1
|
Bashar SJ, Islam MR, Nuzhat S, Amin R, Rahman MM, Pavlinac PB, Arnold SLM, Newlands A, Ahmed T, Chisti MJ. Antibiotic use prior to attending a large diarrheal disease hospital among preschool children suffering from bloody or non-bloody diarrhea: A cross-sectional study conducted in Bangladesh. PLoS One 2024; 19:e0314325. [PMID: 39591443 PMCID: PMC11593761 DOI: 10.1371/journal.pone.0314325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Among diarrheal children, injudicious use of antibiotics is a major public health concern particularly in low- and middle-income countries. There are evidence-based guidelines by the World Health Organization (WHO) to prescribe antibiotics for bloody diarrhea in children. There is a scarcity of published data regarding the judicious use of antibiotics for bloody diarrhea in children. So, we aimed to evaluate the presenting features of bloody diarrhea at hospital with prior antibiotic use at home and the prevalence of injudicious antibiotic use for bloody diarrhea in children. METHODS We screened 7,289 children aged 24-59 months with diarrhea (≥3 loose stools in the last 24 h) at Dhaka Hospital, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), from December 5, 2021 to February 16, 2023. Antibiotic intake at home due to current diarrheal illness was evaluated and confirmed by direct observation of a prescription, the bottle of antibiotics, or asking the caregiver about the name of antibiotics. RESULTS Out of 7,289 children presented with diarrhea, 3,823 (52.45%) children consumed antibiotics before visiting hospital. 254 (3.48%) children presented with bloody diarrhea, among which 162 ingested antibiotics. Among 162 children, 88 (54.32%) received inappropriate antibiotics due to bloody diarrhea, according to the WHO guidelines. The most prevalent single antibiotic consumed in bloody diarrhea was metronidazole (n = 45, 27.78%), followed by ciprofloxacin (n = 39, 24.07%) and azithromycin (n = 32, 19.75%). After adjusting for relevant covariates like age, sex, presence of straining/tenesmus, fever during admission, history of cough, stunting, wasting, and underweight; children suffering from bloody diarrhea had 1.55 times higher odds of using metronidazole alone or in combination with other antibiotics (aOR:1.55, 95% CI: 1.10-2.19, p-value = 0.012) and 1.93 times higher odds of using multiple antibiotics (aOR:1.93, 95% CI: 1.23-3.02, p-value = 0.004) compared to children with non-bloody diarrhea. CONCLUSION The study underscores the excessive use of antimicrobials among children with diarrheal illnesses. It is also evident that metronidazole use and multiple antibiotic use are increasing among children due to bloody diarrhea, which is alarming and calls for antibiotic stewardship by regulating bodies in the country.
Collapse
Affiliation(s)
- Syed Jayedul Bashar
- Nutrition Research Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Md. Ridwan Islam
- Nutrition Research Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Sharika Nuzhat
- Clinical and Diagnostic Services, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Rukaeya Amin
- Nutrition Research Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Md. Mushfiqur Rahman
- Nutrition Research Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Patricia B. Pavlinac
- Department of Global Health, University of Washington, Seattle, United States of America
| | - Samuel L. M. Arnold
- Department of Pharmaceutics, University of Washington, Seattle, United States of America
| | | | - Tahmeed Ahmed
- Nutrition Research Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
- Clinical and Diagnostic Services, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
- Office of the Executive Director, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Mohammod Jobayer Chisti
- Clinical and Diagnostic Services, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
2
|
Nakatsu G, Andreeva N, MacDonald MH, Garrett WS. Interactions between diet and gut microbiota in cancer. Nat Microbiol 2024; 9:1644-1654. [PMID: 38907007 DOI: 10.1038/s41564-024-01736-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
Dietary patterns and specific dietary components, in concert with the gut microbiota, can jointly shape susceptibility, resistance and therapeutic response to cancer. Which diet-microbial interactions contribute to or mitigate carcinogenesis and how they work are important questions in this growing field. Here we interpret studies of diet-microbial interactions to assess dietary determinants of intestinal colonization by opportunistic and oncogenic bacteria. We explore how diet-induced expansion of specific gut bacteria might drive colonic epithelial tumorigenesis or create immuno-permissive tumour milieus and introduce recent findings that provide insight into these processes. Additionally, we describe available preclinical models that are widely used to study diet, microbiome and cancer interactions. Given the rising clinical interest in dietary modulations in cancer treatment, we highlight promising clinical trials that describe the effects of different dietary alterations on the microbiome and cancer outcomes.
Collapse
Affiliation(s)
- Geicho Nakatsu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Natalia Andreeva
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Meghan H MacDonald
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
3
|
Revankar NA, Negi PS. Biotics: An emerging food supplement for health improvement in the era of immune modulation. Nutr Clin Pract 2024; 39:311-329. [PMID: 37466413 DOI: 10.1002/ncp.11036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
The involvement of the commensal microbiota in immune function is a multifold process. Biotics, such as probiotics, prebiotics, synbiotics, and paraprobiotics, have been subjected to animal and human trials demonstrating the association between gut microbes and immunity biomarkers leading to improvement in overall health. In recent years, studies on human microbiome interaction have established the multifarious role of biotics in maintaining overall health. The consumption of biotics has been extensively reported to help in maintaining microbial diversity, enhancing gut-associated mucosal immune homeostasis, and providing protection against a wide range of lifestyle disorders. However, the establishment of biotics as an alternative therapy for a range of health conditions is yet to be ascertained. Despite the fact that scientific literature has demonstrated the correlation between biotics and immune modulation, most in vivo and in vitro reports are inconclusive on the dosage required. This review provides valuable insights into the immunomodulatory effects of biotics consumption based on evidence obtained from animal models and clinical trials. Furthermore, we highlight the optimal dosages of biotics that have been reported to deliver maximum health benefits. By identifying critical research gaps, we have suggested a roadmap for future investigations to advance our understanding of the intricate crosstalk between biotics and immune homeostasis.
Collapse
Affiliation(s)
- Neelam A Revankar
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep S Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Shama T, O’Sullivan JM, Rahman N, Kakon SH, Tofail F, Hossain MI, Zeilani M, Haque R, Gluckman P, Forrester T, Nelson CA. Multidimensional evaluation of the early emergence of executive function and development in Bangladeshi children using nutritional and psychosocial intervention: A randomized controlled trial protocol. PLoS One 2024; 19:e0296529. [PMID: 38489293 PMCID: PMC10942035 DOI: 10.1371/journal.pone.0296529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION Reversing malnutrition-induced impairment of cognition and emotional regulation is a critical global gap. We hypothesize that brain-targeted micronutrient supplemented nutritional rehabilitation in children with moderate acute malnutrition, followed by 2 years micronutrient supplementation will impact on the cognition and emotion regulation of these children. METHODS The primary outcome of this prospective, randomized controlled trial is to study the development of executive functions (EFs) and emotion regulation (ER) in this cohort. Moderate acute malnourished (MAM; WLZ/WHZ <-2 and ≥-3 z-score, and/or 11.5 cm ≤ MUAC < 12.5cm; n = 140)children aged around one year (11m-13m) in Mirpur, Dhaka, Bangladesh will be randomized (1:1) to receive either locally produced Ready to Use Supplementary Food (RUSF) or Enhanced Ready to Use Supplementary Food (E-RUSF) until anthropometric recovery (WLZ/WHZ > -1SD), or for 3 months after enrollment (whichever is earlier). The randomized MAMs groups will be given either Small Quantity Lipid Based Nutrient Supplement (SQLNS) or Enhanced Small Quantity Lipid Based Nutrient Supplement (E-SQLNS), respectively until the end of the 2-year follow up period. Standard psychosocial stimulation will be provided to the MAMs intervention groups. Biological samples will be collected, anthropometric and neurocognitive assessments will be performed at 2 (22m-26m) and 3 (34m-38m) years of age. Two control groups will be recruited: 1), non-malnourished one-year (11m-13m) old children (WLZ/WHZ score>-1SD; n = 70); and 2) three-year (34m-38m) old children (n = 70) with untreated MAM (WHZ <-2 and ≥-3 z-score, and/or 11.5≤MUAC<12.5 cm). The 3-year-old MAM reference group will be assessed once and provided with 2 months of nutritional rehabilitation support (RUSF Nutriset's Plumpy'Sup™).
Collapse
Affiliation(s)
- Talat Shama
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Justin M. O’Sullivan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Navin Rahman
- Laboratories of Cognitive Neuroscience, Department of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Shahria H. Kakon
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Fahmida Tofail
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Md Iqbal Hossain
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Mamane Zeilani
- Department of External Research and Nutrition Strategy, Nutriset SAS, Malaunay, France
| | - Rashidul Haque
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Peter Gluckman
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Terrence Forrester
- Faculty of Medical Sciences, UWI Solutions for Developing Countries, The University of the West Indies (UWI), Kingston, Jamaica
| | - Charles A. Nelson
- Laboratories of Cognitive Neuroscience, Department of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Graduate School of Education, Cambridge, Massachusetts, United States of America
| |
Collapse
|
5
|
Crippa BL, de Matos LG, Souza FN, Silva NCC. Non- aureus staphylococci and mammaliicocci (NASM): their role in bovine mastitis and One Health. J DAIRY RES 2024; 91:44-56. [PMID: 38584301 DOI: 10.1017/s0022029924000165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Non-aureus staphylococci (NAS) are gaining importance in mastitis and public health, and some NAS have been reclassified as mammaliicocci (NASM). Bovine milk production has a major influence on the world economy, being an essential source of income for small, medium and large producers, and bovine mastitis caused by NASM can cause an economic impact. Mastitis generates financial losses due to reduced revenue, increased veterinary costs and expenses associated with animal slaughter. However, it is also a public health issue involving animal health and welfare, human health and the ecosystem. Furthermore, it is an increasingly common infection caused by NASM, including antimicrobial-resistant strains. Despite all these adverse effects that NASM can cause, some studies also point to its protective role against mastitis. Therefore, this review article addresses the negative and positive aspects that NASM can cause in bovine mastitis, the virulence of the disease and resistance factors that make it difficult to treat and, through the One Health approach, presents a holistic view of how mastitis caused by NASM can affect both animal and human health at one and the same time.
Collapse
Affiliation(s)
- Bruna Lourenço Crippa
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Luiz Gustavo de Matos
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Lombardia, Italy
| | - Fernando Nogueira Souza
- Department of Clinical Science, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, Brazil
- Department of Veterinary Medicine, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| |
Collapse
|
6
|
Cho NA, Strayer K, Dobson B, McDonald B. Pathogenesis and therapeutic opportunities of gut microbiome dysbiosis in critical illness. Gut Microbes 2024; 16:2351478. [PMID: 38780485 PMCID: PMC11123462 DOI: 10.1080/19490976.2024.2351478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
For many years, it has been hypothesized that pathological changes to the gut microbiome in critical illness is a driver of infections, organ dysfunction, and other adverse outcomes in the intensive care unit (ICU). The advent of contemporary microbiome methodologies and multi-omics tools have allowed researchers to test this hypothesis by dissecting host-microbe interactions in the gut to better define its contribution to critical illness pathogenesis. Observational studies of patients in ICUs have revealed that gut microbial communities are profoundly altered in critical illness, characterized by markedly reduced alpha diversity, loss of commensal taxa, and expansion of potential pathogens. These key features of ICU gut dysbiosis have been associated with adverse outcomes including life-threatening hospital-acquired (nosocomial) infections. Current research strives to define cellular and molecular mechanisms connecting gut dysbiosis with infections and other outcomes, and to identify opportunities for therapeutic modulation of host-microbe interactions. This review synthesizes evidence from studies of critically ill patients that have informed our understanding of intestinal dysbiosis in the ICU, mechanisms linking dysbiosis to infections and other adverse outcomes, as well as clinical trials of microbiota-modifying therapies. Additionally, we discuss novel avenues for precision microbial therapeutics to combat nosocomial infections and other life-threatening complications of critical illness.
Collapse
Affiliation(s)
- Nicole A Cho
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathryn Strayer
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Breenna Dobson
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Kamal FD, Dagar M, Reza T, Karim Mandokhail A, Bakht D, Shahzad MW, Silloca-Cabana EO, Mohsin SN, Chilla SP, Bokhari SFH. Beyond Diet and Exercise: The Impact of Gut Microbiota on Control of Obesity. Cureus 2023; 15:e49339. [PMID: 38143595 PMCID: PMC10748854 DOI: 10.7759/cureus.49339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Obesity, a widespread health concern characterized by the excessive accumulation of body fat, is a complex condition influenced by genetics, environment, and social determinants. Recent research has increasingly focused on the role of gut microbiota in obesity, highlighting its pivotal involvement in various metabolic processes. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, interacts with the host in a myriad of ways, impacting energy metabolism, appetite regulation, inflammation, and the gut-brain axis. Dietary choices significantly shape the gut microbiota, with diets high in fat and carbohydrates promoting the growth of harmful bacteria while reducing beneficial microbes. Lifestyle factors, like physical activity and smoking, also influence gut microbiota composition. Antibiotics and medications can disrupt microbial diversity, potentially contributing to obesity. Early-life experiences, including maternal obesity during pregnancy, play a vital role in the developmental origins of obesity. Therapeutic interventions targeting the gut microbiota, including prebiotics, probiotics, fecal microbiota transplantation, bacterial consortium therapy, and precision nutrition, offer promising avenues for reshaping the gut microbiota and positively influencing weight regulation and metabolic health. Clinical applications of microbiota-based therapies are on the horizon, with potential implications for personalized treatments and condition-based interventions. Emerging technologies, such as next-generation sequencing and advanced bioinformatics, empower researchers to identify specific target species for microbiota-based therapeutics, opening new possibilities in healthcare. Despite the promising outlook, microbiota-based therapies face challenges related to microbial selection, safety, and regulatory issues. However, with ongoing research and advances in the field, these challenges can be addressed to unlock the full potential of microbiota-based interventions.
Collapse
Affiliation(s)
| | - Mehak Dagar
- Internal Medicine, Himalayan Institute of Medical Sciences, New Delhi, IND
| | - Taufiqa Reza
- Medicine, Avalon University School of Medicine, Youngstown, USA
| | | | - Danyal Bakht
- Medicine and Surgery, Mayo Hospital, Lahore, PAK
| | | | | | - Syed Naveed Mohsin
- Orthopedics, St. James's Hospital, Dublin, IRL
- General Surgery, Cavan General Hospital, Cavan, IRL
| | - Srikar P Chilla
- Medicine, CARE Hospitals, Hyderabad, IND
- Health Sciences, University of East London, London, GBR
| | | |
Collapse
|
8
|
Yin Z, Liu X, Guo L, Ren M, Kang W, Ma C, Waterhouse GIN, Sun-Waterhouse D. The potential of dietary fiber in building immunity against gastrointestinal and respiratory disorders. Crit Rev Food Sci Nutr 2023; 64:13318-13336. [PMID: 37837407 DOI: 10.1080/10408398.2023.2266462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
The numerous health benefits of dietary fibers (DFs) justify their inclusion in human diets and biomedical products. Given the short- and long-term human impacts of the COVID-19 virus on human health, the potential of DFs in building immunity against gastrointestinal and respiratory disorders is currently receiving high attention. This paper reviews the physicochemical properties of DFs, together with their immune functions and effects on the gastrointestinal tract and respiratory system mainly based on research in the last ten years. Possible modes of action of DFs in promoting health, especially building immunity, are explored. We seek to highlight the importance of understanding the exact physical and chemical characteristics and molecular behaviors of DFs in providing specific immune function. This review provides a perspective beyond the existing recognition of DFs' positive effects on human health, and offers a theoretical framework for the development of special DFs components and their application in functional foods and other therapeutic products against gastrointestinal and respiratory disorders. DFs enhance immunity from gastrointestinal and respiratory diseases to promote host health.
Collapse
Affiliation(s)
- Zhenhua Yin
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Xiaopeng Liu
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Lin Guo
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Mengjie Ren
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Wenyi Kang
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | | | | |
Collapse
|
9
|
Khan A, Ul-Haq Z, Fazid S, Fatima S, Muhammad N, Ahmed J, Manoharadas S, Safi SZ, Habib I, Garzon C, Ihtesham Y, Zahid F, Dad F, Mahamadou T, Lowe NM. Effectiveness of locally produced ready to use supplementary food on hemoglobin, anthropometrics, and plasma micronutrients concentrations of 6 to 23 months age children: a non-randomized community-based trial from Pakistan. Front Nutr 2023; 10:1176778. [PMID: 37575332 PMCID: PMC10415027 DOI: 10.3389/fnut.2023.1176778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Micronutrient deficiencies including vitamin A, vitamin D, and zinc are highly prevalent in children below 5 years of age in low and -middle-income countries. We aimed to evaluate the effectiveness of ready-to-use Lipid-based Nutrient Supplement-Medium Quantity (LNS-MQ) local name "Wawa-mum" on plasma micronutrient status, hemoglobin concentration and anthropometric measurements. METHODS A community-based non-randomized trial was conducted in the Kurram district of Khyber Pakhtunkhwa from January 2018 to June 2019. A total of 110 children aged 6 to 23 months old were recruited and allocated to the intervention and control arm of the study. A total of 57 children in the intervention arm received a daily ration of 50 g of Wawa-mum, for one year. To assess the impact of the intervention on primary outcome measures, i.e., serum vitamin A, D concentration, plasma zinc, and hemoglobin concentration. Blood samples were collected at baseline and after one year following the intervention. The vitamins concentration in serum were assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and plasma zinc by atomic absorption spectrometry. The hemoglobin concentration was measured by an automated hematology analyzer. A 24-h dietary recall interview was used to assess the nutrient intake adequacy. Multivariate Linear regression models were used to analyze the outcomes while controlling for potential confounders. RESULTS In the intervention arm, children had on average 6.2 μg/dL (95% CI 3.0-9.3, value of p<0.001) increase in the serum vitamin A concentration, 8.1 ng/mL (95% CI 1.3-14.9, value of p 0.02) increase in serum vitamin D concentration and 49.0 μg/dL (95% CI 33.5-64.5, value of p<0.001) increase in the plasma zinc concentration, and 2.7 g/dL (95% CI 2.0-3.3, value of p<0.001) increase in hemoglobin concentration while adjusted for covariates. An addition, length-for-age z-score (LAZ), weight-for-length z-score (WLZ), weight-for-age z-score (WAZ), and prevalence of undernutrition including stunting, wasting, and underweight were calculated as a secondary outcome to investigate the impact of micronutrients on growth parameters, that has been improved significantly after receiving the Wawa-mum. CONCLUSION Wawa-mum (LNS-MQ) is an effective intervention to improve the micronutrient status, hemoglobin concentration, and growth parameters in 6 to 23 months children, which can be scaled up in the existing health system to address the alarming rates of under nutrition in Pakistan and other developing countries. CLINICAL TRIAL REGISTRATION https://doi.org/10.1186/ISRCTN94319790, ISRCTN94319790.
Collapse
Affiliation(s)
- Aslam Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
- Institute of Public Health and Social Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Zia Ul-Haq
- Institute of Public Health and Social Sciences, Khyber Medical University, Peshawar, Pakistan
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Sheraz Fazid
- Institute of Public Health and Social Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sadia Fatima
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Nawshad Muhammad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Ijaz Habib
- World Food Programme, Peshawar, Pakistan
| | | | | | | | - Fazal Dad
- World Food Programme, Peshawar, Pakistan
| | | | - Nicola M. Lowe
- UCLan Research Centre for Global Development, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
10
|
Calva-Cruz ODJ, Ovando-Vázquez C, De León-Rodríguez A, Veana F, Espitia-Rangel E, Treviño S, Barba-de la Rosa AP. Dietary Supplementation with Popped Amaranth Modulates the Gut Microbiota in Low Height-for-Age Children: A Nonrandomized Pilot Trial. Foods 2023; 12:2760. [PMID: 37509852 PMCID: PMC10379428 DOI: 10.3390/foods12142760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Amaranth has been recognized as a nutraceutical food because it contains high-quality proteins due to its adequate amino acid composition that covers the recommended requirements for children and adults. Since pre-Hispanic times, amaranth has been consumed as popped grain; the popping process improves its nutritive quality and improves its digestibility. Popped amaranth consumption has been associated with the recovery of malnourished children. However, there is no information on the impact that popped amaranth consumption has on gut microbiota composition. A non-randomized pilot trial was conducted to evaluate the changes in composition, structure, and function of the gut microbiota of stunted children who received four grams of popped amaranth daily for three months. Stool and serum were collected at the beginning and at the end of the trial. Short-chain fatty acids (SCFA) were quantified, and gut bacterial composition was analyzed by 16S rRNA gene sequencing. Biometry and hematology results showed that children had no pathology other than low height-for-age. A decrease in the relative abundance of Alistipes putredinis, Bacteroides coprocola, and Bacteroides stercoris bacteria related to inflammation and colitis, and an increase in the relative abundance of Akkermansia muciniphila and Streptococcus thermophiles bacteria associated with health and longevity, was observed. The results demonstrate that popped amaranth is a nutritious food that helps to combat childhood malnutrition through gut microbiota modulation.
Collapse
Affiliation(s)
- Oscar de Jesús Calva-Cruz
- Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico; (O.d.J.C.-C.); (A.D.L.-R.)
| | - Cesaré Ovando-Vázquez
- CONACYT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico;
| | - Antonio De León-Rodríguez
- Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico; (O.d.J.C.-C.); (A.D.L.-R.)
| | - Fabiola Veana
- Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles 79010, Mexico;
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Texcoco 56250, Mexico;
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio S/N, Ciudad Universitaria, Puebla 72000, Mexico;
| | - Ana Paulina Barba-de la Rosa
- Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico; (O.d.J.C.-C.); (A.D.L.-R.)
| |
Collapse
|
11
|
Balaji V, Dinh DM, Kane AV, Soofi S, Ahmed I, Rizvi A, Chatterjee M, Babji S, Duara J, Moy J, Naumova EN, Wanke CA, Ward HD, Bhutta ZA. Longitudinal Analysis of the Intestinal Microbiota among a Cohort of Children in Rural and Urban Areas of Pakistan. Nutrients 2023; 15:1213. [PMID: 36904212 PMCID: PMC10005232 DOI: 10.3390/nu15051213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
The profile of the intestinal microbiota is known to be altered in malnourished young children in low- and middle-income countries. However, there are limited studies longitudinally evaluating the intestinal microbiota in malnourished young children in resource-limited settings over the first two years of life. In this longitudinal pilot study, we determined the effect of age, residential location, and intervention on the composition, relative abundance, and diversity of the intestinal microbiota in a representative sample of children under 24 months of age with no diarrhea in the preceding 72 h in the urban and rural areas of Sindh, Pakistan nested within a cluster-randomized trial evaluating the effect of zinc and micronutrients on growth and morbidity (ClinicalTrials.gov Identifier: NCT00705445). The major findings were age-related with significant changes in alpha and beta diversity with increasing age. There was a significant increase in the relative abundance of the Firmicutes and Bacteroidetes phyla and a significant decrease in that of the Actinobacteria and Proteobacteria phyla (p < 0.0001). There were significant increases in the relative abundances of the major genera Bifidobacterium, Escherichia/Shigella and Streptococcus (p < 0.0001), and no significant change in the relative abundance of Lactobacillus. Using the LEfSE algorithm, differentially abundant taxa were identified between children in the first and second years of age, between those residing in rural and urban areas, and those who received different interventions at different ages from 3 to 24 months. The numbers of malnourished (underweight, wasted, stunted) or well-nourished children at each age, in each intervention arm, and at urban or rural sites were too small to determine if there were significant differences in alpha or beta diversity or differentially abundant taxa among them. Further longitudinal studies with larger numbers of well-nourished and malnourished children are required to fully characterize the intestinal microbiota of children in this region.
Collapse
Affiliation(s)
- Veeraraghavan Balaji
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
- Department of Microbiology, Christian Medical College, Vellore 632004, India
| | - Duy M. Dinh
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | - Anne V. Kane
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | - Sajid Soofi
- Division of Nutrition Data Sciences, Center of Excellence in Women and Child Health, The Aga Khan University, Karachi 74800, Pakistan
| | - Imran Ahmed
- Division of Nutrition Data Sciences, Center of Excellence in Women and Child Health, The Aga Khan University, Karachi 74800, Pakistan
| | - Arjumand Rizvi
- Division of Nutrition Data Sciences, Center of Excellence in Women and Child Health, The Aga Khan University, Karachi 74800, Pakistan
| | - Meera Chatterjee
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | - Sudhir Babji
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
- Department of Microbiology, Christian Medical College, Vellore 632004, India
| | - Joanne Duara
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | - Joy Moy
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | - Elena N. Naumova
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Christine A. Wanke
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Honorine D. Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Zulfiqar A. Bhutta
- Division of Nutrition Data Sciences, Center of Excellence in Women and Child Health, The Aga Khan University, Karachi 74800, Pakistan
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
12
|
Downs BW, Banik SP, Bagchi M, Chakraborty S, Kushner S, Downs JM, Bagchi D. Primary factors that determine the severity of various infections and effective nutraceutical intervention strategies. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:63-72. [DOI: 10.1016/b978-0-323-85730-7.00038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Eliseev MS, Kharlamova EN, Zhelyabina OV, Lila AM. Microbiota as a new pathogenetic factor in the development of chronic hyperuricemia and gout. Part 2: gout therapy and the gut microbiota. MODERN RHEUMATOLOGY JOURNAL 2022. [DOI: 10.14412/1996-7012-2022-6-7-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The article presents current data on the effect of drugs for the treatment of gout on the composition and function of the intestinal microbiota. The potential possibilities of pre- and probiotics use for the prevention and complex therapy of gout are discussed, therapeutic effect may be associated with their impact on the uric acid synthesis and intestinal excretion, as well as with anti-inflammatory properties. The need for further research in this area is emphasized.
Collapse
Affiliation(s)
| | | | | | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| |
Collapse
|
14
|
Manus MB. Ecological Processes and Human Behavior Provide a Framework for Studying the Skin Microbial Metacommunity. MICROBIAL ECOLOGY 2022; 84:689-702. [PMID: 34636925 DOI: 10.1007/s00248-021-01884-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Metacommunity theory dictates that a microbial community is supported both by local ecological processes and the dispersal of microbes between neighboring communities. Studies that apply this perspective to human-associated microbial communities are thus far limited to the gut microbiome. Yet, the skin serves as the primary barrier between the body and the external environment, suggesting frequent opportunities for microbial dispersal to the variable microbial communities that are housed across skin sites. This paper applies metacommunity theory to understand the dispersal of microbes to the skin from the physical and social environment, as well as between different skin sites on an individual's body. This includes highlighting the role of human behavior in driving microbial dispersal, as well as shaping physiological properties of skin that underscore local microbial community dynamics. By leveraging data from research on the skin microbiomes of amphibians and other animals, this paper provides recommendations for future research on the skin microbial metacommunity, including generating testable predictions about the ecological underpinnings of the skin microbiome.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
15
|
Gut Microbiota Composition in Undernourished Children Associated with Diet and Sociodemographic Factors: A Case–Control Study in Indonesia. Microorganisms 2022; 10:microorganisms10091748. [PMID: 36144350 PMCID: PMC9502830 DOI: 10.3390/microorganisms10091748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 12/16/2022] Open
Abstract
Malnutrition, which consists of undernutrition and overnutrition, is associated with gut microbiota composition, diet, and sociodemographic factors. Undernutrition is a nutrient deficiency that that should be identified to prevent other diseases. In this study, we evaluate the gut microbiota composition in undernourished children in association with diet and sociodemographic factors. We observed normal children (n= 20) and undernourished children (n= 20) for ten days in Lombok and Yogyakarta. Diet, sociodemographic factors, and medical records were recorded using food records, screening forms, and standard household questionnaires. Gut microbiota analysis was performed using 16S rRNA gene sequencing targeting the V3–V4 region. The result showed that the undernourished group had lower energy intake. In addition, the undernourished group had lower quality of medical records, parent knowledge, education, and exclusive breastfeeding. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia were significantly different between normal and undernourished children. Based on LefSe, we determined that Akkermansia is a biomarker for undernourished children. In conclusion, diet and sociodemographic factors affect the gut microbiota composition of undernourished children.
Collapse
|
16
|
Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C. Role of the Gut-Brain Axis, Gut Microbial Composition, Diet, and Probiotic Intervention in Parkinson's Disease. Microorganisms 2022; 10:1544. [PMID: 36013962 PMCID: PMC9412530 DOI: 10.3390/microorganisms10081544] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative or neuropsychiatric disease, affecting 1% of seniors worldwide. The gut microbiota (GM) is one of the key access controls for most diseases and disorders. Disturbance in the GM creates an imbalance in the function and circulation of metabolites, resulting in unhealthy conditions. Any dysbiosis could affect the function of the gut, consequently disturbing the equilibrium in the intestine, and provoking pro-inflammatory conditions in the gut lumen, which send signals to the central nervous system (CNS) through the vagus enteric nervous system, possibly disturbing the blood-brain barrier. The neuroinflammatory conditions in the brain cause accumulation of α-syn, and progressively develop PD. An important aspect of understanding and treating the disease is access to broad knowledge about the influence of dietary supplements on GM. Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Probiotic supplementation improves the function of the CNS, and improves the motor and non-motor symptoms of PD. Probiotic supplementation could be an adjuvant therapeutic method to manage PD. This review summarizes the role of GM in health, the GM-brain axis, the pathogenesis of PD, the role of GM and diet in PD, and the influence of probiotic supplementation on PD. The study encourages further detailed clinical trials in PD patients with probiotics, which aids in determining the involvement of GM, intestinal mediators, and neurological mediators in the treatment or management of PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | | | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| |
Collapse
|
17
|
Thomas CM, Desmond-Le Quéméner E, Gribaldo S, Borrel G. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat Commun 2022; 13:3358. [PMID: 35688919 PMCID: PMC9187648 DOI: 10.1038/s41467-022-31038-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/30/2022] [Indexed: 12/31/2022] Open
Abstract
Archaea are common constituents of the gut microbiome of humans, ruminants, and termites but little is known about their diversity and abundance in other animals. Here, we analyse sequencing and quantification data of archaeal and bacterial 16S rRNA genes from 250 species of animals covering a large taxonomic spectrum. We detect the presence of archaea in 175 animal species belonging to invertebrates, fish, amphibians, birds, reptiles and mammals. We identify five dominant gut lineages, corresponding to Methanobrevibacter, Methanosphaera, Methanocorpusculum, Methanimicrococcus and "Ca. Methanomethylophilaceae". Some archaeal clades, notably within Methanobrevibacter, are associated to certain hosts, suggesting specific adaptations. The non-methanogenic lineage Nitrososphaeraceae (Thaumarchaeota) is frequently present in animal samples, although at low abundance, but may have also adapted to the gut environment. Host phylogeny, diet type, fibre content, and intestinal tract physiology are major drivers of the diversity and abundance of the archaeome in mammals. The overall abundance of archaea is more influenced by these factors than that of bacteria. Methanogens reducing methyl-compounds with H2 can represent an important fraction of the overall methanogens in many animals. Together with CO2-reducing methanogens, they are influenced by diet and composition of gut bacteria. Our results provide key elements toward our understanding of the ecology of archaea in the gut, an emerging and important field of investigation.
Collapse
Affiliation(s)
- Courtney M Thomas
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Unit Evolutionary Biology of the Microbial Cell, F-75015, Paris, France
- Sorbonne Université, Collège doctoral, F-75005, Paris, France
| | | | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Unit Evolutionary Biology of the Microbial Cell, F-75015, Paris, France
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Unit Evolutionary Biology of the Microbial Cell, F-75015, Paris, France.
| |
Collapse
|
18
|
Kalogeropoulos D, Barry R, Kalogeropoulos C. The association between intestinal microbiome and autoimmune uveitis. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2022; 97:264-275. [PMID: 35526950 DOI: 10.1016/j.oftale.2021.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION AND OBJECTIVES The microbiome is strongly implicated in a wide spectrum of immune-mediated diseases, whereas gut commensal microbiota plays a pivotal role in immune and intestinal homeostasis. MATERIALS AND METHODS A thorough literature search was performed in PubMed database. An additional search was made in Google Scholar to complete the collected items. RESULTS Due to complex interactions with the host genetics and other factors, intestinal dysbiosis has been linked to various immune-mediated disorders. In particular, the role of intestinal microbiota in the pathogenesis of uveitis has been demonstrated by several studies, indicating that changes in the microbiome can trigger autoimmune ocular inflammatory processes or affect their severity. CONCLUSIONS This review summarizes how alterations in the intestinal microbiota can conduce to immune-mediated ocular pathologies and how microbiome can be targeted in order to form novel therapeutic approaches to treat these severe and potentially blinding conditions.
Collapse
Affiliation(s)
- D Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - R Barry
- Institute of Clinical Sciences, University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom; Department of Ophthalmology, Birmingham & Midland Eye Centre, Sandwell & West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - C Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
19
|
The Problem of Malnutrition Associated with Major Depressive Disorder from a Sex-Gender Perspective. Nutrients 2022; 14:nu14051107. [PMID: 35268082 PMCID: PMC8912662 DOI: 10.3390/nu14051107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/03/2023] Open
Abstract
Major depressive disorder (MDD) is an incapacitating condition characterized by loss of interest, anhedonia and low mood, which affects almost 4% of people worldwide. With rising prevalence, it is considered a public health issue that affects economic productivity and heavily increases health costs alone or as a comorbidity for other pandemic non-communicable diseases (such as obesity, cardiovascular disease, diabetes, inflammatory bowel diseases, etc.). What is even more noteworthy is the double number of women suffering from MDD compared to men. In fact, this sex-related ratio has been contemplated since men and women have different sexual hormone oscillations, where women meet significant changes depending on the age range and moment of life (menstruation, premenstruation, pregnancy, postpartum, menopause…), which seem to be associated with susceptibility to depressive symptoms. For instance, a decreased estrogen level promotes decreased activation of serotonin transporters. Nevertheless, sexual hormones are not the only triggers that alter neurotransmission of monoamines and other neuropeptides. Actually, different dietary habits and/or nutritional requirements for specific moments of life severely affect MDD pathophysiology in women. In this context, the present review aims to descriptively collect information regarding the role of malnutrition in MDD onset and course, focusing on female patient and especially macro- and micronutrient deficiencies (amino acids, ω3 polyunsaturated fatty acids (ω3 PUFAs), folate, vitamin B12, vitamin D, minerals…), besides providing evidence for future nutritional intervention programs with a sex-gender perspective that hopefully improves mental health and quality of life in women.
Collapse
|
20
|
Moya-Alvarez V, Sansonetti PJ. Understanding the pathways leading to gut dysbiosis and enteric environmental dysfunction in infants: the influence of maternal dysbiosis and other microbiota determinants during early life. FEMS Microbiol Rev 2022; 46:6516326. [PMID: 35088084 DOI: 10.1093/femsre/fuac004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal environmental enteric dysfunction (EED) encompasses undernutrition with an inflammatory gut profile, a variable degree of dysbiosis and increased translocation of pathogens in the gut mucosa. Even though recent research findings have shed light on the pathological pathways underlying the establishment of the infant gut dysbiosis, evidence on how maternal EED influences the development of gut dysbiosis and EED in the offspring remains elusive. This review summarizes the current knowledge on the effect of maternal dysbiosis and EED on infant health, and explores recent progress in unraveling the mechanisms of acquisition of a dysbiotic gut microbiota in the offspring. In Western communities, maternal inoculum, delivery mode, perinatal antibiotics, feeding practices, and infections are the major drivers of the infant gut microbiota during the first two years of life. In other latitudes, the infectious burden and maternal malnutrition might introduce further risk factors for infant gut dysbiosis. Novel tools, such as transcriptomics and metabolomics, have become indispensable to analyze the metabolic environment of the infant in utero and post-partum. Human-milk oligosaccharides have essential prebiotic, antimicrobial, and anti-biofilm properties that might offer additional therapeutic opportunities.
Collapse
Affiliation(s)
- Violeta Moya-Alvarez
- Molecular Microbial Pathogenesis - INSERM U1202, Department of Cell Biology and Infection, 28 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France.,Epidemiology of Emergent Diseases Unit, Global Health Department, 25 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France
| | - Philippe J Sansonetti
- Molecular Microbial Pathogenesis - INSERM U1202, Department of Cell Biology and Infection, 28 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France.,Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France.,The Center for Microbes, Development and Health, Institut Pasteur de Shanghai, China
| |
Collapse
|
21
|
Gunawan D, Juffrie M, Helmyati S, Rahayu ES. Effect of Lactobacillus plantarum DAD-13 and Fructo-oligosaccharides on Short-Chain Fatty Acid Profile and Nutritional Status in Indonesian Stunting Children. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Chronic gut inflammation is a generalized disturbance of small intestine structure and function is likely to play a large role in the incidence of stunting. It will be disturbances the absorption of nutrients, therefore, it can indirectly reduce on nutritional status.
AIM: The aim of this study is to examine the effect of Lactobacillus plantarum DAD-13 and fructooligosaccharide on short-chain fatty acid (SCFA) profile and nutritional status in Indonesian stunting children.
METHODS: The study design was used double-blind randomized placebo-controlled trial, 39 stunting children under five received daily oral supplementations of L. plantarum DAD-13 1 × 1010 cfu and fructooligosaccharide 700 mg (symbiotic group) or placebo group for 90 days. SCFA profile was analyzed using gas chromatography and nutritional status was assessed by WAZ, HAZ, and WHZ.
RESULTS: The result shows in symbiotic and control group, the mean age was 26 ± 8.34 and 29 ± 5.78, and the mean weight was 8.5 ± 0.94 kg and 9.0 ± 0.82 kg, while the mean height was 78.96 ± 5.4 cm and 80.9 ± 4.55 cm, respectively. Concentrations of acetate, propionate, and butyrate in the symbiotic group after consumption were 17.10 ± 2.97, 7.70 ± 2.05, and 7.47 ± 1.76 while in placebo group 12.44 ± 3.61, 5.20 ± 1.66, and 6.12 ± 1.16, respectively. There was a significant difference in the mean SCFA concentration between the symbiotic and placebo groups (p < 0.05), where the SCFA concentration in the symbiotic group was significantly higher than the placebo group. Nutritional status (WAZ, HAZ, and WHZ) was observed significantly in symbiotic group (p < 0.05), only on WHZ has cutoff point >-2SD after the intervention, while WAZ and HAZ <-2SD.
CONCLUSIONS: L. plantarum DAD-13 and fructooligosaccharide 90 days supplementation have increase acetate, butyrate, and propionate that are important fuels for intestinal epithelial cells that can play an important role in the maintenance of health.
Collapse
|
22
|
Ecklu-Mensah G, Gilbert J, Devkota S. Dietary Selection Pressures and Their Impact on the Gut Microbiome. Cell Mol Gastroenterol Hepatol 2021; 13:7-18. [PMID: 34329765 PMCID: PMC8600059 DOI: 10.1016/j.jcmgh.2021.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022]
Abstract
The human gut microbiota harbors a heterogeneous and dynamic community of microorganisms that coexist with the host to exert a marked influence on human physiology and health. Throughout the lifespan, diet can shape the composition and diversity of the members of the gut microbiota by determining the microorganisms that will colonize, persist, or become extinct. This is no more pronounced than during early-life succession of the gut microbiome when food type and source changes relatively often and food preferences are established, which is largely determined by geographic location and the customs and cultural practices of that environment. These dietary selection pressures continue throughout life, as society has become increasingly mobile and as we consume new foods to which we have had no previous exposure. Dietary selection pressures also come in the form of overall reduction or excess such as with the growing problems of food insecurity (lack of food) as well as of dietary obesity (overconsumption). These are well-documented forms of dietary selection pressures that have profound impact on the gut microbiota that ultimately may contribute to or worsen disease. However, diets and dietary components can also be used to promote healthy microbial functions in the gut, which will require tailored approaches taking into account an individual's personal history and doing away with one-size-fits-all nutrition. Herein, we summarize current knowledge on major dietary selection pressures that influence gut microbiota structure and function across and within populations, and discuss both the potential of personalized dietary solutions to health and disease and the challenges of implementation.
Collapse
Affiliation(s)
- Gertrude Ecklu-Mensah
- Department of Pediatrics, University of California San Diego, La Jolla, California,Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Jack Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, California,Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California,Correspondence Address Correspondence to: Suzanne Devkota, PhD, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048. fax: (310) 423-0224
| |
Collapse
|
23
|
Fuhri Snethlage CM, Nieuwdorp M, Hanssen NMJ. Faecal microbiota transplantation in endocrine diseases and obesity. Best Pract Res Clin Endocrinol Metab 2021; 35:101483. [PMID: 33414033 DOI: 10.1016/j.beem.2020.101483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prevalence of type 1 (T1D) and type 2 diabetes mellitus (T2D) has greatly increased worldwide over the last century. Although the exact pathophysiology of both these conditions is distinct and still largely unknown, T1D as well as T2D, have been linked to distinct perturbations of the gut microbiome. Faecal microbiota transplantation (FMT) is a potent, and if performed well, a safe method to modulate the composition of the gut microbiome and thus positively influences the course of these hyperglycaemic conditions in humans. In this review, we provide an overview of how FMT is commonly performed and summarise how this procedure may reduce the insulin-resistance driving T2D, and the underlying auto-immunity driving T1D. Insights derived from FMT studies in T1D and T2D may help identify beneficial microbiota and associated metabolites that may serve as future treatments for these conditions.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Max Nieuwdorp
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands.
| |
Collapse
|
24
|
Affiliation(s)
- Wendy S Garrett
- From the Departments of Immunology and Infectious Diseases and Molecular Metabolism and the Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, the Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School - all in Boston; and the Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
25
|
Islam MR, Nuzhat S, Fahim SM, Palit P, Flannery RL, Kyle DJ, Mahfuz M, Islam MM, Sarker SA, Ahmed T. Antibiotic exposure among young infants suffering from diarrhoea in Bangladesh. J Paediatr Child Health 2021; 57:395-402. [PMID: 33107165 PMCID: PMC8048795 DOI: 10.1111/jpc.15233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 11/15/2022]
Abstract
AIMS Appropriate rehydration has always been significant in treating diarrhoeal diseases in children. Irrational antibiotic use among diarrhoeal children has remained a major public health concern. Information regarding antibiotic use in young infants suffering from diarrhoea is very limited and a unique aspect of research. We aimed to investigate the prevalence of antibiotic use in the community among 2-6 months infants with diarrhoeal illnesses and having different nutritional status. METHODS We investigated a total of 5279 infants aged 2-6 months at Dhaka hospital, International Centre for Diarrhoeal Disease Research, Bangladesh, between September 2018 and June 2019. Among them, 257 infants were suffering from severe acute malnutrition (SAM). History of taking antibiotics was ascertained by direct observation of a prescription by a physician, the bottle of antibiotic or asking the caregiver about the name of antibiotic or its price that is very close to the usual market price of an antibiotic. RESULTS Overall, 52% of infants received antibiotics before hospital admission. Non-SAM infants had higher odds of receiving antibiotics (adjusted odds ratio [aOR] = 1.52, 95% confidence interval: 1.18, 1.97, P value = 0.003) compared to infants with SAM and use of antibiotics increased with age (aOR = 1.11, 95% confidence interval: 1.06, 1.17, P value<0.001). Commonly used antibiotics were azithromycin (13.3%), ciprofloxacin (7.7%), erythromycin (7.7%) and metronidazole (2.6%). The proportion of receiving ciprofloxacin was significantly lower in infants with SAM compared to their non-SAM counterparts (2.7% vs. 7.97%, P value = 0.004). CONCLUSIONS The study underscores the excessive use of antibiotics among diarrhoeal infants, which is already a major public health concern in low- and middle-income countries.
Collapse
Affiliation(s)
- Md Ridwan Islam
- Nutrition and Clinical Services DivisionInternational Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| | - Sharika Nuzhat
- Nutrition and Clinical Services DivisionInternational Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| | - Shah Mohammad Fahim
- Nutrition and Clinical Services DivisionInternational Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| | - Parag Palit
- Nutrition and Clinical Services DivisionInternational Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| | | | - David J Kyle
- Evolve BioSystems, Inc.DavisCaliforniaUnited States
| | - Mustafa Mahfuz
- Nutrition and Clinical Services DivisionInternational Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| | - M Munirul Islam
- Nutrition and Clinical Services DivisionInternational Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| | - Shafiqul Alam Sarker
- Nutrition and Clinical Services DivisionInternational Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services DivisionInternational Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| |
Collapse
|
26
|
Mehta O, Inbaraj LR, Astbury S, Grove JI, Norman G, Aithal GP, Valdes AM, Vijay A. Gut Microbial Profile Is Associated With Residential Settings and Not Nutritional Status in Adults in Karnataka, India. Front Nutr 2021; 8:595756. [PMID: 33708787 PMCID: PMC7940358 DOI: 10.3389/fnut.2021.595756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Undernutrition is a leading contributor to disease and disability in people of all ages. Several studies have reported significant association between nutritional status and gut microbiome composition but other factors such as demographic settings may also influence the adult microbiome. The relationship between undernourishment and gut microbiome in adults has not been described to date. In this study, we compared the gut microbiome in fecal samples of 48 individuals, from two demographic settings (rural and urban slum) in Karnataka, India using 16S rRNA sequencing. Nutritional status was assessed based on BMI, with a BMI of < 18.5 kg/m2 classified as undernourished, and a BMI in the range 18.5-25 kg/m2 as nourished. We analyzed 25 individuals from rural settings (12 undernourished and 13 nourished) and 23 individuals from urban slum settings (11 undernourished and 12 nourished). We found no significant difference in overall gut microbial diversity (Shannon and Unweighted UniFrac) between undernourished and nourished individuals in either geographical settings, however, microbial taxa at the phylum level (i.e., Firmicutes and Proteobacteria) and beta diversity (unweighted UniFrac) differed significantly between the rural and urban slum settings. By predicting microbial function from 16S data profiling we found significant differences in metabolic pathways present in the gut microbiota from people residing in different settings; specifically, those related to carbohydrate and lipid metabolism. The weighted sum of the KEGG Orthologs associated with carbohydrate metabolism (Spearman's correlation coefficient, ρ = -0.707, p < 0.001), lipid metabolism (Spearman's correlation coefficient, ρ = -0.330, p < 0.022) and biosynthesis of secondary metabolites (Spearman's correlation coefficient, ρ = -0.507, p < 0.001) were decreased in the urban slum group compared to the rural group. In conclusion, we report that the geographical location of residence is associated with differences in gut microbiome composition in adults. We found no significant differences in microbiome composition between nourished and undernourished adults from urban slum or rural settings in India.
Collapse
Affiliation(s)
- Ojasvi Mehta
- Nottingham Digestive Diseases Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
| | | | - Stuart Astbury
- Nottingham Digestive Diseases Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
| | - Jane I. Grove
- Nottingham Digestive Diseases Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
| | - Gift Norman
- Department of Community Health, Bangalore Baptist Hospital, Bangalore, India
| | - Guruprasad P. Aithal
- Nottingham Digestive Diseases Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
| | - Ana M. Valdes
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Amrita Vijay
- Nottingham Digestive Diseases Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
27
|
Wang Y, Zhang T, Liu R, Chang M, Wei W, Jin Q, Wang X. New perspective toward nutritional support for malnourished cancer patients: Role of lipids. Compr Rev Food Sci Food Saf 2021; 20:1381-1421. [PMID: 33533186 DOI: 10.1111/1541-4337.12706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/01/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
To improve the difficulties related to malnutrition, nutritional support has become an essential part of multidisciplinary comprehensive treatment for cancer. Lipids are essential nutrient source for the human body, and nowadays in clinical practices, it has a positive interventional effect on patients suffering from cancer. However, contribution of lipids in nutritional support of cancer patients is still poorly understood. Moreover, the sensory and physicochemical properties of lipids can severely restrict their applications in lipid-rich formula foods. In this review article, for the first time, we have presented a summary of the existing studies which were related to the associations between different lipids and improved malnutrition in cancer patients and discussed possible mechanisms. Subsequently, we discussed the challenges and effective solutions during processing of lipids into formula foods. Further, by considering existing problems in current lipid nutritional support, we proposed a novel method for the treatment of malnutrition, including developing individualized lipid nutrition for different patients depending on the individual's genotype and enterotype. Nonetheless, this review study provides a new direction for future research on nutritional support and the development of lipid-rich formula foods for cancer patients, and probably will help to improve the efficacy of lipids in the treatment of cancer malnutrition.
Collapse
Affiliation(s)
- Yandan Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tao Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Beheshti-Maal A, Shahrokh S, Ansari S, Mirsamadi ES, Yadegar A, Mirjalali H, Zali MR. Gut mycobiome: The probable determinative role of fungi in IBD patients. Mycoses 2021; 64:468-476. [PMID: 33421192 DOI: 10.1111/myc.13238] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a multi-factorial autoimmune disorder that its causative agents are unknown. The gut microbiota comprises of bacteria, viruses, fungi and protozoa that its role in IBD has remained controversially. Bacteria constitute more than 99% of the gut microbiota composition, and the main core of the gut microbiota is composed from Bacteroidetes and Firmicutes. The gut microbiota plays an important role in training, development and haemostasis of the immune responses during the life. Fungi compose a very small portion of gut microbiota, but play determinative roles in homeostasis of the gut bacterial composition and the mucosal immune responses. An interkingdom correlation between bacteria and fungi has been suggested. For example, the presence of Salmonella enterica serovar Typhimurium reduces the viability and colonisation of C albicans. Alterations in the composition and function of the gut microbiota, which is known as dysbiosis, are a usual event in patients who suffer from IBD. Although the main reason for this alteration is not clear, the interaction between gut bacteria and gut fungi seems to be an important subject in IBD patients. This review covers new findings on the interaction between fungi and bacteria and the role of fungi in the pathophysiology of IBD.
Collapse
Affiliation(s)
- Alireza Beheshti-Maal
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Liu Y, Fan L, Cheng Z, Yu L, Cong S, Hu Y, Zhu L, Zhang B, Cheng Y, Zhao P, Zhao X, Cheng M. Fecal transplantation alleviates acute liver injury in mice through regulating Treg/Th17 cytokines balance. Sci Rep 2021; 11:1611. [PMID: 33452411 PMCID: PMC7810881 DOI: 10.1038/s41598-021-81263-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in intestinal microecology during acute liver failure (ALF) directly affect the occurrence and development of the disease. The study aimed to investigate the relationship between the intestinal microbiota and the key immune cells. Fecal microbiota transplantation (FMT) was used to determine whether ALF can balance Th17/Treg cytokines. The relationship between gut microbiota and clinical indicators was analyzed. BALB/c mice were treated with d-galactosamine (d-GalN) to induce a murine ALF model. FMT to d-GalN mice was conducted to test for liver function indicators. Results showed that the proportions of Lachnospiraceae, Prevotella, S24-7, Odoribacter and Rikenellaceae in d-GalN mice with intestinal microbiota disorder were restored after FMT. Further, CIA analysis showed that bacteria had a covariant relationship with clinical indicators. Microbiota could account for changes in 49.9% of the overall clinical indicators. Adonis analysis showed that Ruminococcus, and Enterococcus have a greater impact on clinical indicators. FMT down-regulated the expression of IL-17A, TNF-α, and TGF-β, while up-regulated IL-10 and IL-22. Transplantation of feces from Saccharomyces boulardii donor mice improved GalN-induced liver damage. These findings indicate that FMT attenuates d-GalN-induced liver damage in mice, and a clinical trial is required to validate the relevance of our findings in humans, and to test whether this therapeutic approach is effective for patients with ALF.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Medical Examination, Guizhou Medical University, Guiyang, Guizhou, China.,Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Linda Fan
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyang Street, Guiyang, 550002, Guizhou, China
| | - Zhuo Cheng
- Department of Clinical Medicine, Peking University Health Science Center School of Foundational Education, Peking University, Beijing, China
| | - Lei Yu
- Guizhou Maternal and Child Health Care Center, Guiyang, Guizhou, China
| | - Shuo Cong
- Deparment of Blood Transfusion, The Affiliated Tumor Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yaxin Hu
- Prenatal Diagnosis Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lili Zhu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Baofang Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyang Street, Guiyang, 550002, Guizhou, China
| | - Yiju Cheng
- Department of Respiratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Peiling Zhao
- Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyang Street, Guiyang, 550002, Guizhou, China.
| | - Mingliang Cheng
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyang Street, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
30
|
Gut Microbiota and Short-Chain Fatty Acid Profile between Normal and Moderate Malnutrition Children in Yogyakarta, Indonesia. Microorganisms 2021; 9:microorganisms9010127. [PMID: 33430510 PMCID: PMC7826765 DOI: 10.3390/microorganisms9010127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Malnutrition has been associated with the gut microbiota composition and the gastrointestinal environment. This study aimed to evaluate whether there is a difference in the gut microbiota profile between the normal and undernutrition (considered moderate malnutrition) children and evaluate the gastrointestinal environment observed from the short-chain fatty acid (SCFA) profile. Ten days' observations were done between normal (n:13) and undernutrition (n:15) children. The subject's diet was recorded using a food record. Analysis of the gut microbiota was performed using 16S rRNA gene sequencing targeting the V3-V4 variables region, while the SCFA profile was analyzed using gas chromatography. The result shows that the undernutrition group's energy intake was lower than in the normal group. Although there was no difference in diversity index and overall gut composition, overexpression of the genera Methanobrevibacter, Anaerococcus, Eubacterium, and Succinivibrio was observed in the undernutrition group. Meanwhile, in the normal group, Ruminococcus and Fusobacterium were found. In both groups, there was also the dominant of Prevotella enterotype. Gastrointestinal conditions in the normal group tended to be more acidic compared to the undernutrition group. It occurs due to the high concentration of propionate and butyric acids.
Collapse
|
31
|
Liermann W, Viergutz T, Uken KL, Vogel L, Gnott M, Dannenberger D, Tuchscherer A, Kienberger H, Rychlik M, Tröscher A, Hammon HM. Influences of Maternal Conjugated Linoleic Acid and Essential Fatty Acid Supply During Late Pregnancy and Early Lactation on T and B Cell Subsets in Mesenteric Lymph Nodes and the Small Intestine of Neonatal Calves. Front Vet Sci 2021; 7:604452. [PMID: 33392296 PMCID: PMC7772138 DOI: 10.3389/fvets.2020.604452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Conjugated linoleic acid (CLA) isomers are known for their health-promoting effects in mammals and metabolic functions in dairy cows and are synthesized in the forestomach depending on essential fatty acid (EFA) intake. The current preliminary study investigated effects of a maternal fatty acid supplementation (MFAS) during late pregnancy and early lactation with coconut oil (CON, control), CLA (Lutalin®), or CLA + EFA (Lutalin® linseed oil; safflower oil) on plasma fatty acid composition and T and B cell subsets in mesenteric lymph nodes (MLN) and the small intestine of 5-day-old calves. MFAS of CLA + EFA increased α-linolenic, eicosapentaenoic, docosapentaenoic, and n-3 fatty acid proportions in calf plasma fat on days 1 and 5 after birth (P < 0.05). On day 5, CLA and CLA + EFA calves showed higher plasma fat trans-10, cis-12 CLA proportions, and CLA calves had higher plasma cis-9, trans-11 CLA proportions compared with CON calves (P < 0.1). MFAS of CLA tended to increase CD4+ T cell subsets in MLN and increased CD21+ B cell subsets in ileal lamina propria compared with CON but decreased CD2+ T cell subsets in jejunal lamina propria (P < 0.05). CLA + EFA decreased CD4+ T cell subsets in MLN compared with CLA (P < 0.05). MFAS of CLA seemed to affect the intestinal adaptive immune system of calves, but additional EFA supplementations reversed CLA effects. Possible direct CLA and EFA effects or whether changes in milk composition affected this immune modulation must be clarified in further studies.
Collapse
Affiliation(s)
- Wendy Liermann
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Katrin Lena Uken
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Laura Vogel
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martina Gnott
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Michael Rychlik
- Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | | | - Harald Michael Hammon
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
32
|
Young L, McGuire W. Immunologic Properties of Human Milk and Clinical Implications in the Neonatal Population. Neoreviews 2020; 21:e809-e816. [PMID: 33262207 DOI: 10.1542/neo.21-12-e809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human milk contains various bioactive substances including hormones, immunoglobulins, enzymes, and growth factors in addition to its macro- and micronutrients. It has been suggested that human milk is a vehicle of communication between the maternal and infant immune systems, providing passive protection as well as direct active immunomodulation. Human milk protects newborns against pathogens by acting directly on multiple physiologic systems. Bioactive and immunologic factors regulate the infant's immune, metabolic, and microbiome systems. Breastfeeding protects infants in all socioeconomic groups, showing a pattern of protective dose/duration-response effects. This review summarizes the immune components and immunologic properties of human milk and provides an update of their potential implications in the neonatal population.
Collapse
Affiliation(s)
- Lauren Young
- Neonatal Medicine, Trevor Mann Baby Unit, Brighton and Sussex University Hospitals, Brighton, UK
| | - William McGuire
- Centre for Reviews and Dissemination and Hull York Medical School, University of York, York, UK
| |
Collapse
|
33
|
Chehab RF, Cross TWL, Forman MR. The Gut Microbiota: A Promising Target in the Relation between Complementary Feeding and Child Undernutrition. Adv Nutr 2020; 12:969-979. [PMID: 33216115 PMCID: PMC8166545 DOI: 10.1093/advances/nmaa146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023] Open
Abstract
Child undernutrition is a major public health challenge that is persistent and disproportionately prevalent in low- and middle-income countries. Undernourished children face adverse health, economic, and social consequences that can be intergenerational. The first 1000 days of life, from conception until the child's second birthday, constitute the period of greatest vulnerability to undernutrition. The transition process from milk-based diets to solid, semi-solid, and soft food and liquids other than milk, referred to as complementary feeding (CF), occurs between the age of 6 mo and 2 y. CF practices that do not meet the WHO's guiding principles and are lacking in both quality and quantity increase susceptibility to undernutrition, restrict growth, and jeopardize child development and survival. The gut microbiota develops toward an adult-like configuration within the first 2-3 y of life. Recent studies suggest that significant changes in the gut microbial composition and functional capacity occur during the CF period, but these studies were conducted in high-income countries. Research in low- and middle-income countries, on the other hand, has implicated a disrupted gut microbiota in child undernutrition, and animal experiments reveal the potential for a causal relation. Given the growing body of evidence for a plausible role of the gut microbiota in the link between CF and undernutrition, microbiota-targeted complementary food may be a promising treatment modality for undernutrition management. The aims of this paper are to review the evidence for the relation between CF and undernutrition and to highlight the potential of the gut microbiota to be a promising target in this relation. Our summary of the current state of the knowledge in this area provides a foundation for future research and helps inform the design of interventions targeting the gut microbiota to combat child undernutrition and promote healthy growth.
Collapse
Affiliation(s)
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Michele R Forman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
34
|
Nostoc sphaeroids Kütz polysaccharide and powder enrich a core bacterial community on C57BL/6j mice. Int J Biol Macromol 2020; 162:1734-1742. [PMID: 32781117 DOI: 10.1016/j.ijbiomac.2020.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022]
Abstract
Gut microbiota is the collection of microbes that lives in the host. Glycan is the major factor to shape the composition of microbial community. Nostoc sphaeroids Kütz (NSK) has been used as food and medicine for thousands of years in Asian countries while the bioactivity on gut microbiota is unclear till now. Here, we used NSK polysaccharide and NSK powder to investigate the bioactivity on the gut microbiota of C57BL/6j mice, respectively. By 16S ribosomal RNA gene sequencing, we found the composition of gut microbiota had been changed and differed from each other. However, the abundance of Bacteroides, Parabacteroides, Escherichia-Shigella and Parasutterella on genus level were significantly increased by NSK polysaccharide and NSK powder. In addition, Akkermansia and Rikenellaceae were enriched by NSK powder. Moreover, we found the IL-1β and IL-6 decreased significantly while TNF-α and IL-10 increased significantly especially in NSK powder group. Intriguingly, the increased microbes were significantly positively co-related with TNF-α and IL-10 while negatively co-related with IL-1β and IL-6 by co-relation and network analysis. The above results suggested that Nostoc sphaeroids Kütz may selectively enrich a "core bacterial community" and add new evidence to discover how Nostoc sphaeroids Kütz has biological function.
Collapse
|
35
|
Ribeiro CFA, Silveira GGDOS, Cândido EDS, Cardoso MH, Espínola Carvalho CM, Franco OL. Effects of Antibiotic Treatment on Gut Microbiota and How to Overcome Its Negative Impacts on Human Health. ACS Infect Dis 2020; 6:2544-2559. [PMID: 32786282 DOI: 10.1021/acsinfecdis.0c00036] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The need for new antimicrobial therapies is evident, especially to reduce antimicrobial resistance and minimize deleterious effects on gut microbiota. However, although diverse studies discuss the adverse effects of broad-spectrum antibiotics on the microbiome ecology, targeted interventions that could solve this problem have often been overlooked. The impact of antibiotics on gut microbiota homeostasis is alarming, compromising its microbial community and leading to changes in host health. Recent studies have shown that these impacts can be transient or permanent, causing irreversible damage to gut microbiota. The responses to and changes in the gut microbial community arising from antibiotic treatment are related to its duration, the number of doses, antibiotic class, host age, genetic susceptibility, and lifestyle. In contrast, each individual's native microbiota can also affect the response to treatment as well as respond differently to antibiotic treatment. In this context, the current challenge is to promote the growth of potentially beneficial microorganisms and to reduce the proportion of microorganisms that cause dysbiosis, thus contributing to an improvement in the patient's health. An essential requirement for the development of novel antibiotics will be personalized medicinal strategies that recognize a patient's intestinal and biochemical individuality. Thus, this Review will address a new perspective on antimicrobial therapies through pathogen-selective antibiotics that minimize the impacts on human health due to changes in the gut microbiota from the use of antibiotics.
Collapse
Affiliation(s)
- Camila Fontoura Acosta Ribeiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | | | - Elizabete de Souza Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Federal District 71966-700, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Federal District 71966-700, Brazil
| | - Cristiano Marcelo Espínola Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Federal District 71966-700, Brazil
| |
Collapse
|
36
|
Barbuti RC, Schiavon LL, Oliveira CP, Alvares-DA-Silva MR, Sassaki LY, Passos MDCF, Farias AQ, Barros LL, Barreto BP, Albuquerque GBDMLD, Alves AM, Navarro-Rodriguez T, Bittencourt PL. GUT MICROBIOTA, PREBIOTICS, PROBIOTICS, AND SYNBIOTICS IN GASTROINTESTINAL AND LIVER DISEASES: PROCEEDINGS OF A JOINT MEETING OF THE BRAZILIAN SOCIETY OF HEPATOLOGY (SBH), BRAZILIAN NUCLEUS FOR THE STUDY OF HELICOBACTER PYLORI AND MICROBIOTA (NBEHPM), AND BRAZILIAN FEDERATION OF GASTROENTEROLOGY (FBG). ARQUIVOS DE GASTROENTEROLOGIA 2020; 57:381-398. [PMID: 33331485 DOI: 10.1590/s0004-2803.202000000-72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Over the last years, there is growing evidence that microorganisms are involved in the maintenance of our health and are related to various diseases, both intestinal and extraintestinal. Changes in the gut microbiota appears to be a key element in the pathogenesis of hepatic and gastrointestinal disorders, including non-alcoholic fatty liver disease, alcoholic liver disease, liver cirrhosis, inflammatory bowel disease, irritable bowel syndrome, and Clostridium difficile - associated diarrhea. In 2019, the Brazilian Society of Hepatology (SBH) in cooperation with the Brazilian Nucleus for the Study of Helicobacter Pylori and Microbiota (NBEHPM), and Brazilian Federation of Gastroenterology (FBG) sponsored a joint meeting on gut microbiota and the use of prebiotics, probiotics, and synbiotics in gastrointestinal and liver diseases. This paper summarizes the proceedings of the aforementioned meeting. It is intended to provide practical information about this topic, addressing the latest discoveries and indicating areas for future studies.
Collapse
Affiliation(s)
- Ricardo Correa Barbuti
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | - Leonardo Lucca Schiavon
- Universidade Federal de Santa Catarina, Faculdade de Medicina, Departamento de Clínica Médica, Florianópolis, SC, Brasil
| | - Cláudia P Oliveira
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | - Mário Reis Alvares-DA-Silva
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Porto Alegre, RS, Brasil
| | | | | | - Alberto Queiroz Farias
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | - Luisa Leite Barros
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | - Bruno Paes Barreto
- Universidade do Estado do Pará, Centro de Ciências Biológicas e da Saúde, Belém, PA, Brasil
- Centro Universitário do Estado do Pará (CESUPA), Belém, PA, Brasil
| | | | - Amanda Mandarino Alves
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | - Tomás Navarro-Rodriguez
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | | |
Collapse
|
37
|
Gómez-Gallego C, García-Mantrana I, Martínez-Costa C, Salminen S, Isolauri E, Collado MC. The Microbiota and Malnutrition: Impact of Nutritional Status During Early Life. Annu Rev Nutr 2020; 39:267-290. [PMID: 31433738 DOI: 10.1146/annurev-nutr-082117-051716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
According to the developmental origins of health and disease hypothesis, our health is determined by events experienced in utero and during early infancy. Indeed, both our prenatal and postnatal nutrition conditions have an impact on the initial architecture and activity of our microbiota. Recent evidence has underlined the importance of the composition of the early gut microbiota in relation to malnutrition, whether it be undernutrition or overnutrition, that is, in terms of both stunted and overweight development. It remains unclear how early microbial contact is linked to the risk of disease, as well as whether alterations in the microbiome underlie the pathogenesis of malnutrition or are merely the end result of it, which indicates that thequestion of causality must urgently be answered. This review provides information on the complex interaction between the microbiota and nutrition during the first 1,000 days of life, taking into account the impact of both undernutrition and overnutrition on the microbiota and on infants' health outcomes in the short- and long-term.
Collapse
Affiliation(s)
- Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70210 Kuopio, Finland; .,Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| | - Izaskun García-Mantrana
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain; ,
| | - Cecilia Martínez-Costa
- Department of Pediatrics, School of Medicine, University of Valencia, 46010 Valencia, Spain.,Pediatric Gastroenterology and Nutrition Section, Hospital Clinico Universitario Valencia, INCLIVA,46010 Valencia, Spain;
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| | - Erika Isolauri
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, FI-20500 Turku, Finland; .,Department of Clinical Sciences, Faculty of Medicine, University of Turku, FI-20014 Turku, Finland
| | - M Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain; , .,Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| |
Collapse
|
38
|
Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, Ocvirk S, Chen C, Flanagan CA, Sapp FR, Merritt ZT, Bhatti F, Thomas TK, O’Keefe SJ. Diet and the Human Gut Microbiome: An International Review. Dig Dis Sci 2020; 65:723-740. [PMID: 32060812 PMCID: PMC7117800 DOI: 10.1007/s10620-020-06112-w] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the key results of recently published studies on the effects of dietary change and nutritional intervention on the human microbiome from around the world, focusing on the USA, Canada, Europe, Asia, and Africa. It first explores mechanisms that might explain the ability of fiber-rich foods to suppress the incidence and mortality from westernized diseases, notably cancers of the colon, breast, liver, cardiovascular, infectious, and respiratory diseases, diabetes, and obesity (O'Keefe in Lancet Gastroenterol Hepatol 4(12):984-996, 2019; Am J Clin Nutr 110:265-266, 2019). It summarizes studies from Africa which suggest that disturbance of the colonic microbiome may exacerbate chronic malnutrition and growth failure in impoverished communities and highlights the importance of breast feeding. The American section discusses the role of the microbiome in the swelling population of patients with obesity and type 2 diabetes and examines the effects of race, ethnicity, geography, and climate on microbial diversity and metabolism. The studies from Europe and Asia extoll the benefits of whole foods and plant-based diets. The Asian studies examine the worrying changes from low-fat, high-carbohydrate diets to high-fat, low-carbohydrate ones and the increasing appearance of westernized diseases as in Africa and documents the ability of high-fiber traditional Chinese diets to reverse type 2 diabetes and control weight loss. In conclusion, most of the studies reviewed demonstrate clear changes in microbe abundances and in the production of fermentation products, such as short-chain fatty acids and phytochemicals following dietary change, but the significance of the microbiota changes to human health, with the possible exception of the stimulation of butyrogenic taxa by fiber-rich foods, is generally implied and not measured. Further studies are needed to determine how these changes in microbiota composition and metabolism can improve our health and be used to prevent and treat disease.
Collapse
Affiliation(s)
- Annette S. Wilson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn R. Koller
- Clinical & Research Services, Community Health Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Matsepo C. Ramaboli
- African Microbiome Institute, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Lucky T. Nesengani
- African Microbiome Institute, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Soeren Ocvirk
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Caixia Chen
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christie A. Flanagan
- Clinical & Research Services, Community Health Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Flora R. Sapp
- Clinical & Research Services, Community Health Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Zoe T. Merritt
- Clinical & Research Services, Community Health Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Faheem Bhatti
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy K. Thomas
- Clinical & Research Services, Community Health Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Stephen J.D. O’Keefe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,African Microbiome Institute, Stellenbosch University, Cape Town, Western Cape, South Africa
| |
Collapse
|
39
|
Leng B, Sørensen MB, Kot W, Thymann T, Krych L, Nielsen DS. Severe gut microbiota dysbiosis caused by malnourishment can be partly restored during 3 weeks of refeeding with fortified corn-soy-blend in a piglet model of childhood malnutrition. BMC Microbiol 2019; 19:277. [PMID: 31823731 PMCID: PMC6902335 DOI: 10.1186/s12866-019-1658-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/22/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Childhood malnutrition is a global health challenge associated with multiple adverse consequences, including delayed maturation of the gut microbiota (GM) which might induce long-term immune dysfunction and stunting. To understand GM dynamics during malnutrition and subsequent re-feeding, we used a piglet model with a malnutrition-induced phenotype similar to humans. Piglets were weaned at the age of 4 weeks, fed a nutritionally optimal diet for 1 week post-weaning before being fed a pure maize diet for 7 weeks to induce symptoms of malnutrition. After malnourishment, the piglets were re-fed using different regimes all based on general food aid products, namely Corn-Soy blend (CSB) fortified with phosphorus (CSB+), CSB fortified with phosphorus and skim milk powder (CSB++) and CSB fortified with phosphorus and added whey permeate (CSB + P). RESULTS Malnourishment had profound impact on the GM of the piglets leading to a less diverse GM dominated especially by Akkermansia spp. as determined by 16S rRNA gene amplicon sequencing. All three re-feeding regimes partly restored GM, leading to a more diverse GM compositionally closer to that of well-nourished piglets. This effect was even more pronounced for CSB++ compared to CSB+ and CSB + P. CONCLUSION The GM of piglets were profoundly disturbed by malnourishment resulting in significantly increased abundance of Akkermansia spp. CSB++ may have superior effect on recovering GM diversity compared to the two other food aid products used in this study.
Collapse
Affiliation(s)
- Bingfeng Leng
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Maria B. Sørensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Witold Kot
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Thomas Thymann
- Department of Veterinary and Animal Sciences, Section for Comparative Pediatrics and Nutrition, University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Dennis S. Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| |
Collapse
|
40
|
Lawley B, Otal A, Moloney-Geany K, Diana A, Houghton L, Heath ALM, Taylor RW, Tannock GW. Fecal Microbiotas of Indonesian and New Zealand Children Differ in Complexity and Bifidobacterial Taxa during the First Year of Life. Appl Environ Microbiol 2019; 85:e01105-19. [PMID: 31375480 PMCID: PMC6752005 DOI: 10.1128/aem.01105-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
The biological succession that occurs during the first year of life in the gut of infants in Western countries is broadly predictable in terms of the increasing complexity of the composition of microbiotas. Less information is available about microbiotas in Asian countries, where environmental, nutritional, and cultural influences may differentially affect the composition and development of the microbial community. We compared the fecal microbiotas of Indonesian (n = 204) and New Zealand (NZ) (n = 74) infants 6 to 7 months and 12 months of age. Comparisons were made by analysis of 16S rRNA gene sequences and derivation of community diversity metrics, relative abundances of bacterial families, enterotypes, and cooccurrence correlation networks. Abundances of Bifidobacterium longum subsp. infantis and B. longum subsp. longum were determined by quantitative PCR. All observations supported the view that the Indonesian and NZ infant microbiotas developed in complexity over time, but the changes were much greater for NZ infants. B. longum subsp. infantis dominated the microbiotas of Indonesian children, whereas B. longum subsp. longum was dominant in NZ children. Network analysis showed that the niche model (in which trophic adaptation results in preferential colonization) of the assemblage of microbiotas was supported in Indonesian infants, whereas the neutral (stochastic) model was supported by the development of the microbiotas of NZ infants. The results of the study show that the development of the fecal microbiota is not the same for infants in all countries, and they point to the necessity of obtaining a better understanding of the factors that control the colonization of the gut in early life.IMPORTANCE This study addresses the microbiology of a natural ecosystem (the infant bowel) for children in a rural setting in Indonesia and in an urban environment in New Zealand. Analysis of DNA sequences generated from the microbial community (microbiota) in the feces of the infants during the first year of life showed marked differences in the composition and complexity of the bacterial collections. The differences were most likely due to differences in the prevalence and duration of breastfeeding of infants in the two countries. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of nutrition and environment on the development of the gut microbiota and for determining the long-term effects of microbiological events in early life on human health and well-being.
Collapse
Affiliation(s)
- Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Anna Otal
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Kit Moloney-Geany
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aly Diana
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Lisa Houghton
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- Microbiome Otago, University of Otago, Dunedin, New Zealand
| | - Anne-Louise M Heath
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- Microbiome Otago, University of Otago, Dunedin, New Zealand
| | - Rachael W Taylor
- Microbiome Otago, University of Otago, Dunedin, New Zealand
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Microbiome Otago, University of Otago, Dunedin, New Zealand
- Riddet Centre of Research Excellence, Massey University, Palmerston North, New Zealand
| |
Collapse
|
41
|
Cen ME, Wang F, Su Y, Zhang WJ, Sun B, Wang G. Gastrointestinal microecology: a crucial and potential target in acute pancreatitis. Apoptosis 2019; 23:377-387. [PMID: 29926313 DOI: 10.1007/s10495-018-1464-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the early stage of acute pancreatitis (AP), abundant cytokines induced by local pancreatic inflammation enter the bloodstream, further cause systemic inflammatory response syndrome (SIRS) by "trigger effect", which eventually leads to multiple organ dysfunction syndrome (MODS). During SIRS and MODS, the intestinal barrier function was seriously damaged accompanied by the occurrence of gut-derived infection which forms a "second hit summit" by inflammatory overabundance. Gastrointestinal microecology, namely the biologic barrier, could be transformed into a pathogenic state, which is called microflora dysbiosis when interfered by the inflammatory stress during AP. More and more evidences indicate that gastrointestinal microflora dysbiosis plays a key role in "the second hit" induced by AP gut-derived infection. Therefore, the maintenance of gastrointestinal microecology balance is likely to provide an effective method in modulating systemic infection of AP. This article reviewed the progress of gastrointestinal microecology in AP to provide a reference for deeply understanding the pathogenic mechanisms of AP and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Meng-Er Cen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.,Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Nephropathy, Hangzhou, Zhejiang, China
| | - Feng Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Su
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wang-Jun Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
42
|
Hossain MS, Das S, Gazi MA, Alam MA, Haque NMS, Mahfuz M, Ahmed T, Damman CJ. Association of faecal pH with childhood stunting: Results from a cross-sectional study. BMJ Paediatr Open 2019; 3:e000549. [PMID: 31646200 PMCID: PMC6782033 DOI: 10.1136/bmjpo-2019-000549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gut microbiota plays an important role in the growth of children. The gut of children with optimum growth is enriched in certain species, especially Bifidobacteria and Clostridia. Bifidobacteria and commensal Clostridia both contribute to formation of acidic stool, and an elevated faecal pH indicates reduction of these species in the gut. The purpose of the study was to investigate the association of faecal pH with childhood stunting. METHODS In this cross-sectional study, 100 children with length-for-age Z score (LAZ) <-1 aged between 12 and 18 months were enrolled from the ongoing Bangladesh Environmental Enteric Dysfunction study conducted in Dhaka, Bangladesh. LAZ was measured by anthropometry and data on factors affecting linear growth were recorded. Faecal pH measurement was done using pH metre on freshly collected non-diarrhoeal faecal samples following standard procedure. Multiple quantile regression was done to quantify the relation between faecal pH and LAZ scores. RESULTS The mean LAZ and faecal pH of the children were -2.12±0.80 and 5.84±1.11, respectively. Pearson correlation analysis showed a statistically significant negative correlation between stool pH and the LAZ scores (p<0.01). After inclusion of other factors affecting linear growth into the regression model, a statistically significant inverse association was observed between faecal pH and LAZ score (p<0.01). CONCLUSION Elevated faecal pH was found to have a significant association with stunted growth. As an indicator of gut microbiota status, faecal pH might have emerged as a possible indirect determinant of childhood stunting. TRIAL REGISTRATION NUMBER NCT02812615.
Collapse
Affiliation(s)
- Md. Shabab Hossain
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Subhasish Das
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Md. Amran Gazi
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Md. Ashraful Alam
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Nur Muhammad Shahedul Haque
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Chris J Damman
- Division of Gastroenterology, University of Washington, Seattle, Washington, USA
- Bill and Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
43
|
Huey SL, Finkelstein JL, Venkatramanan S, Udipi SA, Ghugre P, Thakker V, Thorat A, Potdar RD, Chopra HV, Kurpad AV, Haas JD, Mehta S. Prevalence and Correlates of Undernutrition in Young Children Living in Urban Slums of Mumbai, India: A Cross Sectional Study. Front Public Health 2019; 7:191. [PMID: 31355176 PMCID: PMC6639755 DOI: 10.3389/fpubh.2019.00191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/24/2019] [Indexed: 02/04/2023] Open
Abstract
Background: Young children living in urban slums are vulnerable to malnutrition and subsequently poor health outcomes, but data on the correlates of stunting, underweight, wasting, and anemia specifically among 10-18 month-old children in India remain limited. Objective: In this analysis, we sought to describe the prevalence of and examine correlates for different markers of undernutrition, including stunting, underweight, and anemia among 10-18 month-old children living in urban slums, an understudied vulnerable group. Methods: Children and their mothers (n = 323) were screened for anthropometry, demographics, and complete blood counts for hemoglobin concentration between March and November 2017 (Clinicaltrials.gov ID: NCT02233764). Correlates included child and mother's age, sex, birth order, birth weight, illness episodes, hemoglobin concentration, family income, maternal height, and maternal education level. Risk ratios (RR, 95% CI) for binary outcomes (stunting, underweight, wasting and anemia) and mean differences (β, 95% CI) for continuous outcomes (anthropometric Z-scores, hemoglobin concentration) were calculated using multivariate binomial and linear regression (SAS 9.4). Results: The prevalence of stunting was 31.2%, underweight 25.1%, wasting (9.0%), and anemia (76%) among all children. Male children had a higher prevalence of poor growth indices and lower anthropometric Z-scores than females. Male sex, low birthweight, shorter maternal height, report of ≥1 episodes of illness within the past month, older maternal age, and birth order ≥2 were also associated with poor growth and anemia in multivariate models. Correlates of undernutrition were different among females and males. Female children had a 40% (20, 60%) higher risk of anemia associated with diarrhea, and male children who were firstborn had a 20% (0, 70%) lower risk of anemia. Conclusions: These results show that poor growth and anemia among young children is prevalent in urban slums of Mumbai, and that sex of the child may play an important role in informing interventions to address undernutrition.
Collapse
Affiliation(s)
- Samantha Lee Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Julia Leigh Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
- Institute for Nutritional Sciences, Global Health, and Technology (INSIGHT), Cornell University, Ithaca, NY, United States
| | - Sudha Venkatramanan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Shobha A. Udipi
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | - Padmini Ghugre
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | - Varsha Thakker
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | - Aparna Thorat
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | | | | | - Anura V. Kurpad
- Department of Physiology, St. John's Research Institute, Bangalore, India
| | - Jere Douglas Haas
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
- Institute for Nutritional Sciences, Global Health, and Technology (INSIGHT), Cornell University, Ithaca, NY, United States
| |
Collapse
|
44
|
Atukunda P, Muhoozi GKM, van den Broek TJ, Kort R, Diep LM, Kaaya AN, Iversen PO, Westerberg AC. Child development, growth and microbiota: follow-up of a randomized education trial in Uganda. J Glob Health 2019. [PMID: 31131103 PMCID: PMC6513500 DOI: 10.7189/jogh-09-010431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Undernutrition impairs child development outcomes and growth. In this follow-up study of an open cluster-randomized intervention trial we examined the effects of an education package delivered to mothers in rural Uganda on their children’s development, growth and gut microbiota at 36 months of age. Methods The parental trial included 511 mother-child pairs recruited when the children were 6-8 months. In that trial, a nutrition, stimulation and hygiene education was delivered to mothers in the intervention group while the control group received routine health care. A follow-up sample of 155 pairs (intervention n = 77, control n = 78) were re-enrolled when the children were 24 months. Developmental outcomes were assessed with the Bayley Scales of Infant and Toddler Development (BSID-III) composite scores for cognitive (primary endpoint), language and motor development. Development outcomes were also evaluated using the Ages and Stages Questionnaire (ASQ) and the Mullen Scales of Early Learning (MSEL). Other outcomes included growth and gut microbiota composition. Results The demographic characteristics were not different (P > 0.05) between the intervention and control groups and similar to those of the parental study. The intervention group had higher BSID-III scores than controls, with mean difference 10.13 (95% confidence interval (CI): 3.31-17.05, P = 0.002); 7.59 (1.62-13.66, P = 0.01); 9.00 (2.92-15.40, P = 0.005), for cognitive, language and motor composite scores, respectively. An improvement in the intervention compared to the control group was obtained for both the ASQ and the MSEL scores. The mean difference in height-for-age z-score was higher in the intervention compared to the control group: 0.50 (0.25-0.75, P = 0.0001). Gut microbiota composition did not differ significantly between the two study groups. Conclusions The maternal education intervention had positive effects on child development and growth at three years, but did not alter gut microbiota composition. This intervention may be applicable in other low-resource settings. Trial registration ClinicalTrials.gov registration number NCT02098031.
Collapse
Affiliation(s)
- Prudence Atukunda
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Grace K M Muhoozi
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Human Nutrition and Home Economics, Kyambogo University, Kampala, Uganda
| | - Tim J van den Broek
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, the Netherlands
| | - Remco Kort
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, the Netherlands.,Department of Molecular Cell Biology, VU University Amsterdam, the Netherlands
| | - Lien M Diep
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Archileo N Kaaya
- School of Food Technology, Nutrition and Bioengineering, Makerere University, Kampala, Uganda
| | - Per O Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway.,Division of Human Nutrition, Stellenbosch University, Tygerberg, South Africa.,Equal authorship
| | - Ane C Westerberg
- Institute of Health Sciences, Kristiania University College, Oslo, Norway.,Equal authorship
| |
Collapse
|
45
|
Garcia SN, Osburn BI, Cullor JS. A one health perspective on dairy production and dairy food safety. One Health 2019; 7:100086. [PMID: 30911596 PMCID: PMC6416413 DOI: 10.1016/j.onehlt.2019.100086] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023] Open
Abstract
As the global population approaches 9.7 billion inhabitants by the year 2050, humanity faces enormous challenges to feed, house, and provide basic living requirements for the growing population while preserving the health of wildlife and the ecosystem. Dairy source foods play an important part in providing nutrient and energy dense sources of calories and establishing Bifidobacterium as a keystone species in the gut for positive health outcomes in infants and children. In developed countries, dairy products have a high food safety record when pasteurized and properly processed. However, when milk is consumed unpasteurized, as often occurs in developing countries where regulation and oversight of the dairy industry is lacking, dairy can serve as a vector for zoonotic transmission of disease and can contain adulterants such as antibiotic residues. Here we provide an overview for the importance of dairy source foods for nutrition and with a One Health perspective and discuss the historical events that have resulted in a high standard of dairy food safety in the United States. This review article covers the Origins of One Health, the role of milk in transmission of disease, management practices and regulations to ensure safe dairy products reach consumers, current challenges facing the dairy industry and impacts on public health, and how these standards can be employed in low and middle income countries to improve public health, nutrition and economic benefits to farmers.
Collapse
Affiliation(s)
- Sara N. Garcia
- Dairy Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States
- Western Institute for Food Safety and Security, University of California, Davis, 1477 Drew Ave., Suite 101, Davis, CA 95618, United States
| | - Bennie I. Osburn
- Western Institute for Food Safety and Security, University of California, Davis, 1477 Drew Ave., Suite 101, Davis, CA 95618, United States
| | - James S. Cullor
- Dairy Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States
| |
Collapse
|
46
|
Atukunda P, Muhoozi GKM, van den Broek TJ, Kort R, Diep LM, Kaaya AN, Iversen PO, Westerberg AC. Child development, growth and microbiota: follow-up of a randomized education trial in Uganda. J Glob Health 2019; 9:010431. [PMID: 31131103 DOI: 10.7189/jogh.09.010431] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Undernutrition impairs child development outcomes and growth. In this follow-up study of an open cluster-randomized intervention trial we examined the effects of an education package delivered to mothers in rural Uganda on their children's development, growth and gut microbiota at 36 months of age. Methods The parental trial included 511 mother-child pairs recruited when the children were 6-8 months. In that trial, a nutrition, stimulation and hygiene education was delivered to mothers in the intervention group while the control group received routine health care. A follow-up sample of 155 pairs (intervention n = 77, control n = 78) were re-enrolled when the children were 24 months. Developmental outcomes were assessed with the Bayley Scales of Infant and Toddler Development (BSID-III) composite scores for cognitive (primary endpoint), language and motor development. Development outcomes were also evaluated using the Ages and Stages Questionnaire (ASQ) and the Mullen Scales of Early Learning (MSEL). Other outcomes included growth and gut microbiota composition. Results The demographic characteristics were not different (P > 0.05) between the intervention and control groups and similar to those of the parental study. The intervention group had higher BSID-III scores than controls, with mean difference 10.13 (95% confidence interval (CI): 3.31-17.05, P = 0.002); 7.59 (1.62-13.66, P = 0.01); 9.00 (2.92-15.40, P = 0.005), for cognitive, language and motor composite scores, respectively. An improvement in the intervention compared to the control group was obtained for both the ASQ and the MSEL scores. The mean difference in height-for-age z-score was higher in the intervention compared to the control group: 0.50 (0.25-0.75, P = 0.0001). Gut microbiota composition did not differ significantly between the two study groups. Conclusions The maternal education intervention had positive effects on child development and growth at three years, but did not alter gut microbiota composition. This intervention may be applicable in other low-resource settings. Trial registration ClinicalTrials.gov registration number NCT02098031.
Collapse
Affiliation(s)
- Prudence Atukunda
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Grace K M Muhoozi
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Human Nutrition and Home Economics, Kyambogo University, Kampala, Uganda
| | - Tim J van den Broek
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, the Netherlands
| | - Remco Kort
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, the Netherlands.,Department of Molecular Cell Biology, VU University Amsterdam, the Netherlands
| | - Lien M Diep
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Archileo N Kaaya
- School of Food Technology, Nutrition and Bioengineering, Makerere University, Kampala, Uganda
| | - Per O Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway.,Division of Human Nutrition, Stellenbosch University, Tygerberg, South Africa.,Equal authorship
| | - Ane C Westerberg
- Institute of Health Sciences, Kristiania University College, Oslo, Norway.,Equal authorship
| |
Collapse
|
47
|
A review of GI conditions critical to oral drug absorption in malnourished children. Eur J Pharm Biopharm 2019; 137:9-22. [DOI: 10.1016/j.ejpb.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
|
48
|
Age-of-diagnosis dependent ileal immune intensification and reduced alpha-defensin in older versus younger pediatric Crohn Disease patients despite already established dysbiosis. Mucosal Immunol 2019; 12:491-502. [PMID: 30542108 PMCID: PMC6375755 DOI: 10.1038/s41385-018-0114-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 02/04/2023]
Abstract
Age-of-diagnosis associated variation in disease location and antimicrobial sero-reactivity has suggested fundamental differences in pediatric Crohn Disease (CD) pathogenesis. This variation may be related to pubertal peak incidence of ileal involvement and Peyer's patches maturation, represented by IFNγ-expressing Th1 cells. However, direct mucosal evidence is lacking. We characterize the global pattern of ileal gene expression and microbial communities in 525 treatment-naive pediatric CD patients and controls (Ctl), stratifying samples by their age-of-diagnosis. We show a robust ileal gene signature notable for higher expression of specific immune genes including GM-CSF and INFγ, and reduced expression of antimicrobial Paneth cell α-defensins, in older compared to younger patients. Reduced α-defensin expression in older patients was associated with higher IFNγ expression. By comparison, the CD-associated ileal dysbiosis, characterized by expansion of Enterobacteriaceae and contraction of Lachnospiraceae and Ruminococcaceae, was already established within the younger group and did not vary systematically with increasing age-of-diagnosis. Multivariate analysis considering individual taxa, however did demonstrate negative associations between Lachnospiraceae and IFNγ, and positive associations between Bacteroides and α-defensin expression. These data provide evidence for maturation of mucosal Th1 immune responses and loss of epithelial antimicrobial α-defensins which are associated with specific taxa with increasing age-of-diagnosis in pediatric CD.
Collapse
|
49
|
Méndez-Salazar EO, Ortiz-López MG, Granados-Silvestre MDLÁ, Palacios-González B, Menjivar M. Altered Gut Microbiota and Compositional Changes in Firmicutes and Proteobacteria in Mexican Undernourished and Obese Children. Front Microbiol 2018; 9:2494. [PMID: 30386323 PMCID: PMC6198253 DOI: 10.3389/fmicb.2018.02494] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Mexico is experiencing an epidemiological and nutritional transition period, and Mexican children are often affected by the double burden of malnutrition, which includes undernutrition (13.6% of children) and obesity (15.3%). The gut microbiome is a complex and metabolically active community of organisms that influences the host phenotype. Although previous studies have shown alterations in the gut microbiota in undernourished children, the affected bacterial communities remain unknown. The present study investigated and compared the bacterial richness and diversity of the fecal microbiota in groups of undernourished (n = 12), obese (n = 12), and normalweight (control) (n = 12) Mexican school-age children. We used next-generation sequencing to analyze the V3–V4 region of the bacterial 16S rRNA gene, and we also investigated whether there were correlations between diet and relevant bacteria. The undernourished and obese groups showed lower bacterial richness and diversity than the normalweight group. Enterotype 1 correlated positively with dietary fat intake in the obese group and with carbohydrate intake in the undernourished group. The results showed that undernourished children had significantly higher levels of bacteria in the Firmicutes phylum and in the Lachnospiraceae family than obese children, while the Proteobacteria phylum was overrepresented in the obese group. The level of Lachnospiraceae correlated negatively with energy consumption and positively with leptin level. This is the first study to examine the gut microbial community structure in undernourished and obese Mexican children living in low-income neighborhoods. Our analysis revealed distinct taxonomic profiles for undernourished and obese children.
Collapse
Affiliation(s)
- Eder Orlando Méndez-Salazar
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México - Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | | | - Berenice Palacios-González
- Unidad de Vinculación Científica de la Facultad de Medicina UNAM-INMEGEN, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marta Menjivar
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México - Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
50
|
Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, Chifiriuc MC. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol 2018; 9:1830. [PMID: 30158926 PMCID: PMC6104162 DOI: 10.3389/fimmu.2018.01830] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
The microbiota consists of a dynamic multispecies community of bacteria, fungi, archaea, and protozoans, bringing to the host organism a dowry of cells and genes more numerous than its own. Among the different non-sterile cavities, the human gut harbors the most complex microbiota, with a strong impact on host homeostasis and immunostasis, being thus essential for maintaining the health condition. In this review, we outline the roles of gut microbiota in immunity, starting with the background information supporting the further presentation of the implications of gut microbiota dysbiosis in host susceptibility to infections, hypersensitivity reactions, autoimmunity, chronic inflammation, and cancer. The role of diet and antibiotics in the occurrence of dysbiosis and its pathological consequences, as well as the potential of probiotics to restore eubiosis is also discussed.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Carmen Curutiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ariana Picu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Laura Petcu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|