1
|
Sehlin D, Hultqvist G, Michno W, Aguilar X, Dahlén AD, Cerilli E, Bucher NM, Lopes van den Broek S, Syvänen S. Bispecific brain-penetrant antibodies for treatment of Alzheimer's disease. J Prev Alzheimers Dis 2025:100214. [PMID: 40425446 DOI: 10.1016/j.tjpad.2025.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/20/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
The emerging class of bispecific antibodies represents a significant advancement in Alzheimer's disease (AD) immunotherapy by addressing the limited brain concentrations achieved with conventional monoclonal antibodies. The majority of bispecific antibodies developed for AD treatment utilize transferrin receptor (TfR1)-mediated transcytosis to enhance blood-brain barrier (BBB) penetration, resulting in higher and more uniform brain concentrations compared to conventional antibodies. This improved delivery has demonstrated superior efficacy in reducing brain amyloid-beta (Aβ) burden. Additionally, TfR1-mediated delivery may help mitigate adverse effects such as amyloid-related imaging abnormalities (ARIA). This is likely achieved by a reduction in antibody accumulation at vascular Aβ deposits, resulting from the combined effects of lower dosing and a different brain entry route when using bispecific antibodies. Besides targeting Aβ, bispecific antibodies have been engineered to address other key pathological features of AD, including tau pathology and neuroinflammatory targets, which are critical drivers of disease progression. These antibodies also show promise in diagnostic applications, particularly as radioligands for antibody-based positron emission tomography (immunoPET), leveraging their rapid brain delivery and efficient and specific target engagement. Moreover, the principles of bispecific antibody technology have been adapted for use beyond immunotherapy. The incorporation of TfR1-binding domains into enzymes, antisense oligonucleotides, or viral vectors such as adeno-associated viruses broadens their therapeutic potential. These approaches may enable more efficient treatment strategies, not only for AD but also for other neurological disorders, by facilitating the delivery of diverse therapeutic agents across the BBB.
Collapse
Affiliation(s)
- Dag Sehlin
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, Uppsala 751 85, Sweden
| | | | - Wojciech Michno
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, Uppsala 751 85, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ximena Aguilar
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, Uppsala 751 85, Sweden
| | - Amelia D Dahlén
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, Uppsala 751 85, Sweden
| | - Enrica Cerilli
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, Uppsala 751 85, Sweden
| | - Nadja M Bucher
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, Uppsala 751 85, Sweden
| | - Sara Lopes van den Broek
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, Uppsala 751 85, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, Uppsala 751 85, Sweden.
| |
Collapse
|
2
|
Martinusen SG, Slaton EW, Ajayebi S, Pulgar MA, Simas CF, Nelson SE, Dutta A, Besu JT, Bruner S, Denard CA. High-throughput Activity Reprogramming of Proteases (HARP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.640893. [PMID: 40196664 PMCID: PMC11974858 DOI: 10.1101/2025.03.27.640893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Developing potent and selective protease inhibitors remains a grueling, iterative, and often unsuccessful endeavor. Although macromolecular inhibitors can achieve single-enzyme specificity, platforms used for macromolecular inhibitor discovery are optimized for high-affinity binders, requiring extensive downstream biochemical characterization to isolate rare inhibitors. Here, we developed the High-throughput Activity Reprogramming of Proteases (HARP) platform, HARP is a yeast-based functional screen that isolates protease-inhibitory macromolecules from large libraries by coupling their inhibition of endoplasmic reticulum-resident proteases to a selectable phenotype on the cell surface. Endowed with high dynamic range and resolution, HARP enabled the isolation of low-nanomolar-range inhibitory nanobodies against tobacco etch virus protease and human kallikrein 6, including a rare 7.6 nM K I TEVp uncompetitive inhibitor. Structural modeling and deep sequencing all provide insights into the molecular determinants of inhibitors and reinforce HARP's foundational findings. Overall, HARP is a premier platform for discovering modulatory macromolecules from various synthetic scaffolds against enzyme targets.
Collapse
|
3
|
Wang Z, Li Z, Lin A, Zhang Q, Chen Y, Bie B, Feng J. Exploration of small molecules as inhibitors of potential BACE1 protein to treat amyloid cerebrovascular disease by employing molecular modeling and simulation approaches. PLoS One 2025; 20:e0317716. [PMID: 40117242 PMCID: PMC11927919 DOI: 10.1371/journal.pone.0317716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 01/02/2025] [Indexed: 03/23/2025] Open
Abstract
Amyloid cerebrovascular disease, primarily driven by the accumulation of amyloid-beta (Aβ) peptides, is intricately linked to neurodegenerative disorders like Alzheimer's disease. BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) plays a critical role in the production of Aβ, making it a key therapeutic target. In the current work, a CNS library of ChemDiv database containing 44085 compounds was screened against the BACE1 protein. Initially, a structure-based pharmacophore hypothesis was constructed, followed by virtual screening, with the screened hits docked to the BACE1 protein to determine the optimal binding modes. The docking results were examined using the glide gscore and chemical interactions of the docked molecules. The cutoff value of -5 kcal/mol was used to select hits with high binding affinities. A total of seven hits were chosen based on the glide g score. Furthermore, the possible binding mechanisms of the docked ligands were investigated, and it was discovered that all seven selected ligands occupied the same site in the predicted binding pocket of protein. The bioactivity scores of the compounds demonstrated that the chosen compounds possess the features of lead compounds. The toxicity risks and ADMET features of the selected hits were anticipated, and four compounds, J032-0080, SC13-0774, V030-0915, and V006-5608 were chosen for stability analysis. The selected hits were extremely stable and strongly bound to the BACE1 pocket, and conformational changes caused by RMSD, RMSF, and protein-ligand interactions were assessed using MD modeling. Similarly, principal component analysis revealed a large static number of hydrogen bonds. The MM/GBSA binding free energies maps revealed a significant energy contribution in the binding of selected hits to BACE1. The binding free energy landscapes indicated that the hits were bound with a high binding affinity. Thus, the hits could serve as lead compounds in biophysical investigations to limit the biological activity of the BACE1 protein.
Collapse
Affiliation(s)
- Zhizhong Wang
- College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- The Third People’s Hospital of Hubei Province, Affiliated Jianghan University, Wuhan, Hubei, China
| | - Zhiyong Li
- The Third People’s Hospital of Hubei Province, Affiliated Jianghan University, Wuhan, Hubei, China
| | - Ailong Lin
- The Third People’s Hospital of Hubei Province, Affiliated Jianghan University, Wuhan, Hubei, China
| | - Qing Zhang
- The Third People’s Hospital of Hubei Province, Affiliated Jianghan University, Wuhan, Hubei, China
| | - Yingchun Chen
- The Third People’s Hospital of Hubei Province, Affiliated Jianghan University, Wuhan, Hubei, China
| | - Bizhou Bie
- The Third People’s Hospital of Hubei Province, Affiliated Jianghan University, Wuhan, Hubei, China
| | - Juanjuan Feng
- The Third People’s Hospital of Hubei Province, Affiliated Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Cuypers ML, Jaspers T, Clerckx J, Leekens S, Cawthorne C, Bormans G, Cleeren F, Geukens N, De Strooper B, Dewilde M. Increasing brain half-life of antibodies by additional binding to myelin oligodendrocyte glycoprotein, a CNS specific protein. Fluids Barriers CNS 2025; 22:11. [PMID: 39885527 PMCID: PMC11783731 DOI: 10.1186/s12987-025-00624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance. Therefore, we aim to increase the brain half-life of antibodies by binding to myelin oligodendrocyte glycoprotein (MOG), a CNS specific protein. METHODS Alpaca immunization with mouse/human MOG, and subsequent phage selections and screenings for MOG binding single variable domain antibodies (VHHs) were performed to find mouse/human cross-reactive VHHs. Their ability to increase the brain half-life of antibodies was evaluated in healthy wild-type mice by coupling two different MOG VHHs (low/high affinity) in a mono- and bivalent format to a β-secretase 1 (BACE1) inhibiting antibody or a control (anti-SARS-CoV-2) antibody, fused to an anti-transferrin receptor (TfR) VHH for active transport over the BBB. Brain pharmacokinetics and pharmacodynamics, CNS and peripheral biodistribution, and brain toxicity were evaluated after intravenous administration to balb/c mice. RESULTS Additional binding to MOG increases the Cmax and brain half-life of antibodies that are actively shuttled over the BBB. Anti-SARS-CoV-2 antibodies coupled with an anti-TfR VHH and two low affinity anti-MOG VHHs could be detected in brain 49 days after a single intravenous injection, which is a major improvement compared to an anti-SARS-CoV-2 antibody fused to an anti-TfR VHH which cannot be detected in brain anymore one week post treatment. Additional MOG binding of antibodies does not affect peripheral biodistribution but alters brain distribution to white matter localization and less neuronal internalization. CONCLUSIONS We have discovered mouse/human/cynomolgus cross-reactive anti-MOG VHHs which have the ability to drastically increase brain exposure of antibodies. Combining MOG and TfR binding leads to distinct PK, biodistribution, and brain exposure, differentiating it from the highly investigated TfR-shuttling. It is the first time such long brain antibody exposure has been demonstrated after one single dose. This new approach of adding a binding moiety for brain specific targets to RMT shuttling antibodies is a huge advancement for the field and paves the way for further research into brain half-life extension.
Collapse
Affiliation(s)
- Marie-Lynn Cuypers
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium
| | - Tom Jaspers
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium
| | - Jarne Clerckx
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium
| | - Simon Leekens
- Laboratory for Radiopharmaceutical Research, KU Leuven - University of Leuven, O&N II Herestraat 49 box 821, 3000, Leuven, Belgium
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven - University of Leuven, O&N I Herestraat 49 box 505, 3000, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, KU Leuven - University of Leuven, O&N II Herestraat 49 box 821, 3000, Leuven, Belgium
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, KU Leuven - University of Leuven, O&N II Herestraat 49 box 821, 3000, Leuven, Belgium
| | - Nick Geukens
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium
- PharmAbs - the KU Leuven Antibody Center, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases - VIB Center for Brain and Disease Research, O&N V, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Maarten Dewilde
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
- PharmAbs - the KU Leuven Antibody Center, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Zhou Z, Huang Z, Tang Y, Zhu Y, Li J. Modulating membrane-bound enzyme activity with chemical stimuli. Eur J Med Chem 2024; 280:116964. [PMID: 39406113 DOI: 10.1016/j.ejmech.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/25/2024]
Abstract
Membrane-bound enzymes play pivotal roles in various cellular processes, making their activity regulation essential for cellular homeostasis and signaling transduction. Given that dysregulation of membrane-bound enzymes involved in various disease, controlling enzyme activity offers valuable avenues for designing targeted therapies and novel pharmaceutical interventions. This review explores chemical stimuli-responsive strategies for modulating the activity of these enzymes, employing diverse stimuli such as small molecules, proteins, nucleic acids, and bifunctional molecules to either inhibit or enhance their catalytic function. We systematically delineate the mechanisms underlying enzyme activity regulation, including substrate binding site blockade, conformational changes, and local concentration of enzymes and substrates. Furthermore, based on some examples, we elucidate the binding modalities between stimuli and enzymes, along with potential modes of regulation, and discuss their potential medical applications and future prospects. This review underscores the significance of understanding and manipulating enzyme activity on the cell membrane for advancing biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Zhilan Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yiyuan Tang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
6
|
Wang YR, Zeng XQ, Wang J, Fowler CJ, Li QX, Bu XL, Doecke J, Maruff P, Martins RN, Rowe CC, Masters CL, Wang YJ, Liu YH. Autoantibodies to BACE1 promote Aβ accumulation and neurodegeneration in Alzheimer's disease. Acta Neuropathol 2024; 148:57. [PMID: 39448400 DOI: 10.1007/s00401-024-02814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
The profile of autoantibodies is dysregulated in patients with Alzheimer's disease (AD). Autoantibodies to beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) are present in human blood. This study aims to investigate the clinical relevance and pathophysiological roles of autoantibodies to BACE1 in AD. Clinical investigations were conducted in two independent cohorts, the Chongqing cohort, and the Australian Imaging, Biomarkers, and Lifestyle (AIBL) cohort. The Chongqing cohort included 55 AD patients, 28 patients with non-AD dementia, and 70 cognitively normal subjects (CN). The AIBL cohort included 162 Aβ-PET- CN, 169 Aβ-PET+ cognitively normal subjects (preclinical AD), and 31 Aβ-PET+ cognitively impaired subjects (Clinical AD). Plasma autoantibodies to BACE1 were determined by one-site Elisa. The associations of plasma autoantibodies to BACE1 with brain Aβ load and cognitive trajectory were investigated. The effects of autoantibodies to BACE1 on AD-type pathologies and underlying mechanisms were investigated in APP/PS1 mice and SH/APPswe/PS1wt cell lines. In the Chongqing cohort, plasma autoantibodies to BACE1 were higher in AD patients, in comparison with CN and non-AD dementia patients. In the AIBL cohort, plasma autoantibodies to BACE1 were highest in clinical AD patients, followed by preclinical AD and CN subjects. Higher autoantibodies to BACE1 were associated with an increased incidence of brain amyloid positivity conversion during follow-up. Autoantibodies to BACE1 exacerbated brain amyloid deposition and subsequent AD-type pathologies, including Tau hyperphosphorylation, neuroinflammation, and neurodegeneration in APP/PS1 mice. Autoantibodies to BACE1 increased Aβ production by promoting BACE1 expression through inhibiting PPARγ signaling. These findings suggest that autoantibodies to BACE1 are pathogenic in AD and the upregulation of these autoantibodies may promote the development of the disease. This study offers new insights into the mechanism of AD from an autoimmune perspective.
Collapse
Affiliation(s)
- Ye-Ran Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
- Centre of Health Management, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Qin Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | | | - Qiao-Xin Li
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | - James Doecke
- The Australian E-Health Research Centre, CSIRO, Herston, QLD, Australia
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
- CogState, Melbourne, VIC, Australia
| | - Ralph N Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Aging and Brain Disease, Chongqing, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Aging and Brain Disease, Chongqing, China.
| |
Collapse
|
7
|
Niazi SK. Bioavailability as Proof to Authorize the Clinical Testing of Neurodegenerative Drugs-Protocols and Advice for the FDA to Meet the ALS Act Vision. Int J Mol Sci 2024; 25:10211. [PMID: 39337696 PMCID: PMC11432374 DOI: 10.3390/ijms251810211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Although decades of intensive drug discovery efforts to treat neurodegenerative disorders (NDs) have failed, around half a million patients in more than 2000 studies continue being tested, costing over USD 100 billion, despite the conclusion that even those drugs which have been approved have no better effect than a placebo. The US Food and Drug Administration (FDA) has established multiple programs to innovate the treatment of rare diseases, particularly NDs, providing millions of USD in funding primarily by encouraging novel clinical trials to account for issues related to study sizes and adopting multi-arm studies to account for patient dropouts. Instead, the FDA should focus on the primary reason for failure: the poor bioavailability of drugs reaching the brain (generally 0.1% at most) due to the blood-brain barrier (BBB). There are several solutions to enhance entry into the brain, and the FDA must require proof of significant entry into the brain as the prerequisite to approving Investigational New Drug (IND) applications. The FDA should also rely on factors other than biomarkers to confirm efficacy, as these are rarely relevant to clinical use. This study summarizes how the drugs used to treat NDs can be made effective and how the FDA should change its guidelines for IND approval of these drugs.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Chen Y, Huang X, Chen H, Yi C. An easy-to-perform method for microvessel isolation and primary brain endothelial cell culture to study Alzheimer's disease. Heliyon 2024; 10:e33077. [PMID: 38994107 PMCID: PMC11238044 DOI: 10.1016/j.heliyon.2024.e33077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) has been increasingly recognised as a critical early event in Alzheimer's disease (AD) pathophysiology. Central to this mechanism is the impaired function of brain endothelial cells (BECs), the primary structural constituents of the BBB, the study of which is imperative for understanding AD pathophysiology. However, the published methods to isolate BECs are time-consuming and have a low success rate. Here, we developed a rapid and streamlined protocol for BEC isolation without using transgenic reporters, flow cytometry, and magnetic beads, which are essential for existing methods. Using this novel protocol, we isolated high-purity BECs from cell clusters of cortical microvessels from wild-type and APPswe/PS1dE9 (APP/PS1, a classical AD model) mice at 2, 4 and 9 months of age. Reduced levels of tight junction proteins Claudin-5 and Zonula Occludens-1, as well as glucose transporter 1, were observed in the isolated cortical microvessels from APP/PS1 mice and amyloid-β (Aβ) oligomer-treated BECs from wild-type mice. Trans-well permeability assay showed increased FITC-dextran leakage in BECs treated with Aβ, suggesting impaired BBB permeability. BECs obtained using our novel protocol can undergo various experimental analyses, including immunofluorescence staining, western blotting, real-time PCR, and trans-well permeability assay. In conclusion, our novel protocol represents a reliable and valuable tool for in vitro modelling BBB to study AD-related mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yang Chen
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaomin Huang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
9
|
Niazi SK, Mariam Z, Magoola M. Engineered Antibodies to Improve Efficacy against Neurodegenerative Disorders. Int J Mol Sci 2024; 25:6683. [PMID: 38928395 PMCID: PMC11203520 DOI: 10.3390/ijms25126683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Antibodies that can selectively remove rogue proteins in the brain are an obvious choice to treat neurodegenerative disorders (NDs), but after decades of efforts, only two antibodies to treat Alzheimer's disease are approved, dozens are in the testing phase, and one was withdrawn, and the other halted, likely due to efficacy issues. However, these outcomes should have been evident since these antibodies cannot enter the brain sufficiently due to the blood-brain barrier (BBB) protectant. However, all products can be rejuvenated by binding them with transferrin, preferably as smaller fragments. This model can be tested quickly and at a low cost and should be applied to bapineuzumab, solanezumab, crenezumab, gantenerumab, aducanumab, lecanemab, donanemab, cinpanemab, and gantenerumab, and their fragments. This paper demonstrates that conjugating with transferrin does not alter the binding to brain proteins such as amyloid-β (Aβ) and α-synuclein. We also present a selection of conjugate designs that will allow cleavage upon entering the brain to prevent their exocytosis while keeping the fragments connected to enable optimal binding to proteins. The identified products can be readily tested and returned to patients with the lowest regulatory cost and delays. These engineered antibodies can be manufactured by recombinant engineering, preferably by mRNA technology, as a more affordable solution to meet the dire need to treat neurodegenerative disorders effectively.
Collapse
Affiliation(s)
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry City CV1 5FB, UK;
| | | |
Collapse
|
10
|
Yang Y, Qiu L. Research Progress on the Pathogenesis, Diagnosis, and Drug Therapy of Alzheimer's Disease. Brain Sci 2024; 14:590. [PMID: 38928590 PMCID: PMC11201671 DOI: 10.3390/brainsci14060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As the population ages worldwide, Alzheimer's disease (AD), the most prevalent kind of neurodegenerative disorder among older people, has become a significant factor affecting quality of life, public health, and economies. However, the exact pathogenesis of Alzheimer's remains elusive, and existing highly recognized pathogenesis includes the amyloid cascade hypothesis, Tau neurofibrillary tangles hypothesis, and neuroinflammation hypothesis. The major diagnoses of Alzheimer's disease include neuroimaging positron emission computed tomography, magnetic resonance imaging, and cerebrospinal fluid molecular diagnosis. The therapy of Alzheimer's disease primarily relies on drugs, and the approved drugs on the market include acetylcholinesterase drugs, glutamate receptor antagonists, and amyloid-β monoclonal antibodies. Still, the existing drugs can only alleviate the symptoms of the disease and cannot completely reverse it. This review aims to summarize existing research results on Alzheimer's disease pathogenesis, diagnosis, and drug therapy, with the objective of facilitating future research in this area.
Collapse
Affiliation(s)
- Yixuan Yang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Lina Qiu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Sun W, Wu Y, Ying T. Progress in novel delivery technologies to improve efficacy of therapeutic antibodies. Antiviral Res 2024; 225:105867. [PMID: 38521465 DOI: 10.1016/j.antiviral.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Monoclonal antibody-based therapeutics have achieved remarkable success in treating a wide range of human diseases. However, conventional systemic delivery methods have limitations in insufficient target tissue permeability, high costs, repeated administrations, etc. Novel technologies have been developed to address these limitations and further enhance antibody therapy. Local antibody delivery via respiratory tract, gastrointestinal tract, eye and blood-brain barrier have shown promising results in increasing local concentrations and overcoming barriers. Nucleic acid-encoded antibodies expressed from plasmid DNA, viral vectors or mRNA delivery platforms also offer advantages over recombinant proteins such as sustained expression, rapid onset, and lower costs. This review summarizes recent advances in antibody delivery methods and highlights innovative technologies that have potential to expand therapeutic applications of antibodies.
Collapse
Affiliation(s)
- Wenli Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| |
Collapse
|
12
|
Wongsodirdjo P, Caruso AC, Yong AK, Lester MA, Vella LJ, Hung YH, Nisbet RM. Messenger RNA-encoded antibody approach for targeting extracellular and intracellular tau. Brain Commun 2024; 6:fcae100. [PMID: 38585667 PMCID: PMC10996922 DOI: 10.1093/braincomms/fcae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Monoclonal antibodies have emerged as a leading therapeutic agent for the treatment of disease, including Alzheimer's disease. In the last year, two anti-amyloid monoclonal antibodies, lecanemab and aducanumab, have been approved in the USA for the treatment of Alzheimer's disease, whilst several tau-targeting monoclonal antibodies are currently in clinical trials. Such antibodies, however, are expensive and timely to produce and require frequent dosing regimens to ensure disease-modifying effects. Synthetic in vitro-transcribed messenger RNA encoding antibodies for endogenous protein expression holds the potential to overcome many of the limitations associated with protein antibody production. Here, we have generated synthetic in vitro-transcribed messenger RNA encoding a tau-specific antibody as a full-sized immunoglobulin and as a single-chain variable fragment. In vitro transfection of human neuroblastoma SH-SY5Y cells demonstrated the ability of the synthetic messenger RNA to be translated into a functional tau-specific antibody. Furthermore, we show that the translation of the tau-specific single-chain variable fragment as an intrabody results in the specific engagement of intracellular tau. This work highlights the utility of messenger RNA for the delivery of antibody therapeutics, including intrabodies, for the targeting of tau in Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Patricia Wongsodirdjo
- The Florey Institute, Parkville, Victoria 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alayna C Caruso
- The Florey Institute, Parkville, Victoria 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alicia K Yong
- The Florey Institute, Parkville, Victoria 3052, Australia
| | - Madeleine A Lester
- The Florey Institute, Parkville, Victoria 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Laura J Vella
- The Florey Institute, Parkville, Victoria 3052, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ya Hui Hung
- The Florey Institute, Parkville, Victoria 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Rebecca M Nisbet
- The Florey Institute, Parkville, Victoria 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
14
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
15
|
Schwinghamer K, Siahaan TJ. Enhancing Antibody Exposure in the Central Nervous System: Mechanisms of Uptake, Clearance, and Strategies for Improved Brain Delivery. JOURNAL OF NANOTHERANOSTICS 2023; 4:463-479. [PMID: 39897432 PMCID: PMC11784990 DOI: 10.3390/jnt4040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Antibodies (mAbs) are attractive molecules for their application as a diagnostic and therapeutic agent for diseases of the central nervous system (CNS). mAbs can be generated to have high affinity and specificity to target molecules in the CNS. Unfortunately, only a very small number of mAbs have been specifically developed and approved for neurological indications. This is primarily attributed to their low exposure within the CNS, hindering their ability to reach and effectively engage their potential targets in the brain. This review discusses aspects of various barriers such as the blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier (BCSFB) that regulate the entry and clearance of mAbs into and from the brain. The roles of the glymphatic system on brain exposure and clearance are being described. We also discuss the proposed mechanisms of the uptake of mAbs into the brain and for clearance. Finally, several methods of enhancing the exposure of mAbs in the CNS were discussed, including receptor-mediated transcytosis, osmotic BBB opening, focused ultrasound (FUS), BBB-modulating peptides, and enhancement of mAb brain retention.
Collapse
Affiliation(s)
- Kelly Schwinghamer
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66046, USA
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66046, USA
| |
Collapse
|
16
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK, Albukhaty S, Sulaiman GM, Batiha GES. Evaluation and targeting of amyloid precursor protein (APP)/amyloid beta (Aβ) axis in amyloidogenic and non-amyloidogenic pathways: A time outside the tunnel. Ageing Res Rev 2023; 92:102119. [PMID: 37931848 DOI: 10.1016/j.arr.2023.102119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
In Alzheimer disease (AD), amyloid precursor protein (APP) and production of amyloid beta (Aβ) which is generated by amyloidogenic pathway is implicated in neurotoxicity and neuronal cell deaths. However, physiological Aβ level is essential to improves neuronal survival, attenuates neuronal apoptosis and has neuroprotective effect. In addition, physiological APP level has neurotrophic effect on the central nervous system (CNS). APP has a critical role in the brain growth and development via activation of long-term potentiation (LTP) and acceleration of neurite outgrowth. Moreover, APP is cleaved by α secretase to form a neuroprotective soluble APP alpha (sAPPα) in non-amyloidogenic pathway. Consequently, this mini-review purposes to highlight the possible beneficial role of APP and Aβ. In addition, this mini-review discussed the modulation of APP processing and Aβ production.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
17
|
Chen Y, He Y, Han J, Wei W, Chen F. Blood-brain barrier dysfunction and Alzheimer's disease: associations, pathogenic mechanisms, and therapeutic potential. Front Aging Neurosci 2023; 15:1258640. [PMID: 38020775 PMCID: PMC10679748 DOI: 10.3389/fnagi.2023.1258640] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ), hyperphosphorylation of tau, and neuroinflammation in the brain. The blood-brain barrier (BBB) limits solutes from circulating blood from entering the brain, which is essential for neuronal functioning. Focusing on BBB function is important for the early detection of AD and in-depth study of AD pathogenic mechanisms. However, the mechanism of BBB alteration in AD is still unclear, which hinders further research on therapeutics that target the BBB to delay the progression of AD. The exact timing of the vascular abnormalities in AD and the complex cause-and-effect relationships remain uncertain. Thus, it is necessary to summarize and emphasize this process. First, in this review, the current evidence for BBB dysfunction in AD is summarized. Then, the interrelationships and pathogenic mechanisms between BBB dysfunction and the risk factors for AD, such as Aβ, tau, neuroinflammation, apolipoprotein E (ApoE) genotype and aging, were analyzed. Finally, we discuss the current status and future directions of therapeutic AD strategies targeting the BBB. We hope that these summaries or reviews will allow readers to better understand the relationship between the BBB and AD.
Collapse
Affiliation(s)
- Yanting Chen
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yanfang He
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinling Han
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Chen
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Chew KS, Wells RC, Moshkforoush A, Chan D, Lechtenberg KJ, Tran HL, Chow J, Kim DJ, Robles-Colmenares Y, Srivastava DB, Tong RK, Tong M, Xa K, Yang A, Zhou Y, Akkapeddi P, Annamalai L, Bajc K, Blanchette M, Cherf GM, Earr TK, Gill A, Huynh D, Joy D, Knight KN, Lac D, Leung AWS, Lexa KW, Liau NPD, Becerra I, Malfavon M, McInnes J, Nguyen HN, Lozano EI, Pizzo ME, Roche E, Sacayon P, Calvert MEK, Daneman R, Dennis MS, Duque J, Gadkar K, Lewcock JW, Mahon CS, Meisner R, Solanoy H, Thorne RG, Watts RJ, Zuchero YJY, Kariolis MS. CD98hc is a target for brain delivery of biotherapeutics. Nat Commun 2023; 14:5053. [PMID: 37598178 PMCID: PMC10439950 DOI: 10.1038/s41467-023-40681-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023] Open
Abstract
Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TVCD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATVCD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATVCD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TVCD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.
Collapse
Affiliation(s)
- Kylie S Chew
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Robert C Wells
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Arash Moshkforoush
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Darren Chan
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kendra J Lechtenberg
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Hai L Tran
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Johann Chow
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Do Jin Kim
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | | | - Devendra B Srivastava
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Raymond K Tong
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Mabel Tong
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kaitlin Xa
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Alexander Yang
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Yinhan Zhou
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Padma Akkapeddi
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Lakshman Annamalai
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kaja Bajc
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Marie Blanchette
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Gerald Maxwell Cherf
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Timothy K Earr
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Audrey Gill
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David Huynh
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David Joy
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kristen N Knight
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Diana Lac
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Amy Wing-Sze Leung
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Katrina W Lexa
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Nicholas P D Liau
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Isabel Becerra
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Mario Malfavon
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Joseph McInnes
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Hoang N Nguyen
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Edwin I Lozano
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Michelle E Pizzo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Elysia Roche
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Patricia Sacayon
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Meredith E K Calvert
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Richard Daneman
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Mark S Dennis
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Joseph Duque
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kapil Gadkar
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Joseph W Lewcock
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Cathal S Mahon
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - René Meisner
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Hilda Solanoy
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Robert G Thorne
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan J Watts
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Y Joy Yu Zuchero
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Mihalis S Kariolis
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| |
Collapse
|
19
|
Pardridge WM. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. FRONTIERS IN DRUG DELIVERY 2023; 3:1227816. [PMID: 37583474 PMCID: PMC10426772 DOI: 10.3389/fddev.2023.1227816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Therapeutic antibody drug development is a rapidly growing sector of the pharmaceutical industry. However, antibody drug development for the brain is a technical challenge, and therapeutic antibodies for the central nervous system account for ~3% of all such agents. The principal obstacle to antibody drug development for brain or spinal cord is the lack of transport of large molecule biologics across the blood-brain barrier (BBB). Therapeutic antibodies can be made transportable through the blood-brain barrier by the re-engineering of the therapeutic antibody as a BBB-penetrating bispecific antibody (BSA). One arm of the BSA is the therapeutic antibody and the other arm of the BSA is a transporting antibody. The transporting antibody targets an exofacial epitope on a BBB receptor, and this enables receptor-mediated transcytosis (RMT) of the BSA across the BBB. Following BBB transport, the therapeutic antibody then engages the target receptor in brain. RMT systems at the BBB that are potential conduits to the brain include the insulin receptor (IR), the transferrin receptor (TfR), the insulin-like growth factor receptor (IGFR) and the leptin receptor. Therapeutic antibodies have been re-engineered as BSAs that target the insulin receptor, TfR, or IGFR RMT systems at the BBB for the treatment of Alzheimer's disease and Parkinson's disease.
Collapse
|
20
|
Hjelm LC, Lindberg H, Ståhl S, Löfblom J. Affibody Molecules Intended for Receptor-Mediated Transcytosis via the Transferrin Receptor. Pharmaceuticals (Basel) 2023; 16:956. [PMID: 37513868 PMCID: PMC10383291 DOI: 10.3390/ph16070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The development of biologics for diseases affecting the central nervous system has been less successful compared to other disease areas, in part due to the challenge of delivering drugs to the brain. The most well-investigated and successful strategy for increasing brain uptake of biological drugs is using receptor-mediated transcytosis over the blood-brain barrier and, in particular, targeting the transferrin receptor-1 (TfR). Here, affibody molecules are selected for TfR using phage display technology. The two most interesting candidates demonstrated binding to human TfR, cross-reactivity to the murine orthologue, non-competitive binding with human transferrin, and binding to TfR-expressing brain endothelial cell lines. Single amino acid mutagenesis of the affibody molecules revealed the binding contribution of individual residues and was used to develop second-generation variants with improved properties. The second-generation variants were further analyzed and showed an ability for transcytosis in an in vitro transwell assay. The new TfR-specific affibody molecules have the potential for the development of small brain shuttles for increasing the uptake of various compounds to the central nervous system and thus warrant further investigations.
Collapse
Affiliation(s)
- Linnea Charlotta Hjelm
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Hanna Lindberg
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Choe H, Antee T, Ge X. Substrate derived sequences act as subsite-blocking motifs in protease inhibitory antibodies. Protein Sci 2023; 32:e4691. [PMID: 37278099 PMCID: PMC10285753 DOI: 10.1002/pro.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Proteases are involved in many physiologic processes, and dysregulated proteolysis is basis of a variety of diseases. Specific inhibition of pathogenetic proteases via monoclonal antibodies therefore holds significant therapeutic promise. Inspired by the competitive mechanism utilized by many naturally occurring and man-made protease inhibitors, we hypothesized that substrate-like peptide sequences can act as protease subsite blocking motifs if they occupy only one side of the reaction center. To test this hypothesis, a degenerate codon library representing MMP-14 substrate profiles at P1-P5' positions was constructed in the context of an anti-MMP-14 Fab by replacing its inhibitory motif in CDR-H3 with MMP-14 substrate repertoires. After selection for MMP-14 active-site binders by phage panning, results indicated that diverse substrate-like sequences conferring antibodies inhibitory potencies were enriched in the isolated clones. Optimal residues at each of P1-P5' positions were then identified, and the corresponding mutation combinations showed improved characteristics as effective inhibitors of MMP-14. Insights on efficient library designs for inhibitory peptide motifs were further discussed. Overall, this study proved the concept that substrate-derived sequences were able to behave as the inhibitory motifs in protease-specific antibodies. With accumulating data available on protease substrate profiles, we expect the approach described here can be broadly applied to facilitate the generation of antibody inhibitors targeting biomedically important proteases.
Collapse
Affiliation(s)
- Hyunjun Choe
- Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
- Present address:
Arrowhead PharmaceuticalsMadisonWIUSA
| | - Tara Antee
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
| | - Xin Ge
- Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
| |
Collapse
|
22
|
Baghirov H. Receptor-mediated transcytosis of macromolecules across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1699-1711. [PMID: 37658673 DOI: 10.1080/17425247.2023.2255138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION The blood-brain barrier (BBB) restricts brain access of virtually all macromolecules. Receptor-mediated transcytosis (RMT) is one strategy toward their brain delivery. In this strategy, targeting ligands conjugated to therapeutic payload or decorating particles containing the payload interact with targets on brain capillary endothelial cells (BCEC), triggering internalization, trafficking, and release from BCEC. AREAS COVERED RMT at the BBB has leveraged multiple formats of macromolecules and large particles. Interactions between those and BCEC have been studied primarily using antibodies, with findings applicable to the design of larger particles. BBB-penetrant constructs have also been identified in screening campaigns and directed evolution, and subsequently found to interact with RMT targets. In addition, BCEC targeted by constructs incorporating genomic payload can be made to produce therapeutic proteins. EXPERT OPINION While targeting may not be strictly necessary to reach a therapeutic effect for all macromolecules, it can improve a molecule's BBB transport, exposing it to the entire brain parenchyma and enhancing its effect. Constructs with better BCEC transcytosis may be designed rationally, leveraging knowledge about BCEC trafficking, and found in screening campaigns, where this knowledge can reduce the search space and improve iterative refinement. Identification of new targets may also help generate BBB-crossing constructs.
Collapse
Affiliation(s)
- Habib Baghirov
- Roche Informatics, F. Hoffmann-La Roche Ltd, Poznań, Poland
| |
Collapse
|
23
|
Rué L, Jaspers T, Degors IMS, Noppen S, Schols D, De Strooper B, Dewilde M. Novel Human/Non-Human Primate Cross-Reactive Anti-Transferrin Receptor Nanobodies for Brain Delivery of Biologics. Pharmaceutics 2023; 15:1748. [PMID: 37376196 DOI: 10.3390/pharmaceutics15061748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The blood-brain barrier (BBB), while being the gatekeeper of the central nervous system (CNS), is a bottleneck for the treatment of neurological diseases. Unfortunately, most of the biologicals do not reach their brain targets in sufficient quantities. The antibody targeting of receptor-mediated transcytosis (RMT) receptors is an exploited mechanism that increases brain permeability. We previously discovered an anti-human transferrin receptor (TfR) nanobody that could efficiently deliver a therapeutic moiety across the BBB. Despite the high homology between human and cynomolgus TfR, the nanobody was unable to bind the non-human primate receptor. Here we report the discovery of two nanobodies that were able to bind human and cynomolgus TfR, making these nanobodies more clinically relevant. Whereas nanobody BBB00515 bound cynomolgus TfR with 18 times more affinity than it did human TfR, nanobody BBB00533 bound human and cynomolgus TfR with similar affinities. When fused with an anti-beta-site amyloid precursor protein cleaving enzyme (BACE1) antibody (1A11AM), each of the nanobodies was able to increase its brain permeability after peripheral injection. A 40% reduction of brain Aβ1-40 levels could be observed in mice injected with anti-TfR/BACE1 bispecific antibodies when compared to vehicle-injected mice. In summary, we found two nanobodies that could bind both human and cynomolgus TfR with the potential to be used clinically to increase the brain permeability of therapeutic biologicals.
Collapse
Affiliation(s)
- Laura Rué
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
| | - Tom Jaspers
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Isabelle M S Degors
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Maarten Dewilde
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Villafuerte-Vega RC, Li HW, Slaney TR, Chennamsetty N, Chen G, Tao L, Ruotolo BT. Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics. Anal Chem 2023; 95:6962-6970. [PMID: 37067470 DOI: 10.1021/acs.analchem.3c00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Bispecific antibodies (bsAbs) represent a critically important class of emerging therapeutics capable of targeting two different antigens simultaneously. As such, bsAbs have been developed as effective treatment agents for diseases that remain challenging for conventional monoclonal antibody (mAb) therapeutics to access. Despite these advantages, bsAbs are intricate molecules, requiring both the appropriate engineering and pairing of heavy and light chains derived from separate parent mAbs. Current analytical tools for tracking the bsAb construction process have demonstrated a limited ability to robustly probe the higher-order structure (HOS) of bsAbs. Native ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) have proven to be useful tools in probing the HOS of mAb therapeutics. In this report, we describe a series of detailed and quantitative IM-MS and CIU data sets that reveal HOS details associated with a knob-into-hole (KiH) bsAb model system and its corresponding parent mAbs. We find that quantitative analysis of CIU data indicates that global KiH bsAb stability occupies an intermediate space between the stabilities recorded for its parent mAbs. Furthermore, our CIU data identify the hole-containing half of the KiH bsAb construct to be the least stable, thus driving much of the overall stability of the KiH bsAb. An analysis of both intact bsAb and enzymatic fragments allows us to associate the first and second CIU transitions observed for the intact KiH bsAb to the unfolding Fab and Fc domains, respectively. This result is likely general for CIU data collected for low charge state mAb ions and is supported by data acquired for deglycosylated KiH bsAb and mAb constructs, each of which indicates greater destabilization of the second CIU transition observed in our data. When integrated, our CIU analysis allows us to link changes in the first CIU transition primarily to the Fab region of the hole-containing halfmer, while the second CIU transition is likely strongly connected to the Fc region of the knob-containing halfmer. Taken together, our results provide an unprecedented road map for evaluating the domain-level stabilities and HOS of both KiH bsAb and mAb constructs using CIU.
Collapse
Affiliation(s)
| | - Henry W Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas R Slaney
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Naresh Chennamsetty
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Guodong Chen
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Li Tao
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Choi BJ, Park MH, Park KH, Han WH, Yoon HJ, Jung HY, Hong JY, Chowdhury MR, Kim KY, Lee J, Song IS, Pang M, Choi MK, Gulbins E, Reichel M, Kornhuber J, Hong CW, Kim C, Kim SH, Schuchman EH, Jin HK, Bae JS. Immunotherapy targeting plasma ASM is protective in a mouse model of Alzheimer's disease. Nat Commun 2023; 14:1631. [PMID: 36959217 PMCID: PMC10036484 DOI: 10.1038/s41467-023-37316-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
Acid sphingomyelinase (ASM) has been implicated in neurodegenerative disease pathology, including Alzheimer's disease (AD). However, the specific role of plasma ASM in promoting these pathologies is poorly understood. Herein, we explore plasma ASM as a circulating factor that accelerates neuropathological features in AD by exposing young APP/PS1 mice to the blood of mice overexpressing ASM, through parabiotic surgery. Elevated plasma ASM was found to enhance several neuropathological features in the young APP/PS1 mice by mediating the differentiation of blood-derived, pathogenic Th17 cells. Antibody-based immunotherapy targeting plasma ASM showed efficient inhibition of ASM activity in the blood of APP/PS1 mice and, interestingly, led to prophylactic effects on neuropathological features by suppressing pathogenic Th17 cells. Our data reveals insights into the potential pathogenic mechanisms underlying AD and highlights ASM-targeting immunotherapy as a potential strategy for further investigation.
Collapse
Affiliation(s)
- Byung Jo Choi
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Min Hee Park
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kang Ho Park
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Wan Hui Han
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hee Ji Yoon
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hye Yoon Jung
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ju Yeon Hong
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Md Riad Chowdhury
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyung Yeol Kim
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jihoon Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Minyeong Pang
- College of Pharmacy, Dankook University, Cheon-an, South Korea
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an, South Korea
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Chang-Won Hong
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Changho Kim
- Department of Emergency Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hee Kyung Jin
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea.
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea.
| | - Jae-Sung Bae
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea.
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
26
|
Shukla AK, Misra S. Bispecific antibodies and its applications: a novel approach for targeting SARS-Cov-2. J Basic Clin Physiol Pharmacol 2023; 34:161-168. [PMID: 36607905 DOI: 10.1515/jbcpp-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic remains a severe global threat, with the world engulfed in the struggle against the disease's second or third waves, which are approaching frightening proportions in terms of cases and mortality in many nations. Despite the critical need for effective therapy, there is still uncertainty about the optimal practices for treating COVID-19 with various pharmaceutical approaches. This being third year, global immunity and eradication of SARS-CoV-2 is currently seems to be out of reach. Efforts to produce safe and effective vaccinations have shown promise, and progress is being made. Additional therapeutic modalities, as well as vaccine testing in children, are required for prophylaxis and treatment of high-risk individuals. As a result, neutralising antibodies and other comparable therapeutic options offer a lot of promise as immediate and direct antiviral medications. Bispecific antibodies offer a lot of potential in COVID-19 treatment because of their qualities including stability, small size and ease of manufacture. These can be used to control the virus's infection of the lungs because they are available in an inhalational form. To combat the COVID-19 pandemic, innovative approaches with effective nanobodies, high-expression yield and acceptable costs may be required.
Collapse
Affiliation(s)
- Ajay Kumar Shukla
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Bhopal, Bhopal, India
| | - Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| |
Collapse
|
27
|
Edavettal S, Cejudo-Martin P, Dasgupta B, Yang D, Buschman MD, Domingo D, Van Kolen K, Jaiprasat P, Gordon R, Schutsky K, Geist B, Taylor N, Soubrane CH, Van Der Helm E, LaCombe A, Ainekulu Z, Lacy E, Aligo J, Ho J, He Y, Lebowitz PF, Patterson JT, Scheer JM, Singh S. Enhanced delivery of antibodies across the blood-brain barrier via TEMs with inherent receptor-mediated phagocytosis. MED 2022; 3:860-882.e15. [PMID: 36257298 DOI: 10.1016/j.medj.2022.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/28/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND The near impermeability of the blood-brain barrier (BBB) and the unique neuroimmune environment of the CNS prevents the effective use of antibodies in neurological diseases. Delivery of biotherapeutics to the brain can be enabled through receptor-mediated transcytosis via proteins such as the transferrin receptor, although limitations such as the ability to use Fc-mediated effector function to clear pathogenic targets can introduce safety liabilities. Hence, novel delivery approaches with alternative clearance mechanisms are warranted. METHODS Binders that optimized transport across the BBB, known as transcytosis-enabling modules (TEMs), were identified using a combination of antibody discovery techniques and pharmacokinetic analyses. Functional activity of TEMs were subsequently evaluated by imaging for the ability of myeloid cells to phagocytose target proteins and cells. FINDINGS We demonstrated significantly enhanced brain exposure of therapeutic antibodies using optimal transferrin receptor or CD98 TEMs. We found that these modules also mediated efficient clearance of tau aggregates and HER2+ tumor cells via a non-classical phagocytosis mechanism through direct engagement of myeloid cells. This mode of clearance potentially avoids the known drawbacks of FcγR-mediated antibody mechanisms in the brain such as the neurotoxic release of proinflammatory cytokines and immune cell exhaustion. CONCLUSIONS Our study reports a new brain delivery platform that harnesses receptor-mediated transcytosis to maximize brain uptake and uses a non-classical phagocytosis mechanism to efficiently clear pathologic proteins and cells. We believe these findings will transform therapeutic approaches to treat CNS diseases. FUNDING This research was funded by Janssen, Pharmaceutical Companies of Johnson & Johnson.
Collapse
Affiliation(s)
| | | | | | - Danlin Yang
- Janssen Research and Development, Spring House, PA 19477, USA
| | | | | | | | | | - Renata Gordon
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Keith Schutsky
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Brian Geist
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Natalie Taylor
- Janssen Research and Development, San Diego, CA 92121, USA
| | | | | | - Ann LaCombe
- Janssen Research and Development, San Diego, CA 92121, USA
| | | | - Eilyn Lacy
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Jason Aligo
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Jason Ho
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Yingbo He
- Janssen Research and Development, San Diego, CA 92121, USA
| | | | | | - Justin M Scheer
- Janssen Research and Development, Spring House, PA 19477, USA.
| | - Sanjaya Singh
- Janssen Research and Development, Spring House, PA 19477, USA
| |
Collapse
|
28
|
Wang YR, Wang MT, Zeng XQ, Liu YH, Wang YJ. Associations of Naturally Occurring Antibodies to Presenilin-1 with Brain Amyloid-β Load and Cognitive Impairment in Alzheimer's Disease. J Alzheimers Dis 2022; 90:1493-1500. [PMID: 36278353 DOI: 10.3233/jad-220775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Imbalance between the production and clearance of amyloid-β (Aβ) promotes the development of Alzheimer's disease (AD). Presenilin-1 (PS1) is the catalytic subunit of γ-secretase, which is involved in the process of Aβ production. The profiles of autoantibodies are dysregulated in AD patients. OBJECTIVE This study aims to investigate the relative levels and clinical relevance of naturally occurring antibodies to PS1 (NAbs-PS1) in AD. METHODS A total of 55 subjects with AD (including both dementia and mild cognitive impairment due to AD), 28 subjects with cognitive impairment (including both dementia and mild cognitive impairment) not due to AD (non-AD CI), and 70 cognitively normal (CN) subjects were recruited. One-site ELISA was utilized to determine the relative levels of NAbs-PS1 in plasma. RESULTS AD subjects had lower plasma levels of NAbs-PS1 than CN and non-AD CI subjects. Plasma NAbs-PS1 were negatively associated with the brain Aβ load, as reflected by PET-PiB SUVR, and were positively associated with cognitive functions of participants. Plasma NAbs-PS1 discriminated AD patients from CN with an area under the curve (AUC) of 0.730, a sensitivity of 69.09%, and a specificity of 67.14%, and they discriminated AD patients from non-AD CI subjects with an AUC of 0.750, a specificity of 70.91%, and a sensitivity of 71.43%. CONCLUSION This study found an aberrant immunological phenotype in AD patients. Further investigations are needed to determine the pathophysiological functions of NAbs-PS1 in AD.
Collapse
Affiliation(s)
- Ye-Ran Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Meng-Ting Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Qin Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Aging and Brain Disease, Chongqing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
29
|
Wouters Y, Jaspers T, Rué L, Serneels L, De Strooper B, Dewilde M. VHHs as tools for therapeutic protein delivery to the central nervous system. Fluids Barriers CNS 2022; 19:79. [PMID: 36192747 PMCID: PMC9531356 DOI: 10.1186/s12987-022-00374-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background The blood brain barrier (BBB) limits the therapeutic perspective for central nervous system (CNS) disorders. Previously we found an anti-mouse transferrin receptor (TfR) VHH (Nb62) that was able to deliver a biologically active neuropeptide into the CNS in mice. Here, we aimed to test its potential to shuttle a therapeutic relevant cargo. Since this VHH could not recognize the human TfR and hence its translational potential is limited, we also aimed to find and validate an anti-human transferrin VHH to deliver a therapeutic cargo into the CNS. Methods Alpaca immunizations with human TfR, and subsequent phage selection and screening for human TfR binding VHHs was performed to find a human TfR specific VHH (Nb188). Its ability to cross the BBB was determined by fusing it to neurotensin, a neuropeptide that reduces body temperature when present in the CNS but is not able to cross the BBB on its own. Next, the anti–β-secretase 1 (BACE1) 1A11 Fab and Nb62 or Nb188 were fused to an Fc domain to generate heterodimeric antibodies (1A11AM-Nb62 and 1A11AM-Nb188). These were then administered intravenously in wild-type mice and in mice in which the murine apical domain of the TfR was replaced by the human apical domain (hAPI KI). Pharmacokinetic and pharmacodynamic (PK/PD) studies were performed to assess the concentration of the heterodimeric antibodies in the brain over time and the ability to inhibit brain-specific BACE1 by analysing the brain levels of Aβ1–40. Results Selections and screening of a phage library resulted in the discovery of an anti-human TfR VHH (Nb188). Fusion of Nb188 to neurotensin induced hypothermia after intravenous injections in hAPI KI mice. In addition, systemic administration 1A11AM-Nb62 and 1A11AM-Nb188 fusions were able to reduce Aβ1-40 levels in the brain whereas 1A11AM fused to an irrelevant VHH did not. A PK/PD experiment showed that this effect could last for 3 days. Conclusion We have discovered an anti-human TfR specific VHH that is able to reach the CNS when administered systemically. In addition, both the currently discovered anti-human TfR VHH and the previously identified mouse-specific anti-TfR VHH, are both able to shuttle a therapeutically relevant cargo into the CNS. We suggest the mouse-specific VHH as a valuable research tool in mice and the human-specific VHH as a moiety to enhance the delivery efficiency of therapeutics into the CNS in human patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00374-4.
Collapse
Affiliation(s)
- Yessica Wouters
- VIB Center for Brain and Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, box 602, 3000, Louvain, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000, Louvain, Belgium.,Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tom Jaspers
- VIB Center for Brain and Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, box 602, 3000, Louvain, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000, Louvain, Belgium.,Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Louvain, Belgium
| | - Laura Rué
- VIB Center for Brain and Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, box 602, 3000, Louvain, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000, Louvain, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain and Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, box 602, 3000, Louvain, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000, Louvain, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, box 602, 3000, Louvain, Belgium. .,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000, Louvain, Belgium. .,UK Dementia Research Institute, University College London, London, UK.
| | - Maarten Dewilde
- VIB Center for Brain and Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, box 602, 3000, Louvain, Belgium. .,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000, Louvain, Belgium. .,Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
30
|
PBPK model for antibody disposition in mouse brain: validation using large-pore microdialysis data. J Pharmacokinet Pharmacodyn 2022; 49:579-592. [DOI: 10.1007/s10928-022-09823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
|
31
|
Designing antibodies as therapeutics. Cell 2022; 185:2789-2805. [PMID: 35868279 DOI: 10.1016/j.cell.2022.05.029] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022]
Abstract
Antibody therapeutics are a large and rapidly expanding drug class providing major health benefits. We provide a snapshot of current antibody therapeutics including their formats, common targets, therapeutic areas, and routes of administration. Our focus is on selected emerging directions in antibody design where progress may provide a broad benefit. These topics include enhancing antibodies for cancer, antibody delivery to organs such as the brain, gastrointestinal tract, and lungs, plus antibody developability challenges including immunogenicity risk assessment and mitigation and subcutaneous delivery. Machine learning has the potential, albeit as yet largely unrealized, for a transformative future impact on antibody discovery and engineering.
Collapse
|
32
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Ruck T, Nimmerjahn F, Wiendl H, Lünemann JD. Next-generation antibody-based therapies in neurology. Brain 2022; 145:1229-1241. [PMID: 34928330 PMCID: PMC9630709 DOI: 10.1093/brain/awab465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Antibody-based therapeutics are now standard in the treatment of neuroinflammatory diseases, and the spectrum of neurological diseases targeted by those approaches continues to grow. The efficacy of antibody-based drug platforms is largely determined by the specificity-conferring antigen-binding fragment (Fab) and the crystallizable fragment (Fc) driving antibody function. The latter provides specific instructions to the immune system by interacting with cellular Fc receptors and complement components. Extensive engineering efforts have enabled tuning of Fc functions to modulate effector functions and to prolong or reduce antibody serum half-lives. Technologies that improve bioavailability of antibody-based treatment platforms within the CNS parenchyma are being developed and could invigorate drug discovery for a number of brain diseases for which current therapeutic options are limited. These powerful approaches are currently being tested in clinical trials or have been successfully translated into the clinic. Here, we review recent developments in the design and implementation of antibody-based treatment modalities in neurological diseases.
Collapse
Affiliation(s)
- Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Falk Nimmerjahn
- Department of Biology, Division of Genetics, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
34
|
Marino M, Holt MG. AAV Vector-Mediated Antibody Delivery (A-MAD) in the Central Nervous System. Front Neurol 2022; 13:870799. [PMID: 35493843 PMCID: PMC9039256 DOI: 10.3389/fneur.2022.870799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
In the last four decades, monoclonal antibodies and their derivatives have emerged as a powerful class of therapeutics, largely due to their exquisite targeting specificity. Several clinical areas, most notably oncology and autoimmune disorders, have seen the successful introduction of monoclonal-based therapeutics. However, their adoption for treatment of Central Nervous System diseases has been comparatively slow, largely due to issues of efficient delivery resulting from limited permeability of the Blood Brain Barrier. Nevertheless, CNS diseases are becoming increasingly prevalent as societies age, accounting for ~6.5 million fatalities worldwide per year. Therefore, harnessing the full therapeutic potential of monoclonal antibodies (and their derivatives) in this clinical area has become a priority. Adeno-associated virus-based vectors (AAVs) are a potential solution to this problem. Preclinical studies have shown that AAV vector-mediated antibody delivery provides protection against a broad range of peripheral diseases, such as the human immunodeficiency virus (HIV), influenza and malaria. The parallel identification and optimization of AAV vector platforms which cross the Blood Brain Barrier with high efficiency, widely transducing the Central Nervous System and allowing high levels of local transgene production, has now opened a number of interesting scenarios for the development of AAV vector-mediated antibody delivery strategies to target Central Nervous System proteinopathies.
Collapse
Affiliation(s)
- Marika Marino
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Synapse Biology Group, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Matthew G. Holt
| |
Collapse
|
35
|
Marino M, Zhou L, Rincon MY, Callaerts-Vegh Z, Verhaert J, Wahis J, Creemers E, Yshii L, Wierda K, Saito T, Marneffe C, Voytyuk I, Wouters Y, Dewilde M, Duqué SI, Vincke C, Levites Y, Golde TE, Saido TC, Muyldermans S, Liston A, De Strooper B, Holt MG. AAV-mediated delivery of an anti-BACE1 VHH alleviates pathology in an Alzheimer's disease model. EMBO Mol Med 2022; 14:e09824. [PMID: 35352880 PMCID: PMC8988209 DOI: 10.15252/emmm.201809824] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/18/2023] Open
Abstract
Single domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood-brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing Adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS. As a proof-of-concept, we explored the potential of AAV-delivered VHH to inhibit BACE1, a well-characterized target in Alzheimer's disease. First, we generated a panel of VHHs targeting BACE1, one of which, VHH-B9, shows high selectivity for BACE1 and efficacy in lowering BACE1 activity in vitro. We further demonstrate that a single systemic dose of AAV-VHH-B9 produces positive long-term (12 months plus) effects on amyloid load, neuroinflammation, synaptic function, and cognitive performance, in the AppNL-G-F Alzheimer's disease mouse model. These results constitute a novel therapeutic approach forneurodegenerative diseases, which is applicable to a range of CNS disease targets.
Collapse
Affiliation(s)
- Marika Marino
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Lujia Zhou
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Melvin Y Rincon
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Jens Verhaert
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jérôme Wahis
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Eline Creemers
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Electrophysiology Expertise Unit, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Lidia Yshii
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Electrophysiology Expertise Unit, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Catherine Marneffe
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Iryna Voytyuk
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Yessica Wouters
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maarten Dewilde
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sandra I Duqué
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yona Levites
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Adrian Liston
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,UK Dementia Research institute at UCL, London, UK.,Leuven Brain Institute, Leuven, Belgium
| | - Matthew G Holt
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
36
|
Zelek WM, Morgan BP. Targeting complement in neurodegeneration: challenges, risks, and strategies. Trends Pharmacol Sci 2022; 43:615-628. [DOI: 10.1016/j.tips.2022.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
|
37
|
Arguello A, Mahon CS, Calvert ME, Chan D, Dugas JC, Pizzo ME, Thomsen ER, Chau R, Damo LA, Duque J, Fang M, Giese T, Kim DJ, Liang N, Nguyen HN, Solanoy H, Tsogtbaatar B, Ullman JC, Wang J, Dennis MS, Diaz D, Gunasekaran K, Henne KR, Lewcock JW, Sanchez PE, Troyer MD, Harris JM, Scearce-Levie K, Shan L, Watts RJ, Thorne RG, Henry AG, Kariolis MS. Molecular architecture determines brain delivery of a transferrin receptor–targeted lysosomal enzyme. J Exp Med 2022; 219:213038. [PMID: 35226042 PMCID: PMC8932535 DOI: 10.1084/jem.20211057] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
Delivery of biotherapeutics across the blood–brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.
Collapse
Affiliation(s)
| | | | | | - Darren Chan
- Denali Therapeutics Inc., South San Francisco, CA
| | | | | | | | - Roni Chau
- Denali Therapeutics Inc., South San Francisco, CA
| | | | - Joseph Duque
- Denali Therapeutics Inc., South San Francisco, CA
| | - Meng Fang
- Denali Therapeutics Inc., South San Francisco, CA
| | - Tina Giese
- Denali Therapeutics Inc., South San Francisco, CA
| | - Do Jin Kim
- Denali Therapeutics Inc., South San Francisco, CA
| | | | | | | | | | | | - Junhua Wang
- Denali Therapeutics Inc., South San Francisco, CA
| | | | - Dolores Diaz
- Denali Therapeutics Inc., South San Francisco, CA
| | | | | | | | | | | | | | | | - Lu Shan
- Denali Therapeutics Inc., South San Francisco, CA
| | | | - Robert G. Thorne
- Denali Therapeutics Inc., South San Francisco, CA
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN
| | | | | |
Collapse
|
38
|
Rimmerman N, Verdiger H, Goldenberg H, Naggan L, Robinson E, Kozela E, Gelb S, Reshef R, Ryan KM, Ayoun L, Refaeli R, Ashkenazi E, Schottlender N, Ben Hemo-Cohen L, Pienica C, Aharonian M, Dinur E, Lazar K, McLoughlin DM, Zvi AB, Yirmiya R. Microglia and their LAG3 checkpoint underlie the antidepressant and neurogenesis-enhancing effects of electroconvulsive stimulation. Mol Psychiatry 2022; 27:1120-1135. [PMID: 34650207 DOI: 10.1038/s41380-021-01338-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022]
Abstract
Despite evidence implicating microglia in the etiology and pathophysiology of major depression, there is paucity of information regarding the contribution of microglia-dependent molecular pathways to antidepressant procedures. In this study, we investigated the role of microglia in a mouse model of depression (chronic unpredictable stress-CUS) and its reversal by electroconvulsive stimulation (ECS), by examining the effects of microglia depletion with the colony stimulating factor-1 antagonist PLX5622. Microglia depletion did not change basal behavioral measures or the responsiveness to CUS, but it completely abrogated the therapeutic effects of ECS on depressive-like behavior and neurogenesis impairment. Treatment with the microglia inhibitor minocycline concurrently with ECS also diminished the antidepressant and pro-neurogenesis effects of ECS. Hippocampal RNA-Seq analysis revealed that ECS significantly increased the expression of genes related to neurogenesis and dopamine signaling, while reducing the expression of several immune checkpoint genes, particularly lymphocyte-activating gene-3 (Lag3), which was the only microglial transcript significantly altered by ECS. None of these molecular changes occurred in microglia-depleted mice. Immunohistochemical analyses showed that ECS reversed the CUS-induced changes in microglial morphology and elevation in microglial LAG3 receptor expression. Consistently, either acute or chronic systemic administration of a LAG3 monoclonal antibody, which readily penetrated into the brain parenchyma and was found to serve as a direct checkpoint blocker in BV2 microglia cultures, rapidly rescued the CUS-induced microglial alterations, depressive-like symptoms, and neurogenesis impairment. These findings suggest that brain microglial LAG3 represents a promising target for novel antidepressant therapeutics.
Collapse
Affiliation(s)
- Neta Rimmerman
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hodaya Verdiger
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Goldenberg
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Naggan
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Robinson
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ewa Kozela
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Gelb
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronen Reshef
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, Ireland
| | - Lily Ayoun
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Refaeli
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Ashkenazi
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nofar Schottlender
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Claudia Pienica
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Aharonian
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Dinur
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Koby Lazar
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, Ireland
| | - Ayal Ben Zvi
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
39
|
Ali M, Falkenhain K, Njiru BN, Murtaza-Ali M, Ruiz-Uribe NE, Haft-Javaherian M, Catchers S, Nishimura N, Schaffer CB, Bracko O. VEGF signalling causes stalls in brain capillaries and reduces cerebral blood flow in Alzheimer's mice. Brain 2022; 145:1449-1463. [PMID: 35048960 PMCID: PMC9150081 DOI: 10.1093/brain/awab387] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/09/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Increased incidence of stalled capillary blood flow caused by adhesion of
leucocytes to the brain microvascular endothelium leads to a 17%
reduction of cerebral blood flow and exacerbates short-term memory loss in
multiple mouse models of Alzheimer’s disease. Here, we report that vascular endothelial growth factor (VEGF) signalling at the
luminal side of the brain microvasculature plays an integral role in the
capillary stalling phenomenon of the APP/PS1 mouse model. Administration of the anti-mouse VEGF-A164 antibody, an isoform that inhibits
blood–brain barrier hyperpermeability, reduced the number of stalled
capillaries within an hour of injection, leading to an immediate increase in
average capillary blood flow but not capillary diameter. VEGF-A inhibition also
reduced the overall endothelial nitric oxide synthase protein concentrations,
increased occludin levels and decreased the penetration of circulating Evans
Blue dye across the blood–brain barrier into the brain parenchyma,
suggesting increased blood–brain barrier integrity. Capillaries prone to
neutrophil adhesion after anti-VEGF-A treatment also had lower occludin
concentrations than flowing capillaries. Taken together, our findings demonstrate that VEGF-A signalling in APP/PS1 mice
contributes to aberrant endothelial nitric oxide synthase /occludin-associated
blood–brain barrier permeability, increases the incidence of capillary
stalls, and leads to reductions in cerebral blood flow. Reducing leucocyte
adhesion by inhibiting luminal VEGF signalling may provide a novel and
well-tolerated strategy for improving brain microvascular blood flow in
Alzheimer’s disease patients.
Collapse
Affiliation(s)
- Muhammad Ali
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 148532
| | - Kaja Falkenhain
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 148532
| | - Brendah N Njiru
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 148532
| | - Muhammad Murtaza-Ali
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 148532
| | - Nancy E Ruiz-Uribe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 148532
| | | | | | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 148532
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 148532
| | - Oliver Bracko
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 148532
| |
Collapse
|
40
|
Mantas I, Saarinen M, Xu ZQD, Svenningsson P. Update on GPCR-based targets for the development of novel antidepressants. Mol Psychiatry 2022; 27:534-558. [PMID: 33589739 PMCID: PMC8960420 DOI: 10.1038/s41380-021-01040-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Traditional antidepressants largely interfere with monoaminergic transport or degradation systems, taking several weeks to have their therapeutic actions. Moreover, a large proportion of depressed patients are resistant to these therapies. Several atypical antidepressants have been developed which interact with G protein coupled receptors (GPCRs) instead, as direct targeting of receptors may achieve more efficacious and faster antidepressant actions. The focus of this review is to provide an update on how distinct GPCRs mediate antidepressant actions and discuss recent insights into how GPCRs regulate the pathophysiology of Major Depressive Disorder (MDD). We also discuss the therapeutic potential of novel GPCR targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles. Finally, we highlight recent advances in understanding GPCR pharmacology and structure, and how they may provide new avenues for drug development.
Collapse
Affiliation(s)
- Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
41
|
Pérez de la Lastra JM, Baca-González V, González-Acosta S, Asensio-Calavia P, Otazo-Pérez A, Morales-delaNuez A. Antibodies targeting enzyme inhibition as potential tools for research and drug development. Biomol Concepts 2021; 12:215-232. [PMID: 35104929 DOI: 10.1515/bmc-2021-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
Antibodies have transformed biomedical research and are now being used for different experimental applications. Generally, the interaction of enzymes with their specific antibodies can lead to a reduction in their enzymatic activity. The effect of the antibody is dependent on its narrow i.e. the regions of the enzyme to which it is directed. The mechanism of this inhibition is rarely a direct combination of the antibodies with the catalytic site, but is rather due to steric hindrance, barring the substrate access to the active site. In several systems, however, the interaction with the antibody induces conformational changes on the enzyme that can either inhibit or enhance its catalytic activity. The extent of enzyme inhibition or enhancement is, therefore, a reflection of the nature and distribution of the various antigenic determinants on the enzyme molecule. Currently, the mode of action of many enzymes has been elucidated at the molecular level. We here review the molecular mechanisms and recent trends by which antibodies inhibit the catalytic activity of enzymes and provide examples of how specific antibodies can be useful for the neutralization of biologically active molecules.
Collapse
Affiliation(s)
- José Manuel Pérez de la Lastra
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| | - Victoria Baca-González
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Sergio González-Acosta
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| | - Patricia Asensio-Calavia
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Andrea Otazo-Pérez
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Antonio Morales-delaNuez
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| |
Collapse
|
42
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
43
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|
44
|
Li Z, Chen Q, Wang J, Pan X, Lu W. Research Progress and Application of Bioorthogonal Reactions in Biomolecular Analysis and Disease Diagnosis. Top Curr Chem (Cham) 2021; 379:39. [PMID: 34590223 DOI: 10.1007/s41061-021-00352-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Bioorthogonal reactions are rapid, specific and high yield reactions that can be performed in in vivo microenvironments or simulated microenvironments. At present, the main biorthogonal reactions include Staudinger ligation, copper-catalyzed azide alkyne cycloaddition, strain-promoted [3 + 2] reaction, tetrazine ligation, metal-catalyzed coupling reaction and photo-induced biorthogonal reactions. To date, many reviews have reported that bioorthogonal reactions have been used widely as a powerful tool in the field of life sciences, such as in target recognition, drug discovery, drug activation, omics research, visualization of life processes or exogenous bacterial infection processes, signal transduction pathway research, chemical reaction dynamics analysis, disease diagnosis and treatment. In contrast, to date, few studies have investigated the application of bioorthogonal reactions in the analysis of biomacromolecules in vivo. Therefore, the application of bioorthogonal reactions in the analysis of proteins, nucleic acids, metabolites, enzyme activities and other endogenous molecules, and the determination of disease-related targets is reviewed. In addition, this review discusses the future development opportunities and challenges of biorthogonal reactions. This review presents an overview of recent advances for application in biomolecular analysis and disease diagnosis, with a focus on proteins, metabolites and RNA detection.
Collapse
Affiliation(s)
- Zilong Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
45
|
Custers ML, Wouters Y, Jaspers T, De Bundel D, Dewilde M, Van Eeckhaut A, Smolders I. Applicability of cerebral open flow microperfusion and microdialysis to quantify a brain-penetrating nanobody in mice. Anal Chim Acta 2021; 1178:338803. [PMID: 34482878 DOI: 10.1016/j.aca.2021.338803] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 02/02/2023]
Abstract
The use of biologics in the therapeutic landscape has increased exponentially since the last 3 decades. Nevertheless, patients with central nervous system (CNS) related disorders could not yet benefit from this revolution because the blood-brain barrier (BBB) severely hampers biologics from entering the brain. Considerable effort has been put into generating methods to modulate or circumvent the BBB for delivery of therapeutics to the CNS. A promising strategy is receptor-mediated transcytosis (RMT). Recently, Wouters et al. (2020) discovered a mouse anti-transferrin receptor nanobody that is able to deliver a biologically active peptide to the brain via RMT. The present study aims to sample a derivative of this brain-penetrating nanobody (Nb105) in the CNS. Therefore, we compared the applicability of cerebral open flow microperfusion (cOFM) and microdialysis as sampling techniques to directly obtain high molecular weight substances from the cerebral interstitial fluid. A custom AlphaScreen™ assay was validated to quantify nanobody concentrations in the samples. In vitro microdialysis probe (AtmosLM™, 1 MDa cut-off) recovery by gain and by loss for Nb105 was 18.3 ± 3.2% and 27.0 ± 2.5% respectively, whereas for cOFM it was 87.2 ± 4.0% and 97.3 ± 1.6%. Although a large difference in in vitro recovery is observed between cOFM and microdialysis, in vivo similar results were obtained. Immunohistochemical stainings showed an astrocytic and microglial reaction in the immediate vicinity along the implantation track for both probe types. Coronal sections showed higher fluorescein isothiocyanate-dextran and immunoglobulin G extravasation around the microdialysis probe track than after cOFM sampling experiments, however this leakage was clearly limited compared to a positive control where the BBB was disrupted. This is the first study that samples a bispecific nanobody in the brain's interstitial fluid in function of time, providing a pharmacokinetic profile of nanobodies in the CNS. Furthermore, this is the first time a cOFM study is performed in awake freely moving mice, providing data on inflammation and blood-brain barrier integrity in the mouse brain. Overall, this work demonstrates that, while taking into account the (bio)analytical considerations, both microdialysis and cOFM are suitable in vivo sampling techniques for quantification of nanobodies in the CNS.
Collapse
Affiliation(s)
- Marie-Laure Custers
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Yessica Wouters
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, Box 602, 3000 Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium.
| | - Tom Jaspers
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, Box 602, 3000 Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium.
| | - Dimitri De Bundel
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Maarten Dewilde
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, Box 602, 3000 Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium.
| | - Ann Van Eeckhaut
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Ilse Smolders
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
46
|
Ugbaja S, Lawal I, Kumalo H, Lawal M. Alzheimer's Disease and β-Secretase Inhibition: An Update With a Focus on Computer-Aided Inhibitor Design. Curr Drug Targets 2021; 23:266-285. [PMID: 34370634 DOI: 10.2174/1389450122666210809100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is an intensifying neurodegenerative illness due to its irreversible nature. Identification of β-site amyloid precursor protein (APP) cleaving enzyme1 (BACE1) has been a significant medicinal focus towards AD treatment, and this has opened ground for several investigations. Despite the numerous works in this direction, no BACE1 inhibitor has made it to the final approval stage as an anti-AD drug. METHOD We provide an introductory background of the subject with a general overview of the pathogenesis of AD. The review features BACE1 inhibitor design and development with a focus on some clinical trials and discontinued drugs. Using the topical keywords BACE1, inhibitor design, and computational/theoretical study in the Web of Science and Scopus database, we retrieved over 49 relevant articles. The search years are from 2010 and 2020, with analysis conducted from May 2020 to March 2021. RESULTS AND DISCUSSION Researchers have employed computational methodologies to unravel potential BACE1 inhibitors with a significant outcome. The most used computer-aided approach in BACE1 inhibitor design and binding/interaction studies are pharmacophore development, quantitative structure-activity relationship (QSAR), virtual screening, docking, and molecular dynamics (MD) simulations. These methods, plus more advanced ones including quantum mechanics/molecular mechanics (QM/MM) and QM, have proven substantial in the computational framework for BACE1 inhibitor design. Computational chemists have embraced the incorporation of in vitro assay to provide insight into the inhibition performance of identified molecules with potential inhibition towards BACE1. Significant IC50 values up to 50 nM, better than clinical trial compounds, are available in the literature. CONCLUSION The continuous failure of potent BACE1 inhibitors at clinical trials is attracting many queries prompting researchers to investigate newer concepts necessary for effective inhibitor design. The considered properties for efficient BACE1 inhibitor design seem enormous and require thorough scrutiny. Lately, researchers noticed that besides appreciable binding affinity and blood-brain barrier (BBB) permeation, BACE1 inhibitor must show low or no affinity for permeability-glycoprotein. Computational modeling methods have profound applications in drug discovery strategy. With the volume of recent in silico studies on BACE1 inhibition, the prospect of identifying potent molecules that would reach the approved level is feasible. Investigators should try pushing many of the identified BACE1 compounds with significant anti-AD properties to preclinical and clinical trial stages. We also advise computational research on allosteric inhibitor design, exosite modeling, and multisite inhibition of BACE1. These alternatives might be a solution to BACE1 drug discovery in AD therapy.
Collapse
Affiliation(s)
- Samuel Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Isiaka Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vaal University of Technology, Vanderbijlpark Campus, Boulevard, 1900, Vanderbijlpark, Saudi Arabia
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| |
Collapse
|
47
|
Palte RL, Juan V, Gomez-Llorente Y, Bailly MA, Chakravarthy K, Chen X, Cipriano D, Fayad GN, Fayadat-Dilman L, Gathiaka S, Greb H, Hall B, Handa M, Hsieh M, Kofman E, Lin H, Miller JR, Nguyen N, O'Neil J, Shaheen H, Sterner E, Strickland C, Sun A, Taremi S, Scapin G. Cryo-EM structures of inhibitory antibodies complexed with arginase 1 provide insight into mechanism of action. Commun Biol 2021; 4:927. [PMID: 34326456 PMCID: PMC8322407 DOI: 10.1038/s42003-021-02444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Human Arginase 1 (hArg1) is a metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea, and modulates T-cell-mediated immune response. Arginase-targeted therapies have been pursued across several disease areas including immunology, oncology, nervous system dysfunction, and cardiovascular dysfunction and diseases. Currently, all published hArg1 inhibitors are small molecules usually less than 350 Da in size. Here we report the cryo-electron microscopy structures of potent and inhibitory anti-hArg antibodies bound to hArg1 which form distinct macromolecular complexes that are greater than 650 kDa. With local resolutions of 3.5 Å or better we unambiguously mapped epitopes and paratopes for all five antibodies and determined that the antibodies act through orthosteric and allosteric mechanisms. These hArg1:antibody complexes present an alternative mechanism to inhibit hArg1 activity and highlight the ability to utilize antibodies as probes in the discovery and development of peptide and small molecule inhibitors for enzymes in general.
Collapse
Affiliation(s)
- Rachel L Palte
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA.
| | - Veronica Juan
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | | | - Marc Andre Bailly
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Kalyan Chakravarthy
- Department of Discovery Biology, Merck & Co., Inc., Boston, MA, USA
- Ipsen Bioscience Inc., Cambridge, MA, USA
| | - Xun Chen
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Daniel Cipriano
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Ghassan N Fayad
- Department of Preclinical Development, Merck & Co., Inc., Boston, MA, USA
| | | | - Symon Gathiaka
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Heiko Greb
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
- Synthekine Inc., Menlo Park, CA, USA
| | - Brian Hall
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
| | - Mas Handa
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Mark Hsieh
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Esther Kofman
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Heping Lin
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
| | - J Richard Miller
- Department of Discovery Biology, Merck & Co., Inc., Boston, MA, USA
| | - Nhung Nguyen
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Jennifer O'Neil
- Department of Discovery Oncology, Merck & Co., Inc., Boston, MA, USA
- Xilio Therapeutics, Waltham, MA, USA
| | - Hussam Shaheen
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
- Pandion Therapeutics, Cambridge, MA, USA
| | - Eric Sterner
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
| | - Corey Strickland
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Angie Sun
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
| | - Shane Taremi
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
| | - Giovanna Scapin
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
- NanoImaging Services, Woburn, MA, USA
| |
Collapse
|
48
|
Chen J, Zhang S, Wang W, Sun H, Zhang Q, Liu X. Binding of Inhibitors to BACE1 Affected by pH-Dependent Protonation: An Exploration from Multiple Replica Gaussian Accelerated Molecular Dynamics and MM-GBSA Calculations. ACS Chem Neurosci 2021; 12:2591-2607. [PMID: 34185514 DOI: 10.1021/acschemneuro.0c00813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To date, inhibiting the activity of β-amyloid cleaving enzyme 1 (BACE1) has been considered an efficient approach for treating Alzheimer's disease (AD). In the current work, multiple replica Gaussian accelerated molecular dynamics (MR-GaMD) simulations and the molecular mechanics general Born surface area (MM-GBSA) method were combined to investigate the effect of pH-dependent protonation on the binding of the inhibitors CS9, C6U, and 6WE to BACE1. Dynamic analyses based on the MR-GaMD trajectory show that pH-dependent protonation strongly affects the structural flexibility, correlated motions, and dynamic behavior of inhibitor-bound BACE1. According to the constructed free energy profiles, in the protonated state at low pH, inhibitor-bound BACE1 tends to populate at more conformations than in high pH. The binding free energies calculated by MM-GBSA suggest that inhibitors possess stronger binding abilities under the protonation conditions at high pH than under the protonation conditions at low pH. Moreover, pH-dependent protonation exerts a significant effect on the hydrogen bonding interactions of CS9, C6U, and 6WE to BACE1, which correspondingly alters the binding abilities of the three inhibitors to BACE1. Furthermore, in different protonated environments, three inhibitors share common interaction clusters and similar binding sites in BACE1, which are reliably used as efficient targets for the design of potent inhibitors of BACE1.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
49
|
Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS, Tong R, Kim DJ, Srivastava A, Bedard C, Henne KR, Giese T, Assimon VA, Chen X, Zhang Y, Solanoy H, Jenkins K, Sanchez PE, Kane L, Miyamoto T, Chew KS, Pizzo ME, Liang N, Calvert MEK, DeVos SL, Baskaran S, Hall S, Sweeney ZK, Thorne RG, Watts RJ, Dennis MS, Silverman AP, Zuchero YJY. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med 2021; 12:12/545/eaay1359. [PMID: 32461332 DOI: 10.1126/scitranslmed.aay1359] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/10/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Effective delivery of protein therapeutics to the central nervous system (CNS) has been greatly restricted by the blood-brain barrier (BBB). We describe the development of a BBB transport vehicle (TV) comprising an engineered Fc fragment that exploits receptor-mediated transcytosis for CNS delivery of biotherapeutics by binding a highly expressed brain endothelial cell target. TVs were engineered using directed evolution to bind the apical domain of the human transferrin receptor (hTfR) without the use of amino acid insertions, deletions, or unnatural appendages. A crystal structure of the TV-TfR complex revealed the TV binding site to be away from transferrin and FcRn binding sites, which was further confirmed experimentally in vitro and in vivo. Recombinant expression of TVs fused to anti-β-secretase (BACE1) Fabs yielded antibody transport vehicle (ATV) molecules with native immunoglobulin G (IgG) structure and stability. Peripheral administration of anti-BACE1 ATVs to hTfR-engineered mice and cynomolgus monkeys resulted in substantially improved CNS uptake and sustained pharmacodynamic responses. The TV platform readily accommodates numerous additional configurations, including bispecific antibodies and protein fusions, yielding a highly modular CNS delivery platform.
Collapse
Affiliation(s)
- Mihalis S Kariolis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| | - Robert C Wells
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Jennifer A Getz
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Wanda Kwan
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Cathal S Mahon
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Raymond Tong
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Do Jin Kim
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Ankita Srivastava
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Catherine Bedard
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Kirk R Henne
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Tina Giese
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Victoria A Assimon
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Xiaocheng Chen
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Yin Zhang
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Hilda Solanoy
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Katherine Jenkins
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Pascal E Sanchez
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Lesley Kane
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Takashi Miyamoto
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Kylie S Chew
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Michelle E Pizzo
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Nicholas Liang
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Meredith E K Calvert
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Sarah L DeVos
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | | | - Sejal Hall
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Zachary K Sweeney
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Robert G Thorne
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Ryan J Watts
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Mark S Dennis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Adam P Silverman
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Y Joy Yu Zuchero
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| |
Collapse
|
50
|
Kouhi A, Pachipulusu V, Kapenstein T, Hu P, Epstein AL, Khawli LA. Brain Disposition of Antibody-Based Therapeutics: Dogma, Approaches and Perspectives. Int J Mol Sci 2021; 22:ijms22126442. [PMID: 34208575 PMCID: PMC8235515 DOI: 10.3390/ijms22126442] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Due to their high specificity, monoclonal antibodies have been widely investigated for their application in drug delivery to the central nervous system (CNS) for the treatment of neurological diseases such as stroke, Alzheimer’s, and Parkinson’s disease. Research in the past few decades has revealed that one of the biggest challenges in the development of antibodies for drug delivery to the CNS is the presence of blood–brain barrier (BBB), which acts to restrict drug delivery and contributes to the limited uptake (0.1–0.2% of injected dose) of circulating antibodies into the brain. This article reviews the various methods currently used for antibody delivery to the CNS at the preclinical stage of development and the underlying mechanisms of BBB penetration. It also describes efforts to improve or modulate the physicochemical and biochemical properties of antibodies (e.g., charge, Fc receptor binding affinity, and target affinity), to adapt their pharmacokinetics (PK), and to influence their distribution and disposition into the brain. Finally, a distinction is made between approaches that seek to modify BBB permeability and those that use a physiological approach or antibody engineering to increase uptake in the CNS. Although there are currently inherent difficulties in developing safe and efficacious antibodies that will cross the BBB, the future prospects of brain-targeted delivery of antibody-based agents are believed to be excellent.
Collapse
|