1
|
Perfilova KV, Matyuta IO, Minyaev ME, Boyko KM, Cooley RB, Sluchanko NN. High-resolution structure reveals enhanced 14-3-3 binding by a mutant SARS-CoV-2 nucleoprotein variant with improved replicative fitness. Biochem Biophys Res Commun 2025; 767:151915. [PMID: 40318379 DOI: 10.1016/j.bbrc.2025.151915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Replication of many viruses depends on phosphorylation of viral proteins by host protein kinases and subsequent recruitment of host protein partners. The nucleoprotein (N) of SARS-CoV-2 is heavily phosphorylated and recruits human phosphopeptide-binding 14-3-3 proteins early in infection, which is reversed prior to nucleocapsid assembly in new virions. Among the multiple phosphosites of N, which are particularly dense in the serine/arginine-rich interdomain region, phospho-Thr205 is highly relevant for 14-3-3 recruitment by SARS-CoV-2 N. The context of this site is mutated in most SARS-CoV-2 variants of concern. Among mutations that increase infectious virus titers, the S202R mutation (B.1.526 Iota) causes a striking replication boost (∼166-fold), although its molecular consequences have remained unclear. Here, we show that the S202R-mutated N phosphopeptide exhibits a 5-fold higher affinity for human 14-3-3ζ than the Wuhan variant and we rationalize this effect by solving a high-resolution crystal structure of the complex. The structure revealed an enhanced 14-3-3/N interface contributed by the Arg202 side chain that, in contrast to Ser202, formed multiple stabilizing contacts with 14-3-3, including water-mediated H-bonds and guanidinium pi-pi stacking. These findings provide a compelling link between the replicative fitness of SARS-CoV-2 and the N protein's affinity for host 14-3-3 proteins.
Collapse
Affiliation(s)
- Kristina V Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Ilya O Matyuta
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Richard B Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
2
|
Loonen S, van Steenis L, Bauer M, Šoštarić N. Phosphorylation Changes SARS-CoV-2 Nucleocapsid Protein's Structural Dynamics and Its Interaction With RNA. Proteins 2025. [PMID: 40375582 DOI: 10.1002/prot.26842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
The SARS-CoV-2 nucleocapsid protein, or N-protein, is a structural protein that plays an important role in the SARS-CoV-2 life cycle. The N-protein takes part in the regulation of viral RNA replication and drives highly specific packaging of full-length genomic RNA prior to virion formation. One regulatory mechanism that is proposed to drive the switch between these two operating modes is the phosphorylation state of the N-protein. Here, we assess the dynamic behavior of non-phosphorylated and phosphorylated versions of the N-protein homodimer through atomistic molecular dynamics simulations. We show that the introduction of phosphorylation yields a more dynamic protein structure and decreases the binding affinity between the N-protein and RNA. Furthermore, we find that secondary structure is essential for the preferential binding of particular RNA elements from the 5' UTR of the viral genome to the N-terminal domain of the N-protein. Altogether, we provide detailed molecular insights into N-protein dynamics, N-protein:RNA interactions, and phosphorylation. Our results corroborate the hypothesis that phosphorylation of the N-protein serves as a regulatory mechanism that determines N-protein function.
Collapse
Affiliation(s)
- Stefan Loonen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, HZ, the Netherlands
| | - Lina van Steenis
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, HZ, the Netherlands
| | - Marianne Bauer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, HZ, the Netherlands
| | - Nikolina Šoštarić
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, HZ, the Netherlands
| |
Collapse
|
3
|
Cruz T, Albacar N, Ruiz E, Lledo GM, Perea L, Puebla A, Torvisco A, Mendoza N, Marrades P, Sellares J, Agustí A, Viñas O, Sibila O, Faner R. Persistence of dysfunctional immune response 12 months after SARS-CoV-2 infection and their relationship with pulmonary sequelae and long COVID. Respir Res 2025; 26:152. [PMID: 40247373 PMCID: PMC12004571 DOI: 10.1186/s12931-025-03200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025] Open
Abstract
INTRODUCTION Most patients recover fully after an acute infection by SARS-CoV-2. Some, however, may develop pulmonary sequelae (PS) and/or long COVID (LC). However, whether these two clinical conditions have similar or different pathogenic mechanisms is unknown. METHODS The levels of autoantibodies and 184 inflammatory and organ damage associated proteins in plasma were determined (by immunofluorescence and Olink panels, respectively) 1 year after an acute infection by SARS-CoV-2 in 51 patients with PS (DLCO < 80% ref), 31 patients with LC and 31 patients fully recovered (Rec). PS was defined by the presence of reduced carbon monoxide diffusing capacity (DLCO) lower than 80% ref. LC was defined by the presence of chronic symptoms in the absence of an alternative diagnosis. RESULTS We found that patients with PS or LC both showed increased levels than Rec of anti-microbial, immune cell activation and recruitment related proteins. Patients with PS showed higher levels of anti-nuclear autoantibodies, whereas LC patients had increased levels of organ-damage associated proteins. In patients with PS most of the elevated proteins correlate with the impairment of lung function (DLCO). Finally, in PS we additionally performed the determinations at an earlier time point (6 months) and showed that the expression of CCL20 and IFN-ɣ was already higher at 6 months, while CCL3 and CCL19 increase from 6 to 12 months, suggesting a pathogenic role in PS persistence. CONCLUSIONS Patients with PS or LC have abnormal but different persistent circulatory immune and organ damage biomarkers, suggesting different underlying biology of both post-COVID conditions.
Collapse
Affiliation(s)
- Tamara Cruz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Madrid, Spain
| | - Núria Albacar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Madrid, Spain
- Respiratory Institute, Hospital Clinic, C/Villaroel 170, 08036, Barcelona, Spain
| | - Estibaliz Ruiz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Immunology Department, Hospital Clínic, C/Villaroel 170, 08036, Barcelona, Spain
| | - Gema M Lledo
- Department of Autoimmune Diseases, Hospital Clínic, Barcelona, Spain
| | - Lídia Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Madrid, Spain
| | - Alba Puebla
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
| | - Alejandro Torvisco
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Department of Biomedicine, Immunology Unit, University of Barcelona, Barcelona, Spain
| | - Núria Mendoza
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
| | - Pau Marrades
- Respiratory Institute, Hospital Clinic, C/Villaroel 170, 08036, Barcelona, Spain
| | - Jacobo Sellares
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Madrid, Spain
- Respiratory Institute, Hospital Clinic, C/Villaroel 170, 08036, Barcelona, Spain
| | - Alvar Agustí
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Madrid, Spain
- Respiratory Institute, Hospital Clinic, C/Villaroel 170, 08036, Barcelona, Spain
| | - Odette Viñas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Immunology Department, Hospital Clínic, C/Villaroel 170, 08036, Barcelona, Spain
| | - Oriol Sibila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Madrid, Spain
- Respiratory Institute, Hospital Clinic, C/Villaroel 170, 08036, Barcelona, Spain
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Madrid, Spain.
- Department of Biomedicine, Immunology Unit, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Hao L, Fragoso-Saavedra M, Liu Q. Upregulation of porcine epidemic diarrhea virus (PEDV) RNA translation by the nucleocapsid protein. Virology 2025; 602:110306. [PMID: 39603168 DOI: 10.1016/j.virol.2024.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The role of coronaviral nucleocapsid (N) protein in regulating viral translation remains poorly understood. Here, we showed that the N protein of porcine epidemic diarrhea virus (PEDV) enhances the translation of both virus-like genomic RNA (gRNA) and messenger RNA. Further characterization of the gRNA translation upregulation showed that the N-terminal domain (NTD) + Linker region plays a major role. The stem-loop 1 in the 5' untranslated region (UTR) and the budged stem loop in the 3'UTR are required for viral translation upregulation by PEDV N protein. The signaling kinase Akt exists in three isoforms. We found that Akt1 enhances viral gRNA translation upregulation by the N protein dependent on its kinase activity. We further showed an interaction between Akt1 and PEDV N, that is abolished by the NTD + Linker region. This suggested that the enhancing effect of Akt1 on translation upregulation by the N protein does not require interaction between these two proteins.
Collapse
Affiliation(s)
- Lin Hao
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mario Fragoso-Saavedra
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
5
|
Syed AM, Ciling A, Chen IP, Carlson CR, Adly AN, Martin HS, Taha TY, Khalid MM, Price N, Bouhaddou M, Ummadi MR, Moen JM, Krogan NJ, Morgan DO, Ott M, Doudna JA. SARS-CoV-2 evolution balances conflicting roles of N protein phosphorylation. PLoS Pathog 2024; 20:e1012741. [PMID: 39571001 PMCID: PMC11620656 DOI: 10.1371/journal.ppat.1012741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/05/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
All lineages of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, contain mutations between amino acids 199 and 205 in the nucleocapsid (N) protein that are associated with increased infectivity. The effects of these mutations have been difficult to determine because N protein contributes to both viral replication and viral particle assembly during infection. Here, we used single-cycle infection and virus-like particle assays to show that N protein phosphorylation has opposing effects on viral assembly and genome replication. Ancestral SARS-CoV-2 N protein is densely phosphorylated, leading to higher levels of genome replication but 10-fold lower particle assembly compared to evolved variants with low N protein phosphorylation, such as Delta (N:R203M), Iota (N:S202R), and B.1.2 (N:P199L). A new open reading frame encoding a truncated N protein called N*, which occurs in the B.1.1 lineage and subsequent lineages of the Alpha, Gamma, and Omicron variants, supports high levels of both assembly and replication. Our findings help explain the enhanced fitness of viral variants of concern and a potential avenue for continued viral selection.
Collapse
Affiliation(s)
- Abdullah M. Syed
- Gladstone Institutes, San Francisco, California, United States of America
| | - Alison Ciling
- Gladstone Institutes, San Francisco, California, United States of America
| | - Irene P. Chen
- Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Christopher R. Carlson
- Department of Physiology, University of California, San Francisco, California, United States of America
| | - Armin N. Adly
- Department of Physiology, University of California, San Francisco, California, United States of America
| | - Hannah S. Martin
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Taha Y. Taha
- Gladstone Institutes, San Francisco, California, United States of America
| | - Mir M. Khalid
- Gladstone Institutes, San Francisco, California, United States of America
| | - Nathan Price
- Gladstone Institutes, San Francisco, California, United States of America
| | - Mehdi Bouhaddou
- Gladstone Institutes, San Francisco, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), UCLA, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences (QCBio), UCLA, Los Angeles, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Manisha R. Ummadi
- Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Jack M. Moen
- Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - David O. Morgan
- Department of Physiology, University of California, San Francisco, California, United States of America
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Jennifer A. Doudna
- Gladstone Institutes, San Francisco, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, United States of America
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
6
|
Wang L, Wang Y, Ke Z, Wang Z, Guo Y, Zhang Y, Zhang X, Guo Z, Wan B. Liquid-liquid phase separation: a new perspective on respiratory diseases. Front Immunol 2024; 15:1444253. [PMID: 39391315 PMCID: PMC11464301 DOI: 10.3389/fimmu.2024.1444253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) is integral to various biological processes, facilitating signal transduction by creating a condensed, membrane-less environment that plays crucial roles in diverse physiological and pathological processes. Recent evidence has underscored the significance of LLPS in human health and disease. However, its implications in respiratory diseases remain poorly understood. This review explores current insights into the mechanisms and biological roles of LLPS, focusing particularly on its relevance to respiratory diseases, aiming to deepen our understanding and propose a new paradigm for studying phase separation in this context.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Shanghai East Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yongjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhangmin Ke
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zexu Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yufang Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongliang Guo
- Shanghai East Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Zhu J, Liu G, Sayyad Z, Goins CM, Stauffer SR, Gack MU. ISGylation of the SARS-CoV-2 N protein by HERC5 impedes N oligomerization and thereby viral RNA synthesis. J Virol 2024; 98:e0086924. [PMID: 39194248 PMCID: PMC11406920 DOI: 10.1128/jvi.00869-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Interferon (IFN)-stimulated gene 15 (ISG15), a ubiquitin-like protein, is covalently conjugated to host immune proteins such as MDA5 and IRF3 in a process called ISGylation, thereby promoting type I IFN induction to limit the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, whether SARS-CoV-2 proteins can be directly targeted for ISGylation remains elusive. In this study, we identified the nucleocapsid (N) protein of SARS-CoV-2 as a major substrate of ISGylation catalyzed by the host E3 ligase HERC5; however, N ISGylation is readily removed through deISGylation by the papain-like protease (PLpro) activity of NSP3. Mass spectrometry analysis identified that the N protein undergoes ISGylation at four lysine residues (K266, K355, K387, and K388), and mutational analysis of these sites in the context of a SARS-CoV-2 replicon (N-4KR) abolished N ISGylation and alleviated ISGylation-mediated inhibition of viral RNA synthesis. Furthermore, our results indicated that HERC5 targets preferentially phosphorylated N protein for ISGylation to regulate its oligomeric assembly. These findings reveal a novel mechanism by which the host ISGylation machinery directly targets SARS-CoV-2 proteins to restrict viral replication and illuminate how an intricate interplay of host (HERC5) and viral (PLpro) enzymes coordinates viral protein ISGylation and thereby regulates virus replication.IMPORTANCEThe role of protein ISGylation in regulating host cellular processes has been studied extensively; however, how ISG15 conjugation influences the activity of viral proteins, particularly coronaviral proteins, is largely unknown. Our study uncovered that the nucleocapsid (N) protein of SARS-CoV-2 is ISGylated by the HERC5 ISGylation machinery and that this modification impedes the functional assembly of N into oligomers ultimately inhibiting viral RNA synthesis. This antiviral restriction mechanism is antagonized by the PLpro deISGylation activity of SARS-CoV-2 NSP3. This study deepens our understanding of SARS-CoV-2 protein regulation by posttranslational modifications and may open new avenues for designing antiviral strategies for COVID-19.
Collapse
Affiliation(s)
- Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - Christopher M. Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shaun R. Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| |
Collapse
|
8
|
Young VL, McSweeney AM, Edwards MJ, Ward VK. The Disorderly Nature of Caliciviruses. Viruses 2024; 16:1324. [PMID: 39205298 PMCID: PMC11360831 DOI: 10.3390/v16081324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
An intrinsically disordered protein (IDP) or region (IDR) lacks or has little protein structure but still maintains function. This lack of structure creates flexibility and fluidity, allowing multiple protein conformations and potentially transient interactions with more than one partner. Caliciviruses are positive-sense ssRNA viruses, containing a relatively small genome of 7.6-8.6 kb and have a broad host range. Many viral proteins are known to contain IDRs, which benefit smaller viral genomes by expanding the functional proteome through the multifunctional nature of the IDR. The percentage of intrinsically disordered residues within the total proteome for each calicivirus type species can range between 8 and 23%, and IDRs have been experimentally identified in NS1-2, VPg and RdRP proteins. The IDRs within a protein are not well conserved across the genera, and whether this correlates to different activities or increased tolerance to mutations, driving virus adaptation to new selection pressures, is unknown. The function of norovirus NS1-2 has not yet been fully elucidated but includes involvement in host cell tropism, the promotion of viral spread and the suppression of host interferon-λ responses. These functions and the presence of host cell-like linear motifs that interact with host cell caspases and VAPA/B are all found or affected by the disordered region of norovirus NS1-2. The IDRs of calicivirus VPg are involved in viral transcription and translation, RNA binding, nucleotidylylation and cell cycle arrest, and the N-terminal IDR within the human norovirus RdRP could potentially drive liquid-liquid phase separation. This review identifies and summarises the IDRs of proteins within the Caliciviridae family and their importance during viral replication and subsequent host interactions.
Collapse
Affiliation(s)
| | | | | | - Vernon K. Ward
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Liang J, Djurkovic MA, Leavitt CG, Shtanko O, Harty RN. Hippo signaling pathway regulates Ebola virus transcription and egress. Nat Commun 2024; 15:6953. [PMID: 39138205 PMCID: PMC11322314 DOI: 10.1038/s41467-024-51356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Filovirus-host interactions play important roles in all stages of the virus lifecycle. Here, we identify LATS1/2 kinases and YAP, key components of the Hippo pathway, as critical regulators of EBOV transcription and egress. Specifically, we find that when YAP is phosphorylated by LATS1/2, it localizes to the cytoplasm (Hippo "ON") where it sequesters VP40 to prevent egress. In contrast, when the Hippo pathway is "OFF", unphosphorylated YAP translocates to the nucleus where it transcriptionally activates host genes and promotes viral egress. Our data reveal that LATS2 indirectly modulates filoviral VP40-mediated egress through phosphorylation of AMOTp130, a positive regulator of viral egress, but more surprisingly that LATS1/2 kinases directly modulate EBOV transcription by phosphorylating VP30, an essential regulator of viral transcription. In sum, our findings highlight the potential to exploit the Hippo pathway/filovirus axis for the development of host-oriented countermeasures targeting EBOV and related filoviruses.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA
| | - Marija A Djurkovic
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA
| | - Carson G Leavitt
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA.
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
11
|
Botova M, Camacho-Zarco AR, Tognetti J, Bessa LM, Guseva S, Mikkola E, Salvi N, Maurin D, Herrmann T, Blackledge M. A specific phosphorylation-dependent conformational switch in SARS-CoV-2 nucleocapsid protein inhibits RNA binding. SCIENCE ADVANCES 2024; 10:eaax2323. [PMID: 39093972 PMCID: PMC11296341 DOI: 10.1126/sciadv.aax2323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
The nucleocapsid protein of severe acute respiratory syndrome coronavirus 2 encapsidates the viral genome and is essential for viral function. The central disordered domain comprises a serine-arginine-rich (SR) region that is hyperphosphorylated in infected cells. This modification regulates function, although mechanistic details remain unknown. We use nuclear magnetic resonance to follow structural changes occurring during hyperphosphorylation by serine arginine protein kinase 1, glycogen synthase kinase 3, and casein kinase 1, that abolishes interaction with RNA. When eight approximately uniformly distributed sites have been phosphorylated, the SR domain binds the same interface as single-stranded RNA, resulting in complete inhibition of RNA binding. Phosphorylation by protein kinase A does not prevent RNA binding, indicating that the pattern resulting from physiologically relevant kinases is specific for inhibition. Long-range contacts between the RNA binding, linker, and dimerization domains are abrogated, phenomena possibly related to genome packaging and unpackaging. This study provides insight into the recruitment of specific host kinases to regulate viral function.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmi Mikkola
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Damien Maurin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Torsten Herrmann
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | |
Collapse
|
12
|
Delhaye L, Moschonas GD, Fijalkowska D, Verhee A, De Sutter D, Van de Steene T, De Meyer M, Grzesik H, Van Moortel L, De Bosscher K, Jacobs T, Eyckerman S. Leveraging a self-cleaving peptide for tailored control in proximity labeling proteomics. CELL REPORTS METHODS 2024; 4:100818. [PMID: 38986614 PMCID: PMC11294833 DOI: 10.1016/j.crmeth.2024.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/15/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Protein-protein interactions play an important biological role in every aspect of cellular homeostasis and functioning. Proximity labeling mass spectrometry-based proteomics overcomes challenges typically associated with other methods and has quickly become the current state of the art in the field. Nevertheless, tight control of proximity-labeling enzymatic activity and expression levels is crucial to accurately identify protein interactors. Here, we leverage a T2A self-cleaving peptide and a non-cleaving mutant to accommodate the protein of interest in the experimental and control TurboID setup. To allow easy and streamlined plasmid assembly, we built a Golden Gate modular cloning system to generate plasmids for transient expression and stable integration. To highlight our T2A Split/link design, we applied it to identify protein interactions of the glucocorticoid receptor and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and non-structural protein 7 (NSP7) proteins by TurboID proximity labeling. Our results demonstrate that our T2A split/link provides an opportune control that builds upon previously established control requirements in the field.
Collapse
Affiliation(s)
- Louis Delhaye
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; OncoRNALab, Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium
| | - George D Moschonas
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Daria Fijalkowska
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Annick Verhee
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Delphine De Sutter
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tessa Van de Steene
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Margaux De Meyer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hanna Grzesik
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Laura Van Moortel
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Thomas Jacobs
- VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
Nguyen A, Zhao H, Myagmarsuren D, Srinivasan S, Wu D, Chen J, Piszczek G, Schuck P. Modulation of biophysical properties of nucleocapsid protein in the mutant spectrum of SARS-CoV-2. eLife 2024; 13:RP94836. [PMID: 38941236 PMCID: PMC11213569 DOI: 10.7554/elife.94836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also observe functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.
Collapse
Affiliation(s)
- Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Dulguun Myagmarsuren
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| |
Collapse
|
14
|
Cai G, Bao Y, Li Q, Hsu PH, Xia J, Ngo JCK. Design of a covalent protein-protein interaction inhibitor of SRPKs to suppress angiogenesis and invasion of cancer cells. Commun Chem 2024; 7:144. [PMID: 38937565 PMCID: PMC11211491 DOI: 10.1038/s42004-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Serine-arginine (SR) proteins are splicing factors that play essential roles in both constitutive and alternative pre-mRNA splicing. Phosphorylation of their C-terminal RS domains by SR protein kinases (SRPKs) regulates their localization and diverse cellular activities. Dysregulation of phosphorylation has been implicated in many human diseases, including cancers. Here, we report the development of a covalent protein-protein interaction inhibitor, C-DBS, that targets a lysine residue within the SRPK-specific docking groove to block the interaction and phosphorylation of the prototypic SR protein SRSF1. C-DBS exhibits high specificity and conjugation efficiency both in vitro and in cellulo. This self-cell-penetrating inhibitor attenuates the phosphorylation of endogenous SR proteins and subsequently inhibits the angiogenesis, migration, and invasion of cancer cells. These findings provide a new foundation for the development of covalent SRPK inhibitors for combatting diseases such as cancer and viral infections and overcoming the resistance encountered by ATP-competitive inhibitors.
Collapse
Affiliation(s)
- Gongli Cai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qingyun Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
15
|
Zhao H, Syed AM, Khalid MM, Nguyen A, Ciling A, Wu D, Yau WM, Srinivasan S, Esposito D, Doudna J, Piszczek G, Ott M, Schuck P. Assembly of SARS-CoV-2 nucleocapsid protein with nucleic acid. Nucleic Acids Res 2024; 52:6647-6661. [PMID: 38587193 PMCID: PMC11194069 DOI: 10.1093/nar/gkae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38 ± 10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to ancestral and mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining nucleocapsid protein variants in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multivalent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdullah M Syed
- Gladstone Institutes, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alison Ciling
- Gladstone Institutes, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer A Doudna
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- HHMI, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Biomedical Engineering Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Stuwe H, Reardon PN, Yu Z, Shah S, Hughes K, Barbar EJ. Phosphorylation in the Ser/Arg-rich region of the nucleocapsid of SARS-CoV-2 regulates phase separation by inhibiting self-association of a distant helix. J Biol Chem 2024; 300:107354. [PMID: 38718862 PMCID: PMC11180338 DOI: 10.1016/j.jbc.2024.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
The nucleocapsid protein (N) of SARS-CoV-2 is essential for virus replication, genome packaging, evading host immunity, and virus maturation. N is a multidomain protein composed of an independently folded monomeric N-terminal domain that is the primary site for RNA binding and a dimeric C-terminal domain that is essential for efficient phase separation and condensate formation with RNA. The domains are separated by a disordered Ser/Arg-rich region preceding a self-associating Leu-rich helix. Phosphorylation in the Ser/Arg region in infected cells decreases the viscosity of N:RNA condensates promoting viral replication and host immune evasion. The molecular level effect of phosphorylation, however, is missing from our current understanding. Using NMR spectroscopy and analytical ultracentrifugation, we show that phosphorylation destabilizes the self-associating Leu-rich helix 30 amino-acids distant from the phosphorylation site. NMR and gel shift assays demonstrate that RNA binding by the linker is dampened by phosphorylation, whereas RNA binding to the full-length protein is not significantly affected presumably due to retained strong interactions with the primary RNA-binding domain. Introducing a switchable self-associating domain to replace the Leu-rich helix confirms the importance of linker self-association to droplet formation and suggests that phosphorylation not only increases solubility of the positively charged elongated Ser/Arg region as observed in other RNA-binding proteins but can also inhibit self-association of the Leu-rich helix. These data highlight the effect of phosphorylation both at local sites and at a distant self-associating hydrophobic helix in regulating liquid-liquid phase separation of the entire protein.
Collapse
Affiliation(s)
- Hannah Stuwe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | | | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Sahana Shah
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlyn Hughes
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
17
|
Bracci N, Baer A, Flor R, Petraccione K, Stocker T, Zhou W, Ammosova T, Dinglasan RR, Nekhai S, Kehn-Hall K. CK1 and PP1 regulate Rift Valley fever virus genome replication through L protein phosphorylation. Antiviral Res 2024; 226:105895. [PMID: 38679165 DOI: 10.1016/j.antiviral.2024.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Rift Valley fever virus (RVFV) is an arbovirus in the Phenuiviridae family identified initially by the large 'abortion storms' observed among ruminants; RVFV can also infect humans. In humans, there is a wide variation of clinical symptoms ranging from subclinical to mild febrile illness to hepatitis, retinitis, delayed-onset encephalitis, or even hemorrhagic fever. The RVFV is a tri-segmented negative-sense RNA virus consisting of S, M, and L segments. The L segment encodes the RNA-dependent RNA polymerase (RdRp), termed the L protein, which is responsible for both viral mRNA synthesis and genome replication. Phosphorylation of viral RdRps is known to regulate viral replication. This study shows that RVFV L protein is serine phosphorylated and identified Casein Kinase 1 alpha (CK1α) and protein phosphatase 1 alpha (PP1α) as L protein binding partners. Inhibition of CK1 and PP1 through small molecule inhibitor treatment, D4476 and 1E7-03, respectively, caused a change in the phosphorylated status of the L protein. Inhibition of PP1α resulted in increased L protein phosphorylation whereas inhibition of CK1α decreased L protein phosphorylation. It was also found that in RVFV infected cells, PP1α localized to the cytoplasmic compartment. Treatment of RVFV infected cells with CK1 inhibitors reduced virus production in both mammalian and mosquito cells. Lastly, inhibition of either CK1 or PP1 reduced viral genomic RNA levels. These data indicate that L protein is phosphorylated and that CK1 and PP1 play a crucial role in regulating the L protein phosphorylation cycle, which is critical to viral RNA production and viral replication.
Collapse
Affiliation(s)
- Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Alan Baer
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Rafaela Flor
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Kaylee Petraccione
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Timothy Stocker
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington D.C., USA
| | - Rhoel R Dinglasan
- Emerging Pathogens Institute, University of Florida, Florida, USA; Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Florida, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington D.C., USA
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA.
| |
Collapse
|
18
|
Zhu J, Liu G, Goins CM, Stauffer SR, Gack MU. ISGylation of the SARS-CoV-2 N protein by HERC5 impedes N oligomerization and thereby viral RNA synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594393. [PMID: 39149229 PMCID: PMC11326284 DOI: 10.1101/2024.05.15.594393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Interferon (IFN)-stimulated gene 15 (ISG15), a ubiquitin-like protein, is covalently conjugated to host (immune) proteins such as MDA5 and IRF3 in a process called ISGylation, thereby limiting the replication of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, whether SARS-CoV-2 proteins can be directly targeted for ISGylation remains elusive. In this study, we identified the nucleocapsid (N) protein of SARS-CoV-2 as a major substrate of ISGylation catalyzed by the host E3 ligase HERC5; however, N ISGylation is readily removed through de-ISGylation by the papain-like protease (PLpro) activity of NSP3. Mass spectrometry analysis identified that the N protein undergoes ISGylation at four lysine residues (K266, K355, K387 and K388), and mutational analysis of these sites in the context of a SARS-CoV-2 replicon (N-4KR) abolished N ISGylation and alleviated ISGylation-mediated inhibition of viral RNA synthesis. Furthermore, our results indicated that HERC5 targets preferentially phosphorylated N protein for ISGylation to regulate its oligomeric assembly. These findings reveal a novel mechanism by which the host ISGylation machinery directly targets SARS-CoV-2 proteins to restrict viral replication and illuminate how an intricate interplay of host (HERC5) and viral (PLpro) enzymes coordinates viral protein ISGylation and thereby regulates virus replication.
Collapse
Affiliation(s)
- Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Christopher M. Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shaun R. Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| |
Collapse
|
19
|
Cullati SN, Akizuki K, Chen JS, Johnson JL, Yaron-Barir TM, Cantley LC, Gould KL. Substrate displacement of CK1 C-termini regulates kinase specificity. SCIENCE ADVANCES 2024; 10:eadj5185. [PMID: 38728403 PMCID: PMC11086627 DOI: 10.1126/sciadv.adj5185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
CK1 kinases participate in many signaling pathways, and their regulation is of meaningful biological consequence. CK1s autophosphorylate their C-terminal noncatalytic tails, and eliminating these tails increases substrate phosphorylation in vitro, suggesting that the autophosphorylated C-termini act as inhibitory pseudosubstrates. To test this prediction, we comprehensively identified the autophosphorylation sites on Schizosaccharomyces pombe Hhp1 and human CK1ε. Phosphoablating mutations increased Hhp1 and CK1ε activity toward substrates. Peptides corresponding to the C-termini interacted with the kinase domains only when phosphorylated, and substrates competitively inhibited binding of the autophosphorylated tails to the substrate binding grooves. Tail autophosphorylation influenced the catalytic efficiency with which CK1s targeted different substrates, and truncating the tail of CK1δ broadened its linear peptide substrate motif, indicating that tails contribute to substrate specificity as well. Considering autophosphorylation of both T220 in the catalytic domain and C-terminal sites, we propose a displacement specificity model to describe how autophosphorylation modulates substrate specificity for the CK1 family.
Collapse
Affiliation(s)
- Sierra N. Cullati
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kazutoshi Akizuki
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jared L. Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tomer M. Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
20
|
Yaron-Barir TM, Joughin BA, Huntsman EM, Kerelsky A, Cizin DM, Cohen BM, Regev A, Song J, Vasan N, Lin TY, Orozco JM, Schoenherr C, Sagum C, Bedford MT, Wynn RM, Tso SC, Chuang DT, Li L, Li SSC, Creixell P, Krismer K, Takegami M, Lee H, Zhang B, Lu J, Cossentino I, Landry SD, Uduman M, Blenis J, Elemento O, Frame MC, Hornbeck PV, Cantley LC, Turk BE, Yaffe MB, Johnson JL. The intrinsic substrate specificity of the human tyrosine kinome. Nature 2024; 629:1174-1181. [PMID: 38720073 PMCID: PMC11136658 DOI: 10.1038/s41586-024-07407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/10/2024] [Indexed: 05/31/2024]
Abstract
Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.
Collapse
Affiliation(s)
- Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Brian A Joughin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel M Cizin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin M Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Amit Regev
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Junho Song
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Discovery Technologies, Calico Life Sciences, South San Francisco, CA, USA
| | - Jose M Orozco
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christina Schoenherr
- Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shih-Chia Tso
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David T Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Li
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Pau Creixell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge, UK
| | - Konstantin Krismer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mina Takegami
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harin Lee
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Bin Zhang
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Jingyi Lu
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Ian Cossentino
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Sean D Landry
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Mohamed Uduman
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Margaret C Frame
- Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter V Hornbeck
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Michael B Yaffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Acute Care Surgery, Trauma, and Surgical Critical Care, and Division of Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Yamada S, Hashita T, Yanagida S, Sato H, Yasuhiko Y, Okabe K, Noda T, Nishida M, Matsunaga T, Kanda Y. SARS-CoV-2 causes dysfunction in human iPSC-derived brain microvascular endothelial cells potentially by modulating the Wnt signaling pathway. Fluids Barriers CNS 2024; 21:32. [PMID: 38584257 PMCID: PMC11000354 DOI: 10.1186/s12987-024-00533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is associated with various neurological symptoms, including nausea, dizziness, headache, encephalitis, and epileptic seizures. SARS-CoV-2 is considered to affect the central nervous system (CNS) by interacting with the blood-brain barrier (BBB), which is defined by tight junctions that seal paracellular gaps between brain microvascular endothelial cells (BMECs). Although SARS-CoV-2 infection of BMECs has been reported, the detailed mechanism has not been fully elucidated. METHODS Using the original strain of SARS-CoV-2, the infection in BMECs was confirmed by a detection of intracellular RNA copy number and localization of viral particles. BMEC functions were evaluated by measuring transendothelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics, and expression levels of proinflammatory genes. BMEC signaling pathway was examined by comprehensive RNA-seq analysis. RESULTS We observed that iPSC derived brain microvascular endothelial like cells (iPSC-BMELCs) were infected with SARS-CoV-2. SARS-CoV-2 infection resulted in decreased TEER. In addition, SARS-CoV-2 infection decreased expression levels of tight junction markers CLDN3 and CLDN11. SARS-CoV-2 infection also increased expression levels of proinflammatory genes, which are known to be elevated in patients with COVID-19. Furthermore, RNA-seq analysis revealed that SARS-CoV-2 dysregulated the canonical Wnt signaling pathway in iPSC-BMELCs. Modulation of the Wnt signaling by CHIR99021 partially inhibited the infection and the subsequent inflammatory responses. CONCLUSION These findings suggest that SARS-CoV-2 infection causes BBB dysfunction via Wnt signaling. Thus, iPSC-BMELCs are a useful in vitro model for elucidating COVID-19 neuropathology and drug development.
Collapse
Affiliation(s)
- Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, Kawasaki, 210-9501, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, Kawasaki, 210-9501, Japan
| | - Hiroyuki Sato
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yukuto Yasuhiko
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, Kawasaki, 210-9501, Japan
| | - Kaori Okabe
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takamasa Noda
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Brain Bioregulatory Science, The Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, Kawasaki, 210-9501, Japan.
| |
Collapse
|
22
|
Zhou J, Zhou Y, Wei XF, Fan L, Gao X, Li Y, Wu Y, Feng W, Shen X, Liu L, Xu G, Zhang Z. TRIM6 facilitates SARS-CoV-2 proliferation by catalyzing the K29-typed ubiquitination of NP to enhance the ability to bind viral genomes. J Med Virol 2024; 96:e29531. [PMID: 38515377 DOI: 10.1002/jmv.29531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
The Nucleocapsid Protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not only the core structural protein required for viral packaging, but also participates in the regulation of viral replication, and its post-translational modifications such as phosphorylation have been shown to be an important strategy for regulating virus proliferation. Our previous work identified NP could be ubiquitinated, as confirmed by two independent studies. But the function of NP ubiquitination is currently unknown. In this study, we first pinpointed TRIM6 as the E3 ubiquitin ligase responsible for NP ubiquitination, binding to NP's CTD via its RING and B-box-CCD domains. TRIM6 promotes the K29-typed polyubiquitination of NP at K102, K347, and K361 residues, increasing its binding to viral genomic RNA. Consistently, functional experiments such as the use of the reverse genetic tool trVLP model and gene knockout of TRIM6 further confirmed that blocking the ubiquitination of NP by TRIM6 significantly inhibited the proliferation of SARS-CoV-2. Notably, the NP of coronavirus is relatively conserved, and the NP of SARS-CoV can also be ubiquitinated by TRIM6, indicating that NP could be a broad-spectrum anti-coronavirus target. These findings shed light on the intricate interaction between SARS-CoV-2 and the host, potentially opening new opportunities for COVID-19 therapeutic development.
Collapse
Affiliation(s)
- Jian Zhou
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuzheng Zhou
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xia-Fei Wei
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Lujie Fan
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xiang Gao
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yunfei Li
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yezi Wu
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wei Feng
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - XiaoTong Shen
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Lei Liu
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Gang Xu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zheng Zhang
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
23
|
Shi M, Sun D, Deng L, Liu J, Zhang MJ. SRPK1 Promotes Glioma Proliferation, Migration, and Invasion through Activation of Wnt/β-Catenin and JAK-2/STAT-3 Signaling Pathways. Biomedicines 2024; 12:378. [PMID: 38397980 PMCID: PMC10886746 DOI: 10.3390/biomedicines12020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Currently, the treatment of gliomas still relies primarily on surgery and radiochemotherapy. Although there are various drugs available, including temozolomide, the overall therapeutic effect is unsatisfactory, and the prognosis remains poor. Therefore, the in-depth study of the mechanism of glioma development and a search for new therapeutic targets are the keys to improving the therapeutic treatment of gliomas and improving the prognosis of patients. Immunohistochemistry is used to detect the expression of relevant molecules in tissues, qPCR and Western blot are used to detect the mRNA and protein expression of relevant molecules, CCK-8 (Cell Counting Kit-8) is used to assess cell viability and proliferation capacity, Transwell is used to evaluate cell migration and invasion ability, and RNA transcriptome sequencing is used to identify the most influential pathways. SRPK1 (SRSF protein kinase 1) is highly expressed in gliomas but is not expressed in normal tissues. Its expression is positively correlated with the grades of gliomas and negatively correlated with prognosis. SRPK1 significantly promotes the occurrence and development of gliomas. Knocking down SRPK1 leads to a significant decrease in the proliferation, migration, and invasion abilities of gliomas. Loss of SRPK1 expression induces G2/M phase arrest and mitotic catastrophe, leading to apoptosis in cells. Overexpression of SRPK1 activates the Wnt/β-catenin (wingless-int1/β-catenin) and JAK-2/STAT-3 (Janus kinase 2/signal transducer and activator of transcription 3) signaling pathways, promoting the proliferation, migration, and invasion of gliomas. Overexpression of SRPK1 rescues the reduced cell proliferation, migration, and invasion abilities caused by the silencing of β-catenin or JAK-2. A stable shRNA-LN229 cell line was constructed, and using a nude mouse model, it was found that stable knockout of SRPK1 significantly reduced the tumorigenic ability of glioma cells, as evidenced by a significant decrease in the subcutaneous tumor volume and weight in nude mice. We have demonstrated that SRPK1 is highly expressed in gliomas. Overexpression of SRPK1 activates the Wnt/β-catenin and JAK-2/STAT-3 signaling pathways, promoting the proliferation, migration, and invasion of gliomas. Silencing SRPK1-related signaling pathways may provide potential therapeutic options for glioma patients.
Collapse
Affiliation(s)
- Mengna Shi
- Department of Oncology, Wenzhou Medical University, Wenzhou 325027, China;
| | - Dan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People’s Hospital), Huainan 232002, China
| | - Lu Deng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;
| | - Jing Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Min-Jie Zhang
- Department of Oncology, Wenzhou Medical University, Wenzhou 325027, China;
| |
Collapse
|
24
|
Lin TY, Ramsamooj S, Perrier T, Liberatore K, Lantier L, Vasan N, Karukurichi K, Hwang SK, Kesicki EA, Kastenhuber ER, Wiederhold T, Yaron TM, Huntsman EM, Zhu M, Ma Y, Paddock MN, Zhang G, Hopkins BD, McGuinness O, Schwartz RE, Ersoy BA, Cantley LC, Johnson JL, Goncalves MD. Epinephrine inhibits PI3Kα via the Hippo kinases. Cell Rep 2023; 42:113535. [PMID: 38060450 PMCID: PMC10809223 DOI: 10.1016/j.celrep.2023.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023] Open
Abstract
The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Shakti Ramsamooj
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tiffany Perrier
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Louise Lantier
- Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Neil Vasan
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Seo-Kyoung Hwang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | | | | | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mengmeng Zhu
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yilun Ma
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Owen McGuinness
- Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert E Schwartz
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Baran A Ersoy
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
25
|
Schuck P, Zhao H. Diversity of short linear interaction motifs in SARS-CoV-2 nucleocapsid protein. mBio 2023; 14:e0238823. [PMID: 38018991 PMCID: PMC10746173 DOI: 10.1128/mbio.02388-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Short linear motifs (SLiMs) are 3-10 amino acid long binding motifs in intrinsically disordered protein regions (IDRs) that serve as ubiquitous protein-protein interaction modules in eukaryotic cells. Through molecular mimicry, viruses hijack these sequence motifs to control host cellular processes. It is thought that the small size of SLiMs and the high mutation frequencies of viral IDRs allow rapid host adaptation. However, a salient characteristic of RNA viruses, due to high replication errors, is their obligate existence as mutant swarms. Taking advantage of the uniquely large genomic database of SARS-CoV-2, here, we analyze the role of sequence diversity in the presentation of SLiMs, focusing on the highly abundant, multi-functional nucleocapsid protein. We find that motif mimicry is a highly dynamic process that produces an abundance of motifs transiently present in subsets of mutant species. This diversity allows the virus to efficiently explore eukaryotic motifs and evolve the host-virus interface.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Adly AN, Bi M, Carlson CR, Syed AM, Ciling A, Doudna JA, Cheng Y, Morgan DO. Assembly of SARS-CoV-2 ribonucleosomes by truncated N ∗ variant of the nucleocapsid protein. J Biol Chem 2023; 299:105362. [PMID: 37863261 PMCID: PMC10665939 DOI: 10.1016/j.jbc.2023.105362] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compacts the RNA genome into viral ribonucleoprotein (vRNP) complexes within virions. Assembly of vRNPs is inhibited by phosphorylation of the N protein serine/arginine (SR) region. Several SARS-CoV-2 variants of concern carry N protein mutations that reduce phosphorylation and enhance the efficiency of viral packaging. Variants of the dominant B.1.1 viral lineage also encode a truncated N protein, termed N∗ or Δ(1-209), that mediates genome packaging despite lacking the N-terminal RNA-binding domain and SR region. Here, we use mass photometry and negative stain electron microscopy to show that purified Δ(1-209) and viral RNA assemble into vRNPs that are remarkably similar in size and shape to those formed with full-length N protein. We show that assembly of Δ(1-209) vRNPs requires the leucine-rich helix of the central disordered region and that this helix promotes N protein oligomerization. We also find that fusion of a phosphomimetic SR region to Δ(1-209) inhibits RNA binding and vRNP assembly. Our results provide new insights into the mechanisms by which RNA binding promotes N protein self-association and vRNP assembly, and how this process is modulated by phosphorylation.
Collapse
Affiliation(s)
- Armin N Adly
- Department of Physiology, University of California, San Francisco, California, USA
| | - Maxine Bi
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | | | - Abdullah M Syed
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Alison Ciling
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Jennifer A Doudna
- J. David Gladstone Institutes, San Francisco, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA; Innovative Genomics Institute, University of California, Berkeley, California, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA; Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| | - David O Morgan
- Department of Physiology, University of California, San Francisco, California, USA.
| |
Collapse
|
27
|
Li X, Nakashima K, Ito M, Matsuda M, Chida T, Sekihara K, Takahashi H, Kato T, Sawasaki T, Suzuki T. SRPKIN-1 as an inhibitor against hepatitis B virus blocking the viral particle formation and the early step of the viral infection. Antiviral Res 2023; 220:105756. [PMID: 37992764 DOI: 10.1016/j.antiviral.2023.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
New antiviral agents are needed for the treatment of hepatitis B virus (HBV) infection because currently available drugs do not completely eradicate chronic HBV in patients. Phosphorylation dynamics of the HBV core protein (HBc) regulate several processes in the HBV life cycle, including nucleocapsid formation, cell trafficking, and virus uncoating after entry. In this study, the SRPK inhibitors SPHINX31, SRPIN340, and SRPKIN-1 showed concentration-dependent anti-HBV activity. Detailed analysis of the effects of SRPKIN-1, which exhibited the strongest inhibitory activity, on the HBV replication process showed that it inhibits the formation of infectious particles by inhibiting pregenomic RNA packaging into capsids and nucleocapsid envelopment. Mass spectrometry analysis combined with cell-free translation system experiments revealed that hyperphosphorylation of the C-terminal domain of HBc is inhibited by SRPKIN-1. Further, SRPKIN-1 exhibited concentration-dependent inhibition of HBV infection not only in HepG2-hNTCP-C4 cells but also in fresh human hepatocytes (PXB cells) and in the single-round infection system. Treatment with SRPKIN-1 at the time of infection reduced the nuclease sensitivity of HBV DNA in the nuclear fraction. These results suggest that SRPKIN-1 has the potential to not only inhibit the HBV particle formation process but also impair the early stages of viral infection.
Collapse
Affiliation(s)
- Xiaofang Li
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kenji Nakashima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Japan
| | - Takeshi Chida
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan; Department of Regional Medical Care Support, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kazumasa Sekihara
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Science, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Science, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan.
| |
Collapse
|
28
|
Undi RB, Ahsan N, Larabee JL, Darlene-Reuter N, Papin J, Dogra S, Hannafon BN, Bronze MS, Houchen CW, Huycke MM, Ali N. Blocking of doublecortin-like kinase 1-regulated SARS-CoV-2 replication cycle restores cell signaling network. J Virol 2023; 97:e0119423. [PMID: 37861336 PMCID: PMC10688311 DOI: 10.1128/jvi.01194-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Severe COVID-19 and post-acute sequelae often afflict patients with underlying co-morbidities. There is a pressing need for highly effective treatment, particularly in light of the emergence of SARS-CoV-2 variants. In a previous study, we demonstrated that DCLK1, a protein associated with cancer stem cells, is highly expressed in the lungs of COVID-19 patients and enhances viral production and hyperinflammatory responses. In this study, we report the pivotal role of DCLK1-regulated mechanisms in driving SARS-CoV-2 replication-transcription processes and pathogenic signaling. Notably, pharmacological inhibition of DCLK1 kinase during SARS-CoV-2 effectively impedes these processes and counteracts virus-induced alternations in global cell signaling. These findings hold significant potential for immediate application in treating COVID-19.
Collapse
Affiliation(s)
- Ram Babu Undi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Jason L. Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nicole Darlene-Reuter
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - James Papin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Samrita Dogra
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bethany N. Hannafon
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael S. Bronze
- Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Courtney W. Houchen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Mark M. Huycke
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Naushad Ali
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
29
|
Shi L, Nie B, Sha L, Ying K, Li J, Li G. Graphene Oxide-Mediated Regulation of Volume Exclusion and Wettability in Biomimetic Phosphorylation-Responsive Ionic Gates. NANO LETTERS 2023; 23:10326-10333. [PMID: 37931221 DOI: 10.1021/acs.nanolett.3c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Replicating phosphorylation-responsive ionic gates via artificial fluidic systems is essential for biomolecular detection and cellular communication research. However, current approaches to governing the gates primarily rely on volume exclusion or surface charge modulation. To overcome this limitation and enhance ion transport controllability, we introduce graphene oxide (GO) into nanochannel systems, simultaneously regulating the volume exclusion and wettability. Moreover, inspired by (cAMP)-dependent protein kinase A (PKA)-regulated L-type Ca2+ channels, we employ peptides for phosphorylation which preserves them as nanoadhesives to coat nanochannels with GO. The coating boosts steric hindrance and diminishes wettability, creating a substantial ion conduction barrier, which represents a significant advancement in achieving precise ion transport regulation in abiotic nanochannels. Leveraging the mechanism, we also fabricated a sensitive biosensor for PKA activity detection and inhibition exploration. The combined regulation of volume exclusion and wettability offers an appealing strategy for controlled nanofluidic manipulation with promising biomedical applications in diagnosis and drug discovery.
Collapse
Affiliation(s)
- Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Beibei Nie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lingjun Sha
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Keqin Ying
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jinlong Li
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
30
|
Vazquez-Armendariz AI, Tata PR. Recent advances in lung organoid development and applications in disease modeling. J Clin Invest 2023; 133:e170500. [PMID: 37966116 PMCID: PMC10645385 DOI: 10.1172/jci170500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Over the last decade, several organoid models have evolved to acquire increasing cellular, structural, and functional complexity. Advanced lung organoid platforms derived from various sources, including adult, fetal, and induced pluripotent stem cells, have now been generated, which more closely mimic the cellular architecture found within the airways and alveoli. In this regard, the establishment of novel protocols with optimized stem cell isolation and culture conditions has given rise to an array of models able to study key cellular and molecular players involved in lung injury and repair. In addition, introduction of other nonepithelial cellular components, such as immune, mesenchymal, and endothelial cells, and employment of novel precision gene editing tools have further broadened the range of applications for these systems by providing a microenvironment and/or phenotype closer to the desired in vivo scenario. Thus, these developments in organoid technology have enhanced our ability to model various aspects of lung biology, including pathogenesis of diseases such as chronic obstructive pulmonary disease, pulmonary fibrosis, cystic fibrosis, and infectious disease and host-microbe interactions, in ways that are often difficult to undertake using only in vivo models. In this Review, we summarize the latest developments in lung organoid technology and their applicability for disease modeling and outline their strengths, drawbacks, and potential avenues for future development.
Collapse
Affiliation(s)
- Ana I. Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
- Department of Medicine V, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research and Institute for Lung Health, Giessen, Germany
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
31
|
Malvankar S, Singh A, Ravi Kumar YS, Sahu S, Shah M, Murghai Y, Seervi M, Srivastava RK, Verma B. Modulation of various host cellular machinery during COVID-19 infection. Rev Med Virol 2023; 33:e2481. [PMID: 37758688 DOI: 10.1002/rmv.2481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/24/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) emerged in December 2019, causing a range of respiratory infections from mild to severe. This resulted in the ongoing global COVID-19 pandemic, which has had a significant impact on public health. The World Health Organization declared COVID-19 as a global pandemic in March 2020. Viruses are intracellular pathogens that rely on the host's machinery to establish a successful infection. They exploit the gene expression machinery of host cells to facilitate their own replication. Gaining a better understanding of gene expression modulation in SARS-CoV2 is crucial for designing and developing effective antiviral strategies. Efforts are currently underway to understand the molecular-level interaction between the host and the pathogen. In this review, we describe how SARS-CoV2 infection modulates gene expression by interfering with cellular processes, including transcription, post-transcription, translation, post-translation, epigenetic modifications as well as processing and degradation pathways. Additionally, we emphasise the therapeutic implications of these findings in the development of new therapies to treat SARS-CoV2 infection.
Collapse
Affiliation(s)
- Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Anjali Singh
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Swetangini Sahu
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Shah
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yamini Murghai
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Mahendra Seervi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
32
|
Zheng K, Chen S, Ren Z, Wang Y. Protein arginine methylation in viral infection and antiviral immunity. Int J Biol Sci 2023; 19:5292-5318. [PMID: 37928266 PMCID: PMC10620831 DOI: 10.7150/ijbs.89498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Protein arginine methyltransferase (PRMT)-mediated arginine methylation is an important post-transcriptional modification that regulates various cellular processes including epigenetic gene regulation, genome stability maintenance, RNA metabolism, and stress-responsive signal transduction. The varying substrates and biological functions of arginine methylation in cancer and neurological diseases have been extensively discussed, providing a rationale for targeting PRMTs in clinical applications. An increasing number of studies have demonstrated an interplay between arginine methylation and viral infections. PRMTs have been found to methylate and regulate several host cell proteins and different functional types of viral proteins, such as viral capsids, mRNA exporters, transcription factors, and latency regulators. This modulation affects their activity, subcellular localization, protein-nucleic acid and protein-protein interactions, ultimately impacting their roles in various virus-associated processes. In this review, we discuss the classification, structure, and regulation of PRMTs and their pleiotropic biological functions through the methylation of histones and non-histones. Additionally, we summarize the broad spectrum of PRMT substrates and explore their intricate effects on various viral infection processes and antiviral innate immunity. Thus, comprehending the regulation of arginine methylation provides a critical foundation for understanding the pathogenesis of viral diseases and uncovering opportunities for antiviral therapy.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Siyu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
33
|
Bouhaddou M, Reuschl AK, Polacco BJ, Thorne LG, Ummadi MR, Ye C, Rosales R, Pelin A, Batra J, Jang GM, Xu J, Moen JM, Richards AL, Zhou Y, Harjai B, Stevenson E, Rojc A, Ragazzini R, Whelan MVX, Furnon W, De Lorenzo G, Cowton V, Syed AM, Ciling A, Deutsch N, Pirak D, Dowgier G, Mesner D, Turner JL, McGovern BL, Rodriguez ML, Leiva-Rebollo R, Dunham AS, Zhong X, Eckhardt M, Fossati A, Liotta NF, Kehrer T, Cupic A, Rutkowska M, Mena I, Aslam S, Hoffert A, Foussard H, Olwal CO, Huang W, Zwaka T, Pham J, Lyons M, Donohue L, Griffin A, Nugent R, Holden K, Deans R, Aviles P, Lopez-Martin JA, Jimeno JM, Obernier K, Fabius JM, Soucheray M, Hüttenhain R, Jungreis I, Kellis M, Echeverria I, Verba K, Bonfanti P, Beltrao P, Sharan R, Doudna JA, Martinez-Sobrido L, Patel AH, Palmarini M, Miorin L, White K, Swaney DL, Garcia-Sastre A, Jolly C, Zuliani-Alvarez L, Towers GJ, Krogan NJ. SARS-CoV-2 variants evolve convergent strategies to remodel the host response. Cell 2023; 186:4597-4614.e26. [PMID: 37738970 PMCID: PMC10604369 DOI: 10.1016/j.cell.2023.08.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we used unbiased systems approaches to study the host-selective forces driving VOC evolution. We discovered that VOCs evolved convergent strategies to remodel the host by modulating viral RNA and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-protein interactions. Integrative computational analyses revealed that although Alpha, Beta, Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron BA.1 did not. ISG suppression correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b, which we mapped to specific mutations. Later Omicron subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant BA.1, which correlated with Orf6 levels, although muted in BA.4 by a mutation that disrupts the Orf6-nuclear pore interaction. Our findings suggest that SARS-CoV-2 convergent evolution overcame human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences (QCBio), University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ann-Kathrin Reuschl
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Lucy G Thorne
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK
| | - Manisha R Ummadi
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Chengjin Ye
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Romel Rosales
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian Pelin
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jyoti Batra
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jack M Moen
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Alicia L Richards
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Bhavya Harjai
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ajda Rojc
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Roberta Ragazzini
- Division of Infection and Immunity, University College London, London, UK; Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Abdullah M Syed
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Alison Ciling
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noa Deutsch
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Pirak
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Giulia Dowgier
- COVID Surveillance Unit, The Francis Crick Institute, London, UK
| | - Dejan Mesner
- Division of Infection and Immunity, University College London, London, UK
| | - Jane L Turner
- Division of Infection and Immunity, University College London, London, UK
| | - Briana L McGovern
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Luis Rodriguez
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rocio Leiva-Rebollo
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alistair S Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Saffron Walden, UK
| | - Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Andrea Fossati
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Nicholas F Liotta
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kehrer
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasija Cupic
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Magdalena Rutkowska
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sadaf Aslam
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alyssa Hoffert
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Charles Ochieng' Olwal
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Weiqing Huang
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Zwaka
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Pham
- Synthego Corporation, Redwood City, CA, USA
| | | | | | | | | | | | | | | | | | | | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jacqueline M Fabius
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Margaret Soucheray
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ignacia Echeverria
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kliment Verba
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Paola Bonfanti
- Division of Infection and Immunity, University College London, London, UK; Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Pedro Beltrao
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Jennifer A Doudna
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Luis Martinez-Sobrido
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Lisa Miorin
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kris White
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Adolfo Garcia-Sastre
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Clare Jolly
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK.
| | - Lorena Zuliani-Alvarez
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Greg J Towers
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK.
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
34
|
Higgins CA, Nilsson-Payant BE, Bonaventure B, Kurland AP, Ye C, Yaron TM, Johnson JL, Adhikary P, Golynker I, Panis M, Danziger O, Rosenberg BR, Cantley LC, Martínez-Sobrido L, tenOever B, Johnson JR. SARS-CoV-2 hijacks p38β/MAPK11 to promote virus replication. mBio 2023; 14:e0100723. [PMID: 37345956 PMCID: PMC10470746 DOI: 10.1128/mbio.01007-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, drastically modifies infected cells to optimize virus replication. One such modification is the activation of the host p38 mitogen-activated protein kinase (MAPK) pathway, which plays a major role in inflammatory cytokine production, a hallmark of severe COVID-19. We previously demonstrated that inhibition of p38/MAPK activity in SARS-CoV-2-infected cells reduced both cytokine production and viral replication. Here, we combined quantitative genetic screening, genomics, proteomics, and phosphoproteomics to better understand mechanisms underlying the dependence of SARS-CoV-2 on the p38 pathway. We found that p38β is a critical host factor for SARS-CoV-2 replication in multiple relevant cell lines and that it functions at a step after viral mRNA expression. We identified putative host and viral p38β substrates in the context of SARS-CoV-2 infection and found that most host substrates have intrinsic antiviral activities. Taken together, this study reveals a unique proviral function for p38β and supports exploring p38β inhibitor development as a strategy toward creating a new class of COVID-19 therapies. IMPORTANCE SARS-CoV-2 is the causative agent of the COVID-19 pandemic that has claimed millions of lives since its emergence in 2019. SARS-CoV-2 infection of human cells requires the activity of several cellular pathways for successful replication. One such pathway, the p38 MAPK pathway, is required for virus replication and disease pathogenesis. Here, we applied systems biology approaches to understand how MAPK pathways benefit SARS-CoV-2 replication to inform the development of novel COVID-19 drug therapies.
Collapse
Affiliation(s)
- Christina A. Higgins
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, New York University Langone Health, New York, New York, USA
- Vilcek Graduate School for Biomedical Sciences, New York University Langone Health, New York, New York, USA
| | | | - Boris Bonaventure
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew P. Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Tomer M. Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine Weill Cornell Medicine, New York, New York, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jared L. Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Prithy Adhikary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ilona Golynker
- Department of Microbiology, New York University Langone Health, New York, New York, USA
| | - Maryline Panis
- Department of Microbiology, New York University Langone Health, New York, New York, USA
| | - Oded Danziger
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Benjamin tenOever
- Department of Microbiology, New York University Langone Health, New York, New York, USA
| | - Jeffrey R. Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
35
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
36
|
Zheng K, Ren Z, Wang Y. Serine-arginine protein kinases and their targets in viral infection and their inhibition. Cell Mol Life Sci 2023; 80:153. [PMID: 37198350 PMCID: PMC10191411 DOI: 10.1007/s00018-023-04808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Accumulating evidence has consolidated the interaction between viral infection and host alternative splicing. Serine-arginine (SR) proteins are a class of highly conserved splicing factors critical for the spliceosome maturation, alternative splicing and RNA metabolism. Serine-arginine protein kinases (SRPKs) are important kinases that specifically phosphorylate SR proteins to regulate their distribution and activities in the central pre-mRNA splicing and other cellular processes. In addition to the predominant SR proteins, other cytoplasmic proteins containing a serine-arginine repeat domain, including viral proteins, have been identified as substrates of SRPKs. Viral infection triggers a myriad of cellular events in the host and it is therefore not surprising that viruses explore SRPKs-mediated phosphorylation as an important regulatory node in virus-host interactions. In this review, we briefly summarize the regulation and biological function of SRPKs, highlighting their involvement in the infection process of several viruses, such as viral replication, transcription and capsid assembly. In addition, we review the structure-function relationships of currently available inhibitors of SRPKs and discuss their putative use as antivirals against well-characterized viruses or newly emerging viruses. We also highlight the viral proteins and cellular substrates targeted by SRPKs as potential antiviral therapeutic candidates.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China.
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
37
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Zhu P, Stanisheuski S, Franklin R, Vogel A, Vesely CH, Reardon P, Sluchanko NN, Beckman JS, Karplus PA, Mehl RA, Cooley RB. Autonomous Synthesis of Functional, Permanently Phosphorylated Proteins for Defining the Interactome of Monomeric 14-3-3ζ. ACS CENTRAL SCIENCE 2023; 9:816-835. [PMID: 37122473 PMCID: PMC10141581 DOI: 10.1021/acscentsci.3c00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 05/03/2023]
Abstract
14-3-3 proteins are dimeric hubs that bind hundreds of phosphorylated "clients" to regulate their function. Installing stable, functional mimics of phosphorylated amino acids into proteins offers a powerful strategy to study 14-3-3 function in cellular-like environments, but a previous genetic code expansion (GCE) system to translationally install nonhydrolyzable phosphoserine (nhpSer), with the γ-oxygen replaced with CH2, site-specifically into proteins has seen limited usage. Here, we achieve a 40-fold improvement in this system by engineering into Escherichia coli a six-step biosynthetic pathway that produces nhpSer from phosphoenolpyruvate. Using this autonomous "PermaPhos" expression system, we produce three biologically relevant proteins with nhpSer and confirm that nhpSer mimics the effects of phosphoserine for activating GSK3β phosphorylation of the SARS-CoV-2 nucleocapsid protein, promoting 14-3-3/client complexation, and monomerizing 14-3-3 dimers. Then, to understand the biological function of these phosphorylated 14-3-3ζ monomers (containing nhpSer at Ser58), we isolate its interactome from HEK293T lysates and compare it with that of wild-type 14-3-3ζ. These data identify two new subsets of 14-3-3 client proteins: (i) those that selectively bind dimeric 14-3-3ζ and (ii) those that selectively bind monomeric 14-3-3ζ. We discover that monomeric-but not dimeric-14-3-3ζ interacts with cereblon, an E3 ubiquitin-ligase adaptor protein of pharmacological interest.
Collapse
Affiliation(s)
- Phillip Zhu
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Stanislau Stanisheuski
- Department
of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Rachel Franklin
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Amber Vogel
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Cat Hoang Vesely
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Patrick Reardon
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Nikolai N. Sluchanko
- A.N.
Bach Institute of Biochemistry, Federal Research Center of Biotechnology
of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Joseph S. Beckman
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
- e-MSion
Inc., 2121 NE Jack London
St., Corvallis, Oregon 97330, United States
| | - P. Andrew Karplus
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Ryan A. Mehl
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Richard B. Cooley
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| |
Collapse
|
39
|
Zheng Y, Gao C. Phase Separation: The Robust Modulator of Innate Antiviral Signaling and SARS-CoV-2 Infection. Pathogens 2023; 12:pathogens12020243. [PMID: 36839515 PMCID: PMC9962166 DOI: 10.3390/pathogens12020243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 has been a pandemic threat to human health and the worldwide economy, but efficient treatments are still lacking. Type I and III interferons are essential for controlling viral infection, indicating that antiviral innate immune signaling is critical for defense against viral infection. Phase separation, one of the basic molecular processes, governs multiple cellular activities, such as cancer progression, microbial infection, and signaling transduction. Notably, recent studies suggest that phase separation regulates antiviral signaling such as the RLR and cGAS-STING pathways. Moreover, proper phase separation of viral proteins is essential for viral replication and pathogenesis. These observations indicate that phase separation is a critical checkpoint for virus and host interaction. In this study, we summarize the recent advances concerning the regulation of antiviral innate immune signaling and SARS-CoV-2 infection by phase separation. Our review highlights the emerging notion that phase separation is the robust modulator of innate antiviral signaling and viral infection.
Collapse
|
40
|
Tugaeva KV, Sysoev AA, Kapitonova AA, Smith JLR, Zhu P, Cooley RB, Antson AA, Sluchanko NN. Human 14-3-3 Proteins Site-selectively Bind the Mutational Hotspot Region of SARS-CoV-2 Nucleoprotein Modulating its Phosphoregulation. J Mol Biol 2023; 435:167891. [PMID: 36427566 PMCID: PMC9683861 DOI: 10.1016/j.jmb.2022.167891] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Phosphorylation of SARS-CoV-2 nucleoprotein recruits human cytosolic 14-3-3 proteins playing a well-recognized role in replication of many viruses. Here we use genetic code expansion to demonstrate that 14-3-3 binding is triggered by phosphorylation of SARS-CoV-2 nucleoprotein at either of two pseudo-repeats centered at Ser197 and Thr205. According to fluorescence anisotropy measurements, the pT205-motif,presentin SARS-CoV-2 but not in SARS-CoV, is preferred over the pS197-motif by all seven human 14-3-3 isoforms, which collectively display an unforeseen pT205/pS197 peptide binding selectivity hierarchy. Crystal structures demonstrate that pS197 and pT205 are mutually exclusive 14-3-3-binding sites, whereas SAXS and biochemical data obtained on the full protein-protein complex indicate that 14-3-3 binding occludes the Ser/Arg-rich region of the nucleoprotein, inhibiting its dephosphorylation. This Ser/Arg-rich region is highly prone to mutations, as exemplified by the Omicron and Delta variants, with our data suggesting that the strength of 14-3-3/nucleoprotein interaction can be linked with the replicative fitness of the virus.
Collapse
Affiliation(s)
- Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Andrey A Sysoev
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Jake L R Smith
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Phillip Zhu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
| |
Collapse
|
41
|
Johnson JL, Yaron TM, Huntsman EM, Kerelsky A, Song J, Regev A, Lin TY, Liberatore K, Cizin DM, Cohen BM, Vasan N, Ma Y, Krismer K, Robles JT, van de Kooij B, van Vlimmeren AE, Andrée-Busch N, Käufer NF, Dorovkov MV, Ryazanov AG, Takagi Y, Kastenhuber ER, Goncalves MD, Hopkins BD, Elemento O, Taatjes DJ, Maucuer A, Yamashita A, Degterev A, Uduman M, Lu J, Landry SD, Zhang B, Cossentino I, Linding R, Blenis J, Hornbeck PV, Turk BE, Yaffe MB, Cantley LC. An atlas of substrate specificities for the human serine/threonine kinome. Nature 2023; 613:759-766. [PMID: 36631611 PMCID: PMC9876800 DOI: 10.1038/s41586-022-05575-3] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.
Collapse
Affiliation(s)
- Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology & Medicine, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center and The Rockefeller University, New York, NY, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Junho Song
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amit Regev
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY, USA
| | - Katarina Liberatore
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel M Cizin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin M Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yilun Ma
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Konstantin Krismer
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Bert van de Kooij
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne E van Vlimmeren
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicole Andrée-Busch
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Norbert F Käufer
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maxim V Dorovkov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward R Kastenhuber
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Endocrinology, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Mohamed Uduman
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Jingyi Lu
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Sean D Landry
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Bin Zhang
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Ian Cossentino
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Rune Linding
- Rewire Tx, Humboldt-Universität zu Berlin, Berlin, Germany
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Peter V Hornbeck
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
42
|
Pinto SM, Subbannayya Y, Kim H, Hagen L, Górna MW, Nieminen AI, Bjørås M, Espevik T, Kainov D, Kandasamy RK. Multi-OMICs landscape of SARS-CoV-2-induced host responses in human lung epithelial cells. iScience 2022; 26:105895. [PMID: 36590899 PMCID: PMC9794516 DOI: 10.1016/j.isci.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Corresponding author
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Proteomics and Modomics Experimental Core, PROMEC, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Maria W. Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014Helsinki, Finland
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA,Corresponding author
| |
Collapse
|