1
|
Goncu E, Tinartas EP, Gunay B, Ordu T, Turgay Izzetoglu G. Role of Atg3, Atg5 and Atg12 in the crosstalk between apoptosis and autophagy in the posterior silk gland of Bombyx mori. INSECT MOLECULAR BIOLOGY 2025; 34:470-485. [PMID: 39910402 PMCID: PMC12054345 DOI: 10.1111/imb.12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
Autophagy is a cellular mechanism that enhances cell survival in response to various stressors, including nutrient deprivation; however, it also plays a pivotal role in the regulation of programmed cell death. This study examined the effects of autophagy-related genes Atg3, Atg5 and Atg12 on apoptosis and autophagy during the degeneration of the posterior silk gland in Bombyx mori, employing RNA interference techniques. Apoptosis-specific markers and autophagic processes were evaluated in both control and treatment groups. The knockdown of all three genes resulted in a significant reduction in autophagy, modifications in the apoptosis process, aberrant expression of p53 and impaired lysosomal function. It was determined that Atg3 is involved in the regulation of intracellular mitochondrial homeostasis. Following the silencing of Atg5, evidence was obtained indicating the gene's role in regulating lysosomal pH. Notably, the loss of Atg3 and Atg5 was associated with an increase in apoptotic markers, whereas the silencing of Atg12 inhibited apoptosis. Elevated levels of the p53 transcription factor following gene silencing suggested a potential interaction between these genes and p53. Our findings further underscore the importance of autophagy-mediated cell death, involving Atg3, Atg5 and Atg12, in the proper progression of degeneration in the posterior silk gland. A comprehensive understanding of the molecular mechanisms that mediate the interaction between apoptosis and autophagy is essential for elucidating their roles in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Ebru Goncu
- Faculty of Science, Department of BiologyEge UniversityBornovaİzmirTürkiye
| | - Esen Poyraz Tinartas
- Faculty of Engineering and Natural Sciences, Department of BiologyManisa Celal Bayar UniversityMuradiyeManisaTürkiye
| | - Busra Gunay
- Faculty of Science, Department of BiologyEge UniversityBornovaİzmirTürkiye
| | - Tugce Ordu
- Faculty of Science, Department of BiologyEge UniversityBornovaİzmirTürkiye
| | | |
Collapse
|
2
|
Vervier J, Squatrito M, Nisolle M, Henry L, Munaut C. Controversial Roles of Autophagy in Adenomyosis and Its Implications for Fertility Outcomes-A Systematic Review. J Clin Med 2024; 13:7501. [PMID: 39768424 PMCID: PMC11676161 DOI: 10.3390/jcm13247501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Adenomyosis is a benign condition where ectopic endometrial glandular tissue is found within the uterine myometrium. Its impact on women's reproductive outcomes is substantial, primarily due to defective decidualization, impaired endometrial receptivity, and implantation failure. The exact pathogenesis of the disease remains unclear, and the role of autophagy in adenomyosis and its associated infertility is not well understood. The aim of this systematic review was to conduct an exhaustive search of the literature to clarify the role of autophagy in the pathogenesis of adenomyosis. Methods: A systematic search was conducted in Medline, Embase, and Scopus databases up to the date of 20 August 2024. We included all English-written publications assessing the role of autophagy in the pathogenesis of adenomyosis. Results: Seventeen eligible articles were identified, including reviews and experimental studies involving human samples and murine models. The results showed that the role of autophagy in adenomyosis is controversial, with studies showing both increased and decreased levels of autophagy in adenomyosis. Conclusions: Autophagy plays a dual role in cell survival and death. Increased autophagy might support the survival and proliferation of ectopic endometrial cells, while decreased autophagy could prevent cell death, leading to abnormal growth. Oxidative stress may trigger pro-survival autophagy, mitigating apoptosis and promoting cellular homeostasis. Hormonal imbalances disrupt normal autophagic activity, potentially impairing endometrial receptivity and decidualization and contributing to infertility. The balance of autophagy is crucial in adenomyosis, with its dual role contributing to the complexity of the disease. Limitations: A few studies have been conducted with heterogeneous populations, limiting comparative analyses.
Collapse
Affiliation(s)
- Julie Vervier
- Laboratory of Tumor and Development Biology, Giga-Cancer, University of Liège, 4000 Liege, Belgium
- Obstetrics and Gynecology Department, University of Liège-Citadelle Site, 4000 Liege, Belgium
| | - Marlyne Squatrito
- Laboratory of Tumor and Development Biology, Giga-Cancer, University of Liège, 4000 Liege, Belgium
| | - Michelle Nisolle
- Obstetrics and Gynecology Department, University of Liège-Citadelle Site, 4000 Liege, Belgium
| | - Laurie Henry
- Obstetrics and Gynecology Department, University of Liège-Citadelle Site, 4000 Liege, Belgium
- Center for Reproductive Medicine, University of Liège-Citadelle Site, 4000 Liege, Belgium
| | - Carine Munaut
- Laboratory of Tumor and Development Biology, Giga-Cancer, University of Liège, 4000 Liege, Belgium
| |
Collapse
|
3
|
Yin C, Liu X, Ma Y, Tang Z, Guo W, Sun B, He J. SIMULATED AEROMEDICAL EVACUATION EXACERBATES ACUTE LUNG INJURY VIA HYPOXIA-INDUCIBLE FACTOR 1Α-MEDIATED BNIP3/NIX-DEPENDENT MITOPHAGY. Shock 2024; 61:855-860. [PMID: 38320215 DOI: 10.1097/shk.0000000000002306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
ABSTRACT Background: With the advancement of medicine and the development of technology, the limiting factors of aeromedical evacuation are gradually decreasing, and the scope of indications is expanding. However, the hypobaric and hypoxic environments experienced by critically ill patients in flight can cause lung injury, leading to inflammation and hypoxemia, which remains one of the few limiting factors for air medical evacuation. This study aimed to examine the mechanism of secondary lung injury in rat models of acute lung injury that simulate aeromedical evacuation. Methods: An acute lung injury model was induced in SD rats by the administration of lipopolysaccharide (LPS) followed by exposure to a simulated aeromedical evacuation environment (equivalent to 8,000 feet above sea level) or a normobaric normoxic environment for 4 h. The expression of hypoxia-inducible factor 1α (HIF-1α) was stabilized by pretreatment with dimethyloxalylglycine. The reactive oxygen species levels and the protein expression levels of HIF-1α, Bcl-2-interacting protein 3 (BNIP3), and NIX in lung tissue were measured. Results: Simulated aeromedical evacuation exacerbated pathological damage to lung tissue and increased the release of inflammatory cytokines in serum as well as the reactive oxygen species levels and the protein levels of HIF-1α, BNIP3, and NIX in lung tissue. Pretreatment with dimethyloxalylglycine resulted in increases in the protein expression of HIF-1α, BNIP3, and NIX. Conclusion: Simulated aeromedical evacuation leads to secondary lung injury through mitophagy.
Collapse
Affiliation(s)
| | | | | | | | - Wenmin Guo
- Department of Critical Care Medicine, PLA Air Force Medical Center, Beijing, China
| | - Bingbing Sun
- Department of Critical Care Medicine, PLA Air Force Medical Center, Beijing, China
| | - Jingmei He
- Department of Critical Care Medicine, PLA Air Force Medical Center, Beijing, China
| |
Collapse
|
4
|
Lang J, Sun B, Feng S, Sun G. Impaired autophagic flux in the human brain after traumatic brain injury. Neuroreport 2024; 35:387-398. [PMID: 38526944 PMCID: PMC10965136 DOI: 10.1097/wnr.0000000000002020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Emerging evidence indicates that dysfunctional autophagic flux significantly contributes to the pathology of experimental traumatic brain injury (TBI). The current study aims to clarify its role post-TBI using brain tissues from TBI patients. Histological examinations, including hematoxylin and eosin, Nissl staining, and brain water content analysis, were employed to monitor brain damage progression. Electron microscopy was used to visualize autophagic vesicles. Western blotting and immunohistochemistry were performed to analyze the levels of important autophagic flux-related proteins such as Beclin1, autophagy-related protein 5, lipidated microtubule-associated protein light-chain 3 (LC3-II), autophagic substrate sequestosome 1 (SQSTM1/p62), and cathepsin D (CTSD), a lysosomal enzyme. Immunofluorescence assays evaluated LC3 colocalization with NeuN, P62, or CTSD, and correlation analysis linked autophagy-related protein levels with brain water content and Nissl bodies. Early-stage TBI results showed increased autophagic vesicles and LC3-positive neurons, suggesting autophagosome accumulation due to enhanced initiation and reduced clearance. As TBI progressed, LC3-II and P62 levels increased, while CTSD levels decreased. This indicates autophagosome overload from impaired degradation rather than increased initiation. The study reveals a potential association between worsening brain damage and impaired autophagic flux post-TBI, positioning improved autophagic flux as a viable therapeutic target for TBI.
Collapse
Affiliation(s)
- Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, the People’s Republic of China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, the People’s Republic of China
| | - Shiyao Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, the People’s Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, the People’s Republic of China
| |
Collapse
|
5
|
Dong S, Li D, Shi D. Skin barrier-inflammatory pathway is a driver of the psoriasis-atopic dermatitis transition. Front Med (Lausanne) 2024; 11:1335551. [PMID: 38606161 PMCID: PMC11007107 DOI: 10.3389/fmed.2024.1335551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
As chronic inflammatory conditions driven by immune dysregulation are influenced by genetics and environment factors, psoriasis and atopic dermatitis (AD) have traditionally been considered to be distinct diseases characterized by different T cell responses. Psoriasis, associated with type 17 helper T (Th17)-mediated inflammation, presents as well-defined scaly plaques with minimal pruritus. AD, primarily linked to Th2-mediated inflammation, presents with poorly defined erythema, dry skin, and intense itching. However, psoriasis and AD may overlap or transition into one another spontaneously, independent of biological agent usage. Emerging evidence suggests that defects in skin barrier-related molecules interact with the polarization of T cells, which forms a skin barrier-inflammatory loop with them. This loop contributes to the chronicity of the primary disease or the transition between psoriasis and AD. This review aimed to elucidate the mechanisms underlying skin barrier defects in driving the overlap between psoriasis and AD. In this review, the importance of repairing the skin barrier was underscored, and the significance of tailoring biologic treatments based on individual immune status instead of solely adhering to the treatment guidelines for AD or psoriasis was emphasized.
Collapse
Affiliation(s)
- Sitan Dong
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Dongmei Shi
- Department of Dermatology/Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
6
|
Zubkova E, Kalinin A, Bolotskaya A, Beloglazova I, Menshikov M. Autophagy-Dependent Secretion: Crosstalk between Autophagy and Exosome Biogenesis. Curr Issues Mol Biol 2024; 46:2209-2235. [PMID: 38534758 DOI: 10.3390/cimb46030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/28/2024] Open
Abstract
The cellular secretome is pivotal in mediating intercellular communication and coordinating responses to stressors. Exosomes, initially recognized for their role in waste disposal, have now emerged as key intercellular messengers with significant therapeutic and diagnostic potential. Similarly, autophagy has transcended its traditional role as a waste removal mechanism, emerging as a regulator of intracellular communication pathways and a contributor to a unique autophagy-dependent secretome. Secretory authophagy, initiated by various stress stimuli, prompts the selective release of proteins implicated in inflammation, including leaderless proteins that bypass the conventional endoplasmic reticulum-Golgi secretory pathway. This reflects the significant impact of stress-induced autophagy on cellular secretion profiles, including the modulation of exosome release. The convergence of exosome biogenesis and autophagy is exemplified by the formation of amphisomes, vesicles that integrate autophagic and endosomal pathways, indicating their synergistic interplay. Regulatory proteins common to both pathways, particularly mTORC1, emerge as potential therapeutic targets to alter cellular secretion profiles involved in various diseases. This review explores the dynamic interplay between autophagy and exosome formation, highlighting the potential to influence the secretome composition. While the modulation of exosome secretion and cytokine preconditioning is well-established in regenerative medicine, the strategic manipulation of autophagy is still underexplored, presenting a promising but uncharted therapeutic landscape.
Collapse
Affiliation(s)
- Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasya Bolotskaya
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Institute of Clinical Medicine, Sechenov University, 119435 Moscow, Russia
| | - Irina Beloglazova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| |
Collapse
|
7
|
Vijayapoopathi S, Ramamoorthy R, Meganathan J, Kalaiyazhagan A, Bhuvarahamurthy S, Venugopal B. Nutraceutical combination ameliorates imiquimod-induced psoriasis in mice. Chem Biol Drug Des 2023; 102:1578-1587. [PMID: 37705136 DOI: 10.1111/cbdd.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease that affects both localized and systemic regions of the body. This condition is characterized by the hyperproliferation of keratinocytes, resulting in skin thickening, scaling, and erythema. The severity of psoriasis depends on the extent of skin involvement, the location of the infection, and the symptoms that the person exhibits. While no cure exists, conventional therapies such as topical and systemic drugs are generally used to manage the exacerbation of symptoms. However, chronic use and overdose can lead to other severe adverse effects. Therefore, scientists and researchers are exploring potential nutraceuticals that can be considered as an alternative source of management for psoriasis. Current research aims to use different combinations of natural compounds like cannabidiol, myo-inositol, eicosapentaenoic acid, and krill oil to study the effect of these compounds in the prevention and treatment of psoriasis in the imiquimod (IMQ)-induced psoriatic mice model. The Psoriasis Area Severity Index (PASI) scoring system is used to analyze skin thickness, scales, and erythema. The results indicate that the krill oil combined with the cannabidiol and myo-inositol shows better results than other nutraceutical combinations. In the future, the natural products of krill oil can be combined with cannabidiol and myo-inositol to create an improved alternative to existing steroidal and nonsteroidal anti-inflammatory drugs for psoriasis treatment.
Collapse
Affiliation(s)
- Singaravel Vijayapoopathi
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Rajalakshmi Ramamoorthy
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
- Department of Obstetrics, Gynecology and Reproductive Studies, University of Miami, Coral Gables, Florida, USA
| | - Jayaprakash Meganathan
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Ananthi Kalaiyazhagan
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | | | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
8
|
Xiong Y, Huang CW, Shi C, Peng L, Cheng YT, Hong W, Liao J. Quercetin suppresses ovariectomy-induced osteoporosis in rat mandibles by regulating autophagy and the NLRP3 pathway. Exp Biol Med (Maywood) 2023; 248:2363-2380. [PMID: 38240215 PMCID: PMC10903250 DOI: 10.1177/15353702231211977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/29/2023] [Indexed: 01/23/2024] Open
Abstract
With the aging population and the popularity of implant prostheses, an increasing number of postmenopausal osteoporosis (PMOP) patients require implant restorations; however, poor bone condition affects the long-term stability of implant prostheses. This study aimed to investigate the therapeutic effect of quercetin (QR) compared with alendronate (ALN), the primary treatment for PMOP, on mandibular osteoporosis (OP) induced by ovariectomy (OVX) in female rats. Adult female rats were treated with QR (50 mg/kg/day), ALN (6.25 mg/kg/week) by gavage for 8 weeks, chloroquine (CQ, 10 mg/kg/twice a week), and cytokine release inhibitory drug 3 (MCC950, 10 mg/kg/three times a week) by intraperitoneal injection for 8 weeks after bilateral OVX. Blood samples were collected prior to euthanasia; the mandibles were harvested and subjected to micro-computed tomography (micro-CT) and pathological analysis. QR administration controlled weight gain and significantly improved the bone microstructure in OVX rats, increasing bone mass, and bone mineral density (BMD), reducing bone trabecular spacing, and decreasing osteoclast numbers. Western blotting, real-time quantitative PCR (RT-qPCR), and serum markers confirmed that QR inhibited interleukin- 1β (IL-1β) and interleukin-18 (IL-18) on the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) protein 3 (NLRP3) pathway thereby inhibiting osteoclast differentiation, immunofluorescence and western blotting also confirmed that QR inhibited autophagy in OVX rats and suppressed the number of tartrate-resistant acid phosphatase (TRAP)-stained positive osteoclasts. The findings suggest that QR may protect the bone structure and prevent bone loss in osteoporotic rats by inhibiting the NLRP3 pathway and autophagy in osteoclasts with comparable effects to ALN, thus QR may have the potential to be a promising alternative supplement for the preventive and therapeutic treatment of PMOP.
Collapse
Affiliation(s)
- Yue Xiong
- Department of Prosthodontics and Implantology, School/Hospital of Stomatology, Guizhou Medical University, Guiyang 550004, P.R. China
| | | | - Chao Shi
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Liang Peng
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yu-Ting Cheng
- Department of Prosthodontics and Implantology, School/Hospital of Stomatology, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Wei Hong
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Jian Liao
- Department of Prosthodontics and Implantology, School/Hospital of Stomatology, Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
9
|
Ma M, Pan Y, Zhang Y, Yang M, Xi Y, Lin B, Hao W, Liu J, Wu L, Liu Y, Qin X. Metformin combined with rapamycin ameliorates podocyte injury in idiopathic membranous nephropathy through the AMPK/mTOR signaling pathway. J Cell Commun Signal 2023:10.1007/s12079-023-00781-8. [PMID: 37702819 DOI: 10.1007/s12079-023-00781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/01/2023] [Indexed: 09/14/2023] Open
Abstract
Autophagy activation protects against podocyte injury in idiopathic membranous nephropathy (IMN). The AMPK/mTOR signaling pathway is a vital autophagy regulatory pathway. Metformin promotes autophagy, whereas rapamycin is an autophagy agonist. However, the therapeutic mechanisms of metformin and rapamycin in IMN remain unclear. Thus, we examined the mechanisms of action of metformin and rapamycin in IMN by regulating the AMPK/mTOR autophagy signaling pathway. Female Sprague-Dawley (SD) rats were treated with cationic bovine serum albumin (C-BSA) to establish an IMN model and were randomly divided into IMN model, metformin, rapamycin, and metformin + rapamycin groups. A control group was also established. Metformin and rapamycin were used as treatments. Renal histological changes, urinary protein excretion, the protein expression levels of key AMPK/mTOR signaling pathway proteins, renal tissue cell apoptosis, and autophagy-associated proteins (Beclin 1 and LC3) were examined. In addition, a C5b-9 sublysis model using the MPC-5 mouse podocyte cell line was established to verify the effect of metformin combined with rapamycin on podocytes. Metformin combined with rapamycin improved urinary protein excretion in IMN rats. Metformin combined with rapamycin attenuated the inflammatory response, renal fibrosis, and podocyte foot process fusion. In addition, it improved autophagy in podocytes as demonstrated by the enhanced expression of Beclin-1, p-AMPK/AMPK, LC3-II/I, and autophagosomes in podocytes and decreased p-mTOR/mTOR expression. In conclusion, metformin combined with rapamycin decreased proteinuria, improved renal fibrosis and podocyte autophagy via AMPK/mTOR pathway in IMN rats. The metformin and rapamycin decreased proteinuria and inproved renal fibrosis in IMN model rats.
Collapse
Affiliation(s)
- Meichen Ma
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yue Pan
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Mei Yang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Ying Xi
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Baoxu Lin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Wudi Hao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
10
|
PINK1-mediated mitophagy contributes to glucocorticoid-induced cathepsin K production in osteocytes. J Orthop Translat 2023; 38:229-240. [DOI: 10.1016/j.jot.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
|
11
|
Muciño-Hernández G, Acevo-Rodríguez PS, Cabrera-Benitez S, Guerrero AO, Merchant-Larios H, Castro-Obregón S. Nucleophagy contributes to genome stability through degradation of type II topoisomerases A and B and nucleolar components. J Cell Sci 2023; 136:286548. [PMID: 36633090 PMCID: PMC10112964 DOI: 10.1242/jcs.260563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
The nuclear architecture of mammalian cells can be altered as a consequence of anomalous accumulation of nuclear proteins or genomic alterations. Most of the knowledge about nuclear dynamics comes from studies on cancerous cells. How normal healthy cells maintain genome stability, avoiding accumulation of nuclear damaged material, is less understood. Here, we describe that primary mouse embryonic fibroblasts develop a basal level of nuclear buds and micronuclei, which increase after etoposide-induced DNA double-stranded breaks. Both basal and induced nuclear buds and micronuclei colocalize with the autophagic proteins BECN1 and LC3B (also known as MAP1LC3B) and with acidic vesicles, suggesting their clearance by nucleophagy. Some of the nuclear alterations also contain autophagic proteins and type II DNA topoisomerases (TOP2A and TOP2B), or the nucleolar protein fibrillarin, implying they are also targets of nucleophagy. We propose that basal nucleophagy contributes to genome and nuclear stability, as well as in response to DNA damage.
Collapse
Affiliation(s)
- Gabriel Muciño-Hernández
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Pilar Sarah Acevo-Rodríguez
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Sandra Cabrera-Benitez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Adán Oswaldo Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico
| | - Horacio Merchant-Larios
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| |
Collapse
|
12
|
Redox Regulation of Autophagy in Cancer: Mechanism, Prevention and Therapy. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010098. [PMID: 36676047 PMCID: PMC9863886 DOI: 10.3390/life13010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS), products of normal cellular metabolism, play an important role in signal transduction. Autophagy is an intracellular degradation process in response to various stress conditions, such as nutritional deprivation, organelle damage and accumulation of abnormal proteins. ROS and autophagy both exhibit double-edged sword roles in the occurrence and development of cancer. Studies have shown that oxidative stress, as the converging point of these stimuli, is involved in the mechanical regulation of autophagy process. The regulation of ROS on autophagy can be roughly divided into indirect and direct methods. The indirect regulation of autophagy by ROS includes post-transcriptional and transcriptional modulation. ROS-mediated post-transcriptional regulation of autophagy includes the post-translational modifications and protein interactions of AMPK, Beclin 1, PI3K and other molecules, while transcriptional regulation mainly focuses on p62/Keap1/Nrf2 pathway. Notably, ROS can directly oxidize key autophagy proteins, such as ATG4 and p62, leading to the inhibition of autophagy pathway. In this review, we will elaborate the molecular mechanisms of redox regulation of autophagy in cancer, and discuss ROS- and autophagy-based therapeutic strategies for cancer treatment.
Collapse
|
13
|
Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H, Song R, Liu Z. The Effect of Oxidative Stress-Induced Autophagy by Cadmium Exposure in Kidney, Liver, and Bone Damage, and Neurotoxicity. Int J Mol Sci 2022; 23:13491. [PMID: 36362277 PMCID: PMC9659299 DOI: 10.3390/ijms232113491] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/11/2023] Open
Abstract
Environmental and occupational exposure to cadmium has been shown to induce kidney damage, liver injury, neurodegenerative disease, and osteoporosis. However, the mechanism by which cadmium induces autophagy in these diseases remains unclear. Studies have shown that cadmium is an effective inducer of oxidative stress, DNA damage, ER stress, and autophagy, which are thought to be adaptive stress responses that allow cells exposed to cadmium to survive in an adverse environment. However, excessive stress will cause tissue damage by inducing apoptosis, pyroptosis, and ferroptosis. Evidently, oxidative stress-induced autophagy plays different roles in low- or high-dose cadmium exposure-induced cell damage, either causing apoptosis, pyroptosis, and ferroptosis or inducing cell survival. Meanwhile, different cell types have different sensitivities to cadmium, which ultimately determines the fate of the cell. In this review, we provided a detailed survey of the current literature on autophagy in cadmium-induced tissue damage. A better understanding of the complex regulation of cell death by autophagy might contribute to the development of novel preventive and therapeutic strategies to treat acute and chronic cadmium toxicity.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qunchao Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengguang Yue
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Li P, Fei CS, Chen YL, Chen ZS, Lai ZM, Tan RQ, Yu YP, Xiang X, Dong JL, Zhang JX, Wang L, Zhang ZM. Revealing the novel autophagy-related genes for ligamentum flavum hypertrophy in patients and mice model. Front Immunol 2022; 13:973799. [PMID: 36275675 PMCID: PMC9581255 DOI: 10.3389/fimmu.2022.973799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Fibrosis is a core pathological factor of ligamentum flavum hypertrophy (LFH) resulting in degenerative lumbar spinal stenosis. Autophagy plays a vital role in multi-organ fibrosis. However, autophagy has not been reported to be involved in the pathogenesis of LFH. Methods The LFH microarray data set GSE113212, derived from Gene Expression Omnibus, was analyzed to obtain differentially expressed genes (DEGs). Potential autophagy-related genes (ARGs) were obtained with the human autophagy regulator database. Functional analyses including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) were conducted to elucidate the underlying biological pathways of autophagy regulating LFH. Protein-protein interaction (PPI) network analyses was used to obtain hub ARGs. Using transmission electron microscopy, quantitative RT-PCR, Western blotting, and immunohistochemistry, we identified six hub ARGs in clinical specimens and bipedal standing (BS) mouse model. Results A total of 70 potential differentially expressed ARGs were screened, including 50 up-regulated and 20 down-regulated genes. According to GO enrichment and KEGG analyses, differentially expressed ARGs were mainly enriched in autophagy-related enrichment terms and signaling pathways related to autophagy. GSEA and GSVA results revealed the potential mechanisms by demonstrating the signaling pathways and biological processes closely related to LFH. Based on PPI network analysis, 14 hub ARGs were identified. Using transmission electron microscopy, we observed the autophagy process in LF tissues for the first time. Quantitative RT-PCR, Western blotting, and immunohistochemistry results indicated that the mRNA and protein expression levels of FN1, TGFβ1, NGF, and HMOX1 significantly higher both in human and mouse with LFH, while the mRNA and protein expression levels of CAT and SIRT1 were significantly decreased. Conclusion Based on bioinformatics analysis and further experimental validation in clinical specimens and the BS mouse model, six potential ARGs including FN1, TGFβ1, NGF, HMOX1, CAT, and SIRT1 were found to participate in the fibrosis process of LFH through autophagy and play an essential role in its molecular mechanism. These potential genes may serve as specific therapeutic molecular targets in the treatment of LFH.
Collapse
Affiliation(s)
- Peng Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng-shuo Fei
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-lin Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze-sen Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong-ming Lai
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui-qian Tan
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-peng Yu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-le Dong
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-xiong Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
- *Correspondence: Liang Wang, ; Zhong-min Zhang,
| | - Zhong-min Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Liang Wang, ; Zhong-min Zhang,
| |
Collapse
|
15
|
Methylation Drives SLC2A1 Transcription and Ferroptosis Process Decreasing Autophagy Pressure in Colon Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9077424. [PMID: 36065306 PMCID: PMC9440784 DOI: 10.1155/2022/9077424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/23/2022] [Indexed: 12/24/2022]
Abstract
Colon cancer is a common malignant tumor in the digestive tract, with relatively high rates of morbidity and mortality. It is the third most common type of tumor in the world. The effective treatment of advanced colon cancer is limited, so it is particularly important to study the new pathogenesis of colon cancer. Ferroptosis is a nonapoptotic regulated cell death mode driven by iron-dependent lipid peroxidation, a process which has been discovered in recent years. Autophagy involves lysosomal degradation pathways that promote or prevent cell death. High levels of autophagy are associated with ferroptosis, but a clear association has not yet been made between ferroptosis and autophagy in colon cancer. Through the analysis of transcriptome expression profiling data in colon cancer, we obtained the common upregulated genes and downregulated genes by recording the intersection of the differentially expressed genes in each dataset. Solute Carrier Family 2 Member 1 (SLC2A1) was identified by combining autophagy genes obtained from GeneCards and ferroptosis genes obtained from FerrDb. In order to explore the clinical significance and prognostic value of SLC2A1, we utilized massive databases to conduct an in-depth exploration of the methylation of SLC2A1, and we also investigated the differences in immune infiltration between tumor and normal tissues. We found that there are abundant methylation sites in SLC2A1 and that the methylation of SLC2A1 is correlated with the immunosuppression of tumor tissue. We discovered that during the induction of environmental factors, the transcription and methylation levels of SLC2A1 were greatly increased, autophagy and ferroptosis were inhibited, and the immune system was defective, resulting in a poor prognosis for patients. These results suggest that the autophagy and ferroptosis-related gene SLC2A1 is involved in the tumor immune regulation of colon cancer, and SLC2A1 may become a new therapeutic target for colon cancer.
Collapse
|
16
|
Cheng X, Du J, Zhou Q, Wu B, Wang H, Xu Z, Zhen S, Jiang J, Wang X, He Z. Huangkui lianchang decoction attenuates experimental colitis by inhibiting the NF-κB pathway and autophagy. Front Pharmacol 2022; 13:951558. [PMID: 36081930 PMCID: PMC9446438 DOI: 10.3389/fphar.2022.951558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory colorectal disease characterized by excessive mucosal immune response activation and dysfunction of autophagy in intestinal epithelial cells. Traditional herbal preparations, including the Huangkui lianchang decoction (HLD), are effective in UC clinical treatment in East Asia, but the underlying mechanism is unclear. This study evaluated the therapeutic effects and associated molecular mechanisms of HLD in UC in vivo and in vitro. A C57BL/6 UC mouse model was established using 2.5% dextran sulfate sodium. The effects of HLD on the colonic structure and inflammation in mice were evaluated using mesalazine as the control. The anti-inflammatory effects of HLD were assessed using disease activity index (DAI) scores, histological scores, enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, and western blotting. HLD displayed a protective effect in UC mice by reducing the DAI and colonic histological scores, as well as levels of inflammatory cytokines and NF-κB p65 in colonic tissues. NCM460 lipopolysaccharide-induced cells were administered drug serum-containing HLD (HLD-DS) to evaluate the protective effect against UC and the effect on autophagy. HLD-DS exhibited anti-inflammatory effects in NCM460 cells by reducing the levels of inflammatory cytokines and increasing interleukin 10 levels. HLD-DS reduced p-NF-κB p65, LC3II/I, and Beclin 1 expression, which suggested that HLD alleviated colitis by inhibiting the NF-κB pathway and autophagy. However, there was no crosstalk between the NF-κB pathway and autophagy. These findings confirmed that HLD was an effective herbal preparation for the treatment of UC.
Collapse
Affiliation(s)
- Xudong Cheng
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jun Du
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Qing Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bensheng Wu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | | | - Zhizhong Xu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shuguang Zhen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jieyu Jiang
- Suzhou Foreign Language School, Suzhou, China
| | - Xiaopeng Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- *Correspondence: Xiaopeng Wang, ; Zongqi He,
| | - Zongqi He
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- *Correspondence: Xiaopeng Wang, ; Zongqi He,
| |
Collapse
|
17
|
Xu B, Dai W, Liu L, Han H, Zhang J, Du X, Pei X, Fu X. Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway. Endocr J 2022; 69:863-875. [PMID: 35228471 DOI: 10.1507/endocrj.ej21-0480] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%-15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjing Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
18
|
Boonhok R, Sangkanu S, Phumjan S, Jongboonjua R, Sangnopparat N, Kwankaew P, Tedasen A, Lim CL, Pereira MDL, Rahmatullah M, Wilairatana P, Wiart C, Dolma KG, Paul AK, Gupta M, Nissapatorn V. Curcumin effect on Acanthamoeba triangularis encystation under nutrient starvation. PeerJ 2022; 10:e13657. [PMID: 35811814 PMCID: PMC9261923 DOI: 10.7717/peerj.13657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Background Curcumin is an active compound derived from turmeric, Curcuma longa, and is known for its benefits to human health. The amoebicidal activity of curcumin against Acanthamoeba triangularis was recently discovered. However, a physiological change of intracellular pathways related to A. triangularis encystation mechanism, including autophagy in the surviving amoeba after curcumin treatment, has never been reported. This study aims to investigate the effect of curcumin on the survival of A. triangularis under nutrient starvation and nutrient-rich condition, as well as to evaluate the A. triangularis encystation and a physiological change of Acanthamoeba autophagy at the mRNA level. Methods In this study, A. triangularis amoebas were treated with a sublethal dose of curcumin under nutrient starvation and nutrient-rich condition and the surviving amoebas was investigated. Cysts formation and vacuolization were examined by microscopy and transcriptional expression of autophagy-related genes and other encystation-related genes were evaluated by real-time PCR. Results A. triangularis cysts were formed under nutrient starvation. However, in the presence of the autophagy inhibitor, 3-methyladenine (3-MA), the percentage of cysts was significantly reduced. Interestingly, in the presence of curcumin, most of the parasites remained in the trophozoite stage in both the starvation and nutrient-rich condition. In vacuolization analysis, the percentage of amoebas with enlarged vacuole was increased upon starvation. However, the percentage was significantly declined in the presence of curcumin and 3-MA. Molecular analysis of A. triangularis autophagy-related (ATG) genes showed that the mRNA expression of the ATG genes, ATG3, ATG8b, ATG12, ATG16, under the starvation with curcumin was at a basal level along the treatment. The results were similar to those of the curcumin-treated amoebas under a nutrient-rich condition, except AcATG16 which increased later. On the other hand, mRNA expression of encystation-related genes, cellulose synthase and serine proteinase, remained unchanged during the first 18 h, but significantly increased at 24 h post treatment. Conclusion Curcumin inhibits cyst formation in surviving trophozoites, which may result from its effect on mRNA expression of key Acanthamoeba ATG-related genes. However, further investigation into the mechanism of curcumin in A. triangularis trophozoites arrest and its association with autophagy or other encystation-related pathways is needed to support the future use of curcumin.
Collapse
Affiliation(s)
- Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Suganya Phumjan
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Ramita Jongboonjua
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Nawarat Sangnopparat
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Pattamaporn Kwankaew
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mohammed Rahmatullah
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachathewee, Bangkok, Thailand
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| |
Collapse
|
19
|
Zheng L, Wei F, Li G. The crosstalk between bacteria and host autophagy: host defense or bacteria offense. J Microbiol 2022; 60:451-460. [DOI: 10.1007/s12275-022-2009-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022]
|
20
|
Klapan K, Simon D, Karaulov A, Gomzikova M, Rizvanov A, Yousefi S, Simon HU. Autophagy and Skin Diseases. Front Pharmacol 2022; 13:844756. [PMID: 35370701 PMCID: PMC8971629 DOI: 10.3389/fphar.2022.844756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a highly conserved lysosomal degradation system that involves the creation of autophagosomes, which eventually fuse with lysosomes and breakdown misfolded proteins and damaged organelles with their enzymes. Autophagy is widely known for its function in cellular homeostasis under physiological and pathological settings. Defects in autophagy have been implicated in the pathophysiology of a variety of human diseases. The new line of evidence suggests that autophagy is inextricably linked to skin disorders. This review summarizes the principles behind autophagy and highlights current findings of autophagy's role in skin disorders and strategies for therapeutic modulation.
Collapse
Affiliation(s)
- Kim Klapan
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Marina Gomzikova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
21
|
Rapamycin ameliorates age-related hearing loss in C57BL/6J mice by enhancing autophagy in the SGNs. Neurosci Lett 2022; 772:136493. [DOI: 10.1016/j.neulet.2022.136493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/15/2023]
|
22
|
Qu J, Wang J, Zhang H, Wu J, Ma X, Wang S, Zang Y, Huang Y, Ma Y, Cao Y, Wu D, Zhang T. Toxicokinetics and systematic responses of differently sized indium tin oxide (ITO) particles in mice via oropharyngeal aspiration exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117993. [PMID: 34428702 DOI: 10.1016/j.envpol.2021.117993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/23/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Indium tin oxide (ITO) is an important semiconductor material, because of increasing commercial products consumption and potentially exposed workers worldwide. So, urgently we need to assess and manage potential health risks of ITO. Although the Occupational Exposure Limit (OEL) has been established for ITO exposure, there is still a lack of distinguishing the risks of exposure to particles of different sizes. Therefore, obtaining toxicological data of small-sized particles will help to improve its risk assessment data. Important questions raised in quantitative risk assessments for ITO particles are whether biodistribution of ITO particles is affected by particle size and to what extent systematic adverse responses is subsequently initiated. In order to determine whether this toxicological paradigm for size is relevant in ITO toxic effect, we performed comparative studies on the toxicokinetics and sub-acute toxicity test of ITO in mice. The results indicate both sized-ITO resided in the lung tissue and slowly excreted from the mice, and the smaller size of ITO being cleared more slowly. Only a little ITO was transferred to other organs, especially with higher blood flow. Two type of ITO which deposit in the lung mainly impacts respiratory system and may injure liver or kidney. After sub-acute exposure to ITO, inflammation featured by neutrophils infiltration and fibrosis with both dose and size effects have been observed. Our findings revealed toxicokinetics and dose-dependent pulmonary toxicity in mice via oropharyngeal aspiration exposure, also replenish in vivo risk assessment of ITO. Collectively, these data indicate that under the current OEL, there are potential toxic effects after exposure to the ITO particles. The observed size-dependent biodistribution patterns and toxic effect might be important for approaching the hazard potential of small-sized ITO in an occupational environment.
Collapse
Affiliation(s)
- Jing Qu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jianli Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Haopeng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jingying Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinmo Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shile Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yiteng Zang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuhui Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
23
|
Mao C, Xu X, Ding Y, Xu N. Optimization of BCG Therapy Targeting Neutrophil Extracellular Traps, Autophagy, and miRNAs in Bladder Cancer: Implications for Personalized Medicine. Front Med (Lausanne) 2021; 8:735590. [PMID: 34660642 PMCID: PMC8514698 DOI: 10.3389/fmed.2021.735590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
Bladder cancer (BC) is the ninth most common cancer and the thirteenth most common cause of mortality worldwide. Bacillus Calmette Guerin (BCG) instillation is a common treatment option for BC. BCG therapy is associated with the less adversary effects, compared to chemotherapy, radiotherapy, and other conventional treatments. BCG could inhibit the progression and recurrence of BC by triggering apoptosis pathways, arrest cell cycle, autophagy, and neutrophil extracellular traps (NETs) formation. However, BCG therapy is not efficient for metastatic cancer. NETs and autophagy were induced by BCG and help to suppress the growth of tumor cells especially in the primary stages of BC. Activated neutrophils can stimulate autophagy pathway and release NETs in the presence of microbial pathogenesis, inflammatory agents, and tumor cells. Autophagy can also regulate NETs formation and induce production of reactive oxygen species (ROS) and NETs. Moreover, miRNAs are important regulator of gene expression. These small non-coding RNAs are also considered as an essential factor to control the levels of tumor development. However, the interaction between BCG and miRNAs has not been well-understood yet. Therefore, the present study discusses the roles of miRNAs in regulations of autophagy and NETs formation in BCG therapy in the treatment of BC. The roles of autophagy and NETs formation in BC treatment and efficiency of BCG are also discussed.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Xu
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, Henninger N, Reiter RJ, Bruno A, Joshipura K, Aslkhodapasandhokmabad H, Klionsky DJ, Ren J. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther 2021; 225:107848. [PMID: 33823204 PMCID: PMC8263472 DOI: 10.1016/j.pharmthera.2021.107848] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts, Worcester, Massachusetts, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936-5067, Puerto Rico
| | | | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor 48109, USA.
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington Seattle, Seattle, WA 98195, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
25
|
Ghaznavi H, Shirvaliloo M, Zarebkohan A, Shams Z, Radnia F, Bahmanpour Z, Sargazi S, Saravani R, Shirvalilou S, Shahraki O, Shahraki S, Nazarlou Z, Sheervalilou R. An Updated Review on Implications of Autophagy and Apoptosis in Tumorigenesis: Possible Alterations in Autophagy through Engineered Nanomaterials and Their Importance in Cancer Therapy. Mol Pharmacol 2021; 100:119-143. [PMID: 33990406 DOI: 10.1124/molpharm.121.000234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Most commonly recognized as a catabolic pathway, autophagy is a perplexing mechanism through which a living cell can free itself of excess cytoplasmic components, i.e., organelles, by means of certain membranous vesicles or lysosomes filled with degrading enzymes. Upon exposure to external insult or internal stimuli, the cell might opt to activate such a pathway, through which it can gain control over the maintenance of intracellular components and thus sustain homeostasis by intercepting the formation of unnecessary structures or eliminating the already present dysfunctional or inutile organelles. Despite such appropriateness, autophagy might also be considered a frailty for the cell, as it has been said to have a rather complicated role in tumorigenesis. A merit in the early stages of tumor formation, autophagy appears to be salutary because of its tumor-suppressing effects. In fact, several investigations on tumorigenesis have reported diminished levels of autophagic activity in tumor cells, which might result in transition to malignancy. On the contrary, autophagy has been suggested to be a seemingly favorable mechanism to progressed malignancies, as it contributes to survival of such cells. Based on the recent literature, this mechanism might also be activated upon the entry of engineered nanomaterials inside a cell, supposedly protecting the host from foreign materials. Accordingly, there is a good chance that therapeutic interventions for modulating autophagy in malignant cells using nanoparticles may sensitize cancerous cells to certain treatment modalities, e.g., radiotherapy. In this review, we will discuss the signaling pathways involved in autophagy and the significance of the mechanism itself in apoptosis and tumorigenesis while shedding light on possible alterations in autophagy through engineered nanomaterials and their potential therapeutic applications in cancer. SIGNIFICANCE STATEMENT: Autophagy has been said to have a complicated role in tumorigenesis. In the early stages of tumor formation, autophagy appears to be salutary because of its tumor-suppressing effects. On the contrary, autophagy has been suggested to be a favorable mechanism to progressed malignancies. This mechanism might be affected upon the entry of nanomaterials inside a cell. Accordingly, therapeutic interventions for modulating autophagy using nanoparticles may sensitize cancerous cells to certain therapies.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Milad Shirvaliloo
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Amir Zarebkohan
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Zinat Shams
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Fatemeh Radnia
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Zahra Bahmanpour
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Saman Sargazi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Ramin Saravani
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Sakine Shirvalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Sheida Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Ziba Nazarlou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| |
Collapse
|
26
|
Ajoolabady A, Aslkhodapasandhokmabad H, Henninger N, Demillard LJ, Nikanfar M, Nourazarian A, Ren J. Targeting autophagy in neurodegenerative diseases: From molecular mechanisms to clinical therapeutics. Clin Exp Pharmacol Physiol 2021; 48:943-953. [PMID: 33752254 PMCID: PMC8204470 DOI: 10.1111/1440-1681.13500] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Many neurodegenerative diseases are associated with pathological aggregation of proteins in neurons. Autophagy is a natural self-cannibalization process that can act as a powerful mechanism to remove aged and damaged organelles as well as protein aggregates. It has been shown that promoting autophagy can attenuate or delay neurodegeneration by removing protein aggregates. In this paper, we will review the role of autophagy in Alzheimer's disease (AD), Parkinson's Disease (PD), and Huntington's Disease (HD) and discuss opportunities and challenges of targeting autophagy as a potential therapeutic avenue for treatment of these common neurodegenerative diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, MA 01655, USA
- Department of Psychiatry, University of Massachusetts, Worcester, MA 01655, USA
| | - Laurie J. Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| | - Masoud Nikanfar
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jun Ren
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
27
|
Klapan K, Frangež Ž, Markov N, Yousefi S, Simon D, Simon HU. Evidence for Lysosomal Dysfunction within the Epidermis in Psoriasis and Atopic Dermatitis. J Invest Dermatol 2021; 141:2838-2848.e4. [PMID: 34090855 DOI: 10.1016/j.jid.2021.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis and psoriasis are frequent chronic inflammatory skin diseases. Autophagy plays a substantial role in the homeostasis of an organism. Loss or impairment of autophagy is associated with multiple diseases. To investigate the possibility that autophagy plays a role in atopic dermatitis and psoriasis, we investigated the levels of key ATG proteins in human skin specimens as well as in primary human epidermal keratinocytes exposed to inflammatory stimuli in vitro. Although TNF-α facilitated the induction of autophagy in an initial phase, it reduced the levels and enzymatic activities of lysosomal cathepsins in later time periods, resulting in autophagy inhibition. Therefore, TNF-α appears to play a dual role in the regulation of autophagy. The relevance of these in vitro findings was supported by the observation that the protein levels of cathepsins D and L are decreased in both psoriasis and atopic dermatitis skin specimens. Taken together, this study suggests that TNF-α blocks autophagy in keratinocytes after long-term exposure, a mechanism that may contribute to the chronicity of inflammatory diseases of the skin and, perhaps, of other organs.
Collapse
Affiliation(s)
- Kim Klapan
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Živa Frangež
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Medical School Brandenburg, Neuruppin, Germany; Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia; Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
28
|
Causes and consequences of DNA damage-induced autophagy. Matrix Biol 2021; 100-101:39-53. [DOI: 10.1016/j.matbio.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
|
29
|
Germic N, Hosseini A, Yousefi S, Karaulov A, Simon HU. Regulation of eosinophil functions by autophagy. Semin Immunopathol 2021; 43:347-362. [PMID: 34019141 PMCID: PMC8241657 DOI: 10.1007/s00281-021-00860-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
Eosinophils are granule-containing leukocytes which develop in the bone marrow. For many years, eosinophils have been recognized as cytotoxic effector cells, but recent studies suggest that they perform additional immunomodulatory and homeostatic functions. Autophagy is a conserved intracellular process which preserves cellular homeostasis. Autophagy defects have been linked to the pathogenesis of many human disorders. Evidence for abnormal regulation of autophagy, including decreased or increased expression of autophagy-related (ATG) proteins, has been reported in several eosinophilic inflammatory disorders, such as Crohn's disease, bronchial asthma, eosinophilic esophagitis, and chronic rhinosinusitis. Despite the increasing extent of research using preclinical models of immune cell-specific autophagy deficiency, the physiological relevance of autophagic pathway in eosinophils has remained unknown until recently. Owing to the increasing evidence that eosinophils play a role in keeping organismal homeostasis, the regulation of eosinophil functions is of considerable interest. Here, we discuss the most recent advances on the role of autophagy in eosinophils, placing particular emphasis on insights obtained in mouse models of infections and malignant diseases in which autophagy has genetically dismantled in the eosinophil lineage. These studies pointed to the possibility that autophagy-deficient eosinophils exaggerate inflammation. Therefore, the pharmacological modulation of the autophagic pathway in these cells could be used for therapeutic interventions.
Collapse
Affiliation(s)
- Nina Germic
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland
| | - Aref Hosseini
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, 119991, Moscow, Russia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland. .,Department of Clinical Immunology and Allergology, Sechenov University, 119991, Moscow, Russia. .,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420012, Kazan, Russia.
| |
Collapse
|
30
|
Zhou W, Zhang H, Pan Y, Xu Y, Cao Y. circRNA expression profiling of colon tissue from mesalazine-treated mouse of inflammatory bowel disease reveals an important circRNA-miRNA-mRNA pathway. Aging (Albany NY) 2021; 13:10187-10207. [PMID: 33819198 PMCID: PMC8064189 DOI: 10.18632/aging.202780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Mesalazine (5-aminosalicylic acid, 5-ASA) has been widely used to treat inflammatory bowel disease (IBD). However, it remains unclear about the underlying biological mechanisms of IBD pathogenesis and mesalazine treatment, which could be partially clarified by exploring the profiling of circular RNAs (circRNAs) using RNA-seq. A total of 15 mice (C57BL/6) were randomly assigned to three equally sized groups: control, dextran sulfate sodium (DSS, using DSS to induce IBD), and DSS+5-ASA (using mesalazine to treat IBD). We randomly selected three mice of each group to collect colon tissues for RNA-seq and then performed bioinformatic analysis for two comparisons: DSS vs. control and DSS+5-ASA vs. DSS. Comparisons of a series of indicators (e.g., body weight) verified the establishment of DSS-induced IBD mouse model and the effectiveness of mesalazine in treating IBD. We identified 182 differentially expressed circRNAs, including 55 up-regulated and 47 down-regulated circRNAs when comparing the DSS+5-ASA with the DSS group. These 102 circRNA-associated genes were significantly involved in the N-Glycan biosynthesis and lysine degradation. The network analysis of circRNA-miRNA-mRNAs identified an important pathway, i.e., chr10:115386962-115390436+/mmu-miR-6914-5p/Atg7, which is related to autophagy. The findings provide new insights into the biological mechanisms of IBD pathogenesis and mesalazine treatment, particularly highlighting the circRNA-miRNA-mRNA pathway.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, United States of America
| | - Haiyin Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Pan
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanwu Xu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Cao
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
ATG5 promotes eosinopoiesis but inhibits eosinophil effector functions. Blood 2021; 137:2958-2969. [PMID: 33598715 DOI: 10.1182/blood.2020010208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses.
Collapse
|
32
|
Kon N, Ou Y, Wang SJ, Li H, Rustgi AK, Gu W. mTOR inhibition acts as an unexpected checkpoint in p53-mediated tumor suppression. Genes Dev 2020; 35:59-64. [PMID: 33303641 PMCID: PMC7778266 DOI: 10.1101/gad.340919.120] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Here, we showed that the acetylation-defective p53-4KR mice, lacking the ability of cell cycle arrest, senescence, apoptosis, and ferroptosis, were tumor prone but failed to develop early-onset tumors. By identifying a novel p53 acetylation site at lysine K136, we found that simultaneous mutations at all five acetylation sites (p53-5KR) diminished its remaining tumor suppression function. Moreover, the embryonic lethality caused by the deficiency of mdm2 was fully rescued in the background of p535KR/5KR , but not p534KR/4KR background. p53-4KR retained the ability to suppress mTOR function but this activity was abolished in p53-5KR cells. Notably, the early-onset tumor formation observed in p535KR/5KR and p53-null mice was suppressed upon the treatment of the mTOR inhibitor. These results suggest that p53-mediated mTOR regulation plays an important role in both embryonic development and tumor suppression, independent of cell cycle arrest, senescence, apoptosis, and ferroptosis.
Collapse
Affiliation(s)
- Ning Kon
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Yang Ou
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Shang-Jui Wang
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Huan Li
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| |
Collapse
|
33
|
Bellezza I, Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. Reductive stress in striated muscle cells. Cell Mol Life Sci 2020; 77:3547-3565. [PMID: 32072237 PMCID: PMC11105111 DOI: 10.1007/s00018-020-03476-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Reductive stress is defined as a condition of sustained increase in cellular glutathione/glutathione disulfide and NADH/NAD+ ratios. Reductive stress is emerging as an important pathophysiological event in several diseased states, being as detrimental as is oxidative stress. Occurrence of reductive stress has been documented in several cardiomyopathies and is an important pathophysiological factor particularly in coronary artery disease and myocardial infarction. Excess activation of the transcription factor, Nrf2-the master regulator of the antioxidant response-, consequent in most cases to defective autophagy, can lead to reductive stress. In addition, hyperglycemia-induced activation of the polyol pathway can lead to increased NADH/NAD+ ratio, which might translate into increased levels of hydrogen sulfide-via enhanced activity of cystathionine β-synthase-that would fuel reductive stress through inhibition of mitochondrial complex I. Reductive stress may be either a potential weapon against cancer priming tumor cells to apoptosis or a cancer's ally promoting tumor cell proliferation and making tumor cells resistant to reactive oxygen species-inducing drugs. In non-cancer pathological states reductive stress is definitely harmful paradoxically leading to reactive oxygen species overproduction via excess NADPH oxidase 4 activity. In face of the documented occurrence of reductive stress in several heart diseases, there is much less information about the occurrence and effects of reductive stress in skeletal muscle tissue. In the present review we describe relevant results emerged from studies of reductive stress in the heart and review skeletal muscle conditions in which reductive stress has been experimentally documented and those in which reductive stress might have an as yet unrecognized pathophysiological role. Establishing whether reductive stress has a (patho)physiological role in skeletal muscle will hopefully contribute to answer the question whether antioxidant supplementation to the general population, athletes, and a large cohort of patients (e.g. heart, sarcopenic, dystrophic, myopathic, cancer, and bronco-pulmonary patients) is harmless or detrimental.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Sara Chiappalupi
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
- Centro Universitario Di Ricerca Sulla Genomica Funzionale, University of Perugia, 06132, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy.
| |
Collapse
|
34
|
Zhang X, Qin C, Jing Y, Yang D, Liu C, Gao F, Zhang C, Talifu Z, Yang M, Du L, Li J. Therapeutic effects of rapamycin and surgical decompression in a rabbit spinal cord injury model. Cell Death Dis 2020; 11:567. [PMID: 32703937 PMCID: PMC7378229 DOI: 10.1038/s41419-020-02767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/09/2022]
Abstract
Surgical decompression after spinal cord injury (SCI) is a conventional treatment. Although it has been proven to have clinical effects, there are certain limitations, such as the surgical conditions that must be met and the invasive nature of the treatment. Therefore, there is an urgent need to develop a simple and maneuverable therapy for the emergency treatment of patients with SCI before surgery. Rapamycin (RAPA) has been reported to have potential as a therapeutic agent for SCI. In this study, we observed the therapeutic effects of rapamycin and surgical decompression, in combination or separately, on the histopathology in rabbits with SCI. After combination therapy, intramedullary pressure (IMP) decreased significantly, autophagic flux increased, and apoptosis and demyelination were significantly reduced. Compared with RAPA/surgical decompression alone, the combination therapy had a significantly better effect. In addition, we evaluated the effects of mechanical pressure on autophagy after SCI by assessing changes in autophagic initiation, degradation, and flux. Increased IMP after SCI inhibited autophagic degradation and impaired autophagic flux. Decompression improved autophagic flux after SCI. Our findings provide novel evidence of a promising strategy for the treatment of SCI in the future. The combination therapy may effectively improve emergency treatment after SCI and promote the therapeutic effect of decompression. This study also contributes to a better understanding of the effects of mechanical pressure on autophagy after neurotrauma.
Collapse
Affiliation(s)
- Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yingli Jing
- China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.,Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, 100068, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Changbin Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Beijing, 100050, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Zuliyaer Talifu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China. .,China Rehabilitation Science Institute, Beijing, 100068, China. .,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China. .,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China. .,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.
| |
Collapse
|
35
|
Olfati A, Khamisabadi H. RETRACTED ARTICLE: Ellagic Acid Improves Testicular Dysfunction via Autophagy in a Tamoxifen-Injured Rat Model. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020030096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Saccà SC, Vernazza S, Iorio EL, Tirendi S, Bassi AM, Gandolfi S, Izzotti A. Molecular changes in glaucomatous trabecular meshwork. Correlations with retinal ganglion cell death and novel strategies for neuroprotection. PROGRESS IN BRAIN RESEARCH 2020; 256:151-188. [PMID: 32958211 DOI: 10.1016/bs.pbr.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by retinal ganglion cell loss. Although significant advances in ophthalmologic knowledge and practice have been made, some glaucoma mechanisms are not yet understood, therefore, up to now there is no effective treatment able to ensure healing. Indeed, either pharmacological or surgical approaches to this disease aim in lowering intraocular pressure, which is considered the only modifiable risk factor. However, it is well known that several factors and metabolites are equally (if not more) involved in glaucoma. Oxidative stress, for instance, plays a pivotal role in both glaucoma onset and progression because it is responsible for the trabecular meshwork cell damage and, consequently, for intraocular pressure increase as well as for glaucomatous damage cascade. This review at first shows accurately the molecular-derived dysfunctions in antioxidant system and in mitochondria homeostasis which due to both oxidative stress and aging, lead to a chronic inflammation state, the trabecular meshwork damage as well as the glaucoma neurodegeneration. Therefore, the main molecular events triggered by oxidative stress up to the proapoptotic signals that promote the ganglion cell death have been highlighted. The second part of this review, instead, describes some of neuroprotective agents such as polyphenols or polyunsaturated fatty acids as possible therapeutic source against the propagation of glaucomatous damage.
Collapse
Affiliation(s)
- Sergio C Saccà
- Policlinico San Martino University Hospital, Department of Neuroscience and sense organs, Ophthalmology Unit, Genoa, Italy.
| | | | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Alberto Izzotti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Mutagenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
37
|
Liang C, Feng Z, Manthari RK, Wang C, Han Y, Fu W, Wang J, Zhang J. Arsenic induces dysfunctional autophagy via dual regulation of mTOR pathway and Beclin1-Vps34/PI3K complex in MLTC-1 cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122227. [PMID: 32044640 DOI: 10.1016/j.jhazmat.2020.122227] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Arsenic poisoning and induced potential lesion is a global concern. However, the exact mechanisms underlying its toxicity especially in male reproductive system still remain unclear. Hence, this study aimed to explore the roles of mTOR and Beclin1-Vps34/PI3K complex during As-induced-toxicity using Rapamycin (mTOR inhibitor), Beclin1 siRNA and 3-methyladenine (3-MA, Vps34/PI3K inhibitor) in testicular stromal cells. For this, mouse testis Leydig Tumor Cell lines (MLTC-1) were challenged with As2O3 (0, 3, 6 and 9 μM) exposure for 24 hs. Lyso-Tracker Red and Monodansylcadaverine (MDC) staining results depicted a significant accumulation of autophagosomes in MLTC-1 cells exposed to arsenic. Meanwhile, arsenic treatment up-regulated autophagic markers including LC3, Atg7, Beclin1 and Vps34 expressions, mTOR downstream autophagy related genes and the Beclin1-Vps34/PI3K complex associated members. Furthermore, silencing of Beclin1, and inhibition of Vps34/PI3K and mTOR altered the arsenic-induced autophagosomes formation. However, p62, the substrate protein of autophagy, was also up-regulated by arsenic administration independent on Beclin1-Vps34/PI3K complex. Altogether, our results revealed that arsenic exposure induced autophagosomes formation via regulation of the Beclin1-Vps34/PI3K complex and mTOR pathway; the blockage of autophagosomes degradation maybe due to impaired function of lysosomes. Thus, this study provides a novel mechanistic approach with respect to As-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Chen Liang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Zhiyuan Feng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Ram Kumar Manthari
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Yongli Han
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Weixiang Fu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jundong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jianhai Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
38
|
Guo Z, Mo Z. Keap1‐Nrf2 signaling pathway in angiogenesis and vascular diseases. J Tissue Eng Regen Med 2020; 14:869-883. [PMID: 32336035 DOI: 10.1002/term.3053] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zi Guo
- Department of EndocrinologyThe Third Xiangya Hospital, Central South University Changsha China
| | - Zhaohui Mo
- Department of EndocrinologyThe Third Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
39
|
NF-κB and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection. J Virol 2020; 94:JVI.00016-20. [PMID: 32161178 DOI: 10.1128/jvi.00016-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
The rabbit hemorrhagic disease virus (RHDV), which belongs to the family Caliciviridae and the genus Lagovirus, causes lethal fulminant hepatitis in rabbits. RHDV decreases the activity of antioxidant enzymes regulated by Nrf2 in the liver. Antioxidants are important for the maintenance of cellular integrity and cytoprotection. However, the mechanism underlying the regulation of the Nrf2-antioxidant response element (ARE) signaling pathway by RHDV remains unclear. Using isobaric tags for relative and absolute quantification (iTRAQ) technology, the current study demonstrated that RHDV inhibits the induction of ARE-regulated genes and increases the expression of the p50 subunit of the NF-κB transcription factor. We showed that RHDV replication causes a remarkable increase in reactive oxygen species (ROS), which is simultaneously accompanied by a significant decrease in Nrf2. It was found that nuclear translocation of Keap1 plays a key role in the nuclear export of Nrf2, leading to the inhibition of Nrf2 transcriptional activity. The p50 protein partners with Keap1 to form the Keap1-p50/p65 complex, which is involved in the nuclear translocation of Keap1. Moreover, upregulation of Nrf2 protein levels in liver cell nuclei by tert-butylhydroquinone (tBHQ) delayed rabbit deaths due to RHDV infection. Considered together, our findings suggest that RHDV inhibits the Nrf2-dependent antioxidant response via nuclear translocation of Keap1-NF-κB complex and nuclear export of Nrf2 and provide new insight into the importance of oxidative stress during RHDV infection.IMPORTANCE Recent studies have reported that rabbit hemorrhagic disease virus (RHDV) infection reduced Nrf2-related antioxidant function. However, the regulatory mechanisms underlying this process remain unclear. The current study showed that the NF-κB p50 subunit partners with Keap1 to form the Keap1-NF-κB complex, which plays a key role in the inhibition of Nrf2 transcriptional activity. More importantly, upregulated Nrf2 activity delayed the death of RHDV-infected rabbits, strongly indicating the importance of oxidative damage during RHDV infection. These findings may provide novel insights into the pathogenesis of RHDV.
Collapse
|
40
|
Ajoolabady A, Aghanejad A, Bi Y, Zhang Y, Aslkhodapasandhukmabad H, Abhari A, Ren J. Enzyme-based autophagy in anti-neoplastic management: From molecular mechanisms to clinical therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188366. [PMID: 32339608 DOI: 10.1016/j.bbcan.2020.188366] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023]
Abstract
Autophagy is an evolutionarily conserved self-cannibalization process commonly found in all eukaryotic cells. Through autophagy, long-lived or damaged organelles, superfluous proteins, and pathogens are sequestered and encapsulated into the double-membrane autophagosomes prior to fusion with lysosomes for ultimate degradation and recycling. Given that autophagy is deemed both protective and detrimental in malignancies, the clinical therapeutic utilization of autophagy modulators in cancer has attracted immense attentions over the past decades. Dependence of tumor cells on autophagy during amino acid insufficiency or deprivation has prompted us to explore the underlying autophagy regulatory mechanisms to inject amino acid degrading enzymes and enzyme-based strategies into therapeutic maneuvers of autophagy in cancer.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaguang Bi
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | - Alireza Abhari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
41
|
Liu C, Zhou X, Lu J, Zhu L, Li M. Autophagy mediates 2-methoxyestradiol-inhibited scleroderma collagen synthesis and endothelial-to-mesenchymal transition induced by hypoxia. Rheumatology (Oxford) 2020; 58:1966-1975. [PMID: 31049569 DOI: 10.1093/rheumatology/kez159] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES To investigate whether autophagy mediates 2-methoxyestradiol (2-ME)-inhibited hypoxia-induced fibrosis and endothelial-to-mesenchymal transition (endoMT) in SSc. METHODS Autophagy in the skin of SSc patients was assessed by transmission electron microscopy. SSc skin fibroblasts and human umbilical vein endothelial cells (HUVECs) were cultured under hypoxic (1% O2) conditions with 2-ME or autophagy inhibitor. Collagen I and connective tissue growth factor (CTGF) in fibroblasts and vascular endothelial (VE)-cadherin, CD31, vimentin and α-smooth muscle actin (α-SMA) in HUVECs were examined by western blotting. Autophagic markers were evaluated by confocal microscopy and immunofluorescence. RESULTS SSc skins presented increased autolysosomes, LC3-II, collagen I and CTGF. Hypoxia-challenged fibroblasts and HUVECs formed more autophagosomes and autolysosomes, with increased LC3 and decreased P62. Meanwhile, hypoxia increased collagen I and CTGF in fibroblasts and increased vimentin and α-SMA but decreased VE-cadherin and CD31 in HUVECs. Bafilomycin A1 increased LC3-II and P62 in fibroblasts and HUVECs and decreased collagen I and CTGF in fibroblasts and vimentin and α-SMA in HUVECs, while upregulating VE-cadherin and CD31. 3-methyladenine decreased autophagy and fibrosis in fibroblasts and endothelial-to-mesenchymal transition in HUVECs. 2-ME-treated HUVECs showed more autophagosomes and fewer autolysosomes while 2-ME-treated fibroblasts showed fewer of both. Moreover, 2-ME decreased LC3-II and increased P62 in fibroblasts and increased both in HUVECs. Inhibition of autophagy by 2-ME showed the same effect with bafilomycin A1 on fibroblast collagen synthesis as well as endothelial and mesenchymal markers in HUVECs. CONCLUSION Autophagy mediated hypoxia-induced fibroblast collagen synthesis and endoMT in SSc, which could be reversed by 2-ME.
Collapse
Affiliation(s)
- Chaofan Liu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xing Zhou
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinghao Lu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lubing Zhu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
He H, An F, Huang Q, Kong Y, He D, Chen L, Song H. Metabolic effect of AOS-iron in rats with iron deficiency anemia using LC-MS/MS based metabolomics. Food Res Int 2020; 130:108913. [DOI: 10.1016/j.foodres.2019.108913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/02/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022]
|
43
|
Yao H, Fan M, He X. Autophagy suppresses resveratrol-induced apoptosis in renal cell carcinoma 786-O cells. Oncol Lett 2020; 19:3269-3277. [PMID: 32256822 PMCID: PMC7074540 DOI: 10.3892/ol.2020.11442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023] Open
Abstract
As a polyphenolic compound, resveratrol (Res) is widely distributed in a variety of plants. Previous studies have demonstrated that Res can inhibit various different types of tumor growth. However, its role in renal cell carcinoma (RCC) remains largely unknown. The present study first demonstrated that Res inhibited cell viability and induced apoptosis in RCC 786-O cells. Further experiments revealed that Res damaged the mitochondria and activated caspase 3. In contrast, Z-VAD-FMK, a pan-caspase inhibitor, suppressed Res-induced apoptosis. Reactive oxygen species (ROS) were involved in the process of Res-induced apoptosis, and antioxidant N-acetyl cysteine could significantly attenuate this. Furthermore, Res activated c-Jun N-terminal kinase via ROS to induce autophagy, whereas inhibition of autophagy with chloroquine or Beclin 1 small interfering RNA aggravated Res-induced apoptosis, indicating that autophagy served as a pro-survival mechanism to protect 786-O cells from Res-induced apoptosis. Therefore, a combination of Res and autophagy inhibitors could enhance the inhibitory effect of Res on RCC.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
44
|
Ruan T, Liu W, Tao K, Wu C. A Review of Research Progress in Multidrug-Resistance Mechanisms in Gastric Cancer. Onco Targets Ther 2020; 13:1797-1807. [PMID: 32184615 PMCID: PMC7053652 DOI: 10.2147/ott.s239336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/15/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most common malignant tumors, and it is also one of the leading causes of cancer death worldwide. Because of its insidious symptoms and lack of early dictation screening, many cases of gastric cancer are at late stages which make it more complicated to cure. For these advanced-stage gastric cancers, combination therapy of surgery, chemotherapy, radiotherapy and target therapy would bring more benefit to the patients. However, the drug-resistance to the chemotherapy restricts its effect and might lead to treatment failure. In this review article, we discuss the mechanisms which have been found in recent years of drug resistance in gastric cancer. And we also want to find new approaches to counteract chemotherapy resistance and bring more benefits to the patients.
Collapse
Affiliation(s)
- Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
45
|
Samaka RM, Basha MA, Mansour E. Does the Autophagy Related Gene 7 (ATG7) Have a Role in Non-Melanoma Skin Cancer? Clin Cosmet Investig Dermatol 2020; 13:49-58. [PMID: 32021368 PMCID: PMC6980838 DOI: 10.2147/ccid.s222051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
Purpose To evaluate the role of autophagy related gene 7 (ATG7) in non-melanoma skin cancer. Subjects and Methods This retrospective and prospective case-control study was performed on 104 patients with non-melanoma skin cancer (NMSC) in addition to 20 apparently healthy subjects matched for age and sex as a control group. Multiple skin biopsies were taken for immunohistochemical evaluation of ATG7 expression. Results Both epithelial and stromal ATG7 were expressed in all participants while all patients showed nucleocytoplasmic localization and controls showed both cytoplasmic and nucleocytoplasmic expression. In addition, significantly higher H-scores of ATG7 in both epithelium and stroma were detected in patients compared to controls (P<0.001). Conclusion ATG7 nucleocytoplasmic topographic localization might be involved in the pathogenesis of NMSC, which can open the gate for new target therapy for this skin cancer.
Collapse
Affiliation(s)
- Rehab M Samaka
- Pathology Department, Faculty of Medicine, Menoufia University, Al Minufya, Egypt
| | - Mohammed A Basha
- Dermatology, Andrology and STDs Department, Faculty of Medicine, Menoufia University, Al Minufya, Egypt
| | - Eman Mansour
- Ministry of Health, El Menshawy General Hospital, Tanta, Egypt
| |
Collapse
|
46
|
Zhuang J, Yin J, Xu C, Jiang M, Lv S. Diverse autophagy and apoptosis in myeloid leukemia cells induced by 20(s)-GRh2 and blue LED irradiation. RSC Adv 2019; 9:39124-39132. [PMID: 35540666 PMCID: PMC9075934 DOI: 10.1039/c9ra08049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
Autophagy is an important mechanism for cell death regulation. To improve the anticancer effect during the treatment of leukemia and promote the apoptosis of leukemic cells, it is important to define the relationship between autophagy and apoptosis. A key bioactive compound in traditional Chinese medicine, 20(s)-Ginsenoside (GRh2), demonstrated an advancement in leukemia treatment. Blue LED therapy (BL) is a physical treatment method that can induce leukemic cell death. In this study, we tested the effect of 20(s)-GRh2, BL, and their combination (BL-GRh2) on the activation of leukemic cell apoptosis and autophagy. Both treatments, whether used individually or simultaneously, induce apoptosis through the induction of reactive oxygen species (ROS), disrupted mitochondrial membrane potential (MMP) and regulated the expression of apoptosis-related genes and proteins. Furthermore, using western blotting to analyze the autophagy markers LC3B and P62, we detected the activation of autophagy. In cells treated with autophagy inhibitor 3-MA, both autophagy and apoptosis were inhibited, either by BL alone or by BL-GRh2. However, apoptosis in 20(s)-GRh2-treated cells was enhanced. In cells treated with apoptosis suppressor Z-VAD-FMK, autophagy was inhibited in the BL and BL-GRh2-treated cells, although it was enhanced in cells treated with 20(s)-GRh2 alone. Moreover, we observed a stronger induction of apoptosis by BL-GRh2 in myeloid leukemia cells. Our data indicate that autophagy induced by different factors can play diverse roles on the same cells. Our results also indicate that the combination of traditional Chinese medicine with physical therapy may be a new strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Jianjian Zhuang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Juxin Yin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University Hangzhou Zhejiang Province 310058 P. R. China
| | - Chaojian Xu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Mengmeng Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| |
Collapse
|
47
|
Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019; 176:11-42. [PMID: 30633901 DOI: 10.1016/j.cell.2018.09.048] [Citation(s) in RCA: 1976] [Impact Index Per Article: 329.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/16/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
The lysosomal degradation pathway of autophagy plays a fundamental role in cellular, tissue, and organismal homeostasis and is mediated by evolutionarily conserved autophagy-related (ATG) genes. Definitive etiological links exist between mutations in genes that control autophagy and human disease, especially neurodegenerative, inflammatory disorders and cancer. Autophagy selectively targets dysfunctional organelles, intracellular microbes, and pathogenic proteins, and deficiencies in these processes may lead to disease. Moreover, ATG genes have diverse physiologically important roles in other membrane-trafficking and signaling pathways. This Review discusses the biological functions of autophagy genes from the perspective of understanding-and potentially reversing-the pathophysiology of human disease and aging.
Collapse
|
48
|
Bravo-San Pedro JM, Sica V, Martins I, Pol J, Loos F, Maiuri MC, Durand S, Bossut N, Aprahamian F, Anagnostopoulos G, Niso-Santano M, Aranda F, Ramírez-Pardo I, Lallement J, Denom J, Boedec E, Gorwood P, Ramoz N, Clément K, Pelloux V, Rohia A, Pattou F, Raverdy V, Caiazzo R, Denis RGP, Boya P, Galluzzi L, Madeo F, Migrenne-Li S, Cruciani-Guglielmacci C, Tavernarakis N, López-Otín C, Magnan C, Kroemer G. Acyl-CoA-Binding Protein Is a Lipogenic Factor that Triggers Food Intake and Obesity. Cell Metab 2019; 30:754-767.e9. [PMID: 31422903 DOI: 10.1016/j.cmet.2019.07.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/26/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Autophagy facilitates the adaptation to nutritional stress. Here, we show that short-term starvation of cultured cells or mice caused the autophagy-dependent cellular release of acyl-CoA-binding protein (ACBP, also known as diazepam-binding inhibitor, DBI) and consequent ACBP-mediated feedback inhibition of autophagy. Importantly, ACBP levels were elevated in obese patients and reduced in anorexia nervosa. In mice, systemic injection of ACBP protein inhibited autophagy, induced lipogenesis, reduced glycemia, and stimulated appetite as well as weight gain. We designed three approaches to neutralize ACBP, namely, inducible whole-body knockout, systemic administration of neutralizing antibodies, and induction of antiACBP autoantibodies in mice. ACBP neutralization enhanced autophagy, stimulated fatty acid oxidation, inhibited appetite, reduced weight gain in the context of a high-fat diet or leptin deficiency, and accelerated weight loss in response to dietary changes. In conclusion, neutralization of ACBP might constitute a strategy for treating obesity and its co-morbidities.
Collapse
Affiliation(s)
- José M Bravo-San Pedro
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Valentina Sica
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Martins
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jonathan Pol
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Friedemann Loos
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Maria Chiara Maiuri
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sylvère Durand
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Noélie Bossut
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Fanny Aprahamian
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Gerasimos Anagnostopoulos
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Mireia Niso-Santano
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Department of Biochemistry and Molecular Biology and Genetics, University of Extremadura, Faculty of Nursing and Occupational Therapy, Cáceres, Spain
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ignacio Ramírez-Pardo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Justine Lallement
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Jessica Denom
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Erwan Boedec
- INSERM U1149, Center of Research on Inflammation, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France; National French Center of Scientific Research (CNRS), ERL 8252, Paris, France
| | - Philip Gorwood
- Clinique des Maladies Mentales et de l'Encéphale (CMME), Hôpital Sainte-Anne, Université of Paris, Paris, France; INSERM U894, Centre de Psychiatrie et Neurosciences (CPN), Université of Paris, Paris, France
| | - Nicolas Ramoz
- INSERM U894, Centre de Psychiatrie et Neurosciences (CPN), Université of Paris, Paris, France
| | - Karine Clément
- Sorbonne Université, Inserm, NutriOMics team, Pitié-Salpêtrière Hospital, Paris, France
| | - Veronique Pelloux
- Sorbonne Université, Inserm, NutriOMics team, Pitié-Salpêtrière Hospital, Paris, France
| | - Alili Rohia
- Sorbonne Université, Inserm, NutriOMics team, Pitié-Salpêtrière Hospital, Paris, France
| | - François Pattou
- University of Lille, CHU Lille, Inserm UMR 1190, European Genomic Institute for Diabetes, Lille, France
| | - Violeta Raverdy
- University of Lille, CHU Lille, Inserm UMR 1190, European Genomic Institute for Diabetes, Lille, France
| | - Robert Caiazzo
- University of Lille, CHU Lille, Inserm UMR 1190, European Genomic Institute for Diabetes, Lille, France
| | - Raphaël G P Denis
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Lorenzo Galluzzi
- Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Frank Madeo
- BioTechMed, Graz, Austria; Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse, Graz, Austria
| | - Stéphanie Migrenne-Li
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | | | - Nektarios Tavernarakis
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100, Heraklion, Crete, Greece
| | - Carlos López-Otín
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Christophe Magnan
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Guido Kroemer
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Team "Metabolism, Cancer & Immunity", Équipe 11 labellisée par la Ligue contre le Cancer, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
49
|
Anderson CM, Macleod KF. Autophagy and cancer cell metabolism. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:145-190. [PMID: 31451213 PMCID: PMC8211395 DOI: 10.1016/bs.ircmb.2019.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is an ancient catabolic process used by cells to clear excess or dysfunctional organelles and large subcellular structures and thus performs an important housekeeping role for the cell. Autophagy is acutely sensitive to nutrient availability and is upregulated at a transcriptional and posttranslational level in response to nutrient deprivation. This serves to promote turnover of cellular content and recycling of nutrients for continued growth and survival. While important for most normal tissues, tumor cells appear to be particularly dependent on autophagy for survival under ischemic or therapeutic stress, and in response to loss of matrix attachment; autophagy is upregulated markedly in cancers as they progress to malignancy. Ras-driven tumors appear to be particularly dependent on autophagy and thus inhibition of autophagy is being pursued as a productive clinical approach for such cancers. However, this enthusiasm needs to be offset against possible negative effects of autophagy inhibition on normal tissue function and on limiting antitumor immune responses. In addressing all of these topics, we focus in on understanding how autophagy is induced by nutrient stress, its role in recycling metabolites for growing tumors, how selective forms of autophagy, such as mitophagy and ribophagy contribute specifically to tumorigenesis, how autophagy in the tumor microenvironment and throughout the animal affects access of the tumor to nutrients, and finally how different oncogenic pathways may determine which tumors respond to autophagy inhibition and which ones will not.
Collapse
Affiliation(s)
- Cara M Anderson
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, The University of Chicago, Chicago, IL, United States; The Committee on Molecular Metabolism & Nutrition, The University of Chicago, Chicago, IL, United States
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, The University of Chicago, Chicago, IL, United States; The Committee on Molecular Metabolism & Nutrition, The University of Chicago, Chicago, IL, United States; The Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
50
|
Inpanathan S, Botelho RJ. The Lysosome Signaling Platform: Adapting With the Times. Front Cell Dev Biol 2019; 7:113. [PMID: 31281815 PMCID: PMC6595708 DOI: 10.3389/fcell.2019.00113] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are the terminal degradative compartment of autophagy, endocytosis and phagocytosis. What once was viewed as a simple acidic organelle in charge of macromolecular digestion has emerged as a dynamic organelle capable of integrating cellular signals and producing signal outputs. In this review, we focus on the concept that the lysosome surface serves as a platform to assemble major signaling hubs like mTORC1, AMPK, GSK3 and the inflammasome. These molecular assemblies integrate and facilitate cross-talk between signals such as amino acid and energy levels, membrane damage and infection, and ultimately enable responses such as autophagy, cell growth, membrane repair and microbe clearance. In particular, we review how molecular machinery like the vacuolar-ATPase proton pump, sestrins, the GATOR complexes, and the Ragulator, modulate mTORC1, AMPK, GSK3 and inflammation. We then elaborate how these signals control autophagy initiation and resolution, TFEB-mediated lysosome adaptation, lysosome remodeling, antigen presentation, inflammation, membrane damage repair and clearance. Overall, by being at the cross-roads for several membrane pathways, lysosomes have emerged as the ideal surveillance compartment to sense, integrate and elicit cellular behavior and adaptation in response to changing environmental and cellular conditions.
Collapse
Affiliation(s)
- Subothan Inpanathan
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| |
Collapse
|