Indexed: 01/01/2023] Open
Abstract
Neurodegenerative diseases represent a class of fatal brain disorders for which the number of effective therapeutic options remains limited with only symptomatic treatment accessible. Multiple studies show that defects in sphingolipid pathways are shared among different brain disorders including neurodegenerative diseases and may contribute to their complex pathogenesis. In this mini review, we discuss the hypothesis that modulation of sphingolipid metabolism and their related signaling pathways may represent a potential therapeutic approach for those devastating conditions. The plausible “druggability” of sphingolipid pathways is greatly promising and represent a relevant feature that brings real advantage to the development of new therapeutic options for these conditions. Indeed, several molecules that selectively target sphingolipds are already available and many of them currently in clinical trial for human diseases. A deeper understanding of the “sphingolipid scenario” in neurodegenerative disorders would certainly enhance therapeutic perspectives for these conditions, by taking advantage from the already available molecules and by promoting the development of new ones.
Collapse
|
12
|
Defective Sphingosine-1-phosphate metabolism is a druggable target in Huntington's disease. Sci Rep 2017; 7:5280. [PMID: 28706199 PMCID: PMC5509685 DOI: 10.1038/s41598-017-05709-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022] Open
Abstract
Huntington’s disease is characterized by a complex and heterogeneous pathogenic profile. Studies have shown that disturbance in lipid homeostasis may represent a critical determinant in the progression of several neurodegenerative disorders. The recognition of perturbed lipid metabolism is only recently becoming evident in HD. In order to provide more insight into the nature of such a perturbation and into the effect its modulation may have in HD pathology, we investigated the metabolism of Sphingosine-1-phosphate (S1P), one of the most important bioactive lipids, in both animal models and patient samples. Here, we demonstrated that S1P metabolism is significantly disrupted in HD even at early stage of the disease and importantly, we revealed that such a dysfunction represents a common denominator among multiple disease models ranging from cells to humans through mouse models. Interestingly, the in vitro anti-apoptotic and the pro-survival actions seen after modulation of S1P-metabolizing enzymes allows this axis to emerge as a new druggable target and unfolds its promising therapeutic potential for the development of more effective and targeted interventions against this incurable condition.
Collapse
|
13
|
Fukushima A, Lopaschuk GD. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2211-2220. [PMID: 27479696 DOI: 10.1016/j.bbadis.2016.07.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
Abstract
Alterations in cardiac energy metabolism are an important contributor to the cardiac pathology associated with obesity, diabetes, and heart failure. High rates of fatty acid β-oxidation with cardiac insulin resistance represent a cardiac metabolic hallmark of diabetes and obesity, while a marginal decrease in fatty acid oxidation and a prominent decrease in insulin-stimulated glucose oxidation are commonly seen in the early stages of heart failure. Alterations in post-translational control of energy metabolic processes have recently been identified as an important contributor to these metabolic changes. In particular, lysine acetylation of non-histone proteins, which controls a diverse family of mitochondrial metabolic pathways, contributes to the cardiac energy derangements seen in obesity, diabetes, and heart failure. Lysine acetylation is controlled both via acetyltransferases and deacetylases (sirtuins), as well as by non-enzymatic lysine acetylation due to increased acetyl CoA pool size or dysregulated nicotinamide adenine dinucleotide (NAD+) metabolism (which stimulates sirtuin activity). One of the important mitochondrial acetylation targets are the fatty acid β-oxidation enzymes, which contributes to alterations in cardiac substrate preference during the course of obesity, diabetes, and heart failure, and can ultimately lead to cardiac dysfunction in these disease states. This review will summarize the role of lysine acetylation and its regulatory control in the context of mitochondrial fatty acid β-oxidation. The functional contribution of cardiac protein lysine acetylation to the shift in cardiac energy substrate preference that occurs in obesity, diabetes, and especially in the early stages of heart failure will also be reviewed. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Arata Fukushima
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1960-91. [PMID: 27126807 PMCID: PMC6398603 DOI: 10.1161/res.0000000000000104] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.
Collapse
|
15
|
Moyon S, Liang J, Casaccia P. Epigenetics in NG2 glia cells. Brain Res 2016; 1638:183-198. [PMID: 26092401 PMCID: PMC4683112 DOI: 10.1016/j.brainres.2015.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022]
Abstract
The interplay of transcription and epigenetic marks is essential for oligodendrocyte progenitor cell (OPC) proliferation and differentiation during development. Here, we review the recent advances in this field and highlight mechanisms of transcriptional repression and activation involved in OPC proliferation, differentiation and plasticity. We also describe how dysregulation of these epigenetic events may affect demyelinating disorders, and consider potential ways to manipulate NG2 cell behavior through modulation of the epigenome. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Sarah Moyon
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jialiang Liang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrizia Casaccia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
16
|
Gardner NM, Riley RT, Showker JL, Voss KA, Sachs AJ, Maddox JR, Gelineau-van Waes JB. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts. Toxicol Appl Pharmacol 2016; 298:56-65. [PMID: 26905748 DOI: 10.1016/j.taap.2016.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs.
Collapse
Affiliation(s)
- Nicole M Gardner
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States.
| | - Ronald T Riley
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Jency L Showker
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Kenneth A Voss
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Andrew J Sachs
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States
| | - Joyce R Maddox
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States
| | | |
Collapse
|
17
|
Yu XD, Guo ZS. Epigenetic drugs for cancer treatment and prevention: mechanisms of action. Biomol Concepts 2015; 1:239-51. [PMID: 25962000 DOI: 10.1515/bmc.2010.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review provides a brief overview of the basic principles of epigenetic gene regulation and then focuses on recent development of epigenetic drugs for cancer treatment and prevention with an emphasis on the molecular mechanisms of action. The approved epigenetic drugs are either inhibitors of DNA methyltransferases or histone deacetylases (HDACs). Future epigenetic drugs could include inhibitors for histone methyltransferases and histone demethylases and other epigenetic enzymes. Epigenetic drugs often function in two separate yet interrelated ways. First, as epigenetic drugs per se, they modulate the epigenomes of premalignant and malignant cells to reverse deregulated epigenetic mechanisms, leading to an effective therapeutic strategy (epigenetic therapy). Second, HDACs and other epigenetic enzymes also target non-histone proteins that have regulatory roles in cell proliferation, migration and cell death. Through these processes, these drugs induce cancer cell growth arrest, cell differentiation, inhibition of tumor angiogenesis, or cell death via apoptosis, necrosis, autophagy or mitotic catastrophe (chemotherapy). As they modulate genes which lead to enhanced chemosensitivity, immunogenicity or dampened innate antiviral response of cancer cells, epigenetic drugs often show better efficacy when combined with chemotherapy, immunotherapy or oncolytic virotherapy. In chemoprevention, dietary phytochemicals such as epigallocatechin-3-gallate and sulforaphane act as epigenetic agents and show efficacy by targeting both cancer cells and the tumor microenvironment. Further understanding of how epigenetic mechanisms function in carcinogenesis and cancer progression as well as in normal physiology will enable us to establish a new paradigm for intelligent drug design in the treatment and prevention of cancer.
Collapse
|
18
|
Webster BR, Scott I, Traba J, Han K, Sack MN. Regulation of autophagy and mitophagy by nutrient availability and acetylation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:525-34. [PMID: 24525425 DOI: 10.1016/j.bbalip.2014.02.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/10/2014] [Accepted: 02/04/2014] [Indexed: 12/15/2022]
Abstract
Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named "autophagy", enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA.
Collapse
Affiliation(s)
| | - Iain Scott
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | - Javier Traba
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | - Kim Han
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | - Michael N Sack
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
19
|
Epigenetics and the environment: in search of the "toleroasome" vital to execution of ischemic preconditioning. Transl Stroke Res 2013; 4:56-62. [PMID: 24323190 DOI: 10.1007/s12975-012-0235-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/02/2023]
Abstract
Activation and repression of gene expression are key features of ischemic tolerance. Converging lines of inquiry from several groups suggests that epigenetic proteins may transduce sublethal stresses, including bioenergetic or oxidative stress into durable (2-3 days) changes in gene expression that mediate ischemic tolerance. Here we discuss the potential mechanisms by which changes in cell state (e.g., ATP, NAD+, and oxygen) can modify specific targets including polycomb complexes, jumonji domain histone demethylases, and zinc and NAD-dependent histone decetylases and thus trigger an adaptive program. A major unanswered question is whether these proteins work in parallel or convergently as part of a "tolerosome" (tolero is the Latin word for tolerance), a multiprotein complex recruited to promoters or enhancers of specific genes, to mediate preconditioning. Whatever the case may be, epigenetic proteins are fertile targets for the treatment of stroke.
Collapse
|
20
|
Gandy KAO, Obeid LM. Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Handb Exp Pharmacol 2013:275-303. [PMID: 23563662 DOI: 10.1007/978-3-7091-1511-4_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sphingolipids have emerged as pleiotropic signaling molecules with roles in numerous cellular and biological functions. Defining the regulatory mechanisms governing sphingolipid metabolism is crucial in order to develop a complete understanding of the biological functions of sphingolipid metabolites. The sphingosine kinase/ sphingosine 1-phosphate pathway was originally thought to function in the irreversible breakdown of sphingoid bases; however, in the last few decades it has materialized as an extremely important signaling pathway involved in a plethora of cellular events contributing to both normal and pathophysiological events. Recognition of the SK/S1P pathway as a second messaging system has aided in the identification of many mechanisms of its regulation; however, a cohesive, global understanding of the regulatory mechanisms controlling the SK/S1P pathway is lacking. In this chapter, the role of the SK/S1P pathway as a second messenger is discussed, and its role in mediating TNF-α- and EGF-induced biologies is examined. This work provides a comprehensive look into the roles and regulation of the sphingosine kinase/ sphingosine 1-phosphate pathway and highlights the potential of the pathway as a therapeutic target.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- The Department of Molecular and Cellular Biology and Pathobiology, The Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
21
|
Abstract
Acetylation, through the post-transcriptional modification of histones, is a well-established regulator of gene transcription. More recent research has also identified an important role for acetylation in the regulation of non-histone proteins, both inside and outside the nucleus. As a fast (and reversible) post-translational process, acetylation allows cells to rapidly alter the function of existing proteins, making it ideally suited to biological programmes that require an immediate response to changing conditions. Using metabolic programmes as an example, the present chapter looks at how reversible acetylation can be used to regulate important enzymes in an ever-changing cellular environment.
Collapse
|
22
|
Xiong Y, Guan KL. Mechanistic insights into the regulation of metabolic enzymes by acetylation. ACTA ACUST UNITED AC 2012; 198:155-64. [PMID: 22826120 PMCID: PMC3410420 DOI: 10.1083/jcb.201202056] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates.
Collapse
Affiliation(s)
- Yue Xiong
- Molecular and Cell Biology Laboratory, Institute of Biomedical Sciences, Fudan University, Shanghai 20032, China.
| | | |
Collapse
|
23
|
Kalari S, Moolky N, Pendyala S, Berdyshev EV, Rolle C, Kanteti R, Kanteti A, Ma W, He D, Husain AN, Kindler HL, Kanteti P, Salgia R, Natarajan V. Sphingosine kinase 1 is required for mesothelioma cell proliferation: role of histone acetylation. PLoS One 2012; 7:e45330. [PMID: 23028939 PMCID: PMC3444486 DOI: 10.1371/journal.pone.0045330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/20/2012] [Indexed: 01/08/2023] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a devastating disease with an overall poor prognosis. Despite the recent advances in targeted molecular therapies, there is a clear and urgent need for the identification of novel mesothelioma targets for the development of highly efficacious therapeutics. Methodology/Principal Findings In this study, we report that the expression of Sphingosine Kinase 1 (SphK1) protein was preferentially elevated in MPM tumor tissues (49 epithelioid and 13 sarcomatoid) compared to normal tissue (n = 13). In addition, we also observed significantly elevated levels of SphK1 and SphK2 mRNA and SphK1 protein expression in MPM cell lines such as H2691, H513 and H2461 compared to the non-malignant mesothelial Met5 cells. The underlying mechanism appears to be mediated by SphK1 induced upregulation of select gene transcription programs such as that of CBP/p300 and PCAF, two histone acetyl transferases (HAT), and the down regulation of cell cycle dependent kinase inhibitor genes such as p27Kip1 and p21Cip1. In addition, using immunoprecipitates of anti-acetylated histone antibody from SphK inhibitor, SphK-I2 treated Met5A and H2691 cell lysates, we also showed activation of other cell proliferation related genes, such as Top2A (DNA replication), AKB (chromosome remodeling and mitotic spindle formation), and suppression of p21 CIP1 and p27KIP1. The CDK2, HAT1 and MYST2 were, however, unaffected in the above study. Using SphK inhibitor and specific siRNA targeting either SphK1 or SphK2, we also unequivocally established that SphK1, but not SphK2, promotes H2691 mesothelioma cell proliferation. Using a multi-walled carbon nanotubes induced peritoneal mesothelioma mouse model, we showed that the SphK1−/− null mice exhibited significantly less inflammation and granulamatous nodules compared to their wild type counterparts. Conclusions/Significance The lipid kinase SphK1 plays a positive and essential role in the growth and development of malignant mesothelioma and is therefore a likely therapeutic target.
Collapse
Affiliation(s)
- Satish Kalari
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Nagabhushan Moolky
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Srikanth Pendyala
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Evgeny V. Berdyshev
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Cleo Rolle
- Section of Hematology/Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Rajani Kanteti
- Section of Hematology/Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Archana Kanteti
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Wenli Ma
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Donghong He
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Aliya N. Husain
- Pathology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Hedy L. Kindler
- Section of Hematology/Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Prasad Kanteti
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ravi Salgia
- Section of Hematology/Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
24
|
Waluk DP, Sucharski F, Sipos L, Silberring J, Hunt MC. Reversible lysine acetylation regulates activity of human glycine N-acyltransferase-like 2 (hGLYATL2): implications for production of glycine-conjugated signaling molecules. J Biol Chem 2012; 287:16158-67. [PMID: 22408254 DOI: 10.1074/jbc.m112.347260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysine acetylation is a major post-translational modification of proteins and regulates many physiological processes such as metabolism, cell migration, aging, and inflammation. Proteomic studies have identified numerous lysine-acetylated proteins in human and mouse models (Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. J., and Zhao, Y. (2006) Mol. Cell 23, 607-618). One family of proteins identified in this study was the murine glycine N-acyltransferase (GLYAT) enzymes, which are acetylated on lysine 19. Lysine 19 is a conserved residue in human glycine N-acyltransferase-like 2 (hGLYATL2) and in several other species, showing that this residue may be important for enzyme function. Mutation of lysine 19 in recombinant hGLYATL2 to glutamine (K19Q) and arginine (K19R) resulted in a 50-80% lower production of N-oleoyl glycine and N-arachidonoylglycine, indicating that lysine 19 is important for enzyme function. LC/MS/MS confirmed that Lys-19 is not acetylated in wild-type hGLYATL2, indicating that Lys-19 requires to be deacetylated for full activity. The hGLYATL2 enzyme conjugates medium- and long-chain saturated and unsaturated acyl-CoA esters to glycine, resulting in the production of N-oleoyl glycine and also N-arachidonoyl glycine. N-Oleoyl glycine and N-arachidonoyl glycine are structurally and functionally related to endocannabinoids and have been identified as signaling molecules that regulate functions like the perception of pain and body temperature and also have anti-inflammatory properties. In conclusion, acetylation of lysine(s) in hGLYATL2 regulates the enzyme activity, thus linking post-translational modification of proteins with the production of biological signaling molecules, the N-acyl glycines.
Collapse
Affiliation(s)
- Dominik P Waluk
- Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
25
|
Liu X, Zhang QH, Yi GH. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol Cell Biochem 2011; 363:21-33. [DOI: 10.1007/s11010-011-1154-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023]
|
26
|
Polakowski N, Han H, Lemasson I. Direct inhibition of RNAse T2 expression by the HTLV-1 viral protein Tax. Viruses 2011; 3:1485-500. [PMID: 21994792 PMCID: PMC3185805 DOI: 10.3390/v3081485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/10/2011] [Indexed: 12/20/2022] Open
Abstract
Adult T-cell leukemia (ATL) is one of the primary diseases caused by Human T-cell Leukemia Virus type 1 (HTLV-1) infection. The virally-encoded Tax protein is believed to initiate early events in the development of this disease, as it is able to promote immortalization of T-cells and transformation of other cell types. These processes may be aided by the ability of the viral protein to directly deregulate expression of specific cellular genes through interactions with numerous transcriptional regulators. To identify gene promoters where Tax is localized, we isolated Tax-DNA complexes from an HTLV-1-infected T-cell line through a chromatin immunoprecipitation (ChIP) assay and used the DNA to probe a CpG island microarray. A site within the RNASET2 gene was found to be occupied by Tax. Real-time PCR analysis confirmed this result, and transient expression of Tax in uninfected cells led to the recruitment of the viral protein to the promoter. This event correlated with a decrease in the level of RNase T2 mRNA and protein, suggesting that Tax represses expression of this gene. Loss of RNase T2 expression occurs in certain hematological malignancies and other forms of cancer, and RNase T2 was recently reported to function as a tumor suppressor. Consequently, a reduction in the level of RNase T2 by Tax may play a role in ATL development.
Collapse
Affiliation(s)
- Nicholas Polakowski
- Authors to whom correspondence should be addressed; E-Mails: (N.P.); (I.L.); Tel.: +1-252-744-2711 or +1-252-744-2706; Fax: +1-252-744-3104
| | | | - Isabelle Lemasson
- Authors to whom correspondence should be addressed; E-Mails: (N.P.); (I.L.); Tel.: +1-252-744-2711 or +1-252-744-2706; Fax: +1-252-744-3104
| |
Collapse
|
27
|
Zhao Y, Gorshkova IA, Berdyshev E, He D, Fu P, Ma W, Su Y, Usatyuk PV, Pendyala S, Oskouian B, Saba JD, Garcia JGN, Natarajan V. Protection of LPS-induced murine acute lung injury by sphingosine-1-phosphate lyase suppression. Am J Respir Cell Mol Biol 2011; 45:426-35. [PMID: 21148740 PMCID: PMC3175568 DOI: 10.1165/rcmb.2010-0422oc] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/18/2010] [Indexed: 12/13/2022] Open
Abstract
A defining feature of acute lung injury (ALI) is the increased lung vascular permeability and alveolar flooding, which leads to associated morbidity and mortality. Specific therapies to alleviate the unremitting vascular leak in ALI are not currently clinically available; however, our prior studies indicate a protective role for sphingosine-1-phosphate (S1P) in animal models of ALI with reductions in lung edema. As S1P levels are tightly regulated by synthesis and degradation, we tested the hypothesis that inhibition of S1P lyase (S1PL), the enzyme that irreversibly degrades S1P via cleavage, could ameliorate ALI. Intratracheal instillation of LPS to mice enhanced S1PL expression, decreased S1P levels in lung tissue, and induced lung inflammation and injury. LPS challenge of wild-type mice receiving 2-acetyl-4(5)-[1(R),2(S),3(R),4-tetrahydroxybutyl]-imidazole to inhibit S1PL or S1PL(+/-) mice resulted in increased S1P levels in lung tissue and bronchoalveolar lavage fluids and reduced lung injury and inflammation. Moreover, down-regulation of S1PL expression by short interfering RNA (siRNA) in primary human lung microvascular endothelial cells increased S1P levels, and attenuated LPS-mediated phosphorylation of p38 mitogen-activated protein kinase and I-κB, IL-6 secretion, and endothelial barrier disruption via Rac1 activation. These results identify a novel role for intracellularly generated S1P in protection against ALI and suggest S1PL as a potential therapeutic target.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Irina A. Gorshkova
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Evgeny Berdyshev
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Donghong He
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Panfeng Fu
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Wenli Ma
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Yanlin Su
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Peter V. Usatyuk
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Srikanth Pendyala
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Babak Oskouian
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Julie D. Saba
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Joe G. N. Garcia
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| | - Viswanathan Natarajan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Institute for Personalized Respiratory Medicine, Department of Medicine, and Department of Pharmacology, the University of Illinois at Chicago, Chicago, Illinois; and the Children's Hospital Oakland Research Institute, Oakland, California
| |
Collapse
|
28
|
Huang YW, Kuo CT, Stoner K, Huang THY, Wang LS. An overview of epigenetics and chemoprevention. FEBS Lett 2011; 585:2129-36. [PMID: 21056563 PMCID: PMC3071863 DOI: 10.1016/j.febslet.2010.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/30/2010] [Accepted: 11/02/2010] [Indexed: 12/14/2022]
Abstract
It is now appreciated that both genetic alteration, e.g. mutations, and aberrant epigenetic changes, e.g. DNA methylation, cause cancer. Epigenetic dysregulation is potentially reversible which makes it attractive as targets for cancer prevention. Synthetic drugs targeting enzymes, e.g. DNA methyltransferase and histone deacetylase, that regulate epigenetic patterns are active in clinical settings. In addition, dietary factors have been suggested to have potential to reverse aberrant epigenetic patterns. Uncovering the human epigenome can lead us to better understand the dynamics of DNA methylation in disease progression which can further assist in cancer prevention.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Human Cancer Genetics Program, Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Chieh-Ti Kuo
- Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Kristen Stoner
- Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Tim H-Y Huang
- Human Cancer Genetics Program, Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Li-Shu Wang
- Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
29
|
Kurdi M, Booz GW. Three 4-letter words of hypertension-related cardiac hypertrophy: TRPC, mTOR, and HDAC. J Mol Cell Cardiol 2011; 50:964-71. [PMID: 21320507 PMCID: PMC3091951 DOI: 10.1016/j.yjmcc.2011.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/26/2011] [Accepted: 02/02/2011] [Indexed: 12/12/2022]
Abstract
Left ventricular hypertrophy due to hypertension represents a major risk factor for adverse cardiovascular events and death. In recent years, the prevalence of cardiac hypertrophy has increased due to obesity and an aging population. Notably, a significant number of individuals have persistent cardiac hypertrophy in the face of blood pressure that is normalized by drug treatment. Thus, a better understanding of the processes underlying the cardiac remodeling events that are set into play by hypertension is needed. At the level of the cardiac myocytes, hypertrophic growth is often described as physiological, as occurs with exercise, or pathological, as seen with hypertension. Here we discuss recent developments in three areas that are fundamental to pathological hypertrophic growth of cardiac myocytes. These areas are the transient receptor potential canonical (TRPC) channels, mammalian target of rapamycin (mTOR) complexes, and histone deacetylase (HDAC) enzymes. In the last several years, studies in each of these areas have yielded new and exciting discoveries into the genesis of pathological growth of cardiac myocytes. The phosphoinositide 3-kinase-Akt signaling network may be the common denominator that links these areas together. Defining the interrelationship among TRPC channels, mTOR signaling, and HDAC enzymes is a promising, but challenging area of research. Such knowledge will undoubtedly lead to new drugs that better prevent or reverse left ventricular hypertension.
Collapse
Affiliation(s)
- Mazen Kurdi
- Department of Chemistry and Biochemistry, Faculty of Sciences, Lebanese University, Rafic Hariri Educational Campus, Hadath, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
30
|
Guan KL, Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 2011; 36:108-16. [PMID: 20934340 PMCID: PMC3038179 DOI: 10.1016/j.tibs.2010.09.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 02/09/2023]
Abstract
Extensive studies during the past four decades have identified important roles for lysine acetylation in the regulation of nuclear transcription. Recent proteomic analyses on protein acetylation uncovered a large number of acetylated proteins in the cytoplasm and mitochondria, including most enzymes involved in intermediate metabolism. Acetylation regulates metabolic enzymes by multiple mechanisms, including via enzymatic activation or inhibition, and by influencing protein stability. Conversely, non-nuclear NAD(+)-dependent sirtuin deacetylases can regulate cellular and organismal metabolism, possibly through direct deacetylation of metabolic enzymes. Furthermore, acetylation of metabolic enzymes is highly conserved from prokaryotes to eukaryotes. Given the frequent occurrence of metabolic dysregulation in diabetes, obesity and cancer, enzymes modulating acetylation could provide attractive targets for therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Kun-Liang Guan
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Fudan University, Shanghai 20032, China.
| | | |
Collapse
|