1
|
Niazi SK, Magoola M, Mariam Z. Innovative Therapeutic Strategies in Alzheimer's Disease: A Synergistic Approach to Neurodegenerative Disorders. Pharmaceuticals (Basel) 2024; 17:741. [PMID: 38931409 PMCID: PMC11206655 DOI: 10.3390/ph17060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) remains a significant challenge in the field of neurodegenerative disorders, even nearly a century after its discovery, due to the elusive nature of its causes. The development of drugs that target multiple aspects of the disease has emerged as a promising strategy to address the complexities of AD and related conditions. The immune system's role, particularly in AD, has gained considerable interest, with nanobodies representing a new frontier in biomedical research. Advances in targeting antibodies against amyloid-β (Aβ) and using messenger RNA for genetic translation have revolutionized the production of antibodies and drug development, opening new possibilities for treatment. Despite these advancements, conventional therapies for AD, such as Cognex, Exelon, Razadyne, and Aricept, often have limited long-term effectiveness, underscoring the need for innovative solutions. This necessity has led to the incorporation advanced technologies like artificial intelligence and machine learning into the drug discovery process for neurodegenerative diseases. These technologies help identify therapeutic targets and optimize lead compounds, offering a more effective approach to addressing the challenges of AD and similar conditions.
Collapse
Affiliation(s)
| | | | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
2
|
Tarif AMM, Huhe H, Ohno M. Combination strategy employing BACE1 inhibitor and memantine to boost cognitive benefits in Alzheimer's disease therapy. Psychopharmacology (Berl) 2024; 241:975-986. [PMID: 38197930 DOI: 10.1007/s00213-024-06525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
RATIONALE The β-secretase BACE1 initiates amyloid-β (Aβ) generation and represents a long-standing prime therapeutic target for the treatment of Alzheimer's disease (AD). However, BACE1 inhibitors tested to date in clinical trials have yielded no beneficial outcomes. In fact, prior BACE1 inhibitor trials targeted at ~ 50-90% Aβ reductions in symptomatic or prodromal AD stages have ended in the discontinuation due to futility and/or side effects, including cognitive worsening rather than expected improvement at the highest dose. OBJECTIVES We tested whether a combination strategy with the selective BACE1 inhibitor GRL-8234 and the FDA-approved symptomatic drug memantine may provide synergistic cognitive benefits within their safe dose range. METHODS The drug effects were evaluated in the advanced symptomatic stage of 5XFAD mice that developed extensive cerebral Aβ deposition. RESULTS Chronic combination treatment with 33.4-mg/kg GRL-8234 and 10-mg/kg memantine, but not either drug alone, rescued cognitive deficits in 5XFAD mice at 12 months of age (the endpoint after 60-day drug treatment), as assessed by the contextual fear conditioning, spontaneous alternation Y-maze and nest building tasks. Intact baseline performances of wild-type control mice on three cognitive paradigms demonstrated that combination treatment did not augment potential cognitive side effects of individual drugs. Biochemical and immunohistochemical examination showed that combination treatment did not synergistically reduce the β-amyloidogenic processing of amyloid precursor protein or Aβ levels in 5XFAD mouse brains. CONCLUSIONS A combination strategy with BACE1 inhibitors and memantine may be able to increase the effectiveness of individual drugs within their safe dose range in AD therapy.
Collapse
Affiliation(s)
- Abu Md Mamun Tarif
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Hasi Huhe
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
| |
Collapse
|
3
|
Maheshwari S, Singh A, Ansari VA, Mahmood T, Wasim R, Akhtar J, Verma A. Navigating the dementia landscape: Biomarkers and emerging therapies. Ageing Res Rev 2024; 94:102193. [PMID: 38215913 DOI: 10.1016/j.arr.2024.102193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The field of dementia research has witnessed significant developments in our understanding of neurodegenerative disorders, with a particular focus on Alzheimer's disease (AD) and Frontotemporal Dementia (FTD). Dementia, a collection of symptoms arising from the degeneration of brain cells, presents a significant healthcare challenge, especially as its prevalence escalates with age. This abstract delves into the complexities of these disorders, the role of biomarkers in their diagnosis and monitoring, as well as emerging neurophysiological insights. In the context of AD, anti-amyloid therapy has gained prominence, aiming to reduce the accumulation of amyloid-beta (Aβ) plaques in the brain, a hallmark of the disease. Notably, Leqembi recently received full FDA approval, marking a significant breakthrough in AD treatment. Additionally, ongoing phase 3 clinical trials are investigating novel therapies, including Masitinib and NE3107, focusing on cognitive and functional improvements in AD patients. In the realm of FTD, research has unveiled distinct neuropathological features, including the involvement of proteins like TDP-43 and progranulin, providing valuable insights into the diagnosis and management of this heterogeneous condition. Biomarkers, including neurofilaments and various tau fragments, have shown promise in enhancing diagnostic accuracy. Neurophysiological techniques, such as transcranial magnetic stimulation (TMS), have contributed to our understanding of AD and FTD. TMS has uncovered unique neurophysiological signatures, highlighting impaired plasticity, hyperexcitability, and altered connectivity in AD, while FTD displays differences in neurotransmitter systems, particularly GABAergic and glutamatergic circuits. Lastly, ongoing clinical trials in anti-amyloid therapy for AD, such as Simufilam, Solanezumab, Gantenerumab, and Remternetug, offer hope for individuals affected by this devastating disease, with the potential to alter the course of cognitive decline. These advancements collectively illuminate the evolving landscape of dementia research and the pursuit of effective treatments for these challenging conditions.
Collapse
Affiliation(s)
- Shubhrat Maheshwari
- Faculty of Pharmaceutical Sciences Rama University Mandhana, Bithoor Road, Kanpur, Uttar Pradesh 209217, India; Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 21107, U.P., India.
| | - Aditya Singh
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Vaseem Ahamad Ansari
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Tarique Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Rufaida Wasim
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Juber Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Amita Verma
- Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 21107, U.P., India.
| |
Collapse
|
4
|
Liu G, Wang J, Wei Z, Fang C, Shen K, Qian C, Qi C, Li T, Gao P, Wong PC, Lu H, Cao X, Wan M. Elevated PDGF-BB from Bone Impairs Hippocampal Vasculature by Inducing PDGFRβ Shedding from Pericytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206938. [PMID: 37102631 PMCID: PMC10369301 DOI: 10.1002/advs.202206938] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Evidence suggests a unique association between bone aging and neurodegenerative/cerebrovascular disorders. However, the mechanisms underlying bone-brain interplay remain elusive. Here platelet-derived growth factor-BB (PDGF-BB) produced by preosteoclasts in bone is reported to promote age-associated hippocampal vascular impairment. Aberrantly elevated circulating PDGF-BB in aged mice and high-fat diet (HFD)-challenged mice correlates with capillary reduction, pericyte loss, and increased blood-brain barrier (BBB) permeability in their hippocampus. Preosteoclast-specific Pdgfb transgenic mice with markedly high plasma PDGF-BB concentration faithfully recapitulate the age-associated hippocampal BBB impairment and cognitive decline. Conversely, preosteoclast-specific Pdgfb knockout mice have attenuated hippocampal BBB impairment in aged mice or HFD-challenged mice. Persistent exposure of brain pericytes to high concentrations of PDGF-BB upregulates matrix metalloproteinase 14 (MMP14), which promotes ectodomain shedding of PDGF receptor β (PDGFRβ) from pericyte surface. MMP inhibitor treatment alleviates hippocampal pericyte loss and capillary reduction in the conditional Pdgfb transgenic mice and antagonizes BBB leakage in aged mice. The findings establish the role of bone-derived PDGF-BB in mediating hippocampal BBB disruption and identify the ligand-induced PDGFRβ shedding as a feedback mechanism for age-associated PDGFRβ downregulation and the consequent pericyte loss.
Collapse
Affiliation(s)
- Guanqiao Liu
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Jiekang Wang
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Ching‐Lien Fang
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Ke Shen
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Cheng Qian
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Cheng Qi
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Tong Li
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Peisong Gao
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | - Philip C. Wong
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Xu Cao
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Mei Wan
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| |
Collapse
|
5
|
Lyu H, Ye Y, Chi Hang Lui V, Wang B. Reducing fibrosis progression of biliary atresia by continuous administration of aducanumab at low dose: A potential treatment. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Wang C, Dai S, Gong L, Fu K, Ma C, Liu Y, Zhou H, Li Y. A Review of Pharmacology, Toxicity and Pharmacokinetics of 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside. Front Pharmacol 2022; 12:791214. [PMID: 35069206 PMCID: PMC8769241 DOI: 10.3389/fphar.2021.791214] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Polygonum multiflorum Thunb. (He-shou-wu in Chinese), a Chinese botanical drug with a long history, is widely used to treat a variety of chronic diseases in clinic, and has been given the reputation of “rejuvenating and prolonging life” in many places. 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside (TSG, C20H22O9) is the main and unique active ingredient isolated from Polygonum multiflorum Thunb., which has extensive pharmacological activities. Modern pharmacological studies have confirmed that TSG exhibits significant activities in treating various diseases, including inflammatory diseases, neurodegenerative diseases, cardiovascular diseases, hepatic steatosis, osteoporosis, depression and diabetic nephropathy. Therefore, this review comprehensively summarizes the pharmacological and pharmacokinetic properties of TSG up to 2021 by searching the databases of Web of Science, PubMed, ScienceDirect and CNKI. According to the data, TSG shows remarkable anti-inflammation, antioxidation, neuroprotection, cardiovascular protection, hepatoprotection, anti-osteoporosis, enhancement of memory and anti-aging activities through regulating multiple molecular mechanisms, such as NF-κB, AMPK, PI3K-AKT, JNK, ROS-NO, Bcl-2/Bax/Caspase-3, ERK1/2, TGF-β/Smad, Nrf2, eNOS/NO and SIRT1. In addition, the toxicity and pharmacokinetics of TSG are also discussed in this review, which provided direction and basis for the further development and clinical application of TSG.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Kazuki Y, Gao FJ, Li Y, Moyer AJ, Devenney B, Hiramatsu K, Miyagawa-Tomita S, Abe S, Kazuki K, Kajitani N, Uno N, Takehara S, Takiguchi M, Yamakawa M, Hasegawa A, Shimizu R, Matsukura S, Noda N, Ogonuki N, Inoue K, Matoba S, Ogura A, Florea LD, Savonenko A, Xiao M, Wu D, Batista DA, Yang J, Qiu Z, Singh N, Richtsmeier JT, Takeuchi T, Oshimura M, Reeves RH. A non-mosaic transchromosomic mouse model of down syndrome carrying the long arm of human chromosome 21. eLife 2020; 9:56223. [PMID: 32597754 PMCID: PMC7358007 DOI: 10.7554/elife.56223] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/28/2020] [Indexed: 01/01/2023] Open
Abstract
Animal models of Down syndrome (DS), trisomic for human chromosome 21 (HSA21) genes or orthologs, provide insights into better understanding and treatment options. The only existing transchromosomic (Tc) mouse DS model, Tc1, carries a HSA21 with over 50 protein coding genes (PCGs) disrupted. Tc1 is mosaic, compromising interpretation of results. Here, we “clone” the 34 MB long arm of HSA21 (HSA21q) as a mouse artificial chromosome (MAC). Through multiple steps of microcell-mediated chromosome transfer, we created a new Tc DS mouse model, Tc(HSA21q;MAC)1Yakaz (“TcMAC21”). TcMAC21 is not mosaic and contains 93% of HSA21q PCGs that are expressed and regulatable. TcMAC21 recapitulates many DS phenotypes including anomalies in heart, craniofacial skeleton and brain, molecular/cellular pathologies, and impairments in learning, memory and synaptic plasticity. TcMAC21 is the most complete genetic mouse model of DS extant and has potential for supporting a wide range of basic and preclinical research.
Collapse
Affiliation(s)
- Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan.,Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Feng J Gao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yicong Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Anna J Moyer
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, United States
| | - Benjamin Devenney
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kei Hiramatsu
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Sachiko Miyagawa-Tomita
- Department of Animal Nursing Science, Yamazaki University of Animal Health Technology, Hachioji, Tokyo, Japan.,Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Naoyo Kajitani
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Narumi Uno
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Shoko Takehara
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Masato Takiguchi
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Miho Yamakawa
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Atsushi Hasegawa
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoko Matsukura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Liliana D Florea
- Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, United States
| | - Alena Savonenko
- Departments of Pathology and Neurology, John Hopkins University School of Medicine, Baltimore, United States
| | - Meifang Xiao
- Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, United States
| | - Dan Wu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Denise As Batista
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, United States
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Nandini Singh
- Department of Anthropology, Penn State University, State College, United States
| | - Joan T Richtsmeier
- Division of Biosignaling, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Takashi Takeuchi
- Department of Anthropology, California State University, Sacramento, United States
| | - Mitsuo Oshimura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
8
|
Arora S, Sharma D, Singh J. GLUT-1: An Effective Target To Deliver Brain-Derived Neurotrophic Factor Gene Across the Blood Brain Barrier. ACS Chem Neurosci 2020; 11:1620-1633. [PMID: 32352752 DOI: 10.1021/acschemneuro.0c00076] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, inflicts enormous suffering to patients and their family members. It is the third deadliest disease, affecting 46.8 million people worldwide. Brain-derived neurotrophic factor (BDNF) is involved in the development, maintenance, and plasticity of the central nervous system. This crucial protein is significantly reduced in AD patients leading to reduced plasticity and neuronal death. In this study, we demonstrate the targeted delivery of the BDNF gene to the brain using liposome nanoparticles. These liposomes were surface modified with glucose transporter-1 targeting ligand (mannose) and cell penetrating peptides (penetratin or rabies virus glycoprotein) to promote selective and enhanced delivery to the brain. Surface modified liposomes showed significantly higher transfection of BDNF in primary astrocytes and neurons, compared to unmodified (plain) liposomes. BDNF transfection via dual modified liposomes resulted in an increase in presynaptic marker synaptophysin protein in primary neuronal cells, which is usually found to be reduced in AD patients. Liposomes surface modified with mannose and cell penetrating peptides demonstrated ∼50% higher transport across the in vitro blood brain barrier (BBB) model and showed significantly higher transfection efficiency in primary neuronal cells compared to plain liposomes. These results were correlated with significantly higher transport of surface modified liposomes (∼7% of injected dose/gram of tissue) and BDNF transfection (∼1.7 times higher than baseline level) across BBB following single intravenous administration in C57BL/6 mice without any signs of inflammation or toxicity. Overall, this study suggests a safe and targeted strategy to increase BDNF protein in the brain, which has the potential to reverse AD pathophysiology.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
9
|
Kabir MT, Uddin MS, Mamun AA, Jeandet P, Aleya L, Mansouri RA, Ashraf GM, Mathew B, Bin-Jumah MN, Abdel-Daim MM. Combination Drug Therapy for the Management of Alzheimer's Disease. Int J Mol Sci 2020; 21:E3272. [PMID: 32380758 PMCID: PMC7246721 DOI: 10.3390/ijms21093272] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Even though the number of AD patients is rapidly growing, there is no effective treatment for this neurodegenerative disorder. At present, implementation of effective treatment approaches for AD is vital to meet clinical needs. In AD research, priorities concern the development of disease-modifying therapeutic agents to be used in the early phases of AD and the optimization of the symptomatic treatments predominantly dedicated to the more advanced AD stages. Until now, available therapeutic agents for AD treatment only provide symptomatic treatment. Since AD pathogenesis is multifactorial, use of a multimodal therapeutic intervention addressing several molecular targets of AD-related pathological processes seems to be the most practical approach to modify the course of AD progression. It has been demonstrated through numerous studies, that the clinical efficacy of combination therapy (CT) is higher than that of monotherapy. In case of AD, CT is more effective, mostly when started early, at slowing the rate of cognitive impairment. In this review, we have covered the major studies regarding CT to combat AD pathogenesis. Moreover, we have also highlighted the safety, tolerability, and efficacy of CT in the treatment of AD.
Collapse
Affiliation(s)
- Md. Tanvir Kabir
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, 51687 Reims CEDEX 2, France;
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France;
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, India;
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051666. [PMID: 32121304 PMCID: PMC7084447 DOI: 10.3390/ijms21051666] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical pathology consists of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles. Mutations in the APP, PSEN1, and PSEN2 genes increase Aβ production and aggregation, and thus cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD to result from complex etiological alterations. Among them, aging is the strongest risk factor for the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients. Genetically, defects in DNA damage repair resulted from mutations in the BRAC1 and other DNA damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association, the causative potential, and the biomarker values of DNA damage in AD pathogenesis.
Collapse
|
11
|
Zhang W, Chuang YA, Na Y, Ye Z, Yang L, Lin R, Zhou J, Wu J, Qiu J, Savonenko A, Leahy DJ, Huganir R, Linden DJ, Worley PF. Arc Oligomerization Is Regulated by CaMKII Phosphorylation of the GAG Domain: An Essential Mechanism for Plasticity and Memory Formation. Mol Cell 2019; 75:13-25.e5. [PMID: 31151856 DOI: 10.1016/j.molcel.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/27/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022]
Abstract
Arc is a synaptic protein essential for memory consolidation. Recent studies indicate that Arc originates in evolution from a Ty3-Gypsy retrotransposon GAG domain. The N-lobe of Arc GAG domain acquired a hydrophobic binding pocket in higher vertebrates that is essential for Arc's canonical function to weaken excitatory synapses. Here, we report that Arc GAG also acquired phosphorylation sites that can acutely regulate its synaptic function. CaMKII phosphorylates the N-lobe of the Arc GAG domain and disrupts an interaction surface essential for high-order oligomerization. In Purkinje neurons, CaMKII phosphorylation acutely reverses Arc's synaptic action. Mutant Arc that cannot be phosphorylated by CaMKII enhances metabotropic receptor-dependent depression in the hippocampus but does not alter baseline synaptic transmission or long-term potentiation. Behavioral studies indicate that hippocampus- and amygdala-dependent learning requires Arc GAG domain phosphorylation. These studies provide an atomic model for dynamic and local control of Arc function underlying synaptic plasticity and memory.
Collapse
Affiliation(s)
- Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yang-An Chuang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Youn Na
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zengyou Ye
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Liuqing Yang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Raozhou Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiechao Zhou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jing Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel J Leahy
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Richard Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David J Linden
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Brose RD, Savonenko A, Devenney B, Smith KD, Reeves RH. Hydroxyurea Improves Spatial Memory and Cognitive Plasticity in Mice and Has a Mild Effect on These Parameters in a Down Syndrome Mouse Model. Front Aging Neurosci 2019; 11:96. [PMID: 31139073 PMCID: PMC6527804 DOI: 10.3389/fnagi.2019.00096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023] Open
Abstract
Down syndrome (DS), a genetic disorder caused by partial or complete triplication of chromosome 21, is the most common genetic cause of intellectual disability. DS mouse models and cell lines display defects in cellular adaptive stress responses including autophagy, unfolded protein response, and mitochondrial bioenergetics. We tested the ability of hydroxyurea (HU), an FDA-approved pharmacological agent that activates adaptive cellular stress response pathways, to improve the cognitive function of Ts65Dn mice. The chronic HU treatment started at a stage when early mild cognitive deficits are present in this model (∼3 months of age) and continued until a stage of advanced cognitive deficits in untreated mice (∼5–6 months of age). The HU effects on cognitive performance were analyzed using a battery of water maze tasks designed to detect changes in different types of memory with sensitivity wide enough to detect deficits as well as improvements in spatial memory. The most common characteristic of cognitive deficits observed in trisomic mice at 5–6 months of age was their inability to rapidly acquire new information for long-term storage, a feature akin to episodic-like memory. On the background of severe cognitive impairments in untreated trisomic mice, HU-treatment produced mild but significant benefits in Ts65Dn by improving memory acquisition and short-term retention of spatial information. In control mice, HU treatment facilitated memory retention in constant (reference memory) as well as time-variant conditions (episodic-like memory) implicating a robust nootropic effect. This was the first proof-of-concept study of HU treatment in a DS model, and indicates that further studies are warranted to assess a window to optimize timing and dosage of the treatment in this pre-clinical phase. Findings of this study indicate that HU has potential for improving memory retention and cognitive flexibility that can be harnessed for the amelioration of cognitive deficits in normal aging and in cognitive decline (dementia) related to DS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca Deering Brose
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alena Savonenko
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Benjamin Devenney
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kirby D Smith
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD, United States
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Eremenko E, Mittal K, Berner O, Kamenetsky N, Nemirovsky A, Elyahu Y, Monsonego A. BDNF-producing, amyloid β-specific CD4 T cells as targeted drug-delivery vehicles in Alzheimer's disease. EBioMedicine 2019; 43:424-434. [PMID: 31085101 PMCID: PMC6557914 DOI: 10.1016/j.ebiom.2019.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The delivery of therapeutic proteins to selected sites within the central nervous system (CNS) parenchyma is a major challenge in the treatment of various neurodegenerative disorders. As brain-derived neurotrophic factor (BDNF) is reduced in the brain of people with Alzheimer's disease (AD) and its administration has shown promising therapeutic effects in mouse model of the disease, we generated a novel platform for T cell-based BDNF delivery into the brain parenchyma. METHODS We generated amyloid beta-protein (Aβ)-specific CD4 T cells (Aβ-T cells), genetically engineered to express BDNF, and injected them intracerebroventricularly into the 5XFAD mouse model of AD. FINDINGS The BDNF-secreting Aβ-T cells migrated efficiently to amyloid plaques, where they significantly increased the levels of BDNF, its receptor TrkB, and various synaptic proteins known to be reduced in AD. Furthermore, the injected mice demonstrated reduced levels of beta-secretase 1 (BACE1)-a protease essential in the cleavage process of the amyloid precursor protein-and ameliorated amyloid pathology and inflammation within the brain parenchyma. INTERPRETATION A T cell-based delivery of proteins into the brain can serve as a platform to modulate neurotoxic inflammation and to promote neuronal repair in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ekaterina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Kritika Mittal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omer Berner
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nikita Kamenetsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Nemirovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
14
|
Abstract
In this issue, Chiang et al. (https://doi.org/10.1084/jem.20171484) make a notable contribution to Alzheimer disease (AD) therapeutics in a thorough and rigorous study demonstrating superior efficacy of dual therapy against Aβ in a mouse model of amyloid β deposition.
Collapse
Affiliation(s)
- Tirth K Patel
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
15
|
Chiang ACA, Fowler SW, Savjani RR, Hilsenbeck SG, Wallace CE, Cirrito JR, Das P, Jankowsky JL. Combination anti-Aβ treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. J Exp Med 2018; 215:1349-1364. [PMID: 29626114 PMCID: PMC5940263 DOI: 10.1084/jem.20171484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/03/2018] [Accepted: 03/07/2018] [Indexed: 01/01/2023] Open
Abstract
Chiang et al. show that combining two complementary approaches for Aβ reduction improved cognitive function in a mouse model of amyloidosis relative to either treatment alone. Efficacy corresponded with restoration of mTOR signaling, TFEB expression, and autophagic flux, suggesting additional targets for future polytherapy in AD. Drug development for Alzheimer’s disease has endeavored to lower amyloid β (Aβ) by either blocking production or promoting clearance. The benefit of combining these approaches has been examined in mouse models and shown to improve pathological measures of disease over single treatment; however, the impact on cellular and cognitive functions affected by Aβ has not been tested. We used a controllable APP transgenic mouse model to test whether combining genetic suppression of Aβ production with passive anti-Aβ immunization improved functional outcomes over either treatment alone. Compared with behavior before treatment, arresting further Aβ production (but not passive immunization) was sufficient to stop further decline in spatial learning, working memory, and associative memory, whereas combination treatment reversed each of these impairments. Cognitive improvement coincided with resolution of neuritic dystrophy, restoration of synaptic density surrounding deposits, and reduction of hyperactive mammalian target of rapamycin signaling. Computational modeling corroborated by in vivo microdialysis pointed to the reduction of soluble/exchangeable Aβ as the primary driver of cognitive recovery.
Collapse
Affiliation(s)
- Angie C A Chiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | | | - Susan G Hilsenbeck
- Department of Medicine, Lester and Sue Smith Breast Center, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Clare E Wallace
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - John R Cirrito
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Pritam Das
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX .,Departments of Neurology, Neurosurgery, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
16
|
Lee M, Ban JJ, Yang S, Im W, Kim M. The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimer's disease. Brain Res 2018; 1691:87-93. [PMID: 29625119 DOI: 10.1016/j.brainres.2018.03.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 02/08/2023]
Abstract
Adipose-derived stem cells (ADSC) have a therapeutic potential for the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Exosomes are extracellular vesicles secreted from various types of cells, and stem cell-derived exosomes are known to have beneficial effects in many diseases. Many studies have suggested that amyloid beta (Aβ) peptides have a pivotal role in AD progression, by mitochondrial dysfunction of neuronal cells. We examined the therapeutic potential of exosomes derived from ADSCs (ADSC-Exo) in preventing the disease phenotypes induced by the Aβ cascade in an AD in vitro model. Neuronal stem cells (NSCs) from the brains of TG2576 AD mice were used to examine the effects of ADSC-Exo on AD phenotypes. NSCs from AD mice can be grown as a neurosphere and differentiated. Differentiated NSCs of TG2576 mice showed increase of Aβ42 and Aβ40 levels, and Aβ42/40 ratio. Apoptotic molecules such as p53, Bax and caspase-3 were increased and Bcl2, an anti-apoptotic molecule, was decreased in AD cells compared with wild-type littermate cells. Lower viable cell population and higher necrotic cells were examined in AD neuronal cells. ELISA result showed that ADSC-Exo treatment resulted in reduced Aβ42 levels, Aβ40 levels, and the Aβ42/40 ratio of AD cells. Increased apoptotic molecules, p53, Bax, pro-caspase-3 and cleaved-caspase-3, and decreased Bcl-2 protein level were normalized by ADSC-Exo treatment. Flow cytometry analysis revealed that increased cell apoptosis of AD neuronal cells was reduced by ADSC-Exo. In addition, neurite growth, which is impaired by Aβ in the brains of patients with AD, was augmented by ADSC-Exo treatment. Taken together, these findings implicate the disease-modulating effects of ADSC-Exo in the transgenic mice-derived AD in vitro model, and ADSC-Exo can be a therapeutic source to ameliorate the progression of Aβ-induced neuronal death and AD.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Seungwon Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea; Neuroscience and Protein Metabolism Research Center, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
17
|
Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J. Mechanisms of Melatonin in Alleviating Alzheimer's Disease. Curr Neuropharmacol 2017; 15:1010-1031. [PMID: 28294066 PMCID: PMC5652010 DOI: 10.2174/1570159x15666170313123454] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic, progressive and prevalent neurodegenerative disease characterized by the loss of higher cognitive functions and an associated loss of memory. The thus far "incurable" stigma for AD prevails because of variations in the success rates of different treatment protocols in animal and human studies. Among the classical hypotheses explaining AD pathogenesis, the amyloid hypothesis is currently being targeted for drug development. The underlying concept is to prevent the formation of these neurotoxic peptides which play a central role in AD pathology and trigger a multispectral cascade of neurodegenerative processes post-aggregation. This could possibly be achieved by pharmacological inhibition of β- or γ-secretase or stimulating the nonamyloidogenic α-secretase. Melatonin the pineal hormone is a multifunctioning indoleamine. Production of this amphiphilic molecule diminishes with advancing age and this decrease runs parallel with the progression of AD which itself explains the potential benefits of melatonin in line of development and devastating consequences of the disease progression. Our recent studies have revealed a novel mechanism by which melatonin stimulates the nonamyloidogenic processing and inhibits the amyloidogenic processing of β-amyloid precursor protein (βAPP) by stimulating α -secretases and consequently down regulating both β- and γ-secretases at the transcriptional level. In this review, we discuss and evaluate the neuroprotective functions of melatonin in AD pathogenesis, including its role in the classical hypotheses in cellular and animal models and clinical interventions in AD patients, and suggest that with early detection, melatonin treatment is qualified to be an anti-AD therapy.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Parichart Boontem
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jutamaad Satayavivad
- Chulabhorn Research Institute and Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok10210, Thailand
| |
Collapse
|
18
|
Fernandez-Martos CM, Atkinson RAK, Chuah MI, King AE, Vickers JC. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 3:92-106. [PMID: 29067321 PMCID: PMC5651376 DOI: 10.1016/j.trci.2016.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Combination therapy approaches may be necessary to address the many facets of pathologic change in the brain in Alzheimer's disease (AD). The drugs leptin and pioglitazone have previously been shown individually to have neuroprotective and anti-inflammatory actions, respectively, in animal models. METHODS We studied the impact of combined leptin and pioglitazone treatment in 6-month-old APP/PS1 (APPswe/PSEN1dE9) transgenic AD mouse model. RESULTS We report that an acute 2-week treatment with combined leptin and pioglitazone resulted in a reduction of spatial memory deficits (Y maze) and brain β-amyloid levels (soluble β-amyloid and amyloid plaque burden) relative to vehicle-treated animals. Combination treatment was also associated with amelioration in plaque-associated neuritic pathology and synapse loss, and also a significantly reduced neocortical glial response. DISCUSSION Combination therapy with leptin and pioglitazone ameliorates pathologic changes in APP/PS1 mice and may represent a potential treatment approach for AD.
Collapse
Affiliation(s)
- Carmen M Fernandez-Martos
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Meng I Chuah
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
19
|
Ohno M. Alzheimer's therapy targeting the β-secretase enzyme BACE1: Benefits and potential limitations from the perspective of animal model studies. Brain Res Bull 2016; 126:183-198. [PMID: 27093940 DOI: 10.1016/j.brainresbull.2016.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 01/18/2023]
Abstract
Accumulating evidence points to the amyloid-β (Aβ) peptide as the culprit in the pathogenesis of Alzheimer's disease (AD). β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a protease that is responsible for initiating Aβ production. Although precise mechanisms that trigger Aβ accumulation remain unclear, BACE1 inhibition undoubtedly represents an important intervention that may prevent and/or cure AD. Remarkably, animal model studies with knockouts, virus-delivered small interfering RNAs, immunization and bioavailable small-molecule agents that specifically inhibit BACE1 activity strongly support the idea for the therapeutic BACE1 inhibition. Meanwhile, a growing number of BACE1 substrates besides APP uncover new physiological roles of this protease, raising some concern regarding the safety of BACE1 inhibition. Here, I review recent progress in preclinical studies that have evaluated the efficacies and potential limitations of genetic/pharmacological inhibition of BACE1, with special focus on AD-associated phenotypes including synaptic dysfunction, neuron loss and memory deficits in animal models.
Collapse
Affiliation(s)
- Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Departments of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
20
|
Protective effect of black tea extract against aluminium chloride-induced Alzheimer's disease in rats: A behavioural, biochemical and molecular approach. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
21
|
Intraventricular Delivery of siRNA Nanoparticles to the Central Nervous System. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e242. [PMID: 25965552 DOI: 10.1038/mtna.2015.15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/08/2015] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease currently lacking effective treatment. Efficient delivery of siRNA via nanoparticles may emerge as a viable therapeutic approach to treat AD and other central nervous system disorders. We report here the use of a linear polyethyleneimine (LPEI)-g-polyethylene glycol (PEG) copolymer-based micellar nanoparticle system to deliver siRNA targeting BACE1 and APP, two therapeutic targets of AD. Using LPEI-siRNA nanoparticles against either BACE1 or APP in cultured mouse neuroblastoma (N2a) cells, we observe selective knockdown, respectively, of BACE1 or APP. The encapsulation of siRNA by LPEI-g-PEG carriers, with different grafting degrees of PEG, leads to the formation of micellar nanoparticles with distinct morphologies, including worm-like, rod-like, or spherical nanoparticles. By infusing these shaped nanoparticles into mouse lateral ventricles, we show that rod-shaped nanoparticles achieved the most efficient knockdown of BACE1 in the brain. Furthermore, such knockdown is evident in spinal cords of these treated mice. Taken together, our findings indicate that the shape of siRNA-encapsulated nanoparticles is an important determinant for their delivery and gene knockdown efficiency in the central nervous system.
Collapse
|
22
|
Strömberg K, Eketjäll S, Georgievska B, Tunblad K, Eliason K, Olsson F, Radesäter AC, Klintenberg R, Arvidsson PI, von Berg S, Fälting J, Cowburn RF, Dabrowski M. Combining an amyloid-beta (Aβ) cleaving enzyme inhibitor with a γ-secretase modulator results in an additive reduction of Aβ production. FEBS J 2014; 282:65-73. [DOI: 10.1111/febs.13103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Kia Strömberg
- Department of Neuroscience; AstraZeneca R&D; CNS/Pain iMED; Södertälje Sweden
| | - Susanna Eketjäll
- AstraZeneca Translational Science Centre; Science for Life Laboratory; Solna Sweden
| | - Biljana Georgievska
- Department of Neuroscience; AstraZeneca R&D; CNS/Pain iMED; Södertälje Sweden
| | - Karin Tunblad
- Department of Neuroscience; AstraZeneca R&D; CNS/Pain iMED; Södertälje Sweden
| | - Kristina Eliason
- Department of Neuroscience; AstraZeneca R&D; CNS/Pain iMED; Södertälje Sweden
| | - Fredrik Olsson
- Department of Neuroscience; AstraZeneca R&D; CNS/Pain iMED; Södertälje Sweden
| | | | - Rebecka Klintenberg
- Department of Neuroscience; AstraZeneca R&D; CNS/Pain iMED; Södertälje Sweden
| | - Per I. Arvidsson
- Project Management, AstraZeneca R&D; CNS/Pain iMED; Södertälje Sweden
| | - Stefan von Berg
- Department of Medicinal Chemistry; R&I iMed; AstraZeneca R&D Mölndal; Sweden
| | - Johanna Fälting
- Project Management, AstraZeneca R&D; CNS/Pain iMED; Södertälje Sweden
| | - Richard F. Cowburn
- Department of Neuroscience; AstraZeneca R&D; CNS/Pain iMED; Södertälje Sweden
| | - Michael Dabrowski
- Department of Neuroscience; AstraZeneca R&D; CNS/Pain iMED; Södertälje Sweden
| |
Collapse
|
23
|
Combined treatment with a BACE inhibitor and anti-Aβ antibody gantenerumab enhances amyloid reduction in APPLondon mice. J Neurosci 2014; 34:11621-30. [PMID: 25164658 DOI: 10.1523/jneurosci.1405-14.2014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Therapeutic approaches for prevention or reduction of amyloidosis are currently a main objective in basic and clinical research on Alzheimer's disease. Among the agents explored in clinical trials are anti-Aβ peptide antibodies and secretase inhibitors. Most anti-Aβ antibodies are considered to act via inhibition of amyloidosis and enhanced clearance of existing amyloid, although secretase inhibitors reduce the de novo production of Aβ. Limited information is currently available on the efficacy and potential advantages of combinatorial antiamyloid treatment. We performed a chronic study in APPLondon transgenic mice that received treatment with anti-Aβ antibody gantenerumab and BACE inhibitor RO5508887, either as mono- or combination treatment. Treatment aimed to evaluate efficacy on amyloid progression, similar to preexisting amyloidosis as present in Alzheimer's disease patients. Mono-treatments with either compound caused a dose-dependent reduction of total brain Aβ and amyloid burden. Combination treatment with both compounds significantly enhanced the antiamyloid effect. The observed combination effect was most pronounced for lowering of amyloid plaque load and plaque number, which suggests effective inhibition of de novo plaque formation. Moreover, significantly enhanced clearance of pre-existing amyloid plaques was observed when gantenerumab was coadministered with RO5508887. BACE inhibition led to a significant time- and dose-dependent decrease in CSF Aβ, which was not observed for gantenerumab treatment. Our results demonstrate that combining these two antiamyloid agents enhances overall efficacy and suggests that combination treatments may be of clinical relevance.
Collapse
|
24
|
Cummings JL, Morstorf T, Zhong K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014; 6:37. [PMID: 25024750 PMCID: PMC4095696 DOI: 10.1186/alzrt269] [Citation(s) in RCA: 1215] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/13/2014] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is increasing in frequency as the global population ages. Five drugs are approved for treatment of AD, including four cholinesterase inhibitors and an N-methyl-D-aspartate (NMDA)-receptor antagonist. We have an urgent need to find new therapies for AD. METHODS We examined Clinicaltrials.gov, a public website that records ongoing clinical trials. We examined the decade of 2002 to 2012, to better understand AD-drug development. We reviewed trials by sponsor, sites, drug mechanism of action, duration, number of patients required, and rate of success in terms of advancement from one phase to the next. We also reviewed the current AD therapy pipeline. RESULTS During the 2002 to 2012 observation period, 413 AD trials were performed: 124 Phase 1 trials, 206 Phase 2 trials, and 83 Phase 3 trials. Seventy-eight percent were sponsored by pharmaceutical companies. The United States of America (U.S.) remains the single world region with the greatest number of trials; cumulatively, more non-U.S. than U.S. trials are performed. The largest number of registered trials addressed symptomatic agents aimed at improving cognition (36.6%), followed by trials of disease-modifying small molecules (35.1%) and trials of disease-modifying immunotherapies (18%). The mean length of trials increases from Phase 2 to Phase 3, and the number of participants in trials increases between Phase 2 and Phase 3. Trials of disease-modifying agents are larger and longer than those for symptomatic agents. A very high attrition rate was found, with an overall success rate during the 2002 to 2012 period of 0.4% (99.6% failure). CONCLUSIONS The Clinicaltrials.gov database demonstrates that relatively few clinical trials are undertaken for AD therapeutics, considering the magnitude of the problem. The success rate for advancing from one phase to another is low, and the number of compounds progressing to regulatory review is among the lowest found in any therapeutic area. The AD drug-development ecosystem requires support.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Avenue, Las Vegas, Nevada 89106, USA
| | - Travis Morstorf
- Touro University Nevada College of Osteopathic Medicine, Henderson, Nevada, USA
| | - Kate Zhong
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Avenue, Las Vegas, Nevada 89106, USA
| |
Collapse
|
25
|
Zheng H, Fridkin M, Youdim M. From single target to multitarget/network therapeutics in Alzheimer's therapy. Pharmaceuticals (Basel) 2014; 7:113-35. [PMID: 24463342 PMCID: PMC3942689 DOI: 10.3390/ph7020113] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 02/06/2023] Open
Abstract
Brain network dysfunction in Alzheimer’s disease (AD) involves many proteins (enzymes), processes and pathways, which overlap and influence one another in AD pathogenesis. This complexity challenges the dominant paradigm in drug discovery or a single-target drug for a single mechanism. Although this paradigm has achieved considerable success in some particular diseases, it has failed to provide effective approaches to AD therapy. Network medicines may offer alternative hope for effective treatment of AD and other complex diseases. In contrast to the single-target drug approach, network medicines employ a holistic approach to restore network dysfunction by simultaneously targeting key components in disease networks. In this paper, we explore several drugs either in the clinic or under development for AD therapy in term of their design strategies, diverse mechanisms of action and disease-modifying potential. These drugs act as multi-target ligands and may serve as leads for further development as network medicines.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Medicinal Chemistry, Intra-cellular Therapies Inc. 3960 Broadway, New York, NY 10032, USA.
| | - Mati Fridkin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Moussa Youdim
- Abital Pharma Pipeline Ltd., Tel Aviv 6789141, Israel.
| |
Collapse
|
26
|
Shi Q, Prior M, Zhou X, Tang X, He W, Hu X, Yan R. Preventing formation of reticulon 3 immunoreactive dystrophic neurites improves cognitive function in mice. J Neurosci 2013; 33:3059-66. [PMID: 23407961 PMCID: PMC3711383 DOI: 10.1523/jneurosci.2445-12.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 11/27/2012] [Accepted: 12/17/2012] [Indexed: 01/11/2023] Open
Abstract
Neuritic dystrophy is one of the important pathological features associated with amyloid plaques in Alzheimer's disease (AD) and age-dependent neuronal dysfunctions. We reported previously that reticulon-3 (RTN3) immunoreactive dystrophic neurites (RIDNs) are abundantly present in the hippocampus of AD patients, in AD mouse models, and in aged wild-type mice. Transgenic mice overexpressing the human RTN3 transgene spontaneously develop RIDNs in their hippocampi, and the formation of RIDNs correlates with the appearance of RTN3 aggregation. To further elucidate whether the formation of RIDNs is reversible, we generated transgenic mice expressing wild-type human RTN3 under the control of a tetracycline-responsive promoter. Treatment with doxycycline for 2 months effectively turned off expression of the human RTN3 transgene, confirming the inducible nature of the system. However, the formation of hippocampal RIDNs was dependent on whether the transgene was turned off before or after the formation of RTN3 aggregates. When transgenic human RTN3 expression was turned off at young age, formation of RIDNs was essentially eliminated compared with the vehicle-treated transgenic mice. More importantly, a fear conditioning study demonstrated that contextual associative learning and memory in inducible transgenic mice was improved if the density of RIDNs was lowered. Additional mechanistic study suggested that a reduction in BDNF levels in transgenic mice might contribute to the reduced learning and memory in transgenic mice overexpressing RTN3. Hence, we conclude that age-dependent RIDNs cannot be effectively cleared once they have formed, and we postulate that successful prevention of RIDN formation should be initiated before RTN3 aggregation.
Collapse
Affiliation(s)
- Qi Shi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Marguerite Prior
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Xiangdong Zhou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Xiaoying Tang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| |
Collapse
|
27
|
Alzheimer's disease. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Savonenko AV, Melnikova T, Hiatt A, Li T, Worley PF, Troncoso JC, Wong PC, Price DL. Alzheimer's therapeutics: translation of preclinical science to clinical drug development. Neuropsychopharmacology 2012; 37:261-77. [PMID: 21937983 PMCID: PMC3238084 DOI: 10.1038/npp.2011.211] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 12/15/2022]
Abstract
Over the past three decades, significant progress has been made in understanding the neurobiology of Alzheimer's disease. In recent years, the first attempts to implement novel mechanism-based treatments brought rather disappointing results, with low, if any, drug efficacy and significant side effects. A discrepancy between our expectations based on preclinical models and the results of clinical trials calls for a revision of our theoretical views and questions every stage of translation-from how we model the disease to how we run clinical trials. In the following sections, we will use some specific examples of the therapeutics from acetylcholinesterase inhibitors to recent anti-Aβ immunization and γ-secretase inhibition to discuss whether preclinical studies could predict the limitations in efficacy and side effects that we were so disappointed to observe in recent clinical trials. We discuss ways to improve both the predictive validity of mouse models and the translation of knowledge between preclinical and clinical stages of drug development.
Collapse
Affiliation(s)
- Alena V Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Alzheimer's disease (AD), the leading cause of dementia worldwide, is characterized by the accumulation of the β-amyloid peptide (Aβ) within the brain along with hyperphosphorylated and cleaved forms of the microtubule-associated protein tau. Genetic, biochemical, and behavioral research suggest that physiologic generation of the neurotoxic Aβ peptide from sequential amyloid precursor protein (APP) proteolysis is the crucial step in the development of AD. APP is a single-pass transmembrane protein expressed at high levels in the brain and metabolized in a rapid and highly complex fashion by a series of sequential proteases, including the intramembranous γ-secretase complex, which also process other key regulatory molecules. Why Aβ accumulates in the brains of elderly individuals is unclear but could relate to changes in APP metabolism or Aβ elimination. Lessons learned from biochemical and genetic studies of APP processing will be crucial to the development of therapeutic targets to treat AD.
Collapse
|
30
|
Abstract
Primary open angle glaucoma and Alzheimer’s disease have long been established as two separate pathological entities, primarily affecting the elderly. The progressive, irreversible course of both diseases has significant implications on an aging population. As the complex pathophysiology of the two diseases has progressively unraveled over the past two decades, common pathophysiological changes have also been elucidated. Some of these mechanisms have established a strong grounding, whilst others remain principally speculative. The mutual neuropathological changes in primary open angle glaucoma and Alzheimer’s disease have facilitated the development of neuroprotective strategies. While most of these strategies are still in the preclinical phase, they have shown great promise in experimental animal studies. Further understanding of the common pathophysiology of primary open angle glaucoma and Alzheimer’s disease and their timeline may have great implications on early diagnosis and effective therapeutic targeting.
Collapse
Affiliation(s)
- Mukhtar Bizrah
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK; Western Eye Hospital, Imperial College Healthcare Trust, London, UK
- Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - Li Guo
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK; Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| | - Maria Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK; Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
31
|
Abstract
Sphingosine kinase (SphK) 1 and 2 phosphorylate sphingosine to generate sphingosine-1-phosphate (S1P), a pluripotent lipophilic mediator implicated in a variety of cellular events. Here we show that the activity of β-site APP cleaving enzyme-1 (BACE1), the rate-limiting enzyme for amyloid-β peptide (Aβ) production, is modulated by S1P in mouse neurons. Treatment by SphK inhibitor, RNA interference knockdown of SphK, or overexpression of S1P degrading enzymes decreased BACE1 activity, which reduced Aβ production. S1P specifically bound to full-length BACE1 and increased its proteolytic activity, suggesting that cellular S1P directly modulates BACE1 activity. Notably, the relative activity of SphK2 was upregulated in the brains of patients with Alzheimer's disease. The unique modulatory effect of cellular S1P on BACE1 activity is a novel potential therapeutic target for Alzheimer's disease.
Collapse
|
32
|
Cai Y, Xiong K, Zhang XM, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Chu Y, Kordower JH, Yan XX. β-Secretase-1 elevation in aged monkey and Alzheimer's disease human cerebral cortex occurs around the vasculature in partnership with multisystem axon terminal pathogenesis and β-amyloid accumulation. Eur J Neurosci 2010; 32:1223-1238. [PMID: 20726888 PMCID: PMC2970759 DOI: 10.1111/j.1460-9568.2010.07376.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia-causing disorder in the elderly; it may be related to multiple risk factors, and is characterized pathologically by cerebral hypometabolism, paravascular β-amyloid peptide (Aβ) plaques, neuritic dystrophy, and intra-neuronal aggregation of phosphorylated tau. To explore potential pathogenic links among some of these lesions, we examined β-secretase-1 (BACE1) alterations relative to Aβ deposition, neuritic pathology and vascular organization in aged monkey and AD human cerebral cortex. Western blot analyses detected increased levels of BACE1 protein and β-site-cleavage amyloid precursor protein C-terminal fragments in plaque-bearing human and monkey cortex relative to controls. In immunohistochemistry, locally elevated BACE1 immunoreactivity (IR) occurred in AD but not in control human cortex, with a trend for increased overall density among cases with greater plaque pathology. In double-labeling preparations, BACE1 IR colocalized with immunolabeling for Aβ but not for phosphorylated tau. In perfusion-fixed monkey cortex, locally increased BACE1 IR co-existed with intra-axonal and extracellular Aβ IR among virtually all neuritic plaques, ranging from primitive to typical cored forms. This BACE1 labeling localized to swollen/sprouting axon terminals that might co-express one or another neuronal phenotype markers (GABAergic, glutamatergic, cholinergic, or catecholaminergic). Importantly, these BACE1-labeled dystrophic axons resided near to or in direct contact with blood vessels. These findings suggest that plaque formation in AD or normal aged primates relates to a multisystem axonal pathogenesis that occurs in partnership with a potential vascular or metabolic deficit. The data provide a mechanistic explanation for why senile plaques are present preferentially near the cerebral vasculature.
Collapse
Affiliation(s)
- Yan Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan, China
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Kun Xiong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan, China
| | - Xue-Mei Zhang
- Departments of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Xue-Gang Luo
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan, China
| | - Jia-Chun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Richard W. Clough
- Departments of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Robert G. Struble
- Center for Alzheimer's disease, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Peter R. Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Departments of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Xiao-Xin Yan
- Departments of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|