1
|
Gray LS, Johnson TJ, Robbins KM, Hargis BM, Latorre JD. The Emergence of Streptococcus gallolyticus as a Pathogen in Turkeys. Avian Dis 2025; 68:448-454. [PMID: 40249585 DOI: 10.1637/aviandiseases-d-24-00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/14/2025] [Indexed: 04/19/2025]
Abstract
Streptococcus gallolyticus, formerly known as Streptococcus bovis, is a Gram-positive coccus bacterium that is a facultative anaerobe. Although it was previously considered a commensal bacterium that caused secondary disease because of a stressor, S. gallolyticus can now be considered a causative agent of disease associated with a variety of infections in both humans and animals. Streptococcus gallolyticus has become an emerging pathogen in the poultry industry, particularly in turkey poults, causing acute mortality, usually without any premonitory signs. In the southern portion of the United States, there has been an influx of S. gallolyticus infections occurring predominately in July and August. A majority of turkey poults most susceptible to this disease range in age between 1.5 and 2.5 wk of age. It is suggested that virulence capability relies on accessory genome components that may not be core to all S. gallolyticus strains. In this review, we aim to provide an overview of the nomenclature changes, identification, and emergence of S. gallolyticus in turkeys.
Collapse
Affiliation(s)
- LaTasha S Gray
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108
| | | | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704,
| |
Collapse
|
2
|
Lerner EP, Arjomand Fard N, Githaka JM, Hotte N, Ezeh C, Huynh HQ, Wine E, Perry T. Establishment of a National Surgical Tissue Biobank for Pediatric Crohn's Disease: An Implementation Feasibility Study. J Pediatr Surg 2025; 60:162195. [PMID: 39952194 DOI: 10.1016/j.jpedsurg.2025.162195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Crohn's disease (CD) is a lifelong gastrointestinal inflammatory condition that often requires surgery, particularly for patients diagnosed in childhood. CD has been linked to a combination of microbial, genetic, and environmental factors, but pathogenesis remains unknown. We outline a framework for multicenter surgical biobanking across a large geographic area, required to enable meaningful research, and evaluate feasibility using the 2016 Consolidated Standards of Reporting Trials (CONSORT) extension to randomized pilot and feasibility trials. We also share proof-of-concept RNA sequencing and immunohistochemistry results demonstrating adequacy to generate high-quality translational results. METHODS CD patients (5-17.2 years) scheduled for intestinal resection were included. Intra-abdominal sepsis was excluded. Surgeons from 10 Canadian children's hospitals underwent virtual training on tissue collection. Bowel, mesenteric fat, and lymph nodes were collected intraoperatively, fixed in formalin and RNAlater, and shipped overnight to a single lab. Feasibility was determined by protocol adherence, study recruitment efficacy, and tissue viability. RESULTS Tissue has been collected from 18 patients at seven sites since the study launched in 2023. The biobank is on track to bank 30-50 % of the total estimated eligible yearly case volume. Adherence to shipping protocols was impacted by the day of the week of the operation and by shipping office closures. Proof-of-concept immunohistochemistry demonstrated high-quality multiplex images. RNA sequencing identified 560 genes discriminating between inflamed and non-inflamed bowel. CONCLUSIONS Establishing a national biobank for surgically resected pediatric CD is feasible for translational investigations of CD pathogenesis. Preliminary experiments demonstrate functional protocols sufficient to collect research-quality tissue. LEVEL OF EVIDENCE Prognosis Study - Level IV.
Collapse
Affiliation(s)
- E Paul Lerner
- Department of Surgery, Division of General Surgery, University of Alberta, 2D2.01 Walter MacKenzie Centre, 8440-112 St NW, Edmonton, AB, T6G 2B7, Canada; Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy (ECHA), 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada; Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Department of Medicine, University of Alberta, 116 Street and 85 Avenue, 7-142 Katz Group Rexall Centre, Edmonton, AB, T6G 2R3, Canada
| | - Nazanin Arjomand Fard
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy (ECHA), 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada; Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Department of Medicine, University of Alberta, 116 Street and 85 Avenue, 7-142 Katz Group Rexall Centre, Edmonton, AB, T6G 2R3, Canada; Department of Physiology, University of Alberta, 7-55 Medical Sciences Building, 114 Street and 87 Avenue, Edmonton, AB, T6G 2H7, Canada
| | - John Maringa Githaka
- Department of Biochemistry, University of Alberta, 5-73 Medical Sciences Building, 114 Street and 87 Avenue, Edmonton, AB, T6G 2H7, Canada
| | - Naomi Hotte
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Department of Medicine, University of Alberta, 116 Street and 85 Avenue, 7-142 Katz Group Rexall Centre, Edmonton, AB, T6G 2R3, Canada
| | - Chisom Ezeh
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Department of Medicine, University of Alberta, 116 Street and 85 Avenue, 7-142 Katz Group Rexall Centre, Edmonton, AB, T6G 2R3, Canada; Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Hien Q Huynh
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy (ECHA), 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada; Edmonton Pediatric Inflammatory Bowel Disease Clinic, Division of Pediatric GI Nutrition, Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Room 4-579 Edmonton Clinic Health Academy, 11405 - 87th Avenue, Edmonton, AB, T6G 1C9, Canada
| | - Eytan Wine
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy (ECHA), 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada; Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Department of Medicine, University of Alberta, 116 Street and 85 Avenue, 7-142 Katz Group Rexall Centre, Edmonton, AB, T6G 2R3, Canada; Department of Physiology, University of Alberta, 7-55 Medical Sciences Building, 114 Street and 87 Avenue, Edmonton, AB, T6G 2H7, Canada; Edmonton Pediatric Inflammatory Bowel Disease Clinic, Division of Pediatric GI Nutrition, Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Room 4-579 Edmonton Clinic Health Academy, 11405 - 87th Avenue, Edmonton, AB, T6G 1C9, Canada
| | - Troy Perry
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy (ECHA), 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada; Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Department of Medicine, University of Alberta, 116 Street and 85 Avenue, 7-142 Katz Group Rexall Centre, Edmonton, AB, T6G 2R3, Canada; Department of Surgery, Division of Pediatric Surgery, University of Alberta, 2C3.47 Walter MacKenzie Centre, 8440-112 St NW, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
3
|
Du X, Yu W, Chen F, Jin X, Xue L, Zhang Y, Wu Q, Tong H. HDAC inhibitors and IBD: Charting new approaches in disease management. Int Immunopharmacol 2025; 148:114193. [PMID: 39892171 DOI: 10.1016/j.intimp.2025.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/14/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Inflammatory bowel disease (IBD) represents a group of chronic inflammatory disorders of the gastrointestinal tract. Despite substantial advances in our understanding of IBD pathogenesis, the currently available therapeutic options remain limited in their efficacy and often come with significant side effects. Therefore, there is an urgent need to explore novel approaches for the management of IBD. One promising avenue of investigation revolves around the use of histone deacetylase (HDAC) inhibitors, which have garnered considerable attention for their potential in modulating gene expression and curbing inflammatory responses. This review emphasizes the pressing need for innovative drugs in the treatment of IBD, and drawing from a wealth of preclinical studies and clinical trials, we underscore the multifaceted roles and the therapeutic effects of HDAC inhibitors in IBD models and patients. This review aims to contribute significantly to the understanding of HDAC inhibitors' importance and prospects in the management of IBD, ultimately paving the way for improved therapeutic strategies in this challenging clinical landscape.
Collapse
Affiliation(s)
- Xueting Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Weilai Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Fangyu Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liwei Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| |
Collapse
|
4
|
Horn V, Cancino CA, Steinheuer LM, Obermayer B, Fritz K, Nguyen AL, Juhran KS, Plattner C, Bösel D, Oldenburg L, Burns M, Schulz AR, Saliutina M, Mantzivi E, Lissner D, Conrad T, Mashreghi MF, Zundler S, Sonnenberg E, Schumann M, Haag LM, Beule D, Flatz L, Trajanoski Z, D'Haens G, Weidinger C, Mei HE, Siegmund B, Thurley K, Hegazy AN. Multimodal Profiling of Peripheral Blood Identifies Proliferating Circulating Effector CD4 + T Cells as Predictors for Response to Integrin α4β7-Blocking Therapy in Inflammatory Bowel Disease. Gastroenterology 2025; 168:327-343. [PMID: 39343250 DOI: 10.1053/j.gastro.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND & AIMS Despite the success of biological therapies in treating inflammatory bowel disease, managing patients remains challenging due to the absence of reliable predictors of therapy response. METHODS In this study, we prospectively sampled 2 cohorts of patients with inflammatory bowel disease receiving the anti-integrin α4β7 antibody vedolizumab. Samples were subjected to mass cytometry; single-cell RNA sequencing; single-cell B and T cell receptor sequencing (BCR/TCR-seq); serum proteomics; and multiparametric flow cytometry to comprehensively assess vedolizumab-induced immunologic changes in the peripheral blood and their potential associations with treatment response. RESULTS Vedolizumab treatment led to substantial alterations in the abundance of circulating immune cell lineages and modified the T-cell receptor diversity of gut-homing CD4+ memory T cells. Through integration of multimodal parameters and machine learning, we identified a significant increase in proliferating CD4+ memory T cells among nonresponders before treatment compared with responders. This predictive T-cell signature demonstrated an activated T-helper 1/T-helper 17 cell phenotype and exhibited elevated levels of integrin α4β1, potentially making these cells less susceptible to direct targeting by vedolizumab. CONCLUSIONS These findings provide a reliable predictive classifier with significant implications for personalized inflammatory bowel disease management.
Collapse
Affiliation(s)
- Veronika Horn
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Camila A Cancino
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Lisa M Steinheuer
- Institute of Experimental Oncology, Biomathematics Division, University Hospital Bonn, Bonn, Germany
| | - Benedikt Obermayer
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Konstantin Fritz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Anke L Nguyen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Department of Gastroenterology, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Kim Susan Juhran
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Christina Plattner
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Diana Bösel
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Lotte Oldenburg
- Department of Gastroenterology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marie Burns
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Axel Ronald Schulz
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Mariia Saliutina
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Eleni Mantzivi
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Donata Lissner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Thomas Conrad
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Core Unit Genomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany; German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Elena Sonnenberg
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Michael Schumann
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Lea-Maxie Haag
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Dermatology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Geert D'Haens
- Department of Gastroenterology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Carl Weidinger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Britta Siegmund
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Kevin Thurley
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany; Institute of Experimental Oncology, Biomathematics Division, University Hospital Bonn, Bonn, Germany.
| | - Ahmed N Hegazy
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin Institute of Health Academy, Clinician Scientist Program, Berlin, Germany.
| |
Collapse
|
5
|
Zhou C, Bisseling TM, van der Post RS, Boleij A. The influence of Helicobacter pylori, proton pump inhibitor, and obesity on the gastric microbiome in relation to gastric cancer development. Comput Struct Biotechnol J 2024; 23:186-198. [PMID: 38075398 PMCID: PMC10704269 DOI: 10.1016/j.csbj.2023.11.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 05/11/2025] Open
Abstract
Helicobacter pylori infection is still the main risk factor for the development of gastric cancer (GC). We explore the scientific evidence for the role of the gastric microbiome beyond Helicobacter pylori (H. pylori) in gastric carcinogenesis. The composition of the gastric microbiome in healthy individuals, in presence and absence of H. pylori infection, in proton pump inhibitor (PPI)-users, obese individuals, and GC patients was investigated. Possible mechanisms for microbial involvement, limitations of available research and options for future studies are provided. A common finding amongst studies was increased levels of Streptococcus, Prevotella, Neisseria, and Actinomyces in healthy individuals or those with H. pylori-negative gastritis. In PPI-users the risk for GC increases with the treatment duration, and the gastric microbiome shifts, with the most consistent increase in the genus Streptococcus. Similarly, in obese individuals, Streptococcus was the most abundant genus, with an increased risk for cardia GC. The genera Streptococcus, Lactobacillus and Prevotella were found to be more prominent in GC patients in multiple studies. Potential mechanisms of non-H. pylori microbiota contributing to GC are linked to lipopolysaccharide production, contribution to inflammatory pathways, and the formation of N-nitroso compounds and reactive oxygen species. In conclusion, the knowledge of the gastric microbiome in GC is mainly descriptive and based on sequencing of gastric mucosal samples. For a better mechanistic understanding of microbes in GC development, longitudinal cohorts including precancerous lesions, different regions in the stomach, and subtypes of GC, and gastric organoid models for diffuse and intestinal type GC should be employed.
Collapse
Affiliation(s)
- Chengliang Zhou
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Pathology, P.O. box 9101, 6500 HB Nijmegen, the Netherlands
| | - Tanya M. Bisseling
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Gastroenterology and Hepatology, P.O. box 9101, 6500 HB Nijmegen, the Netherlands
| | - Rachel S. van der Post
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Pathology, P.O. box 9101, 6500 HB Nijmegen, the Netherlands
| | - Annemarie Boleij
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Pathology, P.O. box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
6
|
Jiang H, Ye Y, Wang M, Sun X, Sun T, Chen Y, Li P, Zhang M, Wang T. The progress on the relationship between gut microbiota and immune checkpoint blockade in tumors. Biotechnol Genet Eng Rev 2024; 40:4446-4465. [PMID: 37191003 DOI: 10.1080/02648725.2023.2212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a promising immunotherapeutic approach for the treatment of various tumors. However, the efficacy of this therapy is limited in a subset of patients, and it is important to develop strategies to enhance immune responses. Studies have demonstrated a critical role of gut microbiota in regulating the therapeutic response to ICB. Gut microbiota composition, diversity, and function are mediated by metabolites, such as short-chain fatty acids and secondary bile acids, that interact with host immune cells through specific receptors. In addition, gut bacteria may translocate to the tumor site and stimulate antitumor immune responses. Therefore, maintaining a healthy gut microbiota composition, for instance through avoiding the use of antibiotics or probiotic interventions, can be an effective approach to optimize ICB therapy. This review summarizes the current understanding of the microbiota-immunity interactions in the context of ICB therapy, and discusses potential clinical implications of these findings.
Collapse
Affiliation(s)
- Haili Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingqi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Rykalo N, Riehl L, Kress M. The gut microbiome and the brain. Curr Opin Support Palliat Care 2024; 18:282-291. [PMID: 39250732 DOI: 10.1097/spc.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome for human health and well-being is generally accepted, and elucidating the signaling pathways between the gut microbiome and the host offers novel mechanistic insight into the (patho)physiology and multifaceted aspects of healthy aging and human brain functions. RECENT FINDINGS The gut microbiome is tightly linked with the nervous system, and gut microbiota are increasingly emerging as important regulators of emotional and cognitive performance. They send and receive signals for the bidirectional communication between gut and brain via immunological, neuroanatomical, and humoral pathways. The composition of the gut microbiota and the spectrum of metabolites and neurotransmitters that they release changes with increasing age, nutrition, hypoxia, and other pathological conditions. Changes in gut microbiota (dysbiosis) are associated with critical illnesses such as cancer, cardiovascular, and chronic kidney disease but also neurological, mental, and pain disorders, as well as chemotherapies and antibiotics affecting brain development and function. SUMMARY Dysbiosis and a concomitant imbalance of mediators are increasingly emerging both as causes and consequences of diseases affecting the brain. Understanding the microbiota's role in the pathogenesis of these disorders will have major clinical implications and offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Nadiia Rykalo
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
8
|
Zhang B, He W, Pei Z, Guo Q, Wang J, Sun M, Yang X, Ariben J, Li S, Feng W, Meng C, Zhao Z, Sun C, Hu X, Bai R, Wang X, Hao T. Plasma proteins, circulating metabolites mediate causal inference studies on the effect of gut bacteria on the risk of osteoporosis development. Ageing Res Rev 2024; 101:102479. [PMID: 39214170 DOI: 10.1016/j.arr.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The role of gut bacteria in preventing and delaying osteoporosis has been studied. However, the causal relationship between gut bacteria, plasma proteins, circulating metabolites and osteoporosis (OP) risk has not been fully revealed. MATERIALS AND METHODS In this study, a two-sample Mendelian randomization study (MR) approach was used to assess the causal associations between gut bacteria, plasma proteins and circulating metabolites, and osteoporosis risk using Genome Wide Association Study (GWAS) data from gut bacteria(n=8208), plasma proteins(n=2263), circulating metabolites (n=123), and osteoporosis (3203 cases and 16380452 controls). Inverse-variance weighted (IVW) was used as the main analytical method to estimate the MR causal effect and to perform directional sensitivity analysis of causality. Finally, the mediating effect values for the influence of gut flora on OP pathogenesis through circulating metabolites were calculated by univariate MR analysis, and multivariate MR analysis. Next, we evaluated the effect of Phosphatidylcholine on the osteogenic function of bone marrow mesenchymal stem cells (BMSCs) through relevant experiments, including Edu detection of cell proliferation, alkaline phosphatase (ALP) staining, Alizarin red staining to evaluate osteogenic function, qPCR and WB detection of osteogenic differentiation related gene expression. RESULTS A total of 9 gut microbial taxa, 15 plasma proteins and eight circulating metabolites were analysed for significant causal associations with the development of OP. Significant causal effects of 7 on gut bacteria, plasma proteins and circulating metabolites were analysed by univariate MR analysis and these results were used as exposure factors for subsequent multivariate MR. Multivariate MR analyses yielded a significant effect of circulating metabolites Phosphatidylcholine and other cholines on OP (P<0.05). Further mediation effect analysis showed that the mediation effect of Bifidobacteriaceae affecting OP through the circulating metabolite Phosphatidylcholine and other cholines was -0.0224, with a 95 % confidence interval for the mediation effect that did not include 0, and the complete mediation effect was significant. Phosphatidylcholine can promote BMSCs proliferation and osteogenesis. CONCLUSION Our study demonstrated significant causal associations of gut bacteria, plasma proteins and circulating metabolites on OP, and that Bifidobacteriaceae affect OP through the circulating metabolites Phosphatidylcholine and other cholines. Phosphatidylcholine affects the osteogenic ability of BMSCs. Further exploration of potential microbiota-associated mechanisms of bone metabolism may offer new avenues for osteoporosis prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Baoxin Zhang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Tianjin Hospital, Tianjin University, Tianjin 300211, China.
| | - Wanxiong He
- Inner Mongolia Medical University, Hohhot 010050, China.
| | - Zhiwei Pei
- Tianjin Hospital, Tianjin University, Tianjin 300211, China.
| | - Qingwen Guo
- Key Laboratory of Biological Manufacturing in Inner Mongolia Autonomous Region, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Jianzhong Wang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Mingqi Sun
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiaolong Yang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | | | - Siqin Li
- Bayannur City Hospital, Bayannaoer 015000, China
| | - Wei Feng
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Chenyang Meng
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Zhenqun Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Chao Sun
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiaoxin Hu
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Rui Bai
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China.
| | - Xing Wang
- Bayannur City Hospital, Bayannaoer 015000, China.
| | - Ting Hao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China.
| |
Collapse
|
9
|
Luo C, Yang Y, Jiang C, Lv A, Zuo W, Ye Y, Ke J. Influenza and the gut microbiota: A hidden therapeutic link. Heliyon 2024; 10:e37661. [PMID: 39315196 PMCID: PMC11417228 DOI: 10.1016/j.heliyon.2024.e37661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Background The extensive community of gut microbiota significantly influences various biological functions throughout the body, making its characterization a focal point in biomedicine research. Over the past few decades, studies have revealed a potential link between specific gut bacteria, their associated metabolic pathways, and influenza. Bacterial metabolites can communicate directly or indirectly with organs beyond the gut via the intestinal barrier, thereby impacting the physiological functions of the host. As the microbiota increasingly emerges as a 'gut signature' in influenza, gaining a deeper understanding of its role may offer new insights into its pathophysiological relevance and open avenues for novel therapeutic targets. In this Review, we explore the differences in gut microbiota between healthy individuals and those with influenza, the relationship between gut microbiota metabolites and influenza, and potential strategies for preventing and treating influenza through the regulation of gut microbiota and its metabolites, including fecal microbiota transplantation and microecological preparations. Methods We utilized PubMed and Web of Science as our search databases, employing keywords such as "influenza," "gut microbiota," "traditional Chinese medicine," "metabolites," "prebiotics," "probiotics," and "machine learning" to retrieve studies examining the potential therapeutic connections between the modulation of gut microbiota and its metabolites in the treatment of influenza. The search encompassed literature from the inception of the databases up to December 2023. Results Fecal microbiota transplantation (FMT), microbial preparations (probiotics and prebiotics), and traditional Chinese medicine have unique advantages in regulating intestinal microbiota and its metabolites to improve influenza outcomes. The primary mechanism involves increasing beneficial intestinal bacteria such as Bacteroidetes and Bifidobacterium while reducing harmful bacteria such as Proteobacteria. These interventions act directly or indirectly on metabolites such as short-chain fatty acids (SCFAs), amino acids (AAs), bile acids, and monoamines to alleviate lung inflammation, reduce viral load, and exert anti-influenza virus effects. Conclusion The gut microbiota and its metabolites have direct or indirect therapeutic effects on influenza, presenting broad research potential for providing new directions in influenza research and offering references for clinical prevention and treatment. Future research should focus on identifying key strains, specific metabolites, and immune regulation mechanisms within the gut microbiota to accurately target microbiota interventions and prevent respiratory viral infections such as influenza.
Collapse
Affiliation(s)
- Cheng Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yi Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Cheng Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Anqi Lv
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Wanzhao Zuo
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Yuanhang Ye
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Jia Ke
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
10
|
Zheng X, Qian Y, Wang L. Causal relationship between gut microbiota and insulin-like growth factor 1: a bidirectional two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1406132. [PMID: 39386166 PMCID: PMC11463061 DOI: 10.3389/fcimb.2024.1406132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background The causal relationship between gut microbiota and insulin-like growth factor 1 (IGF-1) remains unclear. The purpose of this study was to explore the causal relationship between gut microbiota and IGF-1 in men and women. Methods Single-nucleotide polymorphisms (SNPs) related to gut microbiota were derived from pooled statistics from large genome-wide association studies (GWASs) published by the MiBioGen consortium. Pooled data for IGF-1 were obtained from a large published GWAS. We conducted Mendelian randomization (MR) analysis, primarily using the inverse variance weighted (IVW) method. Additionally, we performed sensitivity analyses to enhance the robustness of our results, focusing on assessing heterogeneity and pleiotropy. Results In forward MR analysis, 11 bacterial taxa were found to have a causal effect on IGF-1 in men; 14 bacterial taxa were found to have a causal effect on IGF-1 in women (IVW, all P < 0.05). After false discovery rate (FDR) correction, all bacterial traits failed to pass the FDR correction. In reverse MR analysis, IGF-1 had a causal effect on nine bacterial taxa in men and two bacterial taxa in women respectively (IVW, all P < 0.05). After FDR correction, the causal effect of IGF-1 on order Actinomycetales (PFDR = 0.049) remains in men. The robustness of the IVW results was further confirmed after heterogeneity and pleiotropy analysis. Conclusion Our study demonstrates a bidirectional causal link between the gut microbiota and IGF-1, in both men and women.
Collapse
Affiliation(s)
- Xuejie Zheng
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuping Qian
- Department of Neonatology, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Lili Wang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Majzoub ME, Luu LDW, Haifer C, Paramsothy S, Borody TJ, Leong RW, Thomas T, Kaakoush NO. Refining microbial community metabolic models derived from metagenomics using reference-based taxonomic profiling. mSystems 2024; 9:e0074624. [PMID: 39136455 PMCID: PMC11406951 DOI: 10.1128/msystems.00746-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/10/2024] [Indexed: 09/18/2024] Open
Abstract
Characterization of microbial community metabolic output is crucial to understanding their functions. Construction of genome-scale metabolic models from metagenome-assembled genomes (MAG) has enabled prediction of metabolite production by microbial communities, yet little is known about their accuracy. Here, we examined the performance of two approaches for metabolite prediction from metagenomes, one that is MAG-guided and another that is taxonomic reference-guided. We applied both on shotgun metagenomics data from human and environmental samples, and validated findings in the human samples using untargeted metabolomics. We found that in human samples, where taxonomic profiling is optimized and reference genomes are readily available, when number of input taxa was normalized, the reference-guided approach predicted more metabolites than the MAG-guided approach. The two approaches showed significant overlap but each identified metabolites not predicted in the other. Pathway enrichment analyses identified significant differences in inferences derived from data based on the approach, highlighting the need for caution in interpretation. In environmental samples, when the number of input taxa was normalized, the reference-guided approach predicted more metabolites than the MAG-guided approach for total metabolites in both sample types and non-redundant metabolites in seawater samples. Nonetheless, as was observed for the human samples, the approaches overlapped substantially but also predicted metabolites not observed in the other. Our findings report on utility of a complementary input to genome-scale metabolic model construction that is less computationally intensive forgoing MAG assembly and refinement, and that can be applied on shallow shotgun sequencing where MAGs cannot be generated.IMPORTANCELittle is known about the accuracy of genome-scale metabolic models (GEMs) of microbial communities despite their influence on inferring community metabolic outputs and culture conditions. The performance of GEMs for metabolite prediction from metagenomes was assessed by applying two approaches on shotgun metagenomics data from human and environmental samples, and validating findings in the human samples using untargeted metabolomics. The performance of the approach was found to be dependent on sample type, but collectively, the reference-guided approach predicted more metabolites than the MAG-guided approach. Despite the differences, the predictions from the approaches overlapped substantially but each identified metabolites not predicted in the other. We found significant differences in biological inferences based on the approach, with some examples of uniquely enriched pathways in one group being invalidated when using the alternative approach, highlighting the need for caution in interpretation of GEMs.
Collapse
Affiliation(s)
- Marwan E Majzoub
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Laurence D W Luu
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Craig Haifer
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Gastroenterology, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Sudarshan Paramsothy
- Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Thomas J Borody
- Centre for Digestive Diseases, Sydney, New South Wales, Australia
| | - Rupert W Leong
- Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nadeem O Kaakoush
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
AlZaabi A, Younus HA, Al-Reasi HA, Al-Hajri R. Could environmental exposure and climate change Be a key factor in the rising incidence of early onset colorectal cancer? Heliyon 2024; 10:e35935. [PMID: 39258208 PMCID: PMC11386049 DOI: 10.1016/j.heliyon.2024.e35935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024] Open
Abstract
The emergence of early onset colorectal cancer (EOCRC) is believed to result from the complex interplay between external environmental factors and internal molecular processes. This review investigates the potential association between environmental exposure to chemicals and climate change and the increased incidence of EOCRC, focusing on their effects on gut microbiota (GM) dynamics. The manuscript explores the birth cohort effect, suggesting that individuals born after 1950 may be at higher risk of developing EOCRC due to cumulative environmental exposures. Furthermore, we also reviewed the impact of environmental pollution, including particulate matter and endocrine disrupting chemicals (EDCs), as well as global warming, on GM disturbance. Environmental exposures have the potential to disrupt GM composition and diversity, leading to dysbiosis, chronic inflammation, and oxidative stress, which are known risk factors associated with EOCRC. Particulate matter can enter the gastrointestinal tract, modifying GM composition and promoting the proliferation of pathogenic bacteria while diminishing beneficial bacteria. Similarly, EDCs, can induce GM alterations and inflammation, further increasing the risk of EOCRC. Additionally, global warming can influence GM through shifts in gut environmental conditions, affecting the host's immune response and potentially increasing EOCRC risk. To summarize, environmental exposure to chemicals and climate change since 1950 has been implicated as contributing factors to the rising incidence of EOCRC. Disruptions in gut microbiota homeostasis play a crucial role in mediating these associations. Consequently, there is a pressing need for enhanced environmental policies aimed at minimizing exposure to pollutants, safeguarding public health, and mitigating the burden of EOCRC.
Collapse
Affiliation(s)
- Adhari AlZaabi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Hussein A Younus
- Nanotechnology Research Center, Sultan Qaboos University, PO Box 17, Al-Khoud, PC 123 Oman
| | - Hassan A Al-Reasi
- Department of Biology, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Al-Khoud, Muscat, Oman
- Faculty of Education and Arts, Sohar University, PO Box 44, PC 311, Sohar, Oman
| | - Rashid Al-Hajri
- Department of Petrolleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P. O. Box 33, Al Khoud, Muscat, PC 123, Oman
| |
Collapse
|
13
|
Díez-Sánchez A, Lindholm HT, Vornewald PM, Ostrop J, Yao R, Single AB, Marstad A, Parmar N, Shaw TN, Martín-Alonso M, Oudhoff MJ. LSD1 drives intestinal epithelial maturation and controls small intestinal immune cell composition independent of microbiota in a murine model. Nat Commun 2024; 15:3412. [PMID: 38649356 PMCID: PMC11035651 DOI: 10.1038/s41467-024-47815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Postnatal development of the gastrointestinal tract involves the establishment of the commensal microbiota, the acquisition of immune tolerance via a balanced immune cell composition, and maturation of the intestinal epithelium. While studies have uncovered an interplay between the first two, less is known about the role of the maturing epithelium. Here we show that intestinal-epithelial intrinsic expression of lysine-specific demethylase 1A (LSD1) is necessary for the postnatal maturation of intestinal epithelium and maintenance of this developed state during adulthood. Using microbiota-depleted mice, we find plasma cells, innate lymphoid cells (ILCs), and a specific myeloid population to depend on LSD1-controlled epithelial maturation. We propose that LSD1 controls the expression of epithelial-derived chemokines, such as Cxcl16, and that this is a mode of action for this epithelial-immune cell interplay in local ILC2s but not ILC3s. Together, our findings suggest that the maturing epithelium plays a dominant role in regulating the local immune cell composition, thereby contributing to gut homeostasis.
Collapse
Affiliation(s)
- Alberto Díez-Sánchez
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Håvard T Lindholm
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Pia M Vornewald
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jenny Ostrop
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rouan Yao
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrew B Single
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Marstad
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Naveen Parmar
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tovah N Shaw
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mara Martín-Alonso
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Health Sciences, Carleton University, Ottawa, Ontario, ON, Canada.
| |
Collapse
|
14
|
Zhang L, Tang X, Fan C, Ren S, Cheng Q, Zhou H, Liu K, Jia S, Zhang Y. Dysbiosis of Gut Microbiome Aggravated Male Infertility in Captivity of Plateau Pika. Biomolecules 2024; 14:403. [PMID: 38672421 PMCID: PMC11047922 DOI: 10.3390/biom14040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Captivity is an important and efficient technique for rescuing endangered species. However, it induces infertility, and the underlying mechanism remains obscure. This study used the plateau pika (Ochotona curzoniae) as a model to integrate physiological, metagenomic, metabolomic, and transcriptome analyses and explore whether dysbiosis of the gut microbiota induced by artificial food exacerbates infertility in captive wild animals. Results revealed that captivity significantly decreased testosterone levels and the testicle weight/body weight ratio. RNA sequencing revealed abnormal gene expression profiles in the testicles of captive animals. The microbial α-diversity and Firmicutes/Bacteroidetes ratio were drastically decreased in the captivity group. Bacteroidetes and Muribaculaceae abundance notably increased in captive pikas. Metagenomic analysis revealed that the alteration of flora increased the capacity for carbohydrate degradation in captivity. The levels of microbe metabolites' short-chain fatty acids (SCFAs) were significantly high in the captive group. Increasing SCFAs influenced the immune response of captivity plateau pikas; pro-inflammatory cytokines were upregulated in captivity. The inflammation ultimately contributed to male infertility. In addition, a positive correlation was observed between Gastranaerophilales family abundance and testosterone concentration. Our results provide evidence for the interactions between artificial food, the gut microbiota, and male infertility in pikas and benefit the application of gut microbiota interference in threatened and endangered species.
Collapse
Affiliation(s)
- Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Shi’en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;
| | - Kai Liu
- Qinghai Provincial Grassland Station, Xining 810008, China;
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| |
Collapse
|
15
|
Jacquier EF, van de Wouw M, Nekrasov E, Contractor N, Kassis A, Marcu D. Local and Systemic Effects of Bioactive Food Ingredients: Is There a Role for Functional Foods to Prime the Gut for Resilience? Foods 2024; 13:739. [PMID: 38472851 DOI: 10.3390/foods13050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Scientific advancements in understanding the impact of bioactive components in foods on the gut microbiota and wider physiology create opportunities for designing targeted functional foods. The selection of bioactive ingredients with potential local or systemic effects holds promise for influencing overall well-being. An abundance of studies demonstrate that gut microbiota show compositional changes that correlate age and disease. However, navigating this field, especially for non-experts, remains challenging, given the abundance of bioactive ingredients with varying levels of scientific substantiation. This narrative review addresses the current knowledge on the potential impact of the gut microbiota on host health, emphasizing gut microbiota resilience. It explores evidence related to the extensive gut health benefits of popular dietary components and bioactive ingredients, such as phytochemicals, fermented greens, fibres, prebiotics, probiotics, and postbiotics. Importantly, this review distinguishes between the potential local and systemic effects of both popular and emerging ingredients. Additionally, it highlights how dietary hormesis promotes gut microbiota resilience, fostering better adaptation to stress-a hallmark of health. By integrating examples of bioactives, this review provides insights to guide the design of evidence-based functional foods aimed at priming the gut for resilience.
Collapse
Affiliation(s)
| | - Marcel van de Wouw
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | | - Amira Kassis
- Neat Science, 1618 Chatel-Saint-Denis, Switzerland
| | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
16
|
Krause FF, Mangold KI, Ruppert AL, Leister H, Hellhund-Zingel A, Lopez Krol A, Pesek J, Watzer B, Winterberg S, Raifer H, Binder K, Kinscherf R, Walker A, Nockher WA, Taudte RV, Bertrams W, Schmeck B, Kühl AA, Siegmund B, Romero R, Luu M, Göttig S, Bekeredjian-Ding I, Steinhoff U, Schütz B, Visekruna A. Clostridium sporogenes-derived metabolites protect mice against colonic inflammation. Gut Microbes 2024; 16:2412669. [PMID: 39397690 PMCID: PMC11485882 DOI: 10.1080/19490976.2024.2412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Gut microbiota-derived metabolites play a pivotal role in the maintenance of intestinal immune homeostasis. Here, we demonstrate that the human commensal Clostridium sporogenes possesses a specific metabolic fingerprint, consisting predominantly of the tryptophan catabolite indole-3-propionic acid (IPA), the branched-chain acids (BCFAs) isobutyrate and isovalerate and the short-chain fatty acids (SCFAs) acetate and propionate. Mono-colonization of germ-free mice with C. sporogenes (CS mice) affected colonic mucosal immune cell phenotypes, including up-regulation of Il22 gene expression, and increased abundance of transcriptionally active colonic tuft cells and Foxp3+ regulatory T cells (Tregs). In DSS-induced colitis, conventional mice suffered severe inflammation accompanied by loss of colonic crypts. These symptoms were absent in CS mice. In conventional, but not CS mice, bulk RNAseq analysis of the colon revealed an increase in inflammatory and Th17-related gene signatures. C. sporogenes-derived IPA reduced IL-17A protein expression by suppressing mTOR activity and by altering ribosome-related pathways in Th17 cells. Additionally, BCFAs and SCFAs generated by C. sporogenes enhanced the activity of Tregs and increased the production of IL-22, which led to protection from colitis. Collectively, we identified C. sporogenes as a therapeutically relevant probiotic bacterium that might be employed in patients with inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Felix F. Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Kira I. Mangold
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Anna-Lena Ruppert
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Anne Hellhund-Zingel
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Aleksandra Lopez Krol
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Jelena Pesek
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Bernhard Watzer
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Sarah Winterberg
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hartmann Raifer
- Flow Cytometry Core Facility, Philipps-University, Marburg, Germany
| | - Kai Binder
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum, München, Germany
| | - Wolfgang A. Nockher
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - R. Verena Taudte
- Core Facility for Metabolomics, Department of Medicine, Philipps-University, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Philipps-University, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps-University, Marburg, Germany
- Department for Respiratory and Critical Care Medicine, Philipps-University, Marburg, Germany
- Member of the German Center for Lung Research (DZL/UGMLC, ) and German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anja A. Kühl
- iPATH.Berlin, Core Unit of Charité-Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rossana Romero
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | | | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| |
Collapse
|
17
|
Liu Q, Zhang W, Wang B, Shi J, He P, Jia L, Huang Y, Xu M, Ma Y, Cheng Q, Lei Z. Effects of Oregano Essential Oil on IgA +, IgG +, and IgM + Cells in the Jejunum of Castrated Holstein Bulls. Animals (Basel) 2023; 13:3766. [PMID: 38136804 PMCID: PMC10740482 DOI: 10.3390/ani13243766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to investigate the effect of oregano essential oil on IgA+, IgG+, and IgM+ cells in the jejunum of castrated Holstein bulls. Twelve castrated Holstein bulls were randomly divided into control (YCK) and oregano essential oil (YEO) groups. Pathological changes in the jejunum were observed by HE staining, and the expression levels of IgA, IgG, and IgM in the jejunum were detected by ELISA. The distributions of IgA+, IgG+, and IgM+ cells in the jejunum were analysed by multiplex immunofluorescence and immunohistochemistry. The results showed that the jejunal villi were detached in the YCK group, which may have been related to inflammation, while the intestinal epithelium was clear and intact in the YEO group. The expressions of IgA, IgG, and IgM were significantly reduced by 40.75%, 30.76%, and 50.87%. The IgA+, IgG+, and IgM+ cells were diffusely distributed in the lamina propria of the jejunum, and were reduced by 17.07%, 6.44%, and 6.15%, respectively. Oregano essential oil did not alter the distribution characteristics of IgA+, IgG+, or IgM+ cells in the jejunum, but it suppressed inflammatory response, decreased immunoglobulin content, and significantly enhanced the formation of an immune barrier in the gastrointestinal mucosa.
Collapse
Affiliation(s)
- Qiyan Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Wangdong Zhang
- College of Animal Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.Z.); (B.W.)
| | - Baoshan Wang
- College of Animal Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.Z.); (B.W.)
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Meiling Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Yue Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Qiang Cheng
- Jing Chuan Xu Kang Food Co., Ltd., Pingliang 745000, China;
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| |
Collapse
|
18
|
Cecchini L, Barmaz C, Cea MJC, Baeschlin H, Etter J, Netzer S, Bregy L, Marchukov D, Trigo NF, Meier R, Hirschi J, Wyss J, Wick A, Zingg J, Christensen S, Radan AP, Etter A, Müller M, Kaess M, Surbek D, Yilmaz B, Macpherson AJ, Sokollik C, Misselwitz B, Ganal-Vonarburg SC. The Bern Birth Cohort (BeBiCo) to study the development of the infant intestinal microbiota in a high-resource setting in Switzerland: rationale, design, and methods. BMC Pediatr 2023; 23:560. [PMID: 37946167 PMCID: PMC10637001 DOI: 10.1186/s12887-023-04198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/17/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Microbiota composition is fundamental to human health with the intestinal microbiota undergoing critical changes within the first two years of life. The developing intestinal microbiota is shaped by maternal seeding, breast milk and its complex constituents, other nutrients, and the environment. Understanding microbiota-dependent pathologies requires a profound understanding of the early development of the healthy infant microbiota. METHODS Two hundred and fifty healthy pregnant women (≥20 weeks of gestation) from the greater Bern area will be enrolled at Bern University hospital's maternity department. Participants will be followed as mother-baby pairs at delivery, week(s) 1, 2, 6, 10, 14, 24, 36, 48, 96, and at years 5 and 10 after birth. Clinical parameters describing infant growth and development, morbidity, and allergic conditions as well as socio-economic, nutritional, and epidemiological data will be documented. Neuro-developmental outcomes and behavior will be assessed by child behavior checklists at and beyond 2 years of age. Maternal stool, milk, skin and vaginal swabs, infant stool, and skin swabs will be collected at enrolment and at follow-up visits. For the primary outcome, the trajectory of the infant intestinal microbiota will be characterized by 16S and metagenomic sequencing regarding composition, metabolic potential, and stability during the first 2 years of life. Secondary outcomes will assess the cellular and chemical composition of maternal milk, the impact of nutrition and environment on microbiota development, the maternal microbiome transfer at vaginal or caesarean birth and thereafter on the infant, and correlate parameters of microbiota and maternal milk on infant growth, development, health, and mental well-being. DISCUSSION The Bern birth cohort study will provide a detailed description and normal ranges of the trajectory of microbiota maturation in a high-resource setting. These data will be compared to data from low-resource settings such as from the Zimbabwe-College of Health-Sciences-Birth-Cohort study. Prospective bio-sampling and data collection will allow studying the association of the microbiota with common childhood conditions concerning allergies, obesity, neuro-developmental outcomes , and behaviour. Trial registration The trial has been registered at www. CLINICALTRIALS gov , Identifier: NCT04447742.
Collapse
Affiliation(s)
- Luca Cecchini
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Colette Barmaz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Maria José Coloma Cea
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hannah Baeschlin
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Julian Etter
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Stefanie Netzer
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Leonie Bregy
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Dmitrij Marchukov
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Nerea Fernandez Trigo
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Rachel Meier
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Jasmin Hirschi
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Jacqueline Wyss
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Andrina Wick
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Joelle Zingg
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Sandro Christensen
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Anda-Petronela Radan
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Annina Etter
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Martin Müller
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Andrew J Macpherson
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Christiane Sokollik
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Benjamin Misselwitz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Stephanie C Ganal-Vonarburg
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| |
Collapse
|
19
|
Cheng B, Huang M, Zhou T, Deng Q, Teketay Wassie, Wu T, Wu X. Garlic essential oil supplementation modulates colonic microbiota compositions and regulates immune response in weaned piglets. Heliyon 2023; 9:e18729. [PMID: 37554781 PMCID: PMC10404742 DOI: 10.1016/j.heliyon.2023.e18729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
The objective of this study was to investigate the colonic microbiome compositions and immune response and reveal their correlations in weaned piglets fed with garlic essential oil (GEO). Twelve 21-day-old crossbred piglets with the same parity and similar weight (BW = 7.07 ± 0.37 Kg) were randomly divided into control and experimental groups based on BW and sex, which fed either a basal diet (CON group), or a basal diet supplemented with 1.5 g/kg GEO (GEO group). UHPLC-QE-MS showed the main component of GEO were belonged to carbohydrates, organic acid, flavonoids, phenylpropanoids and terpenoids. GEO decreased serum IL-1β, IL-8 content and the down-regulated mRNA expression of IFN-γ, TLR2 in jejunal mucosa but increased serum IgG, IL-4 content and up-regulated the mRNA expression of IL-4, IL-1β, TNF-α in ileal mucosa. What's more, the metagenomic analysis demonstrated that GEO increased the abundance of Bacteroidetes, Euryarchaeota and Spirochaetes, while decreased the abundance of Firmicutes and Actinobacteria at Phylum level and Selenomonas_boris, Selenomonadaceae_bacterium_DSM_108025, Clostridiales_bacterium and Phascolarctobacterium_succinatutens at species level. Notably, the main function pathway of virulence factor (VFDB) enriched in GEO group were Fibronection-binding protein, Zn++ metallophrotease and Capsular polysaccharide, while the main function pathway of VFDB enriched in CON group were heme biosynthesis, Lap and FeoAB. Spearman correlation analysis indicated the Spirochaetes had a positive association with IL-6 and IL-4. Acinobacteria was positively correlated with IL-1β, while negative with the IL-6; In addition, Euryarchaeota had a positive correlation with IL-4, but a negative correlation with IL-1β; Tenericutes was negative with IL-8; Phascolarcolarctobacterium_succinatutens and was negative with IL-6; Ruminococcaceae_bacterium was negative with TNF-α. While Selenomonadaceae_bacterium_DSM_108025 had a positive correlation with IL-8. In conclusion, our results uncovered that immune regulation effects of GEO may be associated with the microbiome compositions in response to GEO.
Collapse
Affiliation(s)
- Bei Cheng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Mingyong Huang
- Hunan Tianxiang Biotechnology Co., Ltd, Shaoyang 422000, China
| | - Tiantian Zhou
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qingqing Deng
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453004, China
| | - Teketay Wassie
- Oregon Health and Science University, School of Medicine, department of Molecular Microbiology and Immunology, Portland, OR, USA
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
20
|
Guo C, Zhang Y, Wang X, Ni K, Hao Q, Zhang Z, Zhou Z, Yang F. Effects of Oat Bran Addition on the Growth Performance and Intestinal Health of Nile Tilapia ( Oreochromis niloticus) Exposed to Copper Ions. AQUACULTURE NUTRITION 2023; 2023:5329546. [PMID: 37384036 PMCID: PMC10299885 DOI: 10.1155/2023/5329546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
This study investigated the effects of the oat bran addition on the growth performance and intestinal health of Nile tilapia (Oreochromis niloticus) exposed to copper ions. Four groups of diets containing 0%, 5%, 10%, and 20% oat bran were fed to Nile tilapia for four weeks. The results showed that oat bran had a dose-dependent effect on the growth performance of Nile tilapia. The addition of oat bran can increase the relative abundance of Delftia, which is capable of degrading heavy metals in the intestinal tract and alleviating the intestinal damage caused by copper ion stress. Compared to the control group, the 5% oat bran group had an increased intestinal antioxidant capacity. The relative gene expression of proinflammatory factors (NF-κB, IL-1β) was significantly downregulated in the 5% oat bran group (P < 0.05), and the relative gene expression of anti-inflammatory factors (TGF-β), HIF-1α, occludin, and claudin was significantly upregulated (P < 0.05). In conclusion, we suggest that 5% oat bran should be added to the diet to improve the growth performance of Nile tilapia and alleviate the negative effects of copper ion stress on intestinal health.
Collapse
Affiliation(s)
- Chunze Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yingchao Zhang
- College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Xuekai Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiang Hao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Mandelbaum N, Zhang L, Carasso S, Ziv T, Lifshiz-Simon S, Davidovich I, Luz I, Berinstein E, Gefen T, Cooks T, Talmon Y, Balskus EP, Geva-Zatorsky N. Extracellular vesicles of the Gram-positive gut symbiont Bifidobacterium longum induce immune-modulatory, anti-inflammatory effects. NPJ Biofilms Microbiomes 2023; 9:30. [PMID: 37270554 DOI: 10.1038/s41522-023-00400-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023] Open
Abstract
The gut microbiota is now well known to affect the host's immune system. One way of bacterial communication with host cells is via the secretion of vesicles, small membrane structures containing various cargo. Research on vesicles secreted by Gram-positive gut bacteria, their mechanisms of interaction with the host and their immune-modulatory effects are still relatively scarce. Here we characterized the size, protein content, and immune-modulatory effects of extracellular vesicles (EVs) secreted by a newly sequenced Gram-positive human gut symbiont strain - Bifidobacterium longum AO44. We found that B. longum EVs exert anti-inflammatory effects, inducing IL-10 secretion from both splenocytes and dendritic cells (DC)-CD4+ T cells co-cultures. Furthermore, the EVs protein content showed enrichment in ABC transporters, quorum sensing proteins, and extracellular solute-binding proteins, which were previously shown to have a prominent function in the anti-inflammatory effect of other strains of B. longum. This study underlines the importance of bacterial vesicles in facilitating the gut bacterial immune-modulatory effects on the host and sheds light on bacterial vesicles as future therapeutics.
Collapse
Affiliation(s)
- Noa Mandelbaum
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Lihan Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shaqed Carasso
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sapir Lifshiz-Simon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ishai Luz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Elliot Berinstein
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, 31096, Israel.
- Humans and the Microbiome, CIFAR, Toronto, Canada.
| |
Collapse
|
22
|
Luu M, Schütz B, Lauth M, Visekruna A. The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment. Cancers (Basel) 2023; 15:cancers15051588. [PMID: 36900377 PMCID: PMC10001145 DOI: 10.3390/cancers15051588] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Prevention of the effectiveness of anti-tumor immune responses is one of the canonical cancer hallmarks. The competition for crucial nutrients within the tumor microenvironment (TME) between cancer cells and immune cells creates a complex interplay characterized by metabolic deprivation. Extensive efforts have recently been made to understand better the dynamic interactions between cancer cells and surrounding immune cells. Paradoxically, both cancer cells and activated T cells are metabolically dependent on glycolysis, even in the presence of oxygen, a metabolic process known as the Warburg effect. The intestinal microbial community delivers various types of small molecules that can potentially augment the functional capabilities of the host immune system. Currently, several studies are trying to explore the complex functional relationship between the metabolites secreted by the human microbiome and anti-tumor immunity. Recently, it has been shown that a diverse array of commensal bacteria synthetizes bioactive molecules that enhance the efficacy of cancer immunotherapy, including immune checkpoint inhibitor (ICI) treatment and adoptive cell therapy with chimeric antigen receptor (CAR) T cells. In this review, we highlight the importance of commensal bacteria, particularly of the gut microbiota-derived metabolites that are capable of shaping metabolic, transcriptional and epigenetic processes within the TME in a therapeutically meaningful way.
Collapse
Affiliation(s)
- Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Matthias Lauth
- Department of Gastroenterology, Center for Tumor and Immune Biology (ZTI), Philipps-University Marburg, 35043 Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
23
|
van de Velde C, Joseph C, Simoens K, Raes J, Bernaerts K, Faust K. Technical versus biological variability in a synthetic human gut community. Gut Microbes 2023; 15:2155019. [PMID: 36580382 PMCID: PMC9809966 DOI: 10.1080/19490976.2022.2155019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022] Open
Abstract
Synthetic communities grown in well-controlled conditions are an important tool to decipher the mechanisms driving community dynamics. However, replicate time series of synthetic human gut communities in chemostats are rare, and it is thus still an open question to what extent stochasticity impacts gut community dynamics. Here, we address this question with a synthetic human gut bacterial community using an automated fermentation system that allows for a larger number of biological replicates. We collected six biological replicates for a community initially consisting of five common gut bacterial species that fill different metabolic niches. After an initial 12 hours in batch mode, we switched to chemostat mode and observed the community to stabilize after 2-3 days. Community profiling with 16S rRNA resulted in high variability across replicate vessels and high technical variability, while the variability across replicates was significantly lower for flow cytometric data. Both techniques agree on the decrease in the abundance of Bacteroides thetaiotaomicron, accompanied by an initial increase in Blautia hydrogenotrophica. These changes occurred together with reproducible metabolic shifts, namely a fast depletion of glucose and trehalose concentration in batch followed by a decrease in formic acid and pyruvic acid concentrations within the first 12 hours after the switch to chemostat mode. In conclusion, the observed variability in the synthetic bacterial human gut community, as assessed with 16S rRNA gene sequencing, is largely due to technical variability. The low variability seen in HPLC and flow cytometry data suggests a highly deterministic system.
Collapse
Affiliation(s)
- Charlotte van de Velde
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
| | - Clémence Joseph
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
| | - Kenneth Simoens
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), LeuvenB-3001, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), LeuvenB-3001, Belgium
| | - Karoline Faust
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
| |
Collapse
|
24
|
Chen P, Hu T, Jiang H, Li B, Li G, Ran P, Zhou Y. Chronic exposure to ampicillin alters lung microbial composition in laboratory rat. Exp Lung Res 2023; 49:116-130. [PMID: 37318203 DOI: 10.1080/01902148.2023.2219790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE High-throughput sequencing technologies have revealed that the lungs contain a variety of low biomass microbiota associated with various lung diseases. Rat model is an important tool to understand the possible causal relationship between pulmonary microbiota and diseases. Antibiotic exposure can alter the microbiota, however, a direct influence of long-term ampicillin exposure on commensal bacteria of healthy lungs has not been investigated, which could be useful in the study of the relation between microbiome and long-term lung diseases, especially in animal model-making of lung diseases. METHODS The rats were aerosolized ampicillin of different concentrations for five months, and then the effect on the lung microbiota was investigated using 16S rRNA gene sequencing. RESULTS The ampicillin treatment by a certain concentration (LA5, 0.2 ml of 5 mg/ml ampicillin) administration leads to profound changes in the rat lung microbiota but not in the low critical ampicillin concentration (LA01 and LA1, 0.1 and 1 mg/ml ampicillin), when compared to the untreated group (LC). The genus Acidobacteria_Gp16 dominated the ampicillin treated lung microbiota while the genera Brucella, Acinetobacter, Acidobacteria_Gp14, Sphingomonas, and Tumebacillus dominated the untreated lung microbiota. The predicted KEGG pathway analysis profile revealed some difference in the ampicillin treated group. CONCLUSIONS The study demonstrated the effects of different concentrations of ampicillin treatment on lung microbiota of rats in a relatively long term. It could serve as a basis for the clinical use of antibiotic and the use of ampicillin to control certain bacteria in the animal model-making of respiratory diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Ping Chen
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Tingting Hu
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Haonan Jiang
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Guiying Li
- Shool of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, P. R. China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Bioland, Guangzhou, Guangdong, P. R. China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Campisciano G, Biffi S. Microbiota in vivo imaging approaches to study host-microbe interactions in preclinical and clinical setting. Heliyon 2022; 8:e12511. [PMID: 36593827 PMCID: PMC9803719 DOI: 10.1016/j.heliyon.2022.e12511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
In vivo imaging in preclinical and clinical settings can enhance knowledge of the host-microbiome interactions. Imaging techniques are a crucial node between findings at the molecular level and clinical implementation in diagnostics and therapeutics. The purpose of this study was to review existing knowledge on the microbiota in the field of in vivo imaging and provide guidance for future research, emphasizing the critical role that molecular imaging plays in increasing understanding of the host-microbe interaction. Preclinical microbiota animal models lay the foundation for the clinical translatability of novel microbiota-based therapeutics. Adopting animal models in which factors such as host genetic landscape, microbiota profile, and diet can be controlled enables investigating how the microbiota contributes to immunological dysregulation and inflammatory disorders. Current preclinical imaging of gut microbiota relies on models where the bacteria can be isolated, labelled, and re-administered. In vivo, optical imaging, ultrasound and magnetic resonance imaging define the bacteria's biodistribution in preclinical models, whereas nuclear imaging investigates bacterial metabolic activity. For the clinical investigation of microbe-host interactions, molecular nuclear imaging is increasingly becoming a promising approach. Future microbiota research should develop selective imaging probes to investigate in vivo microbiota profiles and individual strains of specific microbes. Preclinical knowledge can be translated into the molecular imaging field with great opportunities for studying the microbiome.
Collapse
Affiliation(s)
- Giuseppina Campisciano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo Via dell'Istria 65/1, 34137, Trieste, Italy
| |
Collapse
|
26
|
Diagnostic and Molecular Portraits of Microbiome and Metabolomics of Short-Chain Fatty Acids and Bile acids in Liver Disease. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Therapeutic Potential of Human Microbiome-Based Short-Chain Fatty Acids and Bile Acids in Liver Disease. LIVERS 2022. [DOI: 10.3390/livers2030012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microbiome-derived short chain fatty acids (SCFAs: acetate, propionate, and butyrate) and bile acids (BAs: primary BAs and secondary BAs) widely influence liver metabolic inflammation, immune responses, and carcinogenesis. In recent literature, the role of SCFAs and BAs in various liver diseases has been discussed. SCFAs and BAs are two types of microbiome-derived metabolites and they have been shown to have immunoregulatory ability in autoimmunity, inflammation, and liver-cancer microcellular environments. SCFAs and BAs are dependent on dietary components. The numerous regulatory processes in lymphocytes and non-immune cells that underpin both the positive and harmful effects of microbial metabolites include variations in metabolic signaling and epigenetic states. As a result, histone deacetylase (HDAC) inhibitors, SCFAs, and BAs, which are powerful immunometabolism modulators, have been explored. BAs have also been shown to alter the microbiome as well as adaptive and innate immune systems. We therefore emphasize the important metabolites in liver disease for clinical therapeutic applications. A deep understanding of SCFAs and Bas, as well as their molecular risk, could reveal more about certain liver-disease conditions.
Collapse
|
28
|
Martini G, Ciardiello D, Dallio M, Famiglietti V, Esposito L, Corte CMD, Napolitano S, Fasano M, Gravina AG, Romano M, Loguercio C, Federico A, Maiello E, Tuccillo C, Morgillo F, Troiani T, Di Maio M, Martinelli E, Ciardiello F. Gut microbiota correlates with antitumor activity in patients with mCRC and NSCLC treated with cetuximab plus avelumab. Int J Cancer 2022; 151:473-480. [PMID: 35429341 PMCID: PMC9321613 DOI: 10.1002/ijc.34033] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
Gut microbiota is involved in immune modulation and immune checkpoint inhibitors (ICIs) efficacy. Single-arm phase II CAVE-mCRC and CAVE-LUNG clinical trials investigated cetuximab + avelumab combination in RAS wild-type (WT) metastatic colorectal cancer (mCRC) and chemo-refractory nonsmall cell lung cancer (NSCLC) patients, respectively. A comprehensive gut microbiota genetic analysis was done in basal fecal samples of 14 patients from CAVE-mCRC trial with circulating tumor DNA (ctDNA) RAS/BRAF WT and microsatellite stable (MSS) disease. Results were validated in a cohort of 10 patients from CAVE-Lung trial. 16S rRNA sequencing revealed 23 027 bacteria species in basal fecal samples of 14 patients from CAVE-mCRC trial. In five long-term responding patients (progression-free survival [PFS], 9-24 months) significant increases in two butyrate-producing bacteria, Agathobacter M104/1 (P = .018) and Blautia SR1/5 (P = .023) were found compared to nine patients with shorter PFS (2-6 months). A significantly better PFS was also observed according to the presence or absence of these species in basal fecal samples. For Agathobacter M104/1, median PFS (mPFS) was 13.5 months (95% confidence interval [CI], 6.5-20.5 months) vs 4.6 months (95% CI, 1.8-7.4 months); P = .006. For Blautia SR1/5, mPFS was 5.9 months (95% CI, 2.2-9.7 months) vs 3.6 months (95% CI, 3.3-4.0 months); P = .021. Similarly, in CAVE-Lung validation cohort, Agathobacter M104/1 and Blautia SR1/5 expression were associated with PFS according to their presence or absence in basal fecal samples. Agathobacter and Blautia species could be potential biomarkers of outcome in mCRC, and NSCLC patients treated with cetuximab + avelumab. These findings deserve further investigation.
Collapse
Affiliation(s)
- Giulia Martini
- Medical OncologyUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Davide Ciardiello
- Medical OncologyUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
- Medical OncologyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Marcello Dallio
- Gastroenterology, Department of Precision MedicineUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Vincenzo Famiglietti
- Medical OncologyUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Lucia Esposito
- Medical OncologyUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | | | - Stefania Napolitano
- Medical OncologyUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Morena Fasano
- Medical OncologyUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Antonietta Gerarda Gravina
- Gastroenterology, Department of Precision MedicineUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Marco Romano
- Gastroenterology, Department of Precision MedicineUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Carmelina Loguercio
- Gastroenterology, Department of Precision MedicineUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Alessandro Federico
- Gastroenterology, Department of Precision MedicineUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Evaristo Maiello
- Medical OncologyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Concetta Tuccillo
- Medical OncologyUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Floriana Morgillo
- Medical OncologyUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Teresa Troiani
- Medical OncologyUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Massimo Di Maio
- Department of OncologyUniversity of Turin, at Ordine Mauriziano HospitalTurinItaly
| | - Erika Martinelli
- Medical OncologyUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Fortunato Ciardiello
- Medical OncologyUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| |
Collapse
|
29
|
Buness JG, Ali AH, Tabibian JH, Buness CW, Cox KL, Lindor KD. Potential Association of Doxycycline With the Onset of Primary Sclerosing Cholangitis: A Case Series. Am J Ther 2022; 29:e437-e443. [PMID: 31567143 DOI: 10.1097/mjt.0000000000001065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is linked to inflammatory bowel diseases (IBD). Evidence suggests an association between the gut microbiome and PSC. However, the putative relationship between exposure to antibiotics and onset of PSC has never been reported. We observed 3 cases in which patients without antecedent liver or bowel issues developed symptoms leading to diagnosis of IBD and subsequently PSC after being exposed to doxycycline. We aimed to identify, through the PSC Partners national patient registry, additional cases of PSC in which there is a temporal relationship between exposure to doxycycline and onset of PSC or PSC-IBD. AREAS OF UNCERTAINTY The etiopathogenesis of PSC remains an enigma. DATA SOURCES We collected data from patients with PSC and PSC-IBD in which there seemed to be a temporal relationship between exposure to doxycycline and PSC. Time from doxycycline exposure to: (1) onset of PSC or PSC-IBD symptoms and (2) diagnosis of PSC were documented for each patient. Descriptive statistical analyses were performed. RESULTS We identified 6 additional patients with PSC or PSC-IBD in whom there was a temporal relationship between exposure to doxycycline and onset of PSC or PSC-IBD. The median age of these 9 patients was 20 years, 6 were female, and 7 had ulcerative colitis. The median time from doxycycline exposure to onset of first symptoms was 3 months, and median time from doxycycline exposure to diagnosis of PSC was 15 months. THERAPEUTIC HYPOTHESIS We describe 9 cases of PSC and PSC-IBD in which there seem to be a temporal relationship between exposure to doxycycline and onset of PSC.
Collapse
Affiliation(s)
- James Gage Buness
- Arizona College of Osteopathic Medicine, Midwestern University, Downers Grove, IL
| | - Ahmad Hassan Ali
- Division of Hepatology, Mayo Clinic, Phoenix, AZ
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO
| | - James H Tabibian
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Los Angeles, CA
| | - Cynthia W Buness
- National Patient Advocate Foundation, Arizona State University, Phoenix, AZ; and
| | - Kenneth L Cox
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Stanford University, Palo Alto, CA
| | - Keith D Lindor
- Arizona College of Osteopathic Medicine, Midwestern University, Downers Grove, IL
- Division of Hepatology, Mayo Clinic, Phoenix, AZ
| |
Collapse
|
30
|
Gama J, Neves B, Pereira A. Chronic Effects of Dietary Pesticides on the Gut Microbiome and Neurodevelopment. Front Microbiol 2022; 13:931440. [PMID: 35847088 PMCID: PMC9279132 DOI: 10.3389/fmicb.2022.931440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many agricultural pesticides include substances that are known to be harmful to human health and while some have been banned from developed countries, they are still being used in developing countries such as Brazil. Recent studies have shown that low-level chronic dietary exposure to pesticides can affect the human gut microbiota. This possible hazardous effect of pesticides on human health has not been specifically recognized by government regulatory agencies. In Brazil, for instance, of the 10 best-selling active ingredients in pesticides in 2019, two are considered extremely toxic, Paraquat and Chlorpyrifos. Even though Paraquat has been banned in Brazil since 2020, the values of maximum residue limits (MRLs) of toxic pesticides allowed in the country are still higher than in other countries. Unfortunately, many developing countries still lack the resources and expertise needed to monitor adequately and systematically the presence of pesticide residues on food. In this work, we raise awareness to the danger the chronic exposure to high dietary levels of pesticides can pose to the public, especially considering their prolonged effects on the gut microbiome.
Collapse
Affiliation(s)
- Jessica Gama
- Graduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém, Brazil
| | - Bianca Neves
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Pereira
- Graduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém, Brazil
- Institute of Technology, Federal University of Pará, Belém, Brazil
| |
Collapse
|
31
|
Di Chiacchio IM, Gómez-Abenza E, Paiva IM, de Abreu DJM, Rodríguez-Vidal JF, Carvalho EEN, Carvalho SM, Solis-Murgas LD, Mulero V. Bee pollen in zebrafish diet affects intestinal microbiota composition and skin cutaneous melanoma development. Sci Rep 2022; 12:9998. [PMID: 35705722 PMCID: PMC9200724 DOI: 10.1038/s41598-022-14245-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
Bee pollen is recommended as dietary supplement due to immunostimulating functions including antioxidant, anti-inflammatory and anti-carcinogenic properties. Nevertheless, the effectiveness of such properties is still not well understood. As diet can be associated with animal performance, microbiota modulation and potentially factor for cancer, this study aimed to analyze if bee pollen could influence growth, gut microbial and skin cutaneous melanoma development in zebrafish. Control diets based on commercial flakes and Artemia were compared with the same diet supplemented with bee pollen. Fish weight gain, increased length, intestinal bacteria metagenomics analysis, serum amyloid A gene expression and cutaneous melanoma transplantation assays were performed. Bee pollen affected microbiota composition and melanoma development. Differential abundance revealed higher abundance in the control group for Aeromonadaceae family, Aeromonas and Pseudomonas genus, A. sobria, A. schubertii, A. jandaei and P. alcaligenes species compared with pollen diet group. Pollen group presented higher abundance for Chromobacterium genus and for Gemmobacter aquaticus, Flavobacterium succinicans and Bifidobacterium breve compared with control group. Unexpectedly, fish fed with bee pollen showed higher tumor growth rate and larger tumor size than control group. This is the first study to report intestinal microbial changes and no protective cancer properties after bee pollen administration.
Collapse
Affiliation(s)
- Isabela M Di Chiacchio
- Programa de Pós-graduação em Ciências Veterinárias-FZMV, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain
| | - Elena Gómez-Abenza
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain
| | - Isadora M Paiva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, 31270-901, Brasil
| | - Danilo J M de Abreu
- Programa de Pós-graduação em Microbiologia Agrícola-ICN, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brazil
| | - Juan Francisco Rodríguez-Vidal
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain
| | - Elisângela E N Carvalho
- Departamento de Ciência dos Alimentos-ESAL, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil
| | - Stephan M Carvalho
- Programa de Pós-graduação em Entomologia-ESAL, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil
| | - Luis David Solis-Murgas
- Programa de Pós-graduação em Ciências Veterinárias-FZMV, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain.
| |
Collapse
|
32
|
Xylooligosaccharide-mediated gut microbiota enhances gut barrier and modulates gut immunity associated with alterations of biological processes in a pig model. Carbohydr Polym 2022; 294:119776. [DOI: 10.1016/j.carbpol.2022.119776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022]
|
33
|
van de Velde CC, Joseph C, Biclot A, Huys GRB, Pinheiro VB, Bernaerts K, Raes J, Faust K. Fast quantification of gut bacterial species in cocultures using flow cytometry and supervised classification. ISME COMMUNICATIONS 2022; 2:40. [PMID: 37938658 PMCID: PMC9723706 DOI: 10.1038/s43705-022-00123-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 09/07/2023]
Abstract
A bottleneck for microbial community experiments with many samples and/or replicates is the fast quantification of individual taxon abundances, which is commonly achieved through sequencing marker genes such as the 16S rRNA gene. Here, we propose a new approach for high-throughput and high-quality enumeration of human gut bacteria in a defined community, combining flow cytometry and supervised classification to identify and quantify species mixed in silico and in defined communities in vitro. We identified species in a 5-species in silico community with an F1 score of 71%. In addition, we demonstrate in vitro that our method performs equally well or better than 16S rRNA gene sequencing in two-species cocultures and agrees with 16S rRNA gene sequencing data on the most abundant species in a four-species community. We found that shape and size differences alone are insufficient to distinguish species, and that it is thus necessary to exploit the multivariate nature of flow cytometry data. Finally, we observed that variability of flow cytometry data across replicates differs between gut bacterial species. In conclusion, the performance of supervised classification of gut species in flow cytometry data is species-dependent, but is for some combinations accurate enough to serve as a faster alternative to 16S rRNA gene sequencing.
Collapse
Affiliation(s)
- Charlotte C van de Velde
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
| | - Clémence Joseph
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
| | - Anaïs Biclot
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
- VIB-KU Leuven, Center for Microbiology, B-3000, Leuven, Belgium
| | - Geert R B Huys
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
- VIB-KU Leuven, Center for Microbiology, B-3000, Leuven, Belgium
| | - Vitor B Pinheiro
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, B-3000, Leuven, Belgium
| | - Kristel Bernaerts
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), B-3001, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
- VIB-KU Leuven, Center for Microbiology, B-3000, Leuven, Belgium
| | - Karoline Faust
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium.
| |
Collapse
|
34
|
Liu M, Shi Y, Wu K, Xie W, Ser HL, Jiang Q, Wu L. From Mouth to Brain: Distinct Supragingival Plaque Microbiota Composition in Cerebral Palsy Children With Caries. Front Cell Infect Microbiol 2022; 12:814473. [PMID: 35480234 PMCID: PMC9037539 DOI: 10.3389/fcimb.2022.814473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Children with cerebral palsy (CP) present a higher prevalence and severity of caries. Although researchers have studied multiple risk factors for caries in CP, the role of microorganisms in caries remains one of the critical factors worth exploring. In order to explore the differences in the supragingival plaque microbiota (SPM), supragingival plaque samples were collected from 55 CP children and 23 non-CP children for 16S rRNA sequencing. Distinct SPM composition was found between CP children with severe caries (CPCS) and non-CP children with severe caries (NCPCS). Further subanalysis was also done to identify if there were any differences in SPM among CP children with different degrees of caries, namely, caries-free (CPCF), mild to moderate caries (CPCM), and severe caries (CPCS). After selecting the top 15 most abundant species in all groups, we found that CPCS was significantly enriched for Fusobacterium nucleatum, Prevotella intermedia, Campylobacter rectus, Porphyromonas endodontalis, Catonella morbi, Alloprevotella tannerae, Parvimonas micra, Streptobacillus moniliformis, and Porphyromonas canoris compared to NCPCS. By comparing CPCF, CPCM, and CPCS, we found that the core caries-associated microbiota in CP children included Prevotella, Alloprevotella, Actinomyces, Catonella, and Streptobacillus, while Capnocytophaga and Campylobacter were dental health-associated microbiota in CP children. Alpha diversity analysis showed no significant difference between NCPCS and CPCS, but the latter had a much simpler core correlation network than that of NCPCS. Among CP children, CPCM and CPCF displayed lower bacterial diversity and simpler correlation networks than those of CPCS. In summary, the study showed the specific SPM characteristics of CPCS compared to NCPCS and revealed the core SPM in CP children with different severities of caries (CPCF, CPCM, and CPCS) and their correlation network. Hopefully, the study would shed light on better caries prevention and therapies for CP children. Findings from the current study offer exciting insights that warrant larger cohort studies inclusive of saliva and feces samples to investigate the potential pathogenic role of oral microbiota through the oral-gut-brain axis in CP children with caries.
Collapse
Affiliation(s)
- Mingxiao Liu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Yuhan Shi
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Kaibin Wu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wei Xie
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Lihong Wu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| |
Collapse
|
35
|
Hebbandi Nanjundappa R, Sokke Umeshappa C, Geuking MB. The impact of the gut microbiota on T cell ontogeny in the thymus. Cell Mol Life Sci 2022; 79:221. [PMID: 35377005 PMCID: PMC11072498 DOI: 10.1007/s00018-022-04252-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
Abstract
The intestinal microbiota is critical for the development of gut-associated lymphoid tissues, including Peyer's patches and mesenteric lymph nodes, and is instrumental in educating the local as well as systemic immune system. In addition, it also impacts the development and function of peripheral organs, such as liver, lung, and the brain, in health and disease. However, whether and how the intestinal microbiota has an impact on T cell ontogeny in the hymus remains largely unclear. Recently, the impact of molecules and metabolites derived from the intestinal microbiota on T cell ontogeny in the thymus has been investigated in more detail. In this review, we will discuss the recent findings in the emerging field of the gut-thymus axis and we will highlight the current questions and challenges in the field.
Collapse
Affiliation(s)
- Roopa Hebbandi Nanjundappa
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, IWK Research Center, Halifax, NS, Canada
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, IWK Research Center, Halifax, NS, Canada
| | - Markus B Geuking
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
36
|
Yu J, Ma Y, He X, Long XN, Xu J, Wang L, Feng ZP, Peng HY. Effects of Irbesartan and Amlodipine Besylate Tablets on the Intestinal Microflora of Rats With Hypertensive Renal Damage. Front Pharmacol 2022; 12:778072. [PMID: 35273491 PMCID: PMC8902410 DOI: 10.3389/fphar.2021.778072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The present study aimed to investigate the effects of irbesartan and amlodipine besylate tablets on the intestinal microflora of rats with hypertensive renal damage. Methods: Eighteen 12-week-old male spontaneous hypertensive rats were randomly divided into three groups. The Ai-HDG group was given irbesartan at 15 mg/kg per day by gavage, the Ci-HDG group was given amlodipine besylate tablets at 1 mg/kg per day by gavage, and the Wi-HDG group, i.e., the control, was given the same dose of distilled water per day by gavage. The treatment lasted for 6 weeks. Six 12-week-old male Wistar–Kyoto rats were used as the reference group. Bacterial DNA was extracted from the feces of all the rats for high-throughput sequencing before and after the experiment. Operational taxonomic units were used to analyze the species of the intestinal flora, and the alpha diversity index was used to analyze the diversity. The relative abundance of the intestinal microflora in each group of rats was therefore analyzed at the phylum and genus levels. Results: Compared with the Wi-HDG group, the alpha diversity of the Ai-HDG group increased (p < 0.05), while in the Ci-HDG group, only the Shannon index increased significantly. At the phylum level, compared with the control group, in the Ai-HDG and Ci-HDG groups, Firmicutes (F) decreased, Bacteroides (B) increased, and the F/B ratio decreased (p < 0.05). At the genus level, compared with the Wi-HDG group, the Ai-HDG and Ci-HDG groups did not show a significantly delayed decline in lactic acid bacteria. However, in the Ai-HDG group, the relative abundance of Bifidobacteria increased. Conclusion: After the administration of irbesartan and amlodipine besylate, the disorder of intestinal flora in the rats with hypertensive renal damage improved. However, irbesartan was better than amlodipine besylate at improving the diversity of the intestinal flora in these rats.
Collapse
Affiliation(s)
- Jing Yu
- Department of Nephrology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guizhou, China
| | - Yan Ma
- Department of Nephrology, The Affiliated Hospital of Guizhou Medical, Guizhou, China
| | - Xin He
- Department of Nephrology, The Affiliated Hospital of Guizhou Medical, Guizhou, China.,Department of Nephrology, The Bozhou County People's Hospital, Guizhou, China
| | - Xiao Na Long
- Department of Nephrology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guizhou, China
| | - Jun Xu
- Department of Nephrology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guizhou, China
| | - Lei Wang
- Department of Nephrology, The Affiliated Hospital of Guizhou Medical, Guizhou, China
| | - Zhi-Peng Feng
- Department of Nephrology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guizhou, China
| | - Hong-Ying Peng
- Department of Nephrology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
37
|
Ornelas A, Dowdell AS, Lee JS, Colgan SP. Microbial Metabolite Regulation of Epithelial Cell-Cell Interactions and Barrier Function. Cells 2022; 11:cells11060944. [PMID: 35326394 PMCID: PMC8946845 DOI: 10.3390/cells11060944] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells that line tissues such as the intestine serve as the primary barrier to the outside world. Epithelia provide selective permeability in the presence of a large constellation of microbes, termed the microbiota. Recent studies have revealed that the symbiotic relationship between the healthy host and the microbiota includes the regulation of cell–cell interactions at the level of epithelial tight junctions. The most recent findings have identified multiple microbial-derived metabolites that influence intracellular signaling pathways which elicit activities at the epithelial apical junction complex. Here, we review recent findings that place microbiota-derived metabolites as primary regulators of epithelial cell–cell interactions and ultimately mucosal permeability in health and disease.
Collapse
Affiliation(s)
- Alfredo Ornelas
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - Alexander S. Dowdell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - J. Scott Lee
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
- Rocky Mountain Regional Veterans Affairs Medical Center, 1700 N. Wheeling St., Aurora, CO 80045, USA
- Correspondence:
| |
Collapse
|
38
|
Li Y, Ye Z, Zhu J, Fang S, Meng L, Zhou C. Effects of Gut Microbiota on Host Adaptive Immunity Under Immune Homeostasis and Tumor Pathology State. Front Immunol 2022; 13:844335. [PMID: 35355998 PMCID: PMC8960063 DOI: 10.3389/fimmu.2022.844335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota stimulate and shape the body’s adaptive immune response through bacterial components and its active metabolites, which orchestrates the formation and maintenance of the body’s immune homeostasis. In addition, the imbalances in microbiota-adaptive immunity contribute to the development of tumor and the antitumor efficiency of a series of antitumor therapies at the preclinical and clinical levels. Regardless of significant results, the regulation of gut microbiota on adaptive immunity in immune homeostasis and tumors needs a more thorough understanding. Herein, we highlighted the comprehensive knowledge, status, and limitations in the mechanism of microbiome interaction with adaptive immunity and put forward the prospect of how to translate these insights in inhibiting tumor progression and enhancing the efficacy of antitumor interventions.
Collapse
Affiliation(s)
- Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zixuan Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jianguo Zhu
- Research and Development Department,Wecare-bio Probiotics Co., Ltd., Suzhou, China
| | - Shuguang Fang
- Research and Development Department,Wecare-bio Probiotics Co., Ltd., Suzhou, China
| | - Lijuan Meng
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Zhou, ; Lijuan Meng,
| | - Chen Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Zhou, ; Lijuan Meng,
| |
Collapse
|
39
|
Parkar SG, Gopal PK. Gut Microbiota and Metabolism in Different Stages of Life and Health. Microorganisms 2022; 10:microorganisms10020474. [PMID: 35208928 PMCID: PMC8876188 DOI: 10.3390/microorganisms10020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
| | - Pramod K. Gopal
- New Zealand Institute for Plant and Food Research, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
40
|
Fleming A, Castro‐Dopico T, Clatworthy MR. B cell class switching in intestinal immunity in health and disease. Scand J Immunol 2022; 95:e13139. [PMID: 34978077 PMCID: PMC9285483 DOI: 10.1111/sji.13139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract is colonized by trillions of commensal microorganisms that collectively form the microbiome and make essential contributions to organism homeostasis. The intestinal immune system must tolerate these beneficial commensals, whilst preventing pathogenic organisms from systemic spread. Humoral immunity plays a key role in this process, with large quantities of immunoglobulin (Ig)A secreted into the lumen on a daily basis, regulating the microbiome and preventing bacteria from encroaching on the epithelium. However, there is an increasing appreciation of the role of IgG antibodies in intestinal immunity, including beneficial effects in neonatal immune development, pathogen and tumour resistance, but also of pathological effects in driving chronic inflammation in inflammatory bowel disease (IBD). These antibody isotypes differ in effector function, with IgG exhibiting more proinflammatory capabilities compared with IgA. Therefore, the process that leads to the generation of different antibody isotypes, class-switch recombination (CSR), requires careful regulation and is orchestrated by the immunological cues generated by the prevalent local challenge. In general, an initiating signal such as CD40 ligation on B cells leads to the induction of activation-induced cytidine deaminase (AID), but a second cytokine-mediated signal determines which Ig heavy chain is expressed. Whilst the cytokines driving intestinal IgA responses are well-studied, there is less clarity on how IgG responses are generated in the intestine, and how these cues might become dysfunctional in IBD. Here, we review the key mechanisms regulating class switching to IgA vs IgG in the intestine, processes that could be therapeutically manipulated in infection and IBD.
Collapse
Affiliation(s)
- Aaron Fleming
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
| | - Tomas Castro‐Dopico
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- The Francis Crick InstituteLondonUK
| | - Menna R. Clatworthy
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- Cellular GeneticsWellcome Trust Sanger InstituteHinxtonUK
- NIHR Cambridge Biomedical Research CentreCambridgeUK
| |
Collapse
|
41
|
Calcaterra V, Rossi V, Massini G, Regalbuto C, Hruby C, Panelli S, Bandi C, Zuccotti G. Precocious puberty and microbiota: The role of the sex hormone-gut microbiome axis. Front Endocrinol (Lausanne) 2022; 13:1000919. [PMID: 36339428 PMCID: PMC9634744 DOI: 10.3389/fendo.2022.1000919] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Puberty is a critical phase of life associated with physiological changes related to sexual maturation, and represents a complex process regulated by multiple endocrine and genetic controls. Puberty is driven by hormones, and it can impact the gut microbiome (GM). GM differences between sex emerge at puberty onset, confirming a relationship between microbiota and sex hormones. In this narrative review, we present an overview of precocious pubertal development and the changes in the GM in precocious puberty (PP) in order to consider the role of the sex hormone-gut microbiome axis from the perspective of pediatric endocrinology. Bidirectional interactions between the GM and sex hormones have been proposed in different studies. Although the evidence on the interaction between microbiota and sex hormones remains limited in pediatric patients, the evidence that GM alterations may occur in girls with central precocious puberty (CPP) represents an interesting finding for the prediction and prevention of PP. Deepening the understanding of the connection between the sex hormones and the role of microbiota changes can lead to the implementation of microbiota-targeted therapies in pubertal disorders by offering a pediatric endocrinology perspective.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Valeria Calcaterra,
| | - Virginia Rossi
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Giulia Massini
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Corrado Regalbuto
- Pediatric unit , Fondazione Istituto di Ricovero e Cura a Carattere (IRCCS) Policlinico S. Matteo and University of Pavia, Pavia, Italy
| | - Chiara Hruby
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Simona Panelli
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Claudio Bandi
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| |
Collapse
|
42
|
Guanylin ligand protects the intestinal immune barrier by activating the guanylate cyclase-C signaling pathway. Acta Histochem 2022; 124:151811. [PMID: 34920371 DOI: 10.1016/j.acthis.2021.151811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022]
Abstract
Inflammatory bowel disease (IBD) impacts patient quality of life significantly. The dysfunction of intestinal immune barrier is closely associated with IBD. The guanylate cyclase-C (GC-C) signaling pathway activated by the guanylin (Gn) ligand is involved in the occurrence and development of IBD. However, how it regulates the intestinal immune barrier is still unclear. To investigate the effect of the GC-C pathway on intestinal mucosal immunity and provide experimental basis for seeking new therapeutic strategies for IBD, we focused on Caco-2 cells and intestinal intra-epithelial lymphocytes (IELs), which displayed inflammatory responses induced by lipopolysaccharide (LPS). GC-C activity was modulated by transfection with Gn overexpression or GC-C shRNA plasmid. Levels of Gn, GC-C, and CFTR; transepithelial electrical resistance (TER); paracellula r permeability; and levels of IL-2, IFN-γ, and secretory IgA (sIgA) were examined. The study found that after stimulation with LPS, Gn, GC-C, CFTR, TER, and sIgA levels were all significantly reduced, IL-2 and IFN-γ levels as well as paracellular permeability were significantly increased. These indicators changed inversely and significantly after transfection with the Gn overexpression vector. Compared to the vector controls, GC-C-silenced cells displayed significantly decreased levels of GC-C, CFTR, and TER and increased levels of IL-2, IFN-γ, and paracellular permeability stimulated by LPS. The results show that Gn ligand can protect the intestinal immune barrier by activating the GC-C signaling pathway, which may be helpful for the development of new treatments for IBD. DATA AVAILABILITY STATEMENT: The data used to support the findings of this study are available from the corresponding author upon request.
Collapse
|
43
|
Next-generation microbial drugs developed from microbiome's natural products. ADVANCES IN GENETICS 2021; 108:341-382. [PMID: 34844715 DOI: 10.1016/bs.adgen.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Scientists working in natural products chemistry have been enticed by the current advancements being made in the discovery of novel "magic bullets" from microbes homed to all conceivable environments. Even though researchers continue to face challenges funneling the novel bioactive compounds in the global therapeutic industries, it seems most likely that the discovery of some "hit molecules" with significant biomedical applications is not that far. We applaud novel natural products for their ability to combat the spread of superbugs and aid in the prevention of currently observed antibiotic resistance. This in-depth investigation covers a wide range of microbiomes with a proclivity for synthesizing novel compounds to combat the spread of superbugs. Furthermore, we use this opportunity to explore various groups of secondary metabolites and their biosynthetic pathways in various microbiota found in mammals, insects, and humans. This systematic study, when taken as a whole, offers detail understanding on the biomedical fate of various groups of compounds originated from diverse microbiomes. For gathering all information that has been uncovered and released so far, we have also presented the huge diversity of microbes that are associated with humans and their metabolic products. To conclude, this concrete review suggests novel ideas that will prove immensely helpful in reducing the danger posed by superbugs while also improving the efficacy of antibiotics.
Collapse
|
44
|
Liang G. Altered gut bacterial and metabolic signatures and their interaction in inflammatory bowel disease. Synth Syst Biotechnol 2021; 6:377-383. [PMID: 34820530 PMCID: PMC8599931 DOI: 10.1016/j.synbio.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of the gut microbiome has been implicated in the progression of many diseases. This study explored the role of microbial and metabolic signatures, and their interaction between the Human inflammatory bowel disease (IBD) and healthy controls (HCs) based on the combination of machine learning and traditional statistical analysis, using data collected from the Human Microbiome Project (HMP) and the Integrative Human Microbiome Project (iHMP). It was showed that the microbial and metabolic signatures of IBD patients were significantly different from those of HCs. Compared to HCs, IBD subjects were characterized by 25 enriched species and 6 depleted species. Furthermore, a total of 17 discriminative pathways were identified between the IBD and HC groups. Those differential pathways were mainly involved in amino acid, nucleotide biosynthesis, and carbohydrate degradation. Notably, co-occurrence network analysis revealed that non-predominant bacteria Ruminococcus_obeum and predominant bacteria Faecalibacterium_prausnitzii formed the same broad and strong co-occurring relationships with pathways. Moreover, the essay identified a combinatorial marker panel that could distinguish IBD from HCs. Receiver Operating Characteristic (ROC) and Decision Curve Analysis (DCA) confirmed the high accuracy (AUC = 0.966) and effectiveness of the model. Meanwhile, an independent cohort used for external validation also showed the identical high efficacy (AUC = 0.835). These findings showed that the gut microbes may be relevant to the pathogenesis and pathophysiology, and offer universal utility as a non-invasive diagnostic test in IBD.
Collapse
Affiliation(s)
- Guangcai Liang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
45
|
Willers M, Viemann D. Role of the gut microbiota in airway immunity and host defense against respiratory infections. Biol Chem 2021; 402:1481-1491. [PMID: 34599869 DOI: 10.1515/hsz-2021-0281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Colonization of the intestine with commensal bacteria is known to play a major role in the maintenance of human health. An altered gut microbiome is associated with various ensuing diseases including respiratory diseases. Here, we summarize current knowledge on the impact of the gut microbiota on airway immunity with a focus on consequences for the host defense against respiratory infections. Specific gut commensal microbiota compositions and functions are depicted that mediate protection against respiratory infections with bacterial and viral pathogens. Lastly, we highlight factors that have imprinting effects on the establishment of the gut microbiota early in life and are potentially relevant in the context of respiratory infections. Deepening our understanding of these relationships will allow to exploit the knowledge on how gut microbiome maturation needs to be modulated to ensure lifelong enhanced resistance towards respiratory infections.
Collapse
Affiliation(s)
- Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, D-30625 Hannover, Germany
- Department of Pediatrics, Translational Pediatrics, University Hospital Würzburg, Zinklesweg 10, D-97078 Würzburg, Germany
| |
Collapse
|
46
|
Probiotics Treatment of Leg Diseases in Broiler Chickens: a Review. Probiotics Antimicrob Proteins 2021; 14:415-425. [PMID: 34757604 DOI: 10.1007/s12602-021-09869-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Normal development and growth of bones are critical for poultry. With the rapid growth experienced by broiler chickens, higher incidences of leg weakness and lameness are common problems in adolescent meat-type poultry that present huge economic and welfare issues. Leg disorders such as angular bone deformities and tibial dyschondroplasia have become common in broilers and are associated with poor growth, high mortality rates, increased carcass condemnation, and downgrading at slaughter. Probiotics have shown promise for a variety of health purposes, including preventing diarrhea, elevating carcass quality, and promoting growth of the poultry. In addition, recent studies have indicated that probiotics can maintain the homeostasis of the gut microbiota and improve the health of the gastrointestinal tract, which confers a potentially beneficial effect on bone health. This review mainly describes the occurrence of broiler leg disease and the role of probiotics in bone health through regulating the gut microbiota and improving intestinal function, thus providing a relevant theoretical basis for probiotics to hinder the development of skeletal disorders in broiler chickens.
Collapse
|
47
|
He S, Li H, Yu Z, Zhang F, Liang S, Liu H, Chen H, Lü M. The Gut Microbiome and Sex Hormone-Related Diseases. Front Microbiol 2021; 12:711137. [PMID: 34650525 PMCID: PMC8506209 DOI: 10.3389/fmicb.2021.711137] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
The role of the gut microbiome has been a hot topic in recent years. One aim of this review is to shed light on the crosstalk between sex hormones and the gut microbiome. Researchers have observed a sex bias of the composition of the gut microbiome in mice and have proved that sex differences influence the composition of the gut microbiome, although the influence is usually obscured by genetic variations. Via cell studies, animal studies and some observational studies in humans, researchers have confirmed that the gut microbiome can be shaped by the hormonal environment. On other hand, some theories suggest that the gut microbiota regulates the levels of sex hormones via interactions among its metabolites, the immune system, chronic inflammation and some nerve-endocrine axes, such as the gut-brain axis. In addition, bidirectional interactions between the microbiome and the hormonal system have also been observed, and the mechanisms of these interactions are being explored. We further describe the role of the gut microbiome in sex hormone-related diseases, such as ovarian cancer, postmenopausal osteoporosis (PMOP), polycystic ovary syndrome and type 1 diabetes. Among these diseases, PMOP is described in detail. Finally, we discuss the treatments of these diseases and the application prospects of microbial intervention.
Collapse
Affiliation(s)
- Song He
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zehui Yu
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Faming Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sicheng Liang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hang Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongwei Chen
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - MuHan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
48
|
Leibowitz BJ, Zhao G, Wei L, Ruan H, Epperly M, Chen L, Lu X, Greenberger JS, Zhang L, Yu J. Interferon b drives intestinal regeneration after radiation. SCIENCE ADVANCES 2021; 7:eabi5253. [PMID: 34613772 PMCID: PMC8494436 DOI: 10.1126/sciadv.abi5253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/16/2021] [Indexed: 05/14/2023]
Abstract
The cGAS-STING cytosolic DNA sensing pathway is critical for host defense. Here, we report that cGAS-STING–dependent type 1 interferon (IFN) response drives intestinal regeneration and animal recovery from radiation injury. STING deficiency has no effect on radiation-induced DNA damage or crypt apoptosis but abrogates epithelial IFN-β production, local inflammation, innate transcriptional response, and subsequent crypt regeneration. cGAS KO, IFNAR1 KO, or CCR2 KO also abrogates radiation-induced acute crypt inflammation and regeneration. Impaired intestinal regeneration and survival in STING-deficient mice are fully rescued by a single IFN-β treatment given 48 hours after irradiation but not by wild-type (WT) bone marrow. IFN-β treatment remarkably improves the survival of WT mice and Lgr5+ stem cell regeneration through elevated compensatory proliferation and more rapid DNA damage removal. Our findings support that inducible IFN-β production in the niche couples ISC injury and regeneration and its potential use to treat acute radiation injury.
Collapse
Affiliation(s)
- Brian J. Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Guangyi Zhao
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Liang Wei
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Hang Ruan
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Michael Epperly
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Lujia Chen
- Department of Medical Informatics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Xinghua Lu
- Department of Medical Informatics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
49
|
Abokor AA, McDaniel GH, Golonka RM, Campbell C, Brahmandam S, Yeoh BS, Joe B, Vijay-Kumar M, Saha P. Immunoglobulin A, an Active Liaison for Host-Microbiota Homeostasis. Microorganisms 2021; 9:2117. [PMID: 34683438 PMCID: PMC8539215 DOI: 10.3390/microorganisms9102117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces in the gastrointestinal tract are continually exposed to native, commensal antigens and susceptible to foreign, infectious antigens. Immunoglobulin A (IgA) provides dual humoral responses that create a symbiotic environment for the resident gut microbiota and prevent the invasion of enteric pathogens. This review features recent immunological and microbial studies that elucidate the underlying IgA and microbiota-dependent mechanisms for mutualism at physiological conditions. IgA derailment and concurrent microbiota instability in pathological diseases are also discussed in detail. Highlights of this review underscore that the source of IgA and its structural form can dictate microbiota reactivity to sustain a diverse niche where both host and bacteria benefit. Other important studies emphasize IgA insufficiency can result in the bloom of opportunistic pathogens that encroach the intestinal epithelia and disseminate into circulation. The continual growth of knowledge in these subjects can lead to the development of therapeutics targeting IgA and/or the microbiota to treat life threatening diseases.
Collapse
Affiliation(s)
- Ahmed A. Abokor
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Grant H. McDaniel
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Connor Campbell
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Sreya Brahmandam
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Bina Joe
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| |
Collapse
|
50
|
Mamgain G, Patra P, Naithani M, Nath UK. The Role of Microbiota in the Development of Cancer Tumour Cells and Lymphoma of B and T Cells. Cureus 2021; 13:e19047. [PMID: 34853760 PMCID: PMC8608681 DOI: 10.7759/cureus.19047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Human body harbours enormous numbers of microbial organisms, including bacteria, viruses, and fungi which have a momentous role in well-being and illness in humans. Immune system shelters us from pathogenic bacteria, microorganisms found in human tissues have many benefits related to the functional movement of the host by regulating important procedures such as immunity, signalling, and breakdown. Lymphocytes assume a significant part in the reaction to bacterial colonization, primarily by prompting a safe reaction to obstruction or initiation. Most immunologically occupant cells have a place with the mucosal invulnerable framework and are continually motioned by dendritic cells or other Antigen introducing cells that gather intestinal samples. Thus, Microbiome is a key contributor to developing lymphoma and specific alterations to microbiome composition could attenuate the risk. There is an indication that microbial morphology can affect and control humanoids. The difference in the composition of these microorganisms is associated with tumour development. With the increased knowledge of the connection among the human microbiome and carcinogenesis, the use of these findings to prevent, predict or diagnose of lymphomas has attracted a great attention. In this article, we explored current knowledge of various microbial ecosystems, their connection with carcinogens and the potential for useful microorganisms to control and prevent B and T cell lymphoma.
Collapse
Affiliation(s)
- Garima Mamgain
- Medical Oncology and Haematology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Priyanka Patra
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, IND
| | - Manisha Naithani
- Biochemistry & Advanced Center of Continuous Professional Development, All India Institute of Medical Sciences, Rishikesh, IND
| | - Uttam Kumar Nath
- Medical Oncology and Haematology, All India Institute of Medical Sciences, Rishikesh, IND
| |
Collapse
|