1
|
Shimizu N, Mashimo Y, Yokouchi H, Nishio Y, Sawai S, Ichikawa T, Ogi T, Baba T, Onouchi Y. Novel FBN1 intron variant causes isolated ectopia lentis via in-frame exon skipping. J Hum Genet 2025; 70:199-205. [PMID: 39939800 PMCID: PMC11882438 DOI: 10.1038/s10038-025-01318-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Mutations in fibrillin-1 (FBN1) cause various clinical conditions, such as Marfan syndrome (MFS). However, the genotype-phenotype relationships underlying MFS and other conditions relevant to FBN1 mutations have not been fully elucidated. We performed whole-exome sequencing on three participants, including an affected mother-daughter pair, in a three-generation Japanese family with isolated ectopia lentis (IEL). The sequencing identified a novel single-nucleotide variant (c.1327+3A>C) in intron 11 of FBN1 that was shared between the two patients. We confirmed the co-segregation of the variant with IEL in two additional affected relatives in the family. The Combined Annotation-Dependent Depletion score of the variant was 26.1, which was indicated by SpliceAI to influence splicing, with a score of 0.93. Reverse transcription-polymerase chain reaction (RT-PCR) of mRNAs isolated from peripheral blood mononuclear cells revealed aberrant bands in all four affected individuals. Subsequent sequencing revealed that these bands originated from FBN1 transcripts lacking exon 11. The causality of the variant in the skipping of exon 11, which results in an in-frame deletion of 60 amino acids corresponding to the "hinge" region of FBN1 protein, was confirmed in a minigene experiment. Interestingly, the same result was observed for a minigene for c.1327+1G>A, a variant previously identified in two unrelated EL families without MFS manifestations. These results suggest that the c.1327+3A>C mutation in FBN1 likely leads to IEL. The findings expand our knowledge of FBN1 and provide insights into FBN1-related diseases.
Collapse
Affiliation(s)
- Norihiro Shimizu
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
- Maebara Shimizu Eye Clinic, Funabashi, Japan
| | - Yoichi Mashimo
- Department of Public Health, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hirotaka Yokouchi
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Ophthalmology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yosuke Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Setsu Sawai
- Department of Neurology, Chiba Aoba Municipal Hospital, Chiba, Japan
- Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Tomohiko Ichikawa
- Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University Institute for Advanced Study, Nagoya, Japan
- Division of Molecular Physiology and Dynamics, Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Takayuki Baba
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshihiro Onouchi
- Department of Public Health, Chiba University Graduate School of Medicine, Chiba, Japan.
- Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
2
|
Hao H, Eberand BM, Larance M, Haltiwanger RS. Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals. Molecules 2025; 30:1470. [PMID: 40286076 PMCID: PMC11990869 DOI: 10.3390/molecules30071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30605, USA;
| | - Benjamin M. Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | | |
Collapse
|
3
|
Hossain AS, Clarin MTRDC, Kimura K, Biggin G, Taga Y, Uto K, Yamagishi A, Motoyama E, Narenmandula, Mizuno K, Nakamura C, Asano K, Ohtsuki S, Nakamura T, Kanki S, Baldock C, Raja E, Yanagisawa H. Fibrillin-1 G234D mutation in the hybrid1 domain causes tight skin associated with dysregulated elastogenesis and increased collagen cross-linking in mice. Matrix Biol 2025; 135:24-38. [PMID: 39615636 PMCID: PMC11747857 DOI: 10.1016/j.matbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025]
Abstract
Fibrillin-1, an extracellular matrix (ECM) protein encoded by the FBN1 gene, serves as a microfibril scaffold crucial for elastic fiber formation and homeostasis in pliable tissue such as the skin. Aside from causing Marfan syndrome, some mutations in FBN1 result in scleroderma, marked by hardened and thicker skin which limits joint mobility. Here, we describe a tight skin phenotype in the Fbn1G234D/G234D mice carrying a corresponding variant of FBN1 in the hybrid1 domain that was identified in a patient with familial aortic dissection. Unlike scleroderma, skin thickness and collagen fiber abundance do not change in the Fbn1G234D/G234D mutant skin. Instead, increased collagen cross-links were observed. In addition, short elastic fibers were sparsely located underneath the panniculus muscle layer, and an abundance of thin, aberrant elastic fibers was increased within the subcutaneous fascia, which may have tightened skin attachment to the underlying skeletal muscle. Structurally, Fbn1G234D/G234D microfibrils have a disrupted shoulder region that shares similarities with hybrid1 deletion mutant microfibrils. We then demonstrate the consequence of fibrillin-1 G234D mutation on dermal fibroblast functions. Mutant primary fibroblasts produce fewer elastic fibers, exhibit slower migration and increased cell stiffness. Moreover, secretome from mutant fibroblasts are marked by enhanced secretion of ECM, ECM-modifying enzymes, proteoglycans and cytokines, which are pro-tissue repair/fibrogenic. The transcriptome of mutant fibroblasts displays an increased expression of myogenic developmental and immune-related genes. Our study proposes that imbalanced ECM homeostasis due to a fibrillin-1 G234D mutation impacts fibroblast properties with potential ramifications on skin function.
Collapse
Affiliation(s)
- Asm Sakhawat Hossain
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan; Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan; Department of Pharmacy, Varendra University, Bangladesh
| | - Maria Thea Rane Dela Cruz Clarin
- School of Integrative and Global Major, University of Tsukuba, Japan; Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan; National Institute for Material Science, Japan
| | - Kenichi Kimura
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | - George Biggin
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Japan
| | | | - Ayana Yamagishi
- National Institute of Advanced Industrial Science and Technology, Japan
| | - Eri Motoyama
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | - Narenmandula
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan; Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | | | - Chikashi Nakamura
- National Institute of Advanced Industrial Science and Technology, Japan
| | - Keiichi Asano
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Japan
| | | | - Sachiko Kanki
- Department of Surgery, Osaka Medical and Pharmaceutical University, Japan
| | - Clair Baldock
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - Erna Raja
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan.
| | - Hiromi Yanagisawa
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan.
| |
Collapse
|
4
|
Mason DE, Madsen TD, Gasparski AN, Jiwnani N, Lechler T, Weigert R, Iglesias-Bartolome R, Mili S. Control of Epithelial Tissue Organization by mRNA Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626432. [PMID: 39677649 PMCID: PMC11643025 DOI: 10.1101/2024.12.02.626432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
mRNA localization to specific subcellular regions is common in mammalian cells but poorly understood in terms of its physiological roles1-6,7. This study demonstrates the functional importance of Net1 mRNA, which we find prominently localized at the dermal-epidermal junction (DEJ) in stratified squamous epithelia. Net1 mRNA accumulates at DEJ protrusion-like structures that interact with the basement membrane and connect to a mechanosensitive network of microfibrils. Disrupting Net1 mRNA localization in mouse epithelium alters DEJ morphology and keratinocyte-matrix connections, affecting tissue homeostasis. mRNA localization dictates Net1 protein distribution and its function as a RhoA GTPase exchange factor (GEF). Altered RhoA activity is in turn sufficient to alter the ultrastructure of the DEJ. This study provides a high-resolution in vivo view of mRNA targeting in a physiological context. It further demonstrates how the subcellular localization of a single mRNA can significantly influence mammalian epithelial tissue organization, thus revealing an unappreciated level of post-transcriptional regulation that controls tissue physiology.
Collapse
Affiliation(s)
- Devon E. Mason
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Thomas D. Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alexander N. Gasparski
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Neal Jiwnani
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
5
|
Li DJ, Berry CE, Wan DC, Longaker MT. Clinical, mechanistic, and therapeutic landscape of cutaneous fibrosis. Sci Transl Med 2024; 16:eadn7871. [PMID: 39321265 DOI: 10.1126/scitranslmed.adn7871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
When dysregulated, skin fibrosis can lead to a multitude of pathologies. We provide a framework for understanding the wide clinical spectrum, mechanisms, and management of cutaneous fibrosis encompassing a variety of matrix disorders, fibrohistiocytic neoplasms, injury-induced scarring, and autoimmune scleroses. Underlying such entities are common mechanistic pathways that leverage morphogenic signaling, immune activation, and mechanotransduction to modulate fibroblast function. In light of the limited array of available treatments for cutaneous fibrosis, scientific insights have opened new therapeutic and investigative avenues for conditions that still lack effective interventions.
Collapse
Affiliation(s)
- Dayan J Li
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA 94063, USA
| | - Charlotte E Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Zhang Y, Yang P, Zhang X, Liu S, Lou K. Asprosin: its function as a novel endocrine factor in metabolic-related diseases. J Endocrinol Invest 2024; 47:1839-1850. [PMID: 38568373 DOI: 10.1007/s40618-024-02360-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/09/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND PURPOSE Asprosin was discovered as a new endocrine hormone originating from fibrillin-1 cleavage that plays a crucial role in various metabolic-related diseases, such as obesity, nonalcoholic fatty liver disease (NAFLD), diabetes, polycystic ovary syndrome (PCOS), and cardiovascular diseases. The purpose of this review is to describe the recent advancements of asprosin. METHOD Narrative review. RESULT This comprehensive review explores its tissue-specific functions, focusing on white adipose tissue, liver, hypothalamus, testis, ovary, heart, pancreas, skeletal muscle, and kidney. CONCLUSION Asprosin is a multifaceted protein with tissue-specific roles in various physiological and pathological processes. Further research is needed to fully understand the mechanisms and potential of asprosin as a therapeutic target. These insights could provide new directions for treatments targeting metabolic-related diseases.
Collapse
Affiliation(s)
- Y Zhang
- Department of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, 250013, Shandong Province, China
| | - P Yang
- Department of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, 250013, Shandong Province, China
| | - X Zhang
- Department of Cardiology, Shandong Rongjun General Hospital, Jinan, 250013, China
| | - S Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, 250013, Shandong Province, China.
| | - K Lou
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong Province, China.
| |
Collapse
|
7
|
Baklan E, Duman N, Yaman B, Ceylan C. Childhood-onset progressive skin fibrosis and joint immobility. Clin Exp Dermatol 2024; 49:944-946. [PMID: 38468187 DOI: 10.1093/ced/llae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
A 28-year-old woman presented with generalized hardening of the skin, joint immobility, shortness of breath and lower back pain since the age of 7 years.
Collapse
Affiliation(s)
- Ecem Baklan
- Department of Dermatology and Venereal Diseases, Ege University, Faculty of Medicine, İzmir, Türkiye
| | - Nilay Duman
- Department of Dermatology and Venereal Diseases, Ege University, Faculty of Medicine, İzmir, Türkiye
| | - Banu Yaman
- Department of Pathology, Ege University, Faculty of Medicine, İzmir, Türkiye
| | - Can Ceylan
- Department of Dermatology and Venereal Diseases, Ege University, Faculty of Medicine, İzmir, Türkiye
| |
Collapse
|
8
|
Baka JLCES, Rocha TOCD, Pincelli MS, Samorano LP, Rivitti-Machado MCDM, Oliveira ZNPD. Stiff skin syndrome: long-term follow-up. An Bras Dermatol 2024; 99:597-600. [PMID: 38664099 PMCID: PMC11221244 DOI: 10.1016/j.abd.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/22/2023] [Accepted: 07/09/2023] [Indexed: 06/12/2024] Open
Affiliation(s)
| | - Tauana Ogata Coelho da Rocha
- Pediatric Dermatology, Hospital das Clínicas, Faculty of Medicine, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marcella Soares Pincelli
- Dermatopathology, Hospital das Clínicas, Faculty of Medicine, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luciana Paula Samorano
- Pediatric Dermatology, Hospital das Clínicas, Faculty of Medicine, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
9
|
Bai Y, Sun Y, Yu C, Xia Y, Wu J, Wang L, Gao Y, Tu X, Kong X. Causative role of a novel intronic indel variant in FBN1 and maternal germinal mosaicism in Marfan syndrome. Orphanet J Rare Dis 2024; 19:209. [PMID: 38773661 PMCID: PMC11110283 DOI: 10.1186/s13023-024-03139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/20/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Marfan syndrome (MFS) is an autosomal dominant connective tissue disease with wide clinical heterogeneity, and mainly caused by pathogenic variants in fibrillin-1 (FBN1). METHODS A Chinese 4-generation MFS pedigree with 16 family members was recruited and exome sequencing (ES) was performed in the proband. Transcript analysis (patient RNA and minigene assays) and in silico structural analysis were used to determine the pathogenicity of the variant. In addition, germline mosaicism in family member (Ι:1) was assessed using quantitative fluorescent polymerase chain reaction (QF-PCR) and short tandem repeat PCR (STR) analyses. RESULTS Two cis-compound benign intronic variants of FBN1 (c.3464-4 A > G and c.3464-5G > A) were identified in the proband by ES. As a compound variant, c.3464-5_3464-4delGAinsAG was found to be pathogenic and co-segregated with MFS. RNA studies indicated that aberrant transcripts were found only in patients and mutant-type clones. The variant c.3464-5_3464-4delGAinsAG caused erroneous integration of a 3 bp sequence into intron 28 and resulted in the insertion of one amino acid in the protein sequence (p.Ile1154_Asp1155insAla). Structural analyses suggested that p.Ile1154_Asp1155insAla affected the protein's secondary structure by interfering with one disulfide bond between Cys1140 and Cys1153 and causing the extension of an anti-parallel β sheet in the calcium-binding epidermal growth factor-like (cbEGF)13 domain. In addition, the asymptomatic family member Ι:1 was deduced to be a gonadal mosaic as assessed by inconsistent results of sequencing and STR analysis. CONCLUSIONS To our knowledge, FBN1 c.3464-5_3464-4delGAinsAG is the first identified pathogenic intronic indel variant affecting non-canonical splice sites in this gene. Our study reinforces the importance of assessing the pathogenic role of intronic variants at the mRNA level, with structural analysis, and the occurrence of mosaicism.
Collapse
Affiliation(s)
- Ying Bai
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Sun
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenguang Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanjie Xia
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Wu
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Li Wang
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Gao
- BGI-Wuhan, BGI-Shenzhen, Wuhan, 430074, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Chopra L, Maenza J, Chang CC, Rashid SMI, Kanei Y. Spontaneous Left Main Coronary Artery Dissection in a Male. Cureus 2024; 16:e60587. [PMID: 38894765 PMCID: PMC11184538 DOI: 10.7759/cureus.60587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Spontaneous coronary artery dissection (SCAD) is one of the causes of acute coronary syndrome (ACS) that is increasingly recognized in young to middle-aged women without typical coronary risk factors. This case report describes a 46-year-old male with a rare presentation of SCAD involving the left main (LM) coronary artery. The patient underwent an emergency coronary angiogram for high-risk ACS and had percutaneous coronary intervention (PCI) of LM due to active ischemia and hemodynamic instability. The extension of intramural hematoma after the LM coronary artery stent confirmed the initial suspicion of SCAD. The diagnosis of SCAD is crucial, as its management differs from other causes of ACS. Coronary angiography is the gold standard for diagnosing SCAD, with adjunctive imaging using optical coherence tomography (OCT) and intravascular ultrasound (IVUS). In this patient, his physical examination findings and further imaging raised a suspicion for systemic connective tissue disease. Genetic analysis was executed, but no reportable variants in any of the 29 genes studied were identified. This case highlights the importance of recognizing SCAD as a potential cause of ACS even in men and emphasizes the findings during coronary angiography that can aid in an accurate diagnosis and appropriate management.
Collapse
Affiliation(s)
- Lakshay Chopra
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joseph Maenza
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Chih-Chiun Chang
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Yumiko Kanei
- Cardiology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
11
|
Trinh-Minh T, Chen CW, Tran Manh C, Li YN, Zhu H, Zhou X, Chakraborty D, Zhang Y, Rauber S, Dees C, Lin NY, Kah D, Gerum R, Bergmann C, Kreuter A, Reuter C, Groeber-Becker F, Eckes B, Distler O, Fabry B, Ramming A, Schambony A, Schett G, Distler JH. Noncanonical WNT5A controls the activation of latent TGF-β to drive fibroblast activation and tissue fibrosis. J Clin Invest 2024; 134:e159884. [PMID: 38747285 PMCID: PMC11093613 DOI: 10.1172/jci159884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/20/2024] [Indexed: 05/19/2024] Open
Abstract
Transforming growth factor β (TGF-β) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-β remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-β in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-β. The activation of latent TGF-β requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-β, rebalanced TGF-β signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-β in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.
Collapse
Affiliation(s)
- Thuong Trinh-Minh
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Cuong Tran Manh
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Yi-Nan Li
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiang Zhou
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Debomita Chakraborty
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Yun Zhang
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Simon Rauber
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Clara Dees
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Neng-Yu Lin
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Delf Kah
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Richard Gerum
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Alexander Kreuter
- Clinic for Dermatology, Venereology and Allergology, HELIOS St. Elisabeth Clinic Oberhausen, North-Rhine-Westphalia, Germany
| | - Christiane Reuter
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC) Würzburg, Bavaria, Germany
| | - Florian Groeber-Becker
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC) Würzburg, Bavaria, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Cologne, North-Rhine-Westphalia, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, North-Rhine-Westphalia, Germany
| | - Oliver Distler
- Rheumaklinik, University Hospital Zurich, Zurich, Switzerland
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Alexandra Schambony
- Division of Developmental Biology, Biology Department, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Georg Schett
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Jörg H.W. Distler
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| |
Collapse
|
12
|
Yang Y, Zhang L, Li JH. Segmental Skin Induration in a Boy. JAMA Dermatol 2024; 160:354-355. [PMID: 38198132 DOI: 10.1001/jamadermatol.2023.4235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
An 11-year-old boy presented with progressive unilateral skin hardening on his right thigh and buttock for 7 years. What is your diagnosis?
Collapse
Affiliation(s)
- Yang Yang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, Shenyang, China
- National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Lan Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, Shenyang, China
- National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Jiu-Hong Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, Shenyang, China
- National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| |
Collapse
|
13
|
Bodmer NK, Knutsen RH, Roth RA, Castile RM, Brodt MD, Gierasch CM, Broekelmann TJ, Gibson MA, Haspel JA, Lake SP, Brody SL, Silva MJ, Mecham RP, Ornitz DM. Multi-organ phenotypes in mice lacking latent TGFβ binding protein 2 (LTBP2). Dev Dyn 2024; 253:233-254. [PMID: 37688792 PMCID: PMC10842386 DOI: 10.1002/dvdy.651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Latent TGFβ binding protein-2 (LTBP2) is a fibrillin 1 binding component of the microfibril. LTBP2 is the only LTBP protein that does not bind any isoforms of TGFβ, although it may interfere with the function of other LTBPs or interact with other signaling pathways. RESULTS Here, we investigate mice lacking Ltbp2 (Ltbp2-/- ) and identify multiple phenotypes that impact bodyweight and fat mass, and affect bone and skin development. The alterations in skin and bone development are particularly noteworthy since the strength of these tissues is differentially affected by loss of Ltbp2. Interestingly, some tissues that express high levels of Ltbp2, such as the aorta and lung, do not have a developmental or homeostatic phenotype. CONCLUSIONS Analysis of these mice show that LTBP2 has complex effects on development through direct effects on the extracellular matrix (ECM) or on signaling pathways that are known to regulate the ECM.
Collapse
Affiliation(s)
- Nicholas K. Bodmer
- Department of Developmental Biology, Washington University School of Medicine
- Department of Cell Biology and Physiology, Washington University School of Medicine
| | - Russell H. Knutsen
- Department of Cell Biology and Physiology, Washington University School of Medicine
| | - Robyn A. Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine
| | - Ryan M. Castile
- Department of Mechanical Engineering and Materials Science, Washington University School of Engineering
| | - Michael D. Brodt
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Carrie M. Gierasch
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University School of Medicine
| | | | - Mark A. Gibson
- Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jeffrey A. Haspel
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University School of Medicine
| | - Spencer P. Lake
- Department of Mechanical Engineering and Materials Science, Washington University School of Engineering
| | - Steven L. Brody
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University School of Medicine
| | - Matthew J. Silva
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine
| |
Collapse
|
14
|
Li L, Huang J, Liu Y. The extracellular matrix glycoprotein fibrillin-1 in health and disease. Front Cell Dev Biol 2024; 11:1302285. [PMID: 38269088 PMCID: PMC10806136 DOI: 10.3389/fcell.2023.1302285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Fibrillin-1 (FBN1) is a large, cysteine-rich, calcium binding extracellular matrix glycoprotein encoded by FBN1 gene. It serves as a structural component of microfibrils and provides force-bearing mechanical support in elastic and nonelastic connective tissue. As such, mutations in the FBN1 gene can cause a wide variety of genetic diseases such as Marfan syndrome, an autosomal dominant disorder characterized by ocular, skeletal and cardiovascular abnormalities. FBN1 also interacts with numerous microfibril-associated proteins, growth factors and cell membrane receptors, thereby mediating a wide range of biological processes such as cell survival, proliferation, migration and differentiation. Dysregulation of FBN1 is involved in the pathogenesis of many human diseases, such as cancers, cardiovascular disorders and kidney diseases. Paradoxically, both depletion and overexpression of FBN1 upregulate the bioavailability and signal transduction of TGF-β via distinct mechanisms in different settings. In this review, we summarize the structure and expression of FBN1 and present our current understanding of the functional role of FBN1 in various human diseases. This knowledge will allow to develop better strategies for therapeutic intervention of FBN1 related diseases.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Junxin Huang
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
15
|
Czarnowska E, Ratajska A, Jankowska-Steifer E, Flaht-Zabost A, Niderla-Bielińska J. Extracellular matrix molecules associated with lymphatic vessels in health and disease. Histol Histopathol 2024; 39:13-34. [PMID: 37350542 DOI: 10.14670/hh-18-641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Lymphatic vessels (LyVs), responsible for fluid, solute, and immune cell homeostasis in the body, are closely associated with the adjacent extracellular matrix (ECM) molecules whose structural and functional impact on LyVs is currently more appreciated, albeit not entirely elucidated. These molecules, serving as a platform for various connective tissue cell activities and affecting LyV biology should be considered also as an integral part of the lymphatic system. Any alterations and changes in ECM molecules over the course of disease impair the function and structure of the LyV network. Remodeling of LyV cells, which are components of lymphatic vessel walls, also triggers alterations in ECM molecules and interstitial tissue composition. Therefore, in this review we aimed to present the current knowledge on ECM in tissues and particularly on molecules surrounding lymphatics in normal conditions and in disease.
Collapse
Affiliation(s)
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland.
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
16
|
Marelli S, Micaglio E, Taurino J, Salvi P, Rurali E, Perrucci GL, Dolci C, Udugampolage NS, Caruso R, Gentilini D, Trifiro' G, Callus E, Frigiola A, De Vincentiis C, Pappone C, Parati G, Pini A. Marfan Syndrome: Enhanced Diagnostic Tools and Follow-up Management Strategies. Diagnostics (Basel) 2023; 13:2284. [PMID: 37443678 DOI: 10.3390/diagnostics13132284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Marfan syndrome (MFS) is a rare inherited autosomic disorder, which encompasses a variety of systemic manifestations caused by mutations in the Fibrillin-1 encoding gene (FBN1). Cardinal clinical phenotypes of MFS are highly variable in terms of severity, and commonly involve cardiovascular, ocular, and musculoskeletal systems with a wide range of manifestations, such as ascending aorta aneurysms and dissection, mitral valve prolapse, ectopia lentis and long bone overgrowth, respectively. Of note, an accurate and prompt diagnosis is pivotal in order to provide the best treatment to the patients as early as possible. To date, the diagnosis of the syndrome has relied upon a systemic score calculation as well as DNA mutation identification. The aim of this review is to summarize the latest MFS evidence regarding the definition, differences and similarities with other connective tissue pathologies with severe systemic phenotypes (e.g., Autosomal dominant Weill-Marchesani syndrome, Loeys-Dietz syndrome, Ehlers-Danlos syndrome) and clinical assessment. In this regard, the management of MFS requires a multidisciplinary team in order to accurately control the evolution of the most severe and potentially life-threatening complications. Based on recent findings in the literature and our clinical experience, we propose a multidisciplinary approach involving specialists in different clinical fields (i.e., cardiologists, surgeons, ophthalmologists, orthopedics, pneumologists, neurologists, endocrinologists, geneticists, and psychologists) to comprehensively characterize, treat, and manage MFS patients with a personalized medicine approach.
Collapse
Affiliation(s)
- Susan Marelli
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Emanuele Micaglio
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Jacopo Taurino
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Paolo Salvi
- Istituto Auxologico Italiano, Cardiology Unit, IRCCS, 20133 Milan, Italy
| | - Erica Rurali
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Gianluca L Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Claudia Dolci
- Laboratory of Functional Anatomy of the Stomatognathic System (LAFAS), Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Rosario Caruso
- Clinical Research Service, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, University of Milano-Bicocca, 20095 Milan, Italy
| | - Giuliana Trifiro'
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Edward Callus
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Clinical Psychology Service, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Alessandro Frigiola
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
- Association "Bambini Cardiopatici nel Mondo" Non-Governmental Organization (NGO), 20123 Milan, Italy
| | - Carlo De Vincentiis
- Department of Cardiothoracic, Vascular Anaesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Department of Cardiac Surgery, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Carlo Pappone
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, Cardiology Unit, IRCCS, 20133 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alessandro Pini
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| |
Collapse
|
17
|
Gelinas A, Powell J, Lapointe C, Coulombe J. Segmental stiff skin syndrome treated with secukinumab. Pediatr Dermatol 2023. [PMID: 36825671 DOI: 10.1111/pde.15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
Segmental stiff skin syndrome is a rare fibrosing scleroderma-like disorder characterized by progressive indurations of the skin leading to joint contractures, decreased mobility, and pain. Treatment options are limited; we report a patient that showed improvement with anti-IL17 biologic therapy.
Collapse
Affiliation(s)
- Alexa Gelinas
- Faculty of Medecine, Universite de Montreal, Montreal, Canada
| | - Julie Powell
- Division of Dermatology, Department of Pediatrics, CHU Sainte-Justine, Universite de Montreal, Montreal, Canada
| | - Chantal Lapointe
- Department of Pediatrics, CHU Sainte-Justine, Universite de Montreal, Montreal, Canada
| | - Jerome Coulombe
- Division of Dermatology, Department of Pediatrics, CHU Sainte-Justine, Universite de Montreal, Montreal, Canada
| |
Collapse
|
18
|
Yilmaz UC, Evin F, Onay H, Ozen S, Darcan S, Simsek DG. Molecular genetic etiology by whole exome sequence analysis in cases with familial type 1 diabetes mellitus without HLA haplotype predisposition or incomplete predisposition. J Pediatr Endocrinol Metab 2023; 36:64-73. [PMID: 36343308 DOI: 10.1515/jpem-2022-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Familial transmission is observed in approximately 10% of cases with type 1 diabetes mellitus (T1DM). The most important gene determining susceptibility is the human leukocyte antigen complex (HLA) located on chromosome 6. More than 50 susceptible loci are associated with T1DM susceptibility have been identified in genes other than HLA. In this study, it was aimed to investigate the molecular genetic etiology by whole-exome sequence (WES) analysis in cases with familial T1DM with no or weakly detected HLA tissue type susceptibility. We aimed to identify new genes responsible for the development of type 1 diabetes and to reveal new genes that have not been shown in the literature before. METHODS Cases with at least one T1DM diagnosis in first-degree relatives were included in the study. In the first step, HLA DQ2 and DQ8 loci, which are known to be associated with T1DM susceptibility, were investigated by. In the second step, the presence of variants that could explain the situation was investigated by WES analysis in patients who were negative for both HLA DQ2 and HLA DQ8 haplotypes, HLA DQ2 negative, HLA DQ8 positive, and HLA DQ2 positive and HLA DQ8 negative patients. RESULTS The mean age and duration of diabetes of the 30 cases (Girl/Male: 17/13) were 14.9 ± 6 and 7.56 ± 3.84 years, respectively. There was consanguineous marriage in 5 (16%) of the families. As a result of filtering all exome sequence analysis data of two cases with DQ2 (DQB1*02) (-) and DQ8 (DQB1*03:02) (-), seven cases with DQ2 (DQB1*02) (+) and DQ8 (DQB1*03:02) (-), and one case with DQ2 (DQB1*02) (-) and DQ8 (DQB1*03:02) (+), seven different variants in seven different genes were detected in five cases. The pathogenicity of the detected variants were determined according to the "American College of Medical Genetics and Genomics (ACMG)" criteria. These seven variants detected were evaluated as high-score VUS (Variants of unknown/uncertain significance). In the segregation study conducted for the mutation in the POLG gene detected in case 5, this variant was detected in the mother of the case and his brother with T1DM. Segregation studies are ongoing for variants detected in other affected individuals in the family. CONCLUSIONS In conclusion, in this study, seven different variants in seven different genes were detected in five patients by WES analysis in familial T1DM patients with no or weak HLA tissue type susceptibility. These seven variants detected were evaluated as high-score VUS. POLG might be a novel candidate gene responsible for susceptibility to T1DM. Non-HLA genes directly responsible for the development of T1DM were not detected in any of the cases.
Collapse
Affiliation(s)
- Uğur Cem Yilmaz
- Department of Pediatrics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ferda Evin
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| | - Huseyin Onay
- Multigen Genetic Diseases Diagnosis Center, Izmir, Turkey
| | - Samim Ozen
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| | - Sukran Darcan
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| | - Damla Goksen Simsek
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
19
|
Chen ZX, Jia WN, Jiang YX. Genotype-phenotype correlations of marfan syndrome and related fibrillinopathies: Phenomenon and molecular relevance. Front Genet 2022; 13:943083. [PMID: 36176293 PMCID: PMC9514320 DOI: 10.3389/fgene.2022.943083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Marfan syndrome (MFS, OMIM: 154700) is a heritable multisystemic disease characterized by a wide range of clinical manifestations. The underlying molecular defect is caused by variants in the FBN1. Meanwhile, FBN1 variants are also detected in a spectrum of connective tissue disorders collectively termed as ‘type I fibrillinopathies’. A multitude of FBN1 variants is reported and most of them are unique in each pedigree. Although MFS is being considered a monogenic disorder, it is speculated that the allelic heterogeneity of FBN1 variants contributes to various manifestations, distinct prognoses, and differential responses to the therapies in affected patients. Significant progress in the genotype–phenotype correlations of MFS have emerged in the last 20 years, though, some of the associations were still in debate. This review aims to update the recent advances in the genotype-phenotype correlations of MFS and related fibrillinopathies. The molecular bases and pathological mechanisms are summarized for better support of the observed correlations. Other factors contributing to the phenotype heterogeneity and future research directions were also discussed. Dissecting the genotype-phenotype correlation of FBN1 variants and related disorders will provide valuable information in risk stratification, prognosis, and choice of therapy.
Collapse
Affiliation(s)
- Ze-Xu Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Wan-Nan Jia
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yong-Xiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
20
|
Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases. Semin Cell Dev Biol 2022; 128:137-144. [PMID: 35339360 DOI: 10.1016/j.semcdb.2022.02.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a dynamic structure that surrounds and anchors cellular components in tissues. In addition to functioning as a structural scaffold for cellular components, ECMs also regulate diverse biological functions, including cell adhesion, proliferation, differentiation, migration, cell-cell interactions, and intracellular signaling events. Dermal fibroblasts (dFBs), the major cellular source of skin ECM, develop from a common embryonic precursor to the highly heterogeneous subpopulations during development and adulthood. Upon injury, dFBs migrate into wound granulation tissue and transdifferentiate into myofibroblasts, which play a critical role in wound contraction and dermal ECM regeneration and deposition. In this review, we describe the plasticity of dFBs during development and wound healing and how various dFB-derived ECM molecules, including collagen, proteoglycans, glycosaminoglycans, fibrillins and matricellular proteins are expressed and regulated, and in turn how these ECM molecules play a role in regulating the function of dFBs and immune cells. Finally, we describe how dysregulation of ECM matrix is associated the pathogenesis of wound healing related skin diseases, including chronic wounds and keloid.
Collapse
|
21
|
Lin Z, Pei Y, Tang X, Rong L, Chen L, Jiang X. Classification and rising medication therapy in stiff skin syndrome: A case report and literature review. Dermatol Ther 2022; 35:e15633. [PMID: 35686816 DOI: 10.1111/dth.15633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Stiff skin syndrome (SSS) is a rare disorder characterized by skin induration and limited joint mobility in the absence of visceral, musculoskeletal, vascular, or immunologic abnormalities. Distinctive subsets of SSS could be distinguished by various manifestation and mechanism, which accounts for the high heterogeneity in SSS cases. Although rehabilitation training remains the mainstay of management, rising medications has drawn awareness in recent years, owing to the potential efficacy. Nevertheless, experience was limited, especially in widespread SSS. We report on a 5-year-old girl with widespread SSS, whose lesion stopped progressing after combination therapy by mycophenolic acid (MPA) and losartan (LST) in addition to rehabilitation exercise. Despite limited experience, a combined therapy of MPA and LST seems to be effective in retarding progression of widespread SSS.
Collapse
Affiliation(s)
- Zhilang Lin
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxin Pei
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuhua Tang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liping Rong
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lizhi Chen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyun Jiang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Delhon L, Mougin Z, Jonquet J, Bibimbou A, Dubail J, Bou-Chaaya C, Goudin N, Le Goff W, Boileau C, Cormier-Daire V, Le Goff C. The critical role of the TB5 domain of Fibrillin-1 in endochondral ossification. Hum Mol Genet 2022; 31:3777-3788. [PMID: 35660865 DOI: 10.1093/hmg/ddac131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the Fibrillin-1 (FBN1) gene are responsible for the autosomal dominant form of Geleophysic Dysplasia (GD), which is characterized by short stature and extremities, thick skin, and cardiovascular disease. All known FBN1 mutations in GD patients are localized within the region encoding the TB5 (TGF-β binding protein-like 5) domain of this protein. Herein, we generated a knock-in mouse model, Fbn1Y1698C by introducing the p.Tyr1696Cys mutation from a GD patient into the TB5 domain of murine Fbn1 to elucidate the specific role of this domain in endochondral ossification. We found that both Fbn1Y1698C/+ and Fbn1Y1698C/Y1698C mice exhibited a reduced stature reminiscent of the human GD phenotype. The Fbn1 point mutation introduced in these mice affected the growth plate formation owing to abnormal chondrocyte differentiation such that mutant chondrocytes failed to establish a dense microfibrillar network composed of fibrillin-1. This original Fbn1 mutant mouse model offers new insight into the pathogenic events underlying GD. Our findings suggest that the etiology of GD involves the dysregulation of the ECM composed by abnormal fibrillin-1 microfibril network impacting the differentiation of the chondrocytes.
Collapse
Affiliation(s)
- Laure Delhon
- Université Paris Cité, INSERM UMR1163, Laboratory of molecular and physiopathological bases of osteochondrodysplasia, Imagine Institute, Paris, France
| | - Zakaria Mougin
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory of Vascular Translational Science, Bichat Hospital, Paris, France
| | - Jérémie Jonquet
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory of Vascular Translational Science, Bichat Hospital, Paris, France
| | - Angélique Bibimbou
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory of Vascular Translational Science, Bichat Hospital, Paris, France
| | - Johanne Dubail
- Université Paris Cité, INSERM UMR1163, Laboratory of molecular and physiopathological bases of osteochondrodysplasia, Imagine Institute, Paris, France
| | - Cynthia Bou-Chaaya
- Université Paris Cité, INSERM UMR1163, Laboratory of molecular and physiopathological bases of osteochondrodysplasia, Imagine Institute, Paris, France
| | - Nicolas Goudin
- SFR Necker, Imaging Platform, Necker-Enfants Malades Hospital, Paris France
| | - Wilfried Le Goff
- Sorbonne University, Inserm UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Hôpital de la Pitié, Paris, F-75013, France
| | - Catherine Boileau
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory of Vascular Translational Science, Bichat Hospital, Paris, France.,Departement of Genetics, AP-HP, Bichat Hospital, Paris, France
| | - Valérie Cormier-Daire
- Université Paris Cité, INSERM UMR1163, Laboratory of molecular and physiopathological bases of osteochondrodysplasia, Imagine Institute, Paris, France.,Department of Medical Genetics, Reference Center for Skeletal dysplasia AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - Carine Le Goff
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory of Vascular Translational Science, Bichat Hospital, Paris, France
| |
Collapse
|
23
|
Animal Models of Systemic Sclerosis: Using Nailfold Capillaroscopy as a Potential Tool to Evaluate Microcirculation and Microangiopathy: A Narrative Review. Life (Basel) 2022; 12:life12050703. [PMID: 35629370 PMCID: PMC9147447 DOI: 10.3390/life12050703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with three pathogenic hallmarks, i.e., inflammation, vasculopathy, and fibrosis. A wide plethora of animal models have been developed to address the complex pathophysiology and for the development of possible anti-fibrotic treatments. However, no current model comprises all three pathological mechanisms of the disease. To highlight the lack of a complete model, a review of some of the most widely used animal models for SSc was performed. In addition, to date, no model has accomplished the recreation of primary or secondary Raynaud’s phenomenon, a key feature in SSc. In humans, nailfold capillaroscopy (NFC) has been used to evaluate secondary Raynaud’s phenomenon and microvasculature changes in SSc. Being a non-invasive technique, it is widely used both in clinical studies and as a tool for clinical evaluation. Because of this, its potential use in animal models has been neglected. We evaluated NFC in guinea pigs to investigate the possibility of applying this technique to study microcirculation in the nailfold of animal models and in the future, development of an animal model for Raynaud’s phenomenon. The applications are not only to elucidate the pathophysiological mechanisms of vasculopathy but can also be used in the development of novel treatment options.
Collapse
|
24
|
Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer 2022; 21:104. [PMID: 35461253 PMCID: PMC9033932 DOI: 10.1186/s12943-022-01569-x] [Citation(s) in RCA: 519] [Impact Index Per Article: 173.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor β (TGF-β) has long been identified with its intensive involvement in early embryonic development and organogenesis, immune supervision, tissue repair, and adult homeostasis. The role of TGF-β in fibrosis and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, overexpressed TGF-β causes epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, cancer-associated fibroblast (CAF) formation, which leads to fibrotic disease, and cancer. Given the critical role of TGF-β and its downstream molecules in the progression of fibrosis and cancers, therapeutics targeting TGF-β signaling appears to be a promising strategy. However, due to potential systemic cytotoxicity, the development of TGF-β therapeutics has lagged. In this review, we summarized the biological process of TGF-β, with its dual role in fibrosis and tumorigenesis, and the clinical application of TGF-β-targeting therapies.
Collapse
|
25
|
Peeters S, De Kinderen P, Meester JAN, Verstraeten A, Loeys BL. The fibrillinopathies: new insights with focus on the paradigm of opposing phenotypes for both FBN1 and FBN2. Hum Mutat 2022; 43:815-831. [PMID: 35419902 PMCID: PMC9322447 DOI: 10.1002/humu.24383] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Abstract
Different pathogenic variants in the fibrillin‐1 gene (FBN1) cause Marfan syndrome and acromelic dysplasias. Whereas the musculoskeletal features of Marfan syndrome involve tall stature, arachnodactyly, joint hypermobility, and muscle hypoplasia, acromelic dysplasia patients present with short stature, brachydactyly, stiff joints, and hypermuscularity. Similarly, pathogenic variants in the fibrillin‐2 gene (FBN2) cause either a Marfanoid congenital contractural arachnodactyly or a FBN2‐related acromelic dysplasia that most prominently presents with brachydactyly. The phenotypic and molecular resemblances between both the FBN1 and FBN2‐related disorders suggest that reciprocal pathomechanistic lessons can be learned. In this review, we provide an updated overview and comparison of the phenotypic and mutational spectra of both the “tall” and “short” fibrillinopathies. The future parallel functional study of both FBN1/2‐related disorders will reveal new insights into how pathogenic fibrillin variants differently affect the fibrillin microfibril network and/or growth factor homeostasis in clinically opposite syndromes. This knowledge may eventually be translated into new therapeutic approaches by targeting or modulating the fibrillin microfibril network and/or the signaling pathways under its control.
Collapse
Affiliation(s)
- Silke Peeters
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Pauline De Kinderen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Josephina A N Meester
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Bart L Loeys
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.,Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Zhang X, Alanazi YF, Jowitt TA, Roseman AM, Baldock C. Elastic Fibre Proteins in Elastogenesis and Wound Healing. Int J Mol Sci 2022; 23:4087. [PMID: 35456902 PMCID: PMC9027394 DOI: 10.3390/ijms23084087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022] Open
Abstract
As essential components of our connective tissues, elastic fibres give tissues such as major blood vessels, skin and the lungs their elasticity. Their formation is complex and co-ordinately regulated by multiple factors. In this review, we describe key players in elastogenesis: fibrillin-1, tropoelastin, latent TGFβ binding protein-4, and fibulin-4 and -5. We summarise their roles in elastogenesis, discuss the effect of their mutations on relevant diseases, and describe their interactions involved in forming the elastic fibre network. Moreover, we look into their roles in wound repair for a better understanding of their potential application in tissue regeneration.
Collapse
Affiliation(s)
- Xinyang Zhang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (X.Z.); (T.A.J.)
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Yasmene F. Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Thomas A. Jowitt
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (X.Z.); (T.A.J.)
| | - Alan M. Roseman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (X.Z.); (T.A.J.)
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| |
Collapse
|
27
|
Chung H, Oh S, Shin HW, Lee Y, Lee H, Seok SH. Matrix Stiffening Enhances DNCB-Induced IL-6 Secretion in Keratinocytes Through Activation of ERK and PI3K/Akt Pathway. Front Immunol 2021; 12:759992. [PMID: 34858412 PMCID: PMC8631934 DOI: 10.3389/fimmu.2021.759992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 12/04/2022] Open
Abstract
Matrix stiffness, a critical physical property of the cellular environment, is implicated in epidermal homeostasis. In particular, matrix stiffening during the pathological progression of skin diseases appears to contribute to cellular responses of keratinocytes. However, it has not yet elucidated the molecular mechanism underlying matrix-stiffness-mediated signaling in coordination with chemical stimuli during inflammation and its effect on proinflammatory cytokine production. In this study, we demonstrated that keratinocytes adapt to matrix stiffening by increasing cell–matrix adhesion via actin cytoskeleton remodeling. Specifically, mechanosensing and signal transduction are coupled with chemical stimuli to regulate cytokine production, and interleukin-6 (IL-6) production is elevated in keratinocytes on stiffer substrates in response to 2,4-dinitrochlorobenzene. We demonstrated that β1 integrin and focal adhesion kinase (FAK) expression were enhanced with increasing stiffness and activation of ERK and the PI3K/Akt pathway was involved in stiffening-mediated IL-6 production. Collectively, our results reveal the critical role of matrix stiffening in modulating the proinflammatory response of keratinocytes, with important clinical implications for skin diseases accompanied by pathological matrix stiffening.
Collapse
Affiliation(s)
- Hyewon Chung
- Macrophages Laboratory, Department of Microbiology and Immunology, Institute of Endemic Disease, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seunghee Oh
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea.,Global Technology Center, Samsung Electronics, Co., Ltd., Suwon, South Korea
| | - Hyun-Woo Shin
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Yunam Lee
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Seung Hyeok Seok
- Macrophages Laboratory, Department of Microbiology and Immunology, Institute of Endemic Disease, College of Medicine, Seoul National University, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
28
|
Correns A, Zimmermann LMA, Baldock C, Sengle G. BMP antagonists in tissue development and disease. Matrix Biol Plus 2021; 11:100071. [PMID: 34435185 PMCID: PMC8377005 DOI: 10.1016/j.mbplus.2021.100071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenic proteins (BMPs) are important growth regulators in embryogenesis and postnatal homeostasis. Their tight regulation is crucial for successful embryonic development as well as tissue homeostasis in the adult organism. BMP inhibition by natural extracellular biologic antagonists represents the most intensively studied mechanistic concept of BMP growth factor regulation. It was shown to be critical for numerous developmental programs, including germ layer specification and spatiotemporal gradients required for the establishment of the dorsal-ventral axis and organ formation. The importance of BMP antagonists for extracellular matrix homeostasis is illustrated by the numerous human connective tissue disorders caused by their mutational inactivation. Here, we will focus on the known functional interactions targeting BMP antagonists to the ECM and discuss how these interactions influence BMP antagonist activity. Moreover, we will provide an overview about the current concepts and investigated molecular mechanisms modulating BMP inhibitor function in the context of development and disease.
Collapse
Key Words
- ALK3, anaplastic lymphoma kinase 3
- ATF2, activating transcription factor 2
- ActR, activin receptor
- BDB2, brachydactyly type B2
- BISC, BMP-induced signalling complex
- BMP antagonists
- BMPER, BMP binding endothelial regulator
- BMPs, bone morphogenetic proteins
- Bone morphogenetic protein (BMP)
- CAN, cerberus and DAN
- CDD, craniodiaphyseal dysplasia
- CHRD domain, chordin specific domain
- CUB domain, for complement C1r/C1s, Uegf, Bmp1 domain
- Connective tissue disorder
- Cv2, crossveinless-2
- DAN, differential screening selected gene aberrative in neuroblastoma
- DSD, diaphanospondylodysostosis
- Dpp, decapentaplegic
- ECM, extracellular matrix
- ERK, extracellular signal-regulated kinases
- Extracellular matrix (ECM)
- FMF, fibrillin microfibrils
- HS, heparan sulphate
- HSPGs, heparan sulphate proteoglycans
- MAPKs, mitogen-activated protein kinases
- MGC1, megalocornea 1
- PI3K, phosphoinositide 3-kinase
- PRDC, protein related to DAN and Cerberus
- SOST, sclerostin
- SYNS1, multiple synostoses syndrome 1
- Scw, screw
- Sog, short gastrulation
- TCC, tarsal-carpal coalition syndrome
- TGF-β, transforming growth factor- β
- Tld, tolloid
- Tsg, twisted gastrulation
- VBCH, Van Buchem disease
- Xlr/Tll, xolloid-related metalloprotease
- vWC, von Willebrand factor type C
- vWD, von Willebrand factor type D
Collapse
Affiliation(s)
- Annkatrin Correns
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Laura-Marie A. Zimmermann
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, B.3016 Michael Smith Building, Oxford Road, M13 9PT, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Michael Smith Building, M13 9PT, Manchester, UK
| | - Gerhard Sengle
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Cologne Centre for Musculoskeletal Biomechanics (CCMB), Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| |
Collapse
|
29
|
Zhang RM, Zeyer KA, Odenthal N, Zhang Y, Reinhardt DP. The fibrillin-1 RGD motif posttranscriptionally regulates ERK1/2 signaling and fibroblast proliferation via miR-1208. FASEB J 2021; 35:e21598. [PMID: 33871068 DOI: 10.1096/fj.202100282r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Fibrillin-1 is an extracellular matrix protein which contains one conserved RGD integrin-binding motif. It constitutes the backbone of microfibrils in many tissues, and mutations in fibrillin-1 cause various connective tissue disorders. Although it is well established that fibrillin-1 interacts with several RGD-dependent integrins, very little is known about the associated intracellular signaling pathways. Recent published evidence identified a subset of miRNAs regulated by fibrillin-1 RGD-cell adhesion, with miR-1208 among the most downregulated. The present study shows that the downregulated miR-1208 controls fibroblast proliferation. Inhibitor experiments revealed that fibrillin-1 RGD suppressed miR-1208 expression via c-Src kinase and the downstream JNK signaling. Bioinformatic prediction and experimental target sequence validation demonstrated four miR-1208 binding sites on the ERK2 mRNA and one on the MEK1 mRNA. ERK2 and MEK1 are critical proliferation-promoting kinases. Decreased miR-1208 levels elevated the total and phosphorylated ERK1/2 and MEK1/2 protein levels and the phosphorylated to total ERK1/2 ratio. Together, the data demonstrate a novel outside-in signaling mechanism explaining how fibrillin-1 RGD-cell binding regulates fibroblast proliferation.
Collapse
Affiliation(s)
- Rong-Mo Zhang
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Karina A Zeyer
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Nadine Odenthal
- Department of Natural Science, University of Lübeck, Lübeck, Germany
| | - Yiyun Zhang
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.,Faculty of Dentistry, McGill University, Montreal, Canada
| |
Collapse
|
30
|
Burgess KA, Herrick AL, Watson REB. Systemic sclerosis skin is a primed microenvironment for soft tissue calcification-a hypothesis. Rheumatology (Oxford) 2021; 60:2517-2527. [PMID: 33585894 DOI: 10.1093/rheumatology/keab156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Calcinosis cutis, defined as sub-epidermal deposition of calcium salts, is a major clinical problem in patients with SSc, affecting 20-40% of patients. A number of recognized factors associated with calcinosis have been identified, including disease duration, digital ischaemia and acro-osteolysis. Yet, to date, the pathogenesis of SSc-related calcinosis remains unknown, and currently there is no effective disease-modifying pharmacotherapy. Following onset of SSc, there are marked changes in the extracellular matrix (ECM) of the skin, notably a breakdown in the microfibrillar network and accumulation of type I collagen. Our hypothesis is that these pathological changes reflect a changing cellular phenotype and result in a primed microenvironment for soft tissue calcification, with SSc fibroblasts adopting a pro-osteogenic profile, and specific driving forces promoting tissue mineralization. Considering the role of the ECM in disease progression may help elucidate the mechanism(s) behind SSc-related calcinosis and inform the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Kyle A Burgess
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester, UK
| | - Ariane L Herrick
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel E B Watson
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
31
|
Cerejeira D, Bonito F, António AM, Cunha H. Segmental stiff skin syndrome (SSS): Clinical case and a brief review. Australas J Dermatol 2021; 62:380-382. [PMID: 33769553 DOI: 10.1111/ajd.13589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 01/25/2023]
Abstract
Stiff skin syndrome (SSS) is a rare, scleroderma-like condition that is commonly characterised by stony hard skin and limited joint mobility, in the absence of visceral involvement or immunologic abnormalities. Depending on the distribution of the disease, this disorder can be further categorised into classic (widespread) SSS or its newly described segmental variant. Additional features of this syndrome may include hypertrichosis, lipodystrophy, dysmetria and scoliosis. In this report, we present the case of a patient with segmental SSS and we briefly review the current literature about the topic.
Collapse
Affiliation(s)
- Diogo Cerejeira
- Dermatology Department, Hospital Garcia de Orta, Almada, Portugal
| | - Frederico Bonito
- Dermatology Department, Hospital Garcia de Orta, Almada, Portugal
| | | | - Henriqueta Cunha
- Dermatology Department, Hospital Garcia de Orta, Almada, Portugal
| |
Collapse
|
32
|
Cale JM, Greer K, Fletcher S, Wilton SD. Proof-of-Concept: Antisense Oligonucleotide Mediated Skipping of Fibrillin-1 Exon 52. Int J Mol Sci 2021; 22:ijms22073479. [PMID: 33801742 PMCID: PMC8037683 DOI: 10.3390/ijms22073479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Marfan syndrome is one of the most common dominantly inherited connective tissue disorders, affecting 2–3 in 10,000 individuals, and is caused by one of over 2800 unique FBN1 mutations. Mutations in FBN1 result in reduced fibrillin-1 expression, or the production of two different fibrillin-1 monomers unable to interact to form functional microfibrils. Here, we describe in vitro evaluation of antisense oligonucleotides designed to mediate exclusion of FBN1 exon 52 during pre-mRNA splicing to restore monomer homology. Antisense oligonucleotide sequences were screened in healthy control fibroblasts. The most effective sequence was synthesised as a phosphorodiamidate morpholino oligomer, a chemistry shown to be safe and effective clinically. We show that exon 52 can be excluded in up to 100% of FBN1 transcripts in healthy control fibroblasts transfected with PMO52. Immunofluorescent staining revealed the loss of fibrillin 1 fibres with ~50% skipping and the subsequent re-appearance of fibres with >80% skipping. However, the effect of exon skipping on the function of the induced fibrillin-1 isoform remains to be explored. Therefore, these findings demonstrate proof-of-concept that exclusion of an exon from FBN1 pre-mRNA can result in internally truncated but identical monomers capable of forming fibres and lay a foundation for further investigation to determine the effect of exon skipping on fibrillin-1 function.
Collapse
Affiliation(s)
- Jessica M. Cale
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Kane Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- PYC Therapeutics, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-9360-2305
| |
Collapse
|
33
|
Jensen SA, Atwa O, Handford PA. Assembly assay identifies a critical region of human fibrillin-1 required for 10-12 nm diameter microfibril biogenesis. PLoS One 2021; 16:e0248532. [PMID: 33735269 PMCID: PMC7971562 DOI: 10.1371/journal.pone.0248532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
The human FBN1 gene encodes fibrillin-1 (FBN1); the main component of the 10–12 nm diameter extracellular matrix microfibrils. Marfan syndrome (MFS) is a common inherited connective tissue disorder, caused by FBN1 mutations. It features a wide spectrum of disease severity, from mild cases to the lethal neonatal form (nMFS), that is yet to be explained at the molecular level. Mutations associated with nMFS generally affect a region of FBN1 between domains TB3-cbEGF18—the "neonatal region". To gain insight into the process of fibril assembly and increase our understanding of the mechanisms determining disease severity in MFS, we compared the secretion and assembly properties of FBN1 variants containing nMFS-associated substitutions with variants associated with milder, classical MFS (cMFS). In the majority of cases, both nMFS- and cMFS-associated neonatal region variants were secreted at levels comparable to wild type. Microfibril incorporation by the nMFS variants was greatly reduced or absent compared to the cMFS forms, however, suggesting that nMFS substitutions disrupt a previously undefined site of microfibril assembly. Additional analysis of a domain deletion variant caused by exon skipping also indicates that register in the neonatal region is likely to be critical for assembly. These data demonstrate for the first time new requirements for microfibril biogenesis and identify at least two distinct molecular mechanisms associated with disease substitutions in the TB3-cbEGF18 region; incorporation of mutant FBN1 into microfibrils changing their integral properties (cMFS) or the blocking of wild type FBN1 assembly by mutant molecules that prevents late-stage lateral assembly (nMFS).
Collapse
Affiliation(s)
- Sacha A Jensen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ondine Atwa
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Ventéjou S, Schwieger-Briel A, Nicolai R, Christen-Zaech S, Schnider C, Hofer M, Bogiatzi S, Hohl D, De Benedetti F, Morren MA. Case Report: Pansclerotic Morphea-Clinical Features, Differential Diagnoses and Modern Treatment Concepts. Front Immunol 2021; 12:656407. [PMID: 33767715 PMCID: PMC7985437 DOI: 10.3389/fimmu.2021.656407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 01/17/2023] Open
Abstract
Pansclerotic morphea (PSM) is a rare skin disease characterized by progressive stiffening of the skin with or without the typical superficial skin changes usually seen in morphea (localized scleroderma). Standard therapy, consisting of a combination of systemic glucocorticoids and methotrexate or mycophenolate mofetil, does rarely stop disease progression, which may lead to severe cutaneous sclerosis and secondary contractures. Little is known about the efficacy of newer biologicals such as abatacept, a fusion protein antibody against CTLA-4, or tocilizumab, a fully humanized IL-6R antibody, in the treatment of this pathology. We present the case of an 8 years old girl with an unusual, progressive stiffening of the skin, which was eventually diagnosed as pansclerotic morphea. A treatment with systemic glucocorticoids and methotrexate combined with tocilizumab led to a good clinical response within 2 months after initiation. In this paper, we discuss differential diagnoses to be considered and this new promising treatment option based on a case review of the literature.
Collapse
Affiliation(s)
- Sarah Ventéjou
- Pediatric Dermatology Unit, Department of Pediatrics and Dermatology and Venereology, University Hospital Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Agnes Schwieger-Briel
- Department of Dermatology, Pediatric Skin Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Rebecca Nicolai
- Division of Rheumatology, Istituto di Ricovero e Cura a Carattera Scientifico, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Stephanie Christen-Zaech
- Pediatric Dermatology Unit, Department of Pediatrics and Dermatology and Venereology, University Hospital Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Caroline Schnider
- Department of Pediatric Rheumatology, University Hospital Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Michael Hofer
- Department of Pediatric Rheumatology, University Hospital Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Sofia Bogiatzi
- Laboratory of Dermato-Histopathology, Department of Dermato-Venereology, University Hospital Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Daniel Hohl
- Laboratory of Dermato-Histopathology, Department of Dermato-Venereology, University Hospital Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Fabrizio De Benedetti
- Division of Rheumatology, Istituto di Ricovero e Cura a Carattera Scientifico, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marie-Anne Morren
- Pediatric Dermatology Unit, Department of Pediatrics and Dermatology and Venereology, University Hospital Lausanne and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Matsuzaki T, Keene DR, Nishimoto E, Noda M. Reversion-inducing cysteine-rich protein with Kazal motifs and MT1-MMP promote the formation of robust fibrillin fibers. J Cell Physiol 2021; 236:1980-1995. [PMID: 32730638 PMCID: PMC7818472 DOI: 10.1002/jcp.29982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/30/2023]
Abstract
Fibrillins (FBNs) form mesh-like structures of microfibrils in various elastic tissues. RECK and FBN1 are co-expressed in many human tissues, suggesting a functional relationship. We found that dermal FBN1 fibers show atypical morphology in mice with reduced RECK expression (RECK-Hypo mice). Dermal FBN1 fibers in mice-lacking membrane-type 1-matrix metalloproteinase (MT1-MMP) show a similar atypical morphology, despite the current notion that MT1-MMP (a membrane-bound protease) and RECK (a membrane-bound protease inhibitor) have opposing functions. Our experiments using dermal fibroblasts indicated that RECK promotes pro-MT1-MMP activation, increases cell-associated gelatinase/collagenase activity, and decreases diffusible gelatinase/collagenase activity, while MT1-MMP stabilizes RECK in these cells. Experiments using purified proteins indicate that RECK and its binding partner ADAMTS10 keep the proteolytic activity of MT1-MMP within a certain range. These findings suggest that RECK, ADAMTS10, and MT1-MMP cooperate to support the formation of robust FBN1 fibers.
Collapse
Affiliation(s)
- Tomoko Matsuzaki
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| | - Douglas R. Keene
- Departments of Medical Genetics, and Biochemistry and Molecular Biology, Shriners Hospital for ChildrenOregon Health and Science UniversityPortlandOregon
| | - Emi Nishimoto
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| | - Makoto Noda
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
36
|
Heinz A. Elastic fibers during aging and disease. Ageing Res Rev 2021; 66:101255. [PMID: 33434682 DOI: 10.1016/j.arr.2021.101255] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Elastic fibers are essential constituents of the extracellular matrix of higher vertebrates and endow several tissues and organs including lungs, skin and blood vessels with elasticity and resilience. During the human lifespan, elastic fibers are exposed to a variety of enzymatic, chemical and biophysical influences, and accumulate damage due to their low turnover. Aging of elastin and elastic fibers involves enzymatic degradation, oxidative damage, glycation, calcification, aspartic acid racemization, binding of lipids and lipid peroxidation products, carbamylation and mechanical fatigue. These processes can trigger an impairment or loss of elastic fiber function and are associated with severe pathologies. There are different inherited or acquired pathological conditions, which influence the structure and function of elastic fibers and microfibrils predominantly in the cardiorespiratory system and skin. Inherited elastic-fiber pathologies have a direct or indirect impact on elastic-fiber formation due to mutations in the fibrillin genes (fibrillinopathies), in the elastin gene (elastinopathies) or in genes encoding proteins that are associated with microfibrils or elastic fibers. Acquired elastic-fiber pathologies appear age-related or as a result of multiple factors impairing tissue homeostasis. This review gives an overview on the fate of elastic fibers over the human lifespan in health and disease.
Collapse
|
37
|
Rozmus J. Monogenic Immune Diseases Provide Insights Into the Mechanisms and Treatment of Chronic Graft-Versus-Host Disease. Front Immunol 2021; 11:574569. [PMID: 33613511 PMCID: PMC7889949 DOI: 10.3389/fimmu.2020.574569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic graft-versus-host disease (GvHD) has become a leading cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation (HSCT) and can burden patients with devastating and lifelong health effects. Our understanding of the pathogenic mechanisms underlying chronic GvHD remains incomplete and this lack of understanding is reflected by lack of clear therapeutic approaches to steroid refractory disease. Observations predominantly from mouse models and human correlative studies currently support a three phase model for the initiation and development of chronic GvHD: 1) early inflammation and tissue damage triggers the innate immune system. This leads to inflammatory cytokine/chemokine patterns that recruit effector immune cell populations; 2) chronic inflammation causes the loss of central and peripheral tolerance mechanisms leading to emergence of pathogenic B and T cell populations that promote autoimmune and alloimmune reactions; 3) the dysregulated immunity causes altered macrophage polarization, aberrant tissue repair leading to scarring and end organ fibrosis. This model has led to the evaluation of many new therapies aimed at limiting inflammation, targeting dysregulated signaling pathways and restoring tolerance mechanisms. However, chronic GvHD is a multisystem disease with complex clinical phenotypes and it remains unclear as to which cluster of patients will respond best to specific therapeutic strategies. However, it is possible to gain novel insights from immune-related monogenic diseases. These diseases either share common clinical manifestations, replicate steps from the three phase chronic GvHD model or serve as surrogates for perfectly targeted drugs being investigated in chronic GvHD therapy. In this review, we will summarize the evidence from these monogenic immune related diseases that provide insight into pathogenic pathways in chronic GvHD, rationales for current therapies and novel directions for future drug discovery.
Collapse
Affiliation(s)
- Jacob Rozmus
- Division of Pediatric Hematology, Oncology & BMT, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
38
|
Kiss EE, Alex G, Chandran N, Olomu P. Anesthetic implications of a pediatric patient with stiff skin syndrome: A case report. Paediatr Anaesth 2020; 30:1149-1152. [PMID: 32761718 DOI: 10.1111/pan.13989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/10/2020] [Accepted: 07/25/2020] [Indexed: 11/27/2022]
Abstract
Stiff skin syndrome is a rare genetic disorder that is present in infancy or early childhood. It is characterized by hard, inflexible skin and limited joint mobility making anesthetic management of these patients challenging. Their limited neck flexibility and chest wall rigidity make intubation and mask ventilation difficult. Intraoperative positioning can be challenging due to joint contractures and potential entrapment peripheral neuropathy. Even though peripheral intravenous access can be relatively easy, central venous cannulation may be problematic due to the hard skin overlying the entry sites. Our case report details the anesthetic management and considerations of a pediatric patient with stiff skin syndrome.
Collapse
Affiliation(s)
- Edgar E Kiss
- Department of Anesthesiology and Pain Management, University of Texas Southwestern, Dallas, TX, USA.,Division of Pediatric Anesthesiology, Children's Health System of Texas, Dallas, TX, USA
| | - Gijo Alex
- Department of Anesthesiology and Pain Management, University of Texas Southwestern, Dallas, TX, USA.,Division of Pediatric Anesthesiology, Children's Health System of Texas, Dallas, TX, USA
| | - Neethu Chandran
- Department of Anesthesiology and Pain Management, University of Texas Southwestern, Dallas, TX, USA.,Division of Pediatric Anesthesiology, Children's Health System of Texas, Dallas, TX, USA
| | - Patrick Olomu
- Department of Anesthesiology and Pain Management, University of Texas Southwestern, Dallas, TX, USA.,Division of Pediatric Anesthesiology, Children's Health System of Texas, Dallas, TX, USA
| |
Collapse
|
39
|
Adamo CS, Zuk AV, Sengle G. The fibrillin microfibril/elastic fibre network: A critical extracellular supramolecular scaffold to balance skin homoeostasis. Exp Dermatol 2020; 30:25-37. [PMID: 32920888 DOI: 10.1111/exd.14191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Supramolecular networks composed of fibrillins (fibrillin-1 and fibrillin-2) and associated ligands form intricate cellular microenvironments which balance skin homoeostasis and direct remodelling. Fibrillins assemble into microfibrils which are not only indispensable for conferring elasticity to the skin, but also control the bioavailability of growth factors targeted to the extracellular matrix architecture. Fibrillin microfibrils (FMF) represent the core scaffolds for elastic fibre formation, and they also decorate the surface of elastic fibres and form independent networks. In normal dermis, elastic fibres are suspended in a three-dimensional basket-like lattice of FMF intersecting basement membranes at the dermal-epidermal junction and thus conferring pliability to the skin. The importance of FMF for skin homoeostasis is illustrated by the clinical features caused by mutations in the human fibrillin genes (FBN1, FBN2), summarized as "fibrillinopathies." In skin, fibrillin mutations result in phenotypes ranging from thick, stiff and fibrotic skin to thin, lax and hyperextensible skin. The most plausible explanation for this spectrum of phenotypic outcomes is that FMF regulate growth factor signalling essential for proper growth and homoeostasis of the skin. Here, we will give an overview about the current understanding of the underlying pathomechanisms leading to fibrillin-dependent fibrosis as well as forms of cutis laxa caused by mutational inactivation of FMF-associated ligands.
Collapse
Affiliation(s)
- Christin S Adamo
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexandra V Zuk
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
40
|
Jensen B, James R, Hong Y, Omoyinmi E, Pilkington C, Sebire NJ, Howell KJ, Brogan PA, Eleftheriou D. A case of Myhre syndrome mimicking juvenile scleroderma. Pediatr Rheumatol Online J 2020; 18:72. [PMID: 32917212 PMCID: PMC7488857 DOI: 10.1186/s12969-020-00466-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Myhre syndrome is a genetic disorder caused by gain of function mutations in the SMAD Family Member 4 (SMAD4) gene, resulting in progressive, proliferative skin and organ fibrosis. Skin thickening and joint contractures are often the main presenting features of the disease and may be mistaken for juvenile scleroderma. CASE PRESENTATION We report a case of a 13 year-old female presenting with widespread skin thickening and joint contractures from infancy. She was diagnosed with diffuse cutaneous systemic sclerosis, and treatment with corticosteroids and subcutaneous methotrexate recommended. There was however disease progression prompting genetic testing. This identified a rare heterozygous pathogenic variant c.1499 T > C (p.Ile500Thr) in the SMAD4 gene, suggesting a diagnosis of Myhre syndrome. Securing a molecular diagnosis in this case allowed the cessation of immunosuppression, thus reducing the burden of unnecessary and potentially harmful treatment, and allowing genetic counselling. CONCLUSION Myhre Syndrome is a rare genetic mimic of scleroderma that should be considered alongside several other monogenic diseases presenting with pathological fibrosis from early in life. We highlight this case to provide an overview of these genetic mimics of scleroderma, and highlight the molecular pathways that can lead to pathological fibrosis. This may provide clues to the pathogenesis of sporadic juvenile scleroderma, and could suggest novel therapeutic targets.
Collapse
Affiliation(s)
- Barbara Jensen
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Rebecca James
- grid.240562.7Paediatric Rheumatology Department, Queensland Children’s Hospital, Brisbane, Australia
| | - Ying Hong
- grid.83440.3b0000000121901201Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Ebun Omoyinmi
- grid.83440.3b0000000121901201Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Clarissa Pilkington
- grid.424537.30000 0004 5902 9895Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Neil J. Sebire
- grid.424537.30000 0004 5902 9895Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kevin J. Howell
- grid.426108.90000 0004 0417 012XMicrovascular Diagnostics, UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, UK
| | - Paul A. Brogan
- grid.83440.3b0000000121901201Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK ,grid.424537.30000 0004 5902 9895Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Despina Eleftheriou
- grid.83440.3b0000000121901201Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK ,grid.424537.30000 0004 5902 9895Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ,grid.83440.3b0000000121901201Centre for Adolescent Rheumatology Versus Arthritis at UCL, London, UK
| |
Collapse
|
41
|
Peeters S, Decramer A, Cain SA, Houpt P, Verstreken F, Noyez J, Hermans C, Jacobs W, Lammens M, Fransen E, Kumar AA, Vandeweyer G, Loeys B, Van Hul W, Baldock C, Boudin E, Mortier G. Delineation of a new fibrillino-2-pathy with evidence for a role of FBN2 in the pathogenesis of carpal tunnel syndrome. J Med Genet 2020; 58:778-782. [PMID: 32900841 DOI: 10.1136/jmedgenet-2020-107085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Although carpal tunnel syndrome (CTS) is the most common form of peripheral entrapment neuropathy, its pathogenesis remains largely unknown. An estimated heritability index of 0.46 and an increased familial occurrence indicate that genetic factors must play a role in the pathogenesis. METHODS AND RESULTS We report on a family in which CTS occurred in subsequent generations at an unusually young age. Additional clinical features included brachydactyly and short Achilles tendons resulting in toe walking in childhood. Using exome sequencing, we identified a heterozygous variant (c.5009T>G; p.Phe1670Cys) in the fibrillin-2 (FBN2) gene that co-segregated with the phenotype in the family. Functional assays showed that the missense variant impaired integrin-mediated cell adhesion and migration. Moreover, we observed an increased transforming growth factor-β signalling and fibrosis in the carpal tissues of affected individuals. A variant burden test in a large cohort of patients with CTS revealed a significantly increased frequency of rare (6.7% vs 2.5%-3.4%, p<0.001) and high-impact (6.9% vs 2.7%, p<0.001) FBN2 variants in patient alleles compared with controls. CONCLUSION The identification of a novel FBN2 variant (p.Phe1670Cys) in a unique family with early onset CTS, together with the observed increased frequency of rare and high-impact FBN2 variants in patients with sporadic CTS, strongly suggest a role of FBN2 in the pathogenesis of CTS.
Collapse
Affiliation(s)
- Silke Peeters
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Arne Decramer
- Department of Orthopaedics and Traumatology, AZ Delta, Roeselare, Belgium
| | - Stuart Alan Cain
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, The University of Manchester, Manchester, UK
| | - Peter Houpt
- Department of Plastic Surgery, Isala Clinic Zwolle, Zwolle, The Netherlands
| | | | - Jan Noyez
- Department of Orthopaedics and Traumatology, AZ Delta, Roeselare, Belgium
| | - Christophe Hermans
- Center for Oncological Research Antwerp (CORE), University of Antwerp, Edegem, Belgium
| | - Werner Jacobs
- Department of Forensic Medicine and Pathology, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Martin Lammens
- Department of Pathological Anatomy, Antwerp University Hospital, Edegem, Belgium
| | - Erik Fransen
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Ajay Anand Kumar
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute Cambridge, Cambridge University, Cambridge, UK
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Edegem, Belgium
| | - Bart Loeys
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Clair Baldock
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, The University of Manchester, Manchester, UK
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
42
|
Kim DH, Beckett JD, Nagpal V, Seman-Senderos MA, Gould RA, Creamer TJ, MacFarlane EG, Chen Y, Bedja D, Butcher JT, Mitzner W, Rouf R, Hata S, Warren DS, Dietz HC. Calpain 9 as a therapeutic target in TGFβ-induced mesenchymal transition and fibrosis. Sci Transl Med 2020; 11:11/501/eaau2814. [PMID: 31316008 DOI: 10.1126/scitranslmed.aau2814] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/14/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Abstract
Fibrosis is a common pathologic outcome of chronic disease resulting in the replacement of normal tissue parenchyma with a collagen-rich extracellular matrix produced by myofibroblasts. Although the progenitor cell types and cellular programs giving rise to myofibroblasts through mesenchymal transition can vary between tissues and diseases, their contribution to fibrosis initiation, maintenance, and progression is thought to be pervasive. Here, we showed that the ability of transforming growth factor-β (TGFβ) to efficiently induce myofibroblast differentiation of cultured epithelial cells, endothelial cells, or quiescent fibroblasts is dependent on the induced expression and activity of dimeric calpains, a family of non-lysosomal cysteine proteases that regulate a variety of cellular events through posttranslational modification of diverse substrates. siRNA-based gene silencing demonstrated that TGFβ-induced mesenchymal transition of a murine breast epithelial cell line was dependent on induction of expression of calpain 9 (CAPN9), an isoform previously thought to be restricted to the gastrointestinal tract. Mice lacking functional CAPN9 owing to biallelic targeting of Capn9 were viable and fertile but showed overt protection from bleomycin-induced lung fibrosis, carbon tetrachloride-induced liver fibrosis, and angiotensin II-induced cardiac fibrosis and dysfunction. A predicted loss-of-function allele of CAPN9 is common in Southeast Asia, with the frequency of homozygosity matching the prediction of Hardy-Weinberg equilibrium. Together with the highly spatially restricted pattern of CAPN9 expression under physiologic circumstances and the heartiness of the murine knockout, these data provide a strong signature for tolerance of therapeutic strategies for fibrosis aimed at CAPN9 antagonism.
Collapse
Affiliation(s)
- David H Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Program, School of Medicine, Baltimore, MD 21205, USA
| | - James D Beckett
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Varun Nagpal
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manuel A Seman-Senderos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Program, School of Medicine, Baltimore, MD 21205, USA
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tyler J Creamer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yichun Chen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan T Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Rosanne Rouf
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shoji Hata
- Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Daniel S Warren
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
43
|
Pro-Fibrotic Phenotype in a Patient with Segmental Stiff Skin Syndrome via TGF-β Signaling Overactivation. Int J Mol Sci 2020; 21:ijms21145141. [PMID: 32698527 PMCID: PMC7404389 DOI: 10.3390/ijms21145141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor β (TGF-β) superfamily signaling pathways are ubiquitous and essential for several cellular and physiological processes. The overexpression of TGF-β results in excessive fibrosis in multiple human disorders. Among them, stiff skin syndrome (SSS) is an ultrarare and untreatable condition characterized by the progressive thickening and hardening of the dermis, and acquired joint limitations. SSS is distinct in a widespread form, caused by recurrent germline variants of FBN1 encoding a key molecule of the TGF-β signaling, and a segmental form with unknown molecular basis. Here, we report a 12-year-old female with segmental SSS, affecting the right upper limb with acquired thickening of the dermis evident at the magnetic resonance imaging, and progressive limitation of the elbow and shoulder. To better explore the molecular and cellular mechanisms that drive segmental SSS, several functional studies on patient's fibroblasts were employed. We hypothesized an impairment of TGF-β signaling and, consequently, a dysregulation of the associated downstream signaling. Lesional fibroblast studies showed a higher phosphorylation level of extracellular signal-regulated kinase 1/2 (ERK1/2), increased levels of nuclear factor-kB (NFkB), and a nuclear accumulation of phosphorylated Smad2 via Western blot and microscopy analyses. Quantitative PCR expression analysis of genes encoding key extracellular matrix proteins revealed increased levels of COL1A1, COL3A1, AGT, LTBP and ITGB1, while zymography assay reported a reduced metalloproteinase 2 enzymatic activity. In vitro exposure of patient's fibroblasts to losartan led to the partial restoration of normal transforming growth factor β (TGF-β) marker protein levels. Taken together, these data demonstrate that in our patient, segmental SSS is characterized by the overactivation of multiple TGF-β signaling pathways, which likely results in altered extracellular matrix composition and fibroblast homeostasis. Our results for the first time reported that aberrant TGF-β signaling may drive the pathogenesis of segmental SSS and might open the way to novel therapeutic approaches.
Collapse
|
44
|
Wang T, Yang Y, Dong Q, Zhu H, Liu Y. Acromicric dysplasia with stiff skin syndrome-like severe cutaneous presentation in an 8-year-old boy with a missense FBN1 mutation: Case report and literature review. Mol Genet Genomic Med 2020; 8:e1282. [PMID: 32406602 PMCID: PMC7336748 DOI: 10.1002/mgg3.1282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022] Open
Abstract
Background Acromicric dysplasia is a rare heritable short‐stature syndrome with joint stiffness and varying degrees of cutaneous hardness. Stiff skin syndrome is a rare connective tissue disorder characterized by diffusely thick and hard skin from the time of birth. Heterozygous point mutations in the FBN1 have been proposed as the predominant cause of both diseases. Methods By performing skin biopsy, X‐ray imaging, electrocardiography, as well as whole‐genome sequencing and Sanger sequencing, we diagnosed an 8‐year‐old Chinese boy as acromicric dysplasia with severe skin stiffness caused by a heterogeneous mutation in the FBN1. Results The patient presented with skin tightness, wrist and ankle stiffness, short stature and limbs, several deformed joints in the extremities, cone‐shaped epiphyses, and distinct facial features. He also had a patent foramen ovale and frequent respiratory infections. Skin biopsy showed thickened dermis and excessive collagen aggregation. Alcian blue staining indicated dermal mucopolysaccharide deposition. Mutation analysis revealed a heterozygous missense mutation, c.5243G>A (p.Cys1748Tyr), in exon 42 of the FBN1. Conclusion This is a report about acromicric dysplasia with stiff skin syndrome‐like severe cutaneous presentation caused by a single hotspot mutation, further revealing the gene pleiotropy of FBN1.
Collapse
Affiliation(s)
- Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuyan Yang
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Dong
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Abstract
Genodermatoses are inherited disorders presenting with cutaneous manifestations with or without the involvement of other systems. The majority of these disorders, particularly in cases that present with a cutaneous patterning, may be explained in the context of genetic mosaicism. Despite the barriers to the genetic analysis of mosaic disorders, next-generation sequencing has led to a substantial progress in understanding their pathogenesis, which has significant implications for the clinical management and genetic counseling. Advances in paired and deep sequencing technologies in particular have made the study of mosaic disorders more feasible. In this review, we provide an overview of genetic mosaicism as well as mosaic cutaneous disorders and the techniques required to study them.
Collapse
Affiliation(s)
- Shayan Cheraghlou
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Young Lim
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keith A Choate
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
46
|
Rangu S, Rubin AI, Li D, Castelo-Soccio L. Segmental stiff skin syndrome: a novel case with an interleukin-17C mutation successfully treated with secukinumab. Clin Exp Dermatol 2020; 45:658-660. [PMID: 32212274 DOI: 10.1111/ced.14205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/30/2023]
Affiliation(s)
- S Rangu
- Section of Dermatology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - A I Rubin
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - L Castelo-Soccio
- Section of Dermatology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Gregson CL, Bergen DJM, Leo P, Sessions RB, Wheeler L, Hartley A, Youlten S, Croucher PI, McInerney‐Leo AM, Fraser W, Tang JCY, Anderson L, Marshall M, Sergot L, Paternoster L, Davey Smith G, The AOGC Consortium, Brown MA, Hammond C, Kemp JP, Tobias JH, Duncan EL. A Rare Mutation in SMAD9 Associated With High Bone Mass Identifies the SMAD-Dependent BMP Signaling Pathway as a Potential Anabolic Target for Osteoporosis. J Bone Miner Res 2020; 35:92-105. [PMID: 31525280 PMCID: PMC7004081 DOI: 10.1002/jbmr.3875] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/19/2019] [Accepted: 08/25/2019] [Indexed: 01/17/2023]
Abstract
Novel anabolic drug targets are needed to treat osteoporosis. Having established a large national cohort with unexplained high bone mass (HBM), we aimed to identify a novel monogenic cause of HBM and provide insight into a regulatory pathway potentially amenable to therapeutic intervention. We investigated a pedigree with unexplained HBM in whom previous sequencing had excluded known causes of monogenic HBM. Whole exome sequencing identified a rare (minor allele frequency 0.0023), highly evolutionarily conserved missense mutation in SMAD9 (c.65T>C, p.Leu22Pro) segregating with HBM in this autosomal dominant family. The same mutation was identified in another two unrelated individuals both with HBM. In silico protein modeling predicts the mutation severely disrupts the MH1 DNA-binding domain of SMAD9. Affected individuals have bone mineral density (BMD) Z-scores +3 to +5, mandible enlargement, a broad frame, torus palatinus/mandibularis, pes planus, increased shoe size, and a tendency to sink when swimming. Peripheral quantitative computed tomography (pQCT) measurement demonstrates increased trabecular volumetric BMD and increased cortical thickness conferring greater predicted bone strength; bone turnover markers are low/normal. Notably, fractures and nerve compression are not found. Both genome-wide and gene-based association testing involving estimated BMD measured at the heel in 362,924 white British subjects from the UK Biobank Study showed strong associations with SMAD9 (PGWAS = 6 × 10-16 ; PGENE = 8 × 10-17 ). Furthermore, we found Smad9 to be highly expressed in both murine cortical bone-derived osteocytes and skeletal elements of zebrafish larvae. Our findings support SMAD9 as a novel HBM gene and a potential novel osteoanabolic target for osteoporosis therapeutics. SMAD9 is thought to inhibit bone morphogenetic protein (BMP)-dependent target gene transcription to reduce osteoblast activity. Thus, we hypothesize SMAD9 c.65T>C is a loss-of-function mutation reducing BMP inhibition. Lowering SMAD9 as a potential novel anabolic mechanism for osteoporosis therapeutics warrants further investigation. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Celia L Gregson
- Musculoskeletal Research Unit, Translational Health SciencesBristol Medical School, University of BristolBristolUK
| | - Dylan J. M. Bergen
- Musculoskeletal Research Unit, Translational Health SciencesBristol Medical School, University of BristolBristolUK
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life SciencesUniversity of BristolBristolUK
| | - Paul Leo
- Faculty of Health, Translational Genomics GroupInstitute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra HospitalWoolloongabbaAustralia
| | - Richard B Sessions
- Faculty of Life SciencesSchool of Biochemistry, University of BristolBristolUK
| | - Lawrie Wheeler
- Faculty of Health, Translational Genomics GroupInstitute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra HospitalWoolloongabbaAustralia
| | - April Hartley
- Musculoskeletal Research Unit, Translational Health SciencesBristol Medical School, University of BristolBristolUK
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesBristol Medical School, University of BristolBristolUK
| | - Scott Youlten
- Division of Bone BiologyGarvan Institute of Medical ResearchSydneyAustralia
| | - Peter I Croucher
- Division of Bone BiologyGarvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical School, UNSW SydneySydneyAustralia
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| | - Aideen M McInerney‐Leo
- Faculty of Health, Translational Genomics GroupInstitute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra HospitalWoolloongabbaAustralia
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina InstituteBrisbaneAustralia
| | - William Fraser
- Norwich Medical School, University of East AngliaNorwichUK
- Department of DiabetesEndocrinology and Clinical Biochemistry, Norfolk and Norwich University Hospital NHS Foundation TrustNorwichUK
| | | | - Lisa Anderson
- Faculty of Health, Translational Genomics GroupInstitute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra HospitalWoolloongabbaAustralia
| | - Mhairi Marshall
- Faculty of Health, Translational Genomics GroupInstitute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra HospitalWoolloongabbaAustralia
| | - Leon Sergot
- Severn School of Radiology, Severn DeaneryBristolUK
| | - Lavinia Paternoster
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesBristol Medical School, University of BristolBristolUK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesBristol Medical School, University of BristolBristolUK
| | - The AOGC Consortium
- Faculty of Health, Translational Genomics GroupInstitute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra HospitalWoolloongabbaAustralia
| | - Matthew A Brown
- Faculty of Health, Translational Genomics GroupInstitute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra HospitalWoolloongabbaAustralia
| | - Chrissy Hammond
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life SciencesUniversity of BristolBristolUK
| | - John P Kemp
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesBristol Medical School, University of BristolBristolUK
- Faculty of MedicineThe University of Queensland Diamantina Institute, The University of QueenslandWoolloongabbaAustralia
| | - Jon H Tobias
- Musculoskeletal Research Unit, Translational Health SciencesBristol Medical School, University of BristolBristolUK
| | - Emma L Duncan
- Faculty of Health, Translational Genomics GroupInstitute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra HospitalWoolloongabbaAustralia
- Department of Endocrinology and DiabetesRoyal Brisbane & Women's HospitalHerstonAustralia
- Faculty of MedicineUniversity of QueenslandHerstonAustralia
| |
Collapse
|
48
|
Karoulias SZ, Beyens A, Balic Z, Symoens S, Vandersteen A, Rideout AL, Dickinson J, Callewaert B, Hubmacher D. A novel ADAMTS17 variant that causes Weill-Marchesani syndrome 4 alters fibrillin-1 and collagen type I deposition in the extracellular matrix. Matrix Biol 2019; 88:1-18. [PMID: 31726086 DOI: 10.1016/j.matbio.2019.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022]
Abstract
Weill-Marchesani syndrome (WMS) is a rare genetic disorder that affects the musculoskeletal system, the eye, and the cardiovascular system. Individuals with WMS present with short stature, joint contractures, thick skin, microspherophakia, small and dislocated lenses, and cardiac valve anomalies. WMS can be caused by recessive mutations in ADAMTS10 (WMS 1), ADAMTS17 (WMS 4), or LTBP2 (WMS 3), or by dominant mutations in fibrillin-1 (FBN1) (WMS 2); all genes encode secreted extracellular matrix (ECM) proteins. Individuals with WMS 4 due to ADAMTS17 mutations appear to have less severe cardiac involvement and present predominantly with the musculoskeletal and ocular features of WMS. ADAMTS17 is a member of the ADAMTS family of secreted proteases and directly binds to fibrillins. Here we report a novel pathogenic variant in ADAMTS17 that causes WMS 4 in an individual with short stature, brachydactyly, and small, spherical, and dislocated lenses. We provide biochemical and cell biological insights in the pathomechanisms of WMS 4, which also suggest potential biological functions for ADAMTS17. We show that the variant in ADAMTS17 prevents its secretion and we found intracellular accumulation of fibrillin-1 and collagen type I in patient-derived skin fibroblasts. In accordance, transmission electron microscopy revealed elastic fiber abnormalities, decreased collagen fibril diameters, and intracellular collagen accumulation in the dermis of the proband. Together, the data indicate a possible role for ADAMTS17 in the secretion of fibrillin-1 and collagen type I or in their early assembly in the pericellular matrix or the ECM.
Collapse
Affiliation(s)
- Stylianos Z Karoulias
- Orthopaedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Aude Beyens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium; Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Zerina Balic
- Orthopaedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - Anthony Vandersteen
- Division of Medical Genetics, Department of Pediatrics, Dalhousie University, Halifax, NS, Canada; Maritime Medical Genetics Service, IWK Health Centre, Halifax, NS, Canada
| | - Andrea L Rideout
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, NS, Canada
| | - John Dickinson
- Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium.
| | - Dirk Hubmacher
- Orthopaedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
| |
Collapse
|
49
|
Godwin ARF, Singh M, Lockhart-Cairns MP, Alanazi YF, Cain SA, Baldock C. The role of fibrillin and microfibril binding proteins in elastin and elastic fibre assembly. Matrix Biol 2019; 84:17-30. [PMID: 31226403 PMCID: PMC6943813 DOI: 10.1016/j.matbio.2019.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Fibrillin is a large evolutionarily ancient extracellular glycoprotein that assembles to form beaded microfibrils which are essential components of most extracellular matrices. Fibrillin microfibrils have specific biomechanical properties to endow animal tissues with limited elasticity, a fundamental feature of the durable function of large blood vessels, skin and lungs. They also form a template for elastin deposition and provide a platform for microfibril-elastin binding proteins to interact in elastic fibre assembly. In addition to their structural role, fibrillin microfibrils mediate cell signalling via integrin and syndecan receptors, and microfibrils sequester transforming growth factor (TGF)β family growth factors within the matrix to provide a tissue store which is critical for homeostasis and remodelling.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Michael P Lockhart-Cairns
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Yasmene F Alanazi
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Stuart A Cain
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| |
Collapse
|
50
|
Del Cid JS, Reed NI, Molnar K, Liu S, Dang B, Jensen SA, DeGrado W, Handford PA, Sheppard D, Sundaram AB. A disease-associated mutation in fibrillin-1 differentially regulates integrin-mediated cell adhesion. J Biol Chem 2019; 294:18232-18243. [PMID: 31640988 DOI: 10.1074/jbc.ra119.011109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2019] [Indexed: 11/06/2022] Open
Abstract
Fibrillins serve as scaffolds for the assembly of elastic fibers that contribute to the maintenance of tissue homeostasis and regulate growth factor signaling in the extracellular space. Fibrillin-1 is a modular glycoprotein that includes 7 latent transforming growth factor β (TGFβ)-binding protein-like (TB) domains and mediates cell adhesion through integrin binding to the RGD motif in its 4th TB domain. A subset of missense mutations within TB4 cause stiff skin syndrome (SSS), a rare autosomal dominant form of scleroderma. The fibrotic phenotype is thought to be regulated by changes in the ability of fibrillin-1 to mediate integrin binding. We characterized the ability of each RGD-binding integrin to mediate cell adhesion to fibrillin-1 or a disease-causing variant. Our data show that 7 of the 8 RGD-binding integrins can mediate adhesion to fibrillin-1. A single amino acid substitution responsible for SSS (W1570C) markedly inhibited adhesion mediated by integrins α5β1, αvβ5, and αvβ6, partially inhibited adhesion mediated by αvβ1, and did not inhibit adhesion mediated by α8β1 or αIIbβ3. Adhesion mediated by integrin αvβ3 depended on the cell surface expression level. In the SSS mutant background, the presence of a cysteine residue in place of highly conserved tryptophan 1570 alters the conformation of the region containing the exposed RGD sequence within the same domain to differentially affect fibrillin's interactions with distinct RGD-binding integrins.
Collapse
Affiliation(s)
- Joselyn S Del Cid
- Department of Cell Biology, University of California San Francisco, San Francisco, California 94158
| | - Nilgun Isik Reed
- Department of Cell Biology, University of California San Francisco, San Francisco, California 94158
| | - Kathleen Molnar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94518
| | - Sean Liu
- Department of Cell Biology, University of California San Francisco, San Francisco, California 94158
| | - Bobo Dang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94518
| | - Sacha A Jensen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - William DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94518
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Dean Sheppard
- Department of Cell Biology, University of California San Francisco, San Francisco, California 94158
| | - Aparna B Sundaram
- Department of Cell Biology, University of California San Francisco, San Francisco, California 94158.
| |
Collapse
|