1
|
Varadharaj V, Petersen W, Batra SK, Ponnusamy MP. Sugar symphony: glycosylation in cancer metabolism and stemness. Trends Cell Biol 2025; 35:412-425. [PMID: 39462722 PMCID: PMC12032065 DOI: 10.1016/j.tcb.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Glycosylation is a complex co-translational and post-translational modification (PTM) in eukaryotes that utilizes glycosyltransferases to generate a vast array of glycoconjugate structures. Recent studies have highlighted the role of glycans in regulating essential molecular, cellular, tissue, organ, and systemic biological processes with significant implications for human diseases, particularly cancer. The metabolic reliance of cancer, spanning tumor initiation, disease progression, and resistance to therapy, necessitates a range of uniquely altered cellular metabolic pathways. In addition, the intricate interplay between cell-intrinsic and -extrinsic mechanisms is exemplified by the communication between cancer cells, cancer stem cells (CSCs), cancer-associated fibroblasts (CAFs), and immune cells within the tumor microenvironment (TME). In this review article, we explore how differential glycosylation in cancer influences the metabolism and stemness features alongside new avenues in glycobiology.
Collapse
Affiliation(s)
- Venkatesh Varadharaj
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wyatt Petersen
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, NE, USA.
| |
Collapse
|
2
|
Liu J, Wang Y, Zhou Y, Wang X, Bi S. Functional characterization of the methyl-accepting chemotaxis proteins RS10830 and RS10815 in Xanthomonas oryzae pv. oryzicola. Int J Biol Macromol 2025; 306:141800. [PMID: 40054815 DOI: 10.1016/j.ijbiomac.2025.141800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) causes the economically important leaf streak disease in rice. Chemotaxis plays a role in the entry and colonization of some phytopathogens within the host. However, the physiological function and ligand specificity of Xoc methyl-accepting chemotaxis proteins (MCPs) are not well defined. In this study, we show that the transmembrane MCP ACU12_RS10830 (RS10830) binds L-malic acid and L-tartaric acid, whereas the transmembrane MCP ACU12_RS10815 (RS10815) binds ethanolamine, methylamine, ethylamine, ethylenediamine, amylamine, and tyramine, to elicit attractant responses. The chemotactic responses mediated by the sensory domains of RS10830 and RS10815 were also observed for the chimeric receptors in Escherichia coli. Furthermore, the RS10830 and RS10815-mediated positive chemotaxis of Xoc RS105 correlated with the promoting effects of their ligands on bacterial growth and virulence in rice. To the best of our knowledge, this is the first report on the function of Xoc MCPs in virulence and signaling molecules of the Xoc chemotaxis system. RS10830 is the first L-tartaric acid-binding MCP reported in bacteria.
Collapse
Affiliation(s)
- Jinye Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuying Zhou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuangyu Bi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Matilla MA, Gavira JA, Monteagudo-Cascales E, Zhulin IB, Krell T. Structural and functional diversity of sensor domains in bacterial transmembrane receptors. Trends Microbiol 2025:S0966-842X(25)00076-9. [PMID: 40121131 DOI: 10.1016/j.tim.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
The ability of bacteria to adapt to changing environmental conditions largely depends on transmembrane receptors that sense signal molecules and generate responses such as chemotaxis, changes in gene expression, or alterations in second-messenger levels. Although these receptors differ significantly in function, they share a common mode of activation that involves signal molecule interaction with sensor domains. A major challenge in microbiology lies in the limited knowledge of ligands that stimulate receptors. Here, we review recent advances in this field, including the occurrence of multi-modular sensor domains, the identification of co-component signal transduction systems, evidence for sensor domain evolution from transporters, and the use of binding pocket sequence motifs to identify sensor domain ligands.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada, 18008, Spain
| | - José A Gavira
- Laboratory of Crystallographic Studies, CSIC-UGR, Avenida de las Palmeras 4, Armilla, 18100, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada, 18008, Spain
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada, 18008, Spain.
| |
Collapse
|
4
|
Dessenne C, Mariller C, Vidal O, Huvent I, Guerardel Y, Elass-Rochard E, Rossez Y. Glycan-mediated adhesion mechanisms in antibiotic-resistant bacteria. BBA ADVANCES 2025; 7:100156. [PMID: 40207210 PMCID: PMC11979486 DOI: 10.1016/j.bbadva.2025.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Bacterial adhesins play a central role in host-pathogen interactions, with many specifically targeting glycans to mediate bacterial colonization, influence infection dynamics, and evade host immune responses. In this review, we focus on bacterial pathogens identified by the World Health Organization as critical threats to public health and in urgent need of new treatments. We summarize glycoconjugate targets identified in the literature across 19 bacterial genera and species. This comprehensive review provides a foundation for the development of innovative therapeutic strategies to effectively combat these pathogens.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christophe Mariller
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Isabelle Huvent
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Elisabeth Elass-Rochard
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
5
|
Xu W, Jalomo-Khayrova E, Gumerov VM, Ross PA, Köbel TS, Schindler D, Bange G, Zhulin IB, Sourjik V. Specificities of Chemosensory Receptors in the Human Gut Microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637667. [PMID: 39990360 PMCID: PMC11844446 DOI: 10.1101/2025.02.11.637667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The human gut is rich in metabolites and harbors a complex microbial community, yet the sensory repertoire of its commensal bacteria remains largely uncharacterized. Here we systematically mapped ligand specificities of extracytoplasmic sensory domains from twenty members of the human gut microbiota, with a primary focus on the abundant and physiologically important class of Clostridia. We identified diverse metabolites as specific stimuli for three major functional classes of transmembrane receptors. We further characterized novel subsets of sensors belonging to the Cache superfamily, specific for lactate, dicarboxylic acids, and for uracil and short-chain fatty acids (SCFAs), respectively, and investigated the evolution of their ligand specificity. Structural and biochemical analysis of the newly described dCache_1UR domain revealed an independent binding of uracil and SCFA at distinct modules. Altogether, we could identify or predict specificities for over a half of the Cache-type chemotactic sensors in the selected gut commensals, with the carboxylic acids representing the largest class of ligands. Among those, the most commonly found specificities were for lactate and formate, indicating particular importance of these metabolites in the human gut microbiome and consistent with their observed beneficial impact on the growth of selected bacterial species.
Collapse
Affiliation(s)
- Wenhao Xu
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Ekaterina Jalomo-Khayrova
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg 35043, Germany
| | - Vadim M Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Patricia A. Ross
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Tania S. Köbel
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Gert Bange
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg 35043, Germany
| | - Igor B. Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
6
|
Monteagudo-Cascales E, Gavira JA, Xing J, Velando F, Matilla MA, Zhulin IB, Krell T. Bacterial sensor evolved by decreasing complexity. Proc Natl Acad Sci U S A 2025; 122:e2409881122. [PMID: 39879239 PMCID: PMC11804620 DOI: 10.1073/pnas.2409881122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels, and motility. Receptors are typically activated by signal binding to ligand-binding domains (LBDs). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans. They form the predominant family of extracytosolic bacterial LBDs and were identified in all major receptor types. Cache domains are composed of either a single (sCache) or a double (dCache) structural module. The functional relevance of bimodular LBDs remains poorly understood. Here, we identify the PacF chemoreceptor in the phytopathogen Pectobacterium atrosepticum that recognizes formate at the membrane-distal module of its dCache domain, triggering chemoattraction. We further demonstrate that a family of formate-specific sCache domains has evolved from a dCache domain, exemplified by PacF, by losing the membrane-proximal module. By solving high-resolution structures of two family members in complex with formate, we show that the molecular basis for formate binding at sCache and dCache domains is highly similar, despite their low sequence identity. The apparent loss of the membrane-proximal module may be related to the observation that dCache domains bind ligands typically at the membrane-distal module, whereas studies have failed to find ligands bound in the membrane-proximal module. This work advances our understanding of signal sensing in bacterial receptors and suggests that evolution by reducing complexity may be a route for shaping diversity.
Collapse
Affiliation(s)
- Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada18008, Spain
| | - José A. Gavira
- Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra-Consejo Superior de Investigaciones Científicas, Armilla18100, Spain
| | - Jiawei Xing
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| | - Félix Velando
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada18008, Spain
| | - Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada18008, Spain
| | - Igor B. Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada18008, Spain
| |
Collapse
|
7
|
Matilla MA, Krell T. Bacterial amino acid chemotaxis: a widespread strategy with multiple physiological and ecological roles. J Bacteriol 2024; 206:e0030024. [PMID: 39330213 PMCID: PMC11500578 DOI: 10.1128/jb.00300-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Chemotaxis is the directed, flagellum-based movement of bacteria in chemoeffector gradients. Bacteria respond chemotactically to a wide range of chemoeffectors, including amino, organic, and fatty acids, sugars, polyamines, quaternary amines, purines, pyrimidines, aromatic hydrocarbons, oxygen, inorganic ions, or polysaccharides. Most frequent are chemotactic responses to amino acids (AAs), which were observed in numerous bacteria regardless of their phylogeny and lifestyle. Mostly chemoattraction responses are observed, although a number of bacteria are repelled from certain AAs. Chemoattraction is associated with the important metabolic value of AAs as growth substrates or building blocks of proteins. However, additional studies revealed that AAs are also sensed as environmental cues. Many chemoreceptors are specific for AAs, and signaling is typically initiated by direct ligand binding to their four-helix bundle or dCache ligand-binding domains. Frequently, bacteria possess multiple AA-responsive chemoreceptors that at times possess complementary AA ligand spectra. The identification of sequence motifs in the binding sites at dCache_1 domains has permitted to define an AA-specific family of dCache_1AA chemoreceptors. In addition, AAs are among the ligands recognized by broad ligand range chemoreceptors, and evidence was obtained for chemoreceptor activation by the binding of AA-loaded solute-binding proteins. The biological significance of AA chemotaxis is very ample including in biofilm formation, root and seed colonization by beneficial bacteria, plant entry of phytopathogens, colonization of the intestine, or different virulence-related features in human/animal pathogens. This review provides insights that may be helpful for the study of AA chemotaxis in other uncharacterized bacteria.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
8
|
Cao W, Huang C, Zhou X, Zhou S, Deng Y. Engineering two-component systems for advanced biosensing: From architecture to applications in biotechnology. Biotechnol Adv 2024; 75:108404. [PMID: 39002783 DOI: 10.1016/j.biotechadv.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architectures and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.
Collapse
Affiliation(s)
- Wenyan Cao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chao Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xuan Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Monteagudo-Cascales E, Gumerov VM, Fernández M, Matilla MA, Gavira JA, Zhulin IB, Krell T. Ubiquitous purine sensor modulates diverse signal transduction pathways in bacteria. Nat Commun 2024; 15:5867. [PMID: 38997289 PMCID: PMC11245519 DOI: 10.1038/s41467-024-50275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Purines and their derivatives control intracellular energy homeostasis and nucleotide synthesis, and act as signaling molecules. Here, we combine structural and sequence information to define a purine-binding motif that is present in sensor domains of thousands of bacterial receptors that modulate motility, gene expression, metabolism, and second-messenger turnover. Microcalorimetric titrations of selected sensor domains validate their ability to specifically bind purine derivatives, and evolutionary analyses indicate that purine sensors share a common ancestor with amino-acid receptors. Furthermore, we provide experimental evidence of physiological relevance of purine sensing in a second-messenger signaling system that modulates c-di-GMP levels.
Collapse
Affiliation(s)
- Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008, Granada, Spain
| | - Vadim M Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Matilde Fernández
- Department of Microbiology, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071, Granada, Spain
| | - Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008, Granada, Spain
| | - José A Gavira
- Laboratory of Crystallographic Studies (CSIC-UGR), Avenida de las Palmeras 4, 18100, Armilla, Spain
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
10
|
Pinto MF, Sirina J, Holliday ND, McWhirter CL. High-throughput kinetics in drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100170. [PMID: 38964171 DOI: 10.1016/j.slasd.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The importance of a drug's kinetic profile and interplay of structure-kinetic activity with PK/PD has long been appreciated in drug discovery. However, technical challenges have often limited detailed kinetic characterization of compounds to the latter stages of projects. This review highlights the advances that have been made in recent years in techniques, instrumentation, and data analysis to increase the throughput of detailed kinetic and mechanistic characterization, enabling its application earlier in the drug discovery process.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom
| | - Julija Sirina
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom; School of Life Sciences, The Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Claire L McWhirter
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom.
| |
Collapse
|
11
|
Monteagudo-Cascales E, Gavira JA, Xing J, Velando F, Matilla MA, Zhulin IB, Krell T. Bacterial sensor evolved by decreasing complexity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594639. [PMID: 38798610 PMCID: PMC11118575 DOI: 10.1101/2024.05.17.594639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels and motility. Receptors are typically activated by signal binding to ligand binding domains (LBD). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans. They form the predominant family of extracytosolic bacterial LBDs and were identified in all major receptor types. Cache domains are composed of either a single (sCache) or a double (dCache) structural module. The functional relevance of bimodular LBDs remains poorly understood. Here, we identify the PacF chemoreceptor in the phytopathogen Pectobacterium atrosepticum that recognizes formate at the membrane distal module of its dCache domain, triggering chemoattraction. We further demonstrate that a family of formate-specific sCache domains has evolved from a dCache domain, exemplified by PacF, by losing the membrane proximal module. By solving high-resolution structures of two family members in complex with formate, we show that the molecular basis for formate binding at sCache and dCache domains is highly similar, despite their low sequence identity. The apparent loss of the membrane proximal module may be related to the observation that dCache domains bind ligands typically at the membrane distal module, whereas the membrane proximal module is not involved in signal sensing. This work advances our understanding of signal sensing in bacterial receptors and suggests that evolution by reducing complexity may be a common trend shaping their diversity. Significance Many bacterial receptors contain multi-modular sensing domains indicative of complex sensory processes. The presence of more than one sensing module likely permits the integration of multiple signals, although, the molecular detail and functional relevance for these complex sensors remain poorly understood. Bimodular sensory domains are likely to have arisen from the fusion or duplication of monomodular domains. Evolution by increasing complexity is generally believed to be a dominant force. Here we reveal the opposite - how a monomodular sensing domain has evolved from a bimodular one. Our findings will thus motivate research to establish whether evolution by decreasing complexity is typical of other sensory domains.
Collapse
|
12
|
Zhao Q, Yao F, Li W, Liu S, Bi S. Identification of a dCache-type chemoreceptor in Campylobacter jejuni that specifically mediates chemotaxis towards methyl pyruvate. Front Microbiol 2024; 15:1400284. [PMID: 38784811 PMCID: PMC11111895 DOI: 10.3389/fmicb.2024.1400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The foodborne pathogenic bacterium Campylobacter jejuni utilizes chemotaxis to assist in the colonization of host niches. A key to revealing the relationship among chemotaxis and pathogenicity is the discovery of signaling molecules perceived by the chemoreceptors. The C. jejuni chemoreceptor Tlp11 is encoded by the highly infective C. jejuni strains. In the present study, we report that the dCache-type ligand-binding domain (LBD) of C. jejuni ATCC 33560 Tlp11 binds directly to novel ligands methyl pyruvate, toluene, and quinoline using the same pocket. Methyl pyruvate elicits a strong chemoattractant response, while toluene and quinoline function as the antagonists without triggering chemotaxis. The sensory LBD was used to control heterologous proteins by constructing chimeras, indicating that the signal induced by methyl pyruvate is transmitted across the membrane. In addition, bioinformatics and experiments revealed that the dCache domains with methyl pyruvate-binding sites and ability are widely distributed in the order Campylobacterales. This is the first report to identify the class of dCache chemoreceptors that bind to attractant methyl pyruvate and antagonists toluene and quinoline. Our research provides a foundation for understanding the chemotaxis and virulence of C. jejuni and lays a basis for the control of this foodborne pathogen.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fulian Yao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangyu Bi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Zhou B, Garber JM, Vlach J, Azadi P, Ng KKS, Escalante-Semerena JC, Szymanski CM. Campylobacter jejuni uses energy taxis and a dehydrogenase enzyme for l-fucose chemotaxis. mBio 2023; 14:e0273223. [PMID: 38032212 PMCID: PMC10746189 DOI: 10.1128/mbio.02732-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE In this study, we identify a separate role for the Campylobacter jejuni l-fucose dehydrogenase in l-fucose chemotaxis and demonstrate that this mechanism is not only limited to C. jejuni but is also present in Burkholderia multivorans. We now hypothesize that l-fucose energy taxis may contribute to the reduction of l-fucose-metabolizing strains of C. jejuni from the gastrointestinal tract of breastfed infants, selecting for isolates with increased colonization potential.
Collapse
Affiliation(s)
- Bibi Zhou
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jolene M. Garber
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jiri Vlach
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | | | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Monteagudo-Cascales E, Gumerov VM, Fernández M, Matilla MA, Gavira JA, Zhulin IB, Krell T. Ubiquitous purine sensor modulates diverse signal transduction pathways in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564149. [PMID: 37961346 PMCID: PMC10634846 DOI: 10.1101/2023.10.26.564149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Purines and their derivatives are key molecules for controlling intracellular energy homeostasis and nucleotide synthesis. In eukaryotes, including humans, purines also act as signaling molecules that mediate extracellular communication and control key cellular processes, such as proliferation, migration, differentiation, and apoptosis. However, the signaling role of purines in bacteria is largely unknown. Here, by combining structural and sequence information, we define a purine-binding motif, which is present in sensor domains of thousands of bacterial receptors that modulate motility, gene expression, metabolism and second messenger turnover. The screening of compound libraries and microcalorimetric titrations of selected sensor domains validated their ability to specifically bind purine derivatives. The physiological relevance of purine sensing was demonstrated in a second messenger signaling system that modulates c-di-GMP levels.
Collapse
|
15
|
Cerna-Vargas JP, Gumerov VM, Krell T, Zhulin IB. Amine-recognizing domain in diverse receptors from bacteria and archaea evolved from the universal amino acid sensor. Proc Natl Acad Sci U S A 2023; 120:e2305837120. [PMID: 37819981 PMCID: PMC10589655 DOI: 10.1073/pnas.2305837120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023] Open
Abstract
Bacteria possess various receptors that sense different signals and transmit information to enable an optimal adaptation to the environment. A major limitation in microbiology is the lack of information on the signal molecules that activate receptors. Signals recognized by sensor domains are poorly reflected in overall sequence identity, and therefore, the identification of signals from the amino acid sequence of the sensor alone presents a challenge. Biogenic amines are of great physiological importance for microorganisms and humans. They serve as substrates for aerobic and anaerobic growth and play a role of neurotransmitters and osmoprotectants. Here, we report the identification of a sequence motif that is specific for amine-sensing sensor domains that belong to the Cache superfamily of the most abundant extracellular sensors in prokaryotes. We identified approximately 13,000 sensor histidine kinases, chemoreceptors, receptors involved in second messenger homeostasis and Ser/Thr phosphatases from 8,000 bacterial and archaeal species that contain the amine-recognizing motif. The screening of compound libraries and microcalorimetric titrations of selected sensor domains confirmed their ability to specifically bind biogenic amines. Mutants in the amine-binding motif or domains that contain a single mismatch in the binding motif had either no or a largely reduced affinity for amines. We demonstrate that the amine-recognizing domain originated from the universal amino acid-sensing Cache domain, thus providing insight into receptor evolution. Our approach enables precise "wet"-lab experiments to define the function of regulatory systems and therefore holds a strong promise to enable the identification of signals stimulating numerous receptors.
Collapse
Affiliation(s)
- Jean Paul Cerna-Vargas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada18008, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid28223, Spain
| | - Vadim M. Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada18008, Spain
| | - Igor B. Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| |
Collapse
|
16
|
Matilla MA, Gavira JA, Krell T. Accessing nutrients as the primary benefit arising from chemotaxis. Curr Opin Microbiol 2023; 75:102358. [PMID: 37459734 DOI: 10.1016/j.mib.2023.102358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 09/17/2023]
Abstract
About half of the known bacterial species perform chemotaxis that gains them access to sites that are optimal for growth and survival. The motility apparatus and chemotaxis signaling pathway impose a large energetic and metabolic burden on the cell. There is almost no limit to the type of chemoeffectors that are recognized by bacterial chemoreceptors. For example, they include hormones, neurotransmitters, quorum-sensing molecules, and inorganic ions. However, the vast majority of chemoeffectors appear to be of metabolic value. We review here the experimental evidence indicating that accessing nutrients is the main selective force that led to the evolution of chemotaxis.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - José A Gavira
- Laboratory of Crystallographic Studies, IACT (CSIC-UGR), Armilla, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
17
|
Zhou B, Szymanski CM, Baylink A. Bacterial chemotaxis in human diseases. Trends Microbiol 2023; 31:453-467. [PMID: 36411201 PMCID: PMC11238666 DOI: 10.1016/j.tim.2022.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
To infect and cause disease, bacterial pathogens must localize to specific regions of the host where they possess the metabolic and defensive acumen for survival. Motile flagellated pathogens exercise control over their localization through chemotaxis to direct motility based on the landscape of exogenous nutrients, toxins, and molecular cues sensed within the host. Here, we review advances in understanding the roles chemotaxis plays in human diseases. Chemotaxis drives pathogen colonization to sites of inflammation and injury and mediates fitness advantages through accessing host-derived nutrients from damaged tissue. Injury tropism may worsen clinical outcomes through instigating chronic inflammation and subsequent cancer development. Inhibiting bacterial chemotactic systems could act synergistically with antibacterial medicines for more effective and specific eradication.
Collapse
Affiliation(s)
- Bibi Zhou
- University of Georgia, Department of Microbiology and Complex Carbohydrate Research Center, Athens, GA 30602, USA
| | - Christine M Szymanski
- University of Georgia, Department of Microbiology and Complex Carbohydrate Research Center, Athens, GA 30602, USA
| | - Arden Baylink
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, WA 99164, USA.
| |
Collapse
|
18
|
Monteagudo-Cascales E, Ortega Á, Velando F, Morel B, Matilla MA, Krell T. Study of NIT domain-containing chemoreceptors from two global phytopathogens and identification of NIT domains in eukaryotes. Mol Microbiol 2023. [PMID: 37186477 DOI: 10.1111/mmi.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Bacterial signal transduction systems are typically activated by the binding of signal molecules to receptor ligand binding domains (LBDs), such as the NIT LBD. We report here the identification of the NIT domain in more than 15,000 receptors that were present in 30 bacterial phyla, but also in 19 eukaryotic phyla, expanding its known phylogenetic distribution. The NIT domain formed part of seven receptor families that either control transcription, mediate chemotaxis or regulate second messenger levels. We have produced the NIT domains from chemoreceptors of the bacterial phytopathogens Pectobacterium atrosepticum (PacN) and Pseudomonas savastanoi (PscN) as individual purified proteins. High-throughput ligand screening using compound libraries revealed a specificity for nitrate and nitrite binding. Isothermal titration calorimetry experiments showed that PacN-LBD bound preferentially nitrate ( K D = 1.9 μM), whereas the affinity of PscN-LBD for nitrite ( K D = 2.1 μM) was 22 times higher than that for nitrate. Analytical ultracentrifugation experiments indicated that PscN-LBD is monomeric in the presence and absence of ligands. The R182A mutant of PscN did not bind nitrate or nitrite. This residue is not conserved in the NIT domain of the Pseudomonas aeruginosa chemoreceptor PA4520, which may be related to its failure to bind nitrate/nitrite. The magnitude of P. atrosepticum chemotaxis towards nitrate was significantly greater than that of nitrite and pacN deletion almost abolished responses to both compounds. This study highlights the important role of nitrate and nitrite as signal molecules in life and advances our knowledge on the NIT domain as universal nitrate/nitrite sensor module.
Collapse
Affiliation(s)
- Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence 'Campus Mare Nostrum, Murcia, Spain
| | - Félix Velando
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Bertrand Morel
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
19
|
Duan J, Zhao Q, Wang Y, Chi Z, Li W, Wang X, Liu S, Bi S. The dCache Domain of the Chemoreceptor Tlp1 in Campylobacter jejuni Binds and Triggers Chemotaxis toward Formate. mBio 2023:e0356422. [PMID: 37052512 DOI: 10.1128/mbio.03564-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Chemotaxis is an important virulence factor in some enteric pathogens, and it is involved in the pathogenesis and colonization of the host. However, there is limited knowledge regarding the environmental signals that promote chemotactic behavior and the sensing of these signals by chemoreceptors. To date, there is no information on the ligand molecule that directly binds to and is sensed by Campylobacter jejuni Tlp1, which is a chemoreceptor with a dCache-type ligand-binding domain (LBD). dCache (double Calcium channels and chemotaxis receptor) is the largest group of sensory domains in bacteria, but the dCache-type chemoreceptor that directly binds to formate has not yet been discovered. In this study, formate was identified as a direct-binding ligand of C. jejuni Tlp1 with high sensing specificity. We used the strategy of constructing a functional hybrid receptor of C. jejuni Tlp1 and the Escherichia coli chemoreceptor Tar to screen for the potential ligand of Tlp1, with the binding of formate to Tlp1-LBD being verified using isothermal titration calorimetry. Molecular docking and experimental analyses indicated that formate binds to the membrane-proximal pocket of the dCache subdomain. Chemotaxis assays demonstrated that formate elicits robust attractant responses of the C. jejuni strain NCTC 11168, specifically via Tlp1. The chemoattraction effect of formate via Tlp1 promoted the growth of C. jejuni, especially when competing with Tlp1- or CheY-knockout strains. Our study reveals the molecular mechanisms by which C. jejuni mediates chemotaxis toward formate, and, to our knowledge, is the first report on the high-specificity binding of the dCache-type chemoreceptor to formate as well as the physiological role of chemotaxis toward formate. IMPORTANCE Chemotaxis is important for Campylobacter jejuni to colonize favorable niches in the gastrointestinal tract of its host. However, there is still a lack of knowledge about the ligand molecules for C. jejuni chemoreceptors. The dCache-type chemoreceptor, namely, Tlp1, is the most conserved chemoreceptor in C. jejuni strains; however, the direct-binding ligand(s) triggering chemotaxis has not yet been discovered. In the present study, we found that the ligand that binds directly to Tlp1-LBD with high specificity is formate. C. jejuni exhibits robust chemoattraction toward formate, primarily via Tlp1. Tlp1 is the first reported dCache-type chemoreceptor that specifically binds formate and triggers strong chemotaxis. We further demonstrated that the formate-mediated promotion of C. jejuni growth is correlated with Tlp1-mediated chemotaxis toward formate. Our work provides important insights into the mechanism and physiological function of chemotaxis toward formate and will facilitate further investigations into the involvement of microbial chemotaxis in pathogen-host interactions.
Collapse
Affiliation(s)
- Jingjing Duan
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
| | - Qi Zhao
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
| | - Yuxin Wang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wei Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Xue Wang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangyu Bi
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
| |
Collapse
|
20
|
Chen HH, Wang YX, Li DF, Liu C, Bi SY, Jiang CY, Liu SJ. Chemoreceptors from the commensal gut Roseburia rectibacter bind to mucin and trigger chemotaxis. Environ Microbiol 2023. [PMID: 36869629 DOI: 10.1111/1462-2920.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/02/2023] [Indexed: 03/05/2023]
Abstract
Chemotaxis is crucial for bacterial adherence and colonization of the host gastrointestinal tract. Previous studies have demonstrated that chemotaxis affects the virulence of causative pathogens and the infection in the host. However, the chemotactic abilities of non-pathogenic and commensal gut bacteria have rarely been explored. We observed that Roseburia rectibacter NSJ-69 exhibited flagella-dependent motility and chemotaxis to a variety of molecules, including mucin and propionate. A genome-wide analysis revealed that NSJ-69 has 28 putative chemoreceptors, 15 of which have periplasmic ligand-binding domains (LBDs). These LBD-coding genes were chemically synthesized and expressed heterologously in Escherichia coli. Intensive screening of ligands revealed four chemoreceptors bound to mucin and two bound to propionate. When expressed in Comamonas testosteroni or E. coli, these chemoreceptors elicited chemotaxis toward mucin and propionate. Hybrid chemoreceptors were constructed, and results showed that the chemotactic responses to mucin and propionate were dependent on the LBDs of R. rectibacter chemoreceptors. Our study identified and characterized R. rectibacter chemoreceptors. These results will facilitate further investigations on the involvement of microbial chemotaxis in host colonization.
Collapse
Affiliation(s)
- Hong-He Chen
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yu-Xin Wang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, People's Republic of China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.,State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, People's Republic of China
| | - Shuang-Yu Bi
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, People's Republic of China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.,State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
21
|
Martín-Rodríguez AJ. Respiration-induced biofilm formation as a driver for bacterial niche colonization. Trends Microbiol 2023; 31:120-134. [PMID: 36075785 DOI: 10.1016/j.tim.2022.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
Depending on their physiology and metabolism, bacteria can carry out diverse redox processes for energy acquisition, which facilitates adaptation to environmental or host-associated niches. Of these processes, respiration, using oxygen or alternative terminal electron acceptors, is energetically the most favorable in heterotrophic bacteria. The biofilm lifestyle, a coordinated multicellular behavior, is ubiquitous in bacteria and is regulated by a variety of intrinsic and extrinsic cues. Respiration of distinct electron acceptors has been shown to induce biofilm formation or dispersal. The notion of biofilm formation regulation by electron acceptor availability and respiration has often been considered species-specific. However, recent evidence suggests that this phenomenon can be strain-specific, even in strains sharing the same functional respiratory pathways, thereby implying subtle regulatory mechanisms. On this basis, I argue that induction of biofilm formation by sensing and respiration of electron acceptors might direct subgroups of redox-specialized strains to occupy certain niches. A palette of respiration and electron-transfer-mediated microbial social interactions within biofilms may broaden ecological opportunities. The strain specificity of this phenomenon represents an important opportunity to identify key molecular mechanisms and their ecophysiological significance, which in turn may lay the ground for applications in areas ranging from biotechnology to the prevention of antimicrobial resistance.
Collapse
|
22
|
Matilla MA, Monteagudo-Cascales E, Cerna-Vargas JP, Gumerov VM, Zhulin IB, Krell T. Is it possible to predict signal molecules that are recognized by bacterial receptors? Environ Microbiol 2023; 25:11-16. [PMID: 36054735 PMCID: PMC9851934 DOI: 10.1111/1462-2920.16143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/22/2023]
Affiliation(s)
- Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Jean Paul Cerna-Vargas
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Vadim M. Gumerov
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
23
|
Matilla MA, Monteagudo-Cascales E, Krell T. Advances in the identification of signals and novel sensing mechanisms for signal transduction systems. Environ Microbiol 2023; 25:79-86. [PMID: 35896893 DOI: 10.1111/1462-2920.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
24
|
Taha, Elgamoudi BA, Andrianova EP, Haselhorst T, Day CJ, Hartley-Tassell LE, King RM, Najnin T, Zhulin IB, Korolik V. Diverse Sensory Repertoire of Paralogous Chemoreceptors Tlp2, Tlp3, and Tlp4 in Campylobacter jejuni. Microbiol Spectr 2022; 10:e0364622. [PMID: 36374080 PMCID: PMC9769880 DOI: 10.1128/spectrum.03646-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni responds to extracellular stimuli via transducer-like chemoreceptors (Tlps). Here, we describe receptor-ligand interactions of a unique paralogue family of dCache_1 (double Calcium channels and chemotaxis) chemoreceptors: Tlp2, Tlp3, and Tlp4. Phylogenetic analysis revealed that Tlp2, Tlp3, and Tlp4 receptors may have arisen through domain duplications, followed by a divergent evolutionary drift, with Tlp3 emerging more recently, and unexpectedly, responded to glycans, as well as multiple organic and amino acids with overlapping specificities. All three Tlps interacted with five monosaccharides and complex glycans, including Lewis's antigens, P antigens, and fucosyl GM1 ganglioside, indicating a potential role in host-pathogen interactions. Analysis of chemotactic motility of single, double, and triple mutants indicated that these chemoreceptors are likely to work together to balance responses to attractants and repellents to modulate chemotaxis in C. jejuni. Molecular docking experiments, in combination with saturation transfer difference nuclear magnetic resonance spectroscopy and competition surface plasmon resonance analysis, illustrated that the ligand-binding domain of Tlp3 possess one major binding pocket with two overlapping, but distinct binding sites able to interact with multiple ligands. A diverse sensory repertoire could provide C. jejuni with the ability to modulate responses to attractant and repellent signals and allow for adaptation in host-pathogen interactions. IMPORTANCE Campylobacter jejuni responds to extracellular stimuli via transducer-like chemoreceptors (Tlps). This remarkable sensory perception mechanism allows bacteria to sense environmental changes and avoid unfavorable conditions or to maneuver toward nutrient sources and host cells. Here, we describe receptor-ligand interactions of a unique paralogue family of chemoreceptors, Tlp2, Tlp3, and Tlp4, that may have arisen through domain duplications, followed by a divergent evolutionary drift, with Tlp3 emerging more recently. Unlike previous reports of ligands interacting with sensory proteins, Tlp2, Tlp3, and Tlp4 responded to many types of chemical compounds, including simple and complex sugars such as those present on human blood group antigens and gangliosides, indicating a potential role in host-pathogen interactions. Diverse sensory repertoire could provide C. jejuni with the ability to modulate responses to attractant and repellent signals and allow for adaptation in host-pathogen interactions.
Collapse
Affiliation(s)
- Taha
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Bassam A. Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ekaterina P. Andrianova
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | | | - Rebecca M. King
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Tahria Najnin
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Igor B. Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
25
|
Mo R, Ma W, Zhou W, Gao B. Polar localization of CheO under hypoxia promotes Campylobacter jejuni chemotactic behavior within host. PLoS Pathog 2022; 18:e1010953. [PMID: 36327346 PMCID: PMC9665402 DOI: 10.1371/journal.ppat.1010953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni is a food-borne zoonotic pathogen of worldwide concern and the leading cause of bacterial diarrheal disease. In contrast to other enteric pathogens, C. jejuni has strict growth and nutritional requirements but lacks many virulence factors that have evolved for pathogenesis or interactions with the host. It is unclear how this bacterium has adapted to an enteric lifestyle. Here, we discovered that the CheO protein (CJJ81176_1265) is required for C. jejuni colonization of mice gut through its role in chemotactic control of flagellar rotation in oxygen-limiting environments. CheO interacts with the chemotaxis signaling proteins CheA and CheZ, and also with the flagellar rotor components FliM and FliY. Under microaerobic conditions, CheO localizes at the cellular poles where the chemosensory array and flagellar machinery are located in C. jejuni and its polar localization depends on chemosensory array formation. Several chemoreceptors that mediate energy taxis coordinately determine the bipolar distribution of CheO. Suppressor screening for a ΔcheO mutant identified that a single residue variation in FliM can alleviate the phenotype caused by the absence of CheO, confirming its regulatory role in the flagellar rotor switch. CheO homologs are only found in species of the Campylobacterota phylum, mostly species of host-associated genera Campylobacter, Helicobacter and Wolinella. The CheO results provide insights into the complexity of chemotaxis signal transduction in C. jejuni and closely related species. Importantly, the recruitment of CheO into chemosensory array to promote chemotactic behavior under hypoxia represents a new adaptation strategy of C. jejuni to human and animal intestines. Bacteria use chemotaxis to navigate their flagellar motility towards or away from a variety of environmental stimuli. For many pathogens, chemotactic motility plays an important role in infection and disease. Understanding the mechanism of chemotaxis behavior in pathogens can help the development of therapeutic strategies by interfering with chemotactic signal transduction. In this study, we identified a novel chemotaxis protein CheO in Campylobacter jejuni, a leading cause of human gastroenteritis worldwide. We demonstrated that CheO is directly involved in chemotactic control of the flagellar motor switch, the reason that it is required for colonization of different animal models. We also provide evidences that CheO is responsive to environmental oxygen variation, with a more prominent role in energy taxis under low oxygen levels. Therefore, CheO presents a novel mechanism for C. jejuni adaptation to hypoxia conditions such as those existing in human and animal intestines. Targeting CheO and other chemotaxis regulators could reduce the survival of C. jejuni within hosts and in the food chain.
Collapse
Affiliation(s)
- Ran Mo
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Sanya Institute of Oceanology, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Ma
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Weijie Zhou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Sanya Institute of Oceanology, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- * E-mail:
| |
Collapse
|
26
|
Boyeldieu A, Poli J, Ali Chaouche A, Fierobe H, Giudici‐Orticoni M, Méjean V, Jourlin‐Castelli C. Multiple detection of both attractants and repellents by the dCache-chemoreceptor SO_1056 of Shewanella oneidensis. FEBS J 2022; 289:6752-6766. [PMID: 35668695 PMCID: PMC9796306 DOI: 10.1111/febs.16548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023]
Abstract
Chemoreceptors are usually transmembrane proteins dedicated to the detection of compound gradients or signals in the surroundings of a bacterium. After detection, they modulate the activation of CheA-CheY, the core of the chemotactic pathway, to allow cells to move upwards or downwards depending on whether the signal is an attractant or a repellent, respectively. Environmental bacteria such as Shewanella oneidensis harbour dozens of chemoreceptors or MCPs (methyl-accepting chemotaxis proteins). A recent study revealed that MCP SO_1056 of S. oneidensis binds chromate. Here, we show that this MCP also detects an additional attractant (l-malate) and two repellents (nickel and cobalt). The experiments were performed in vivo by the agarose-in-plug technique after overproducing MCP SO_1056 and in vitro, when possible, by submitting the purified ligand-binding domain (LBD) of SO_1056 to a thermal shift assay (TSA) coupled to isothermal titration calorimetry (ITC). ITC assays revealed a KD of 3.4 μm for l-malate and of 47.7 μm for nickel. We conclude that MCP SO_1056 binds attractants and repellents of unrelated composition. The LBD of SO_1056 belongs to the double Cache_1 family and is highly homologous to PctA, a chemoreceptor from Pseudomonas aeruginosa that detects several amino acids. Therefore, LBDs of the same family can bind diverse compounds, confirming that experimental approaches are required to define accurate LBD-binding molecules or signals.
Collapse
Affiliation(s)
- Anne Boyeldieu
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance,Present address:
Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS)Université de Toulouse, UPSFrance
| | - Jean‐Pierre Poli
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance,Université de Corse Pasquale PaoliCorteFrance
| | - Amine Ali Chaouche
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance
| | - Henri‐Pierre Fierobe
- Laboratoire de Chimie Bactérienne (LCB, UMR7283), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance
| | - Marie‐Thérèse Giudici‐Orticoni
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance
| | - Vincent Méjean
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance
| | - Cécile Jourlin‐Castelli
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance
| |
Collapse
|
27
|
Abstract
Bacteria have evolved many different signal transduction systems to sense and respond to changing environmental conditions. Signal integration is mainly achieved by signal recognition at extracytosolic ligand-binding domains (LBDs) of receptors. Hundreds of different LBDs have been reported, and our understanding of their sensing properties is growing. Receptors must function over a range of environmental pH values, but there is little information available on the robustness of sensing as a function of pH. Here, we have used isothermal titration calorimetry to determine the pH dependence of ligand recognition by nine LBDs that cover all major LBD superfamilies, of periplasmic solute-binding proteins, and cytosolic LBDs. We show that periplasmic LBDs recognize ligands over a very broad pH range, frequently stretching over eight pH units. This wide pH range contrasts with a much narrower pH response range of the cytosolic LBDs analyzed. Many LBDs must be dimeric to bind ligands, and analytical ultracentrifugation studies showed that the LBD of the Tar chemoreceptor forms dimers over the entire pH range tested. The pH dependences of Pseudomonas aeruginosa motility and chemotaxis were bell-shaped and centered at pH 7.0. Evidence for pH robustness of signaling in vivo was obtained by Förster Resonance Energy Transfer (FRET) measurements of the chemotaxis pathway responses in Escherichia coli. Bacteria have evolved several strategies to cope with extreme pH, such as periplasmic chaperones for protein refolding. The intrinsic pH resistance of periplasmic LBDs appears to be another strategy that permits bacteria to survive under adverse conditions.
Collapse
|
28
|
Signal binding at both modules of its dCache domain enables the McpA chemoreceptor of Bacillus velezensis to sense different ligands. Proc Natl Acad Sci U S A 2022; 119:e2201747119. [PMID: 35858353 PMCID: PMC9303924 DOI: 10.1073/pnas.2201747119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bacteria have evolved multiple signal transduction systems that permit an adaptation to changing environmental conditions. Chemoreceptor-based signaling cascades are very abundant in bacteria and are among the most complex signaling systems. Currently, our knowledge on the molecular features that determine signal recognition at chemoreceptors is limited. Chemoreceptor McpA of Bacillus velezensis SQR9 has been shown to mediate chemotaxis to a broad range of different ligands. Here we show that its ligand binding domain binds directly 13 chemoattractants. We provide support that organic acids and amino acids bind to the membrane-distal and membrane-proximal module of the dCache domain, respectively, whereas binding of sugars/sugar alcohols occurred at both modules. Structural biology studies combined with site-directed mutagenesis experiments have permitted to identify 10 amino acid residues that play key roles in the recognition of multiple ligands. Residues in membrane-distal and membrane-proximal regions were central for sensing organic acids and amimo acids, respectively, whereas all residues participated in sugars/sugar alcohol sensing. Most characterized chemoreceptors possess a narrow and well-defined ligand spectrum. We propose here a sensing mechanism involving both dCache modules that allows the integration of very diverse signals by a single chemoreceptor.
Collapse
|
29
|
Mo R, Zhu S, Chen Y, Li Y, Liu Y, Gao B. The evolutionary path of chemosensory and flagellar macromolecular machines in Campylobacterota. PLoS Genet 2022; 18:e1010316. [PMID: 35834583 PMCID: PMC9321776 DOI: 10.1371/journal.pgen.1010316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/26/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023] Open
Abstract
The evolution of macromolecular complex is a fundamental biological question, which is related to the origin of life and also guides our practice in synthetic biology. The chemosensory system is one of the complex structures that evolved very early in bacteria and displays enormous diversity and complexity in terms of composition and array structure in modern species. However, how the diversity and complexity of the chemosensory system evolved remains unclear. Here, using the Campylobacterota phylum with a robust “eco-evo” framework, we investigated the co-evolution of the chemosensory system and one of its important signaling outputs, flagellar machinery. Our analyses show that substantial flagellar gene alterations will lead to switch of its primary chemosensory class from one to another, or result in a hybrid of two classes. Unexpectedly, we discovered that the high-torque generating flagellar motor structure of Campylobacter jejuni and Helicobacter pylori likely evolved in the last common ancestor of the Campylobacterota phylum. Later lineages that experienced significant flagellar alterations lost some key components of complex scaffolding structures, thus derived simpler structures than their ancestor. Overall, this study revealed the co-evolutionary path of the chemosensory system and flagellar system, and highlights that the evolution of flagellar structural complexity requires more investigation in the Bacteria domain based on a resolved phylogenetic framework, with no assumptions on the evolutionary direction. Chemosensory system is the most complicated signal transduction system in bacteria with great diversity in both composition and structural organization across species. One of its important signaling output is flagellar motility driven by a propeller, which is made of dozens of proteins and shows considerable variation and complexity surrounding the core motor structure in different species. The evolution of both chemosensory system and flagellum are important biological questions but remain obscure. Here, we carefully examined the evolutionary paths of chemosensory system and flagellar structure in a bacterial phylum, providing detailed molecular evidences for their co-evolution. Our study provides a paradigm to study the evolution of macromolecular complexes based on robust bacterial phylogeny and co-evolved systems/components in genome context.
Collapse
Affiliation(s)
- Ran Mo
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Chen
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqian Li
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yugeng Liu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- * E-mail:
| |
Collapse
|
30
|
Noncanonical Sensing Mechanisms for Bacillus subtilis Chemoreceptors. J Bacteriol 2022; 204:e0002722. [PMID: 35323015 DOI: 10.1128/jb.00027-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bodhankar et al. reported a noncanonical sensing mechanism that involves signal interaction with the McpA chemoreceptor signaling domain resulting in a chemorepellence response of Bacillus subtilis. The identified repellent binding site is analogous to that for attractant binding in McpB, another B. subtilis chemoreceptor.
Collapse
|
31
|
Comparative Genomics of Cyclic di-GMP Metabolism and Chemosensory Pathways in Shewanella algae Strains: Novel Bacterial Sensory Domains and Functional Insights into Lifestyle Regulation. mSystems 2022; 7:e0151821. [PMID: 35311563 PMCID: PMC9040814 DOI: 10.1128/msystems.01518-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shewanella spp. play important ecological and biogeochemical roles, due in part to their versatile metabolism and swift integration of stimuli. While Shewanella spp. are primarily considered environmental microbes, Shewanella algae is increasingly recognized as an occasional human pathogen. S. algae shares the broad metabolic and respiratory repertoire of Shewanella spp. and thrives in similar ecological niches. In S. algae, nitrate and dimethyl sulfoxide (DMSO) respiration promote biofilm formation strain specifically, with potential implication of taxis and cyclic diguanosine monophosphate (c-di-GMP) signaling. Signal transduction systems in S. algae have not been investigated. To fill these knowledge gaps, we provide here an inventory of the c-di-GMP turnover proteome and chemosensory networks of the type strain S. algae CECT 5071 and compare them with those of 41 whole-genome-sequenced clinical and environmental S. algae isolates. Besides comparative analysis of genetic content and identification of laterally transferred genes, the occurrence and topology of c-di-GMP turnover proteins and chemoreceptors were analyzed. We found S. algae strains to encode 61 to 67 c-di-GMP turnover proteins and 28 to 31 chemoreceptors, placing S. algae near the top in terms of these signaling capacities per Mbp of genome. Most c-di-GMP turnover proteins were predicted to be catalytically active; we describe in them six novel N-terminal sensory domains that appear to control their catalytic activity. Overall, our work defines the c-di-GMP and chemosensory signal transduction pathways in S. algae, contributing to a better understanding of its ecophysiology and establishing S. algae as an auspicious model for the analysis of metabolic and signaling pathways within the genus Shewanella. IMPORTANCEShewanella spp. are widespread aquatic bacteria that include the well-studied freshwater model strain Shewanella oneidensis MR-1. In contrast, the physiology of the marine and occasionally pathogenic species Shewanella algae is poorly understood. Chemosensory and c-di-GMP signal transduction systems integrate environmental stimuli to modulate gene expression, including the switch from a planktonic to sessile lifestyle and pathogenicity. Here, we systematically dissect the c-di-GMP proteome and chemosensory pathways of the type strain S. algae CECT 5071 and 41 additional S. algae isolates. We provide insights into the activity and function of these proteins, including a description of six novel sensory domains. Our work will enable future analyses of the complex, intertwined c-di-GMP metabolism and chemotaxis networks of S. algae and their ecophysiological role.
Collapse
|
32
|
Li X, Tang H, Xu Z, Tang H, Fan Z, Jiao X, Huang J. Prevalence and characteristics of Campylobacter from the genital tract of primates and ruminants in Eastern China. Transbound Emerg Dis 2022; 69:e1892-e1898. [PMID: 35297537 DOI: 10.1111/tbed.14524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
Campylobacter infection is an important cause of genital failure in ruminants in developed countries. Although historically Campylobacter fetus subspecies fetus has been the main cause of abortion in sheep, C. jejuni is also increasingly associated with sheep abortions. However, limited information is known on Campylobacter-associated abortions in China. This study initially investigated the distribution of Campylobacter from the genital tracts of humans, monkeys, sheep, and cows in China from 2017 to 2018. Ten out of 2,126 (0.47%) samples from the genital tracts were Campylobacter positive, of which seven (70%) isolates were identified as C. jejuni. Phylogenetic analysis showed the high genetic diversity of these isolates. The human isolates were closely related to the sheep isolates implying inter-transmission of Campylobacter between humans and sheep according to the phylogenetic analysis. The acid resistance, adhesion, and invasion abilities of genital tract isolates were stronger than isolates from gastrointestinal tract, but no significant difference was observed in the virulence genes. We further found that three genital tract isolates belonged to the same cluster as gastrointestinal isolates from the same host. These findings suggested that there may be inter-transmission of Campylobacter between the genital and gastrointestinal tract. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaofei Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hong Tang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhonglan Xu
- Yangzhou Maternity and Infant Hospital, Yangzhou, 225001, China
| | - Haiyan Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, 225009, China
| | - Zhengyang Fan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, 225009, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, 225009, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
33
|
Gumerov VM, Andrianova EP, Matilla MA, Page KM, Monteagudo-Cascales E, Dolphin AC, Krell T, Zhulin IB. Amino acid sensor conserved from bacteria to humans. Proc Natl Acad Sci U S A 2022; 119:e2110415119. [PMID: 35238638 PMCID: PMC8915833 DOI: 10.1073/pnas.2110415119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceAmino acids are the building blocks of life and important signaling molecules. Despite their common structure, no universal mechanism for amino acid recognition by cellular receptors is currently known. We discovered a simple motif, which binds amino acids in various receptor proteins from all major life-forms. In humans, this motif is found in subunits of calcium channels that are implicated in pain and neurodevelopmental disorders. Our findings suggest that γ-aminobutyric acid-derived drugs bind to the same motif in human proteins that binds natural ligands in bacterial receptors, thus enabling future improvement of important drugs.
Collapse
Affiliation(s)
- Vadim M. Gumerov
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210
| | - Ekaterina P. Andrianova
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | - Karen M. Page
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | - Annette C. Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
34
|
Abstract
Acetylcholine is a central biological signal molecule present in all kingdoms of life. In humans, acetylcholine is the primary neurotransmitter of the peripheral nervous system; it mediates signal transmission at neuromuscular junctions. Here, we show that the opportunistic human pathogen Pseudomonas aeruginosa exhibits chemoattraction toward acetylcholine over a concentration range of 1 μM to 100 mM. The maximal magnitude of the response was superior to that of many other P. aeruginosa chemoeffectors. We demonstrate that this chemoattraction is mediated by the PctD (PA4633) chemoreceptor. Using microcalorimetry, we show that the PctD ligand-binding domain (LBD) binds acetylcholine with a equilibrium dissociation constant (KD) of 23 μM. It also binds choline and with lower affinity betaine. Highly sensitive responses to acetylcholine and choline, and less sensitive responses to betaine and l-carnitine, were observed in Escherichia coli expressing a chimeric receptor comprising the PctD-LBD fused to the Tar chemoreceptor signaling domain. We also identified the PacA (ECA_RS10935) chemoreceptor of the phytopathogen Pectobacterium atrosepticum, which binds choline and betaine but fails to recognize acetylcholine. To identify the molecular determinants for acetylcholine recognition, we report high-resolution structures of PctD-LBD (with bound acetylcholine and choline) and PacA-LBD (with bound betaine). We identified an amino acid motif in PctD-LBD that interacts with the acetylcholine tail. This motif is absent in PacA-LBD. Significant acetylcholine chemotaxis was also detected in the plant pathogens Agrobacterium tumefaciens and Dickeya solani. To the best of our knowledge, this is the first report of acetylcholine chemotaxis and extends the range of host signals perceived by bacterial chemoreceptors.
Collapse
|
35
|
A Review of the Advantages, Disadvantages and Limitations of Chemotaxis Assays for Campylobacter spp. Int J Mol Sci 2022; 23:ijms23031576. [PMID: 35163499 PMCID: PMC8836060 DOI: 10.3390/ijms23031576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/26/2022] Open
Abstract
Reproducible qualitative and quantitative assessment of bacterial chemotactic motility, particularly in response to chemorepellent effectors, is experimentally challenging. Here we compare several established chemotaxis assays currently used to investigate Campylobacter jejuni chemotaxis, with the aim of improving the correlation between different studies and establishing the best practices. We compare the methodologies of capillary, agar, and chamber-based assays, and discuss critical technical points, in terms of reproducibility, accuracy, and the advantages and limitations of each.
Collapse
|
36
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
37
|
Cain JA, Dale AL, Cordwell SJ. Exploiting pglB Oligosaccharyltransferase-Positive and -Negative Campylobacter jejuni and a Multiprotease Digestion Strategy to Identify Novel Sites Modified by N-Linked Protein Glycosylation. J Proteome Res 2021; 20:4995-5009. [PMID: 34677046 DOI: 10.1021/acs.jproteome.1c00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is a bacterial pathogen encoding a unique N-linked glycosylation (pgl) system that mediates attachment of a heptasaccharide to N-sequon-containing membrane proteins by the PglB oligosaccharyltransferase (OST). Many targets of PglB are known, yet only a fraction of sequons are experimentally confirmed, and site occupancy remains elusive. We exploited pglB-positive (wild-type; WT) and -negative (ΔpglB) proteomes to identify potential glycosites. The nonglycosylated forms of known glycopeptides were typically increased in protein normalized abundance in ΔpglB relative to WT and restored by pglB reintroduction (ΔpglB::pglB). Sequon-containing peptide abundances were thus consistent with significant site occupancy in the presence of the OST. Peptides with novel sequons were either unaltered (likely not glycosylated) or showed abundance consistent with known glycopeptides. Topology analysis revealed that unaltered sequons often displayed cytoplasmic localization, despite originating from membrane proteins. Novel glycosites were confirmed using parallel multiprotease digestion, LC-MS/MS, and FAIMS-MS to define the glycoproteomes of WT and ΔpglB::pglB C. jejuni. We identified 142 glycosites, of which 32 were novel, and 83% of sites predicted by proteomics were validated. There are now 166 experimentally verified C. jejuni glycosites and evidence for occupancy or nonoccupancy of 31 additional sites. This study serves as a model for the use of OST-negative cells and proteomics for highlighting novel glycosites and determining occupancy in a range of organisms.
Collapse
Affiliation(s)
- Joel A Cain
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia
| | - Ashleigh L Dale
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia
| | - Stuart J Cordwell
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia.,Sydney Mass Spectrometry, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
38
|
Abstract
Chemosensory pathways are among the most abundant prokaryotic signal transduction systems, allowing bacteria to sense and respond to environmental stimuli. Signaling is typically initiated by the binding of specific molecules to the ligand binding domain (LBD) of chemoreceptor proteins (CRs). Although CRs play a central role in plant-microbiome interactions such as colonization and infection, little is known about their phylogenetic and ecological specificity. Here, we analyzed 82,277 CR sequences from 11,806 representative microbial species covering the whole prokaryotic phylogeny, and we classified them according to their LBD type using a de novo homology clustering method. Through phylogenomic analysis, we identified hundreds of LBDs that are found predominantly in plant-associated bacteria, including several LBDs specific to phytopathogens and plant symbionts. Functional annotation of our catalogue showed that many of the LBD clusters identified might constitute unknown types of LBDs. Moreover, we found that the taxonomic distribution of most LBD types that are specific to plant-associated bacteria is only partially explained by phylogeny, suggesting that lifestyle and niche adaptation are important factors in their selection. Finally, our results show that the profile of LBD types in a given genome is related to the lifestyle specialization, with plant symbionts and phytopathogens showing the highest number of niche-specific LBDs. The LBD catalogue and information on how to profile novel genomes are available at https://github.com/compgenomicslab/CRs. IMPORTANCE Considering the enormous variety of LBDs at sensor proteins, an important question resides in establishing the forces that have driven their evolution and selection. We present here the first clear demonstration that environmental factors play an important role in the selection and evolution of LBDs. We were able to demonstrate the existence of LBD families that are highly enriched in plant-associated bacteria but show a wide phylogenetic spread. These findings offer a number of research opportunities in the field of single transduction, such as the exploration of similar relationships in chemoreceptors of bacteria with a different lifestyle, like those inhabiting or infecting the human intestine. Similarly, our results raise the question whether similar LBD types might be shared by members of different sensor protein families. Lastly, we provide a comprehensive catalogue of CRs classified by their LBD region that includes a large number of putative new LBD types.
Collapse
|
39
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
40
|
The dCache Chemoreceptor TlpA of Helicobacter pylori Binds Multiple Attractant and Antagonistic Ligands via Distinct Sites. mBio 2021; 12:e0181921. [PMID: 34340539 PMCID: PMC8406319 DOI: 10.1128/mbio.01819-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Helicobacter pylori chemoreceptor TlpA plays a role in dampening host inflammation during chronic stomach colonization. TlpA has a periplasmic dCache_1 domain, a structure that is capable of sensing many ligands; however, the only characterized TlpA signals are arginine, bicarbonate, and acid. To increase our understanding of TlpA’s sensing profile, we screened for diverse TlpA ligands using ligand binding arrays. TlpA bound seven ligands with affinities in the low- to middle-micromolar ranges. Three of these ligands, arginine, fumarate, and cysteine, were TlpA-dependent chemoattractants, while the others elicited no response. Molecular docking experiments, site-directed point mutants, and competition surface plasmon resonance binding assays suggested that TlpA binds ligands via both the membrane-distal and -proximal dCache_1 binding pockets. Surprisingly, one of the nonactive ligands, glucosamine, acted as a chemotaxis antagonist, preventing the chemotaxis response to chemoattractant ligands, and acted to block the binding of ligands irrespective of whether they bound the membrane-distal or -proximal dCache_1 subdomains. In total, these results suggest that TlpA senses multiple attractant ligands as well as antagonist ones, an emerging theme in chemotaxis systems.
Collapse
|