1
|
Swann JW, Ballester-Rosado CJ, Lee CH. New insights into epileptic spasm generation and treatment from the TTX animal model. Epilepsia Open 2025. [PMID: 40260688 DOI: 10.1002/epi4.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
Currently, we have an incomplete understanding of the mechanisms underlying infantile epileptic spasms syndrome (IESS). However, over the past decade, significant efforts have been made to develop IESS animal models to provide much-needed mechanistic information for therapy development. Our laboratory has focused on the TTX model and in this paper, we review some of our findings. To induce spasms, tetrodotoxin (TTX) is infused into the neocortex of infant rats. TTX produces a lesion at its infusion site and thus mimics IESS resulting from acquired structural brain abnormalities. Subsequent electrophysiological studies showed that the epileptic spasms originate from neocortical layer V pyramidal cells. Importantly, experimental maneuvers that increase the excitability of these cells produce focal seizures in non-epileptic control animals but never produce them in TTX-infused epileptic rats; instead, epileptic spasms are produced in epileptic rats, indicating a significant transformation in the operations of neocortical networks. At the molecular level, studies showed that the expression of insulin-like growth factor 1 was markedly reduced in the cortex and this corresponded with a loss of presynaptic GABAergic nerve terminals. Very similar observations were made in surgically resected tissue from IESS patients with a history of perinatal strokes. Other experiments in conditional knockout mice indicated that IGF-1 plays a critical role in the maturation of neocortical inhibitory connectivity. This finding led to our hypothesis that the loss of IGF-1 in epileptic animals impairs inhibitory interneuron synaptogenesis and is responsible for spasms. To test this idea, we treated epileptic rats with the IGF-1-derived tripeptide (1-3)IGF-1, which was shown to act through IGF-1's receptor. (1-3)IGF-1 rescued inhibitory interneuron connectivity, restored IGF-1 levels, and abolished spasms. Thus, (1-3)IGF-1 or its analogs are potential novel treatments for IESS following perinatal brain injury. We conclude by discussing our findings in the broader context of the often-debated final common pathway hypothesis for IESS. PLAIN LANGUAGE SUMMARY: We review findings from the TTX animal model of infantile epileptic spasms syndrome, which show that these seizures come from an area of the brain called the neocortex. In this area, the amount of an important growth factor called IGF-1 is reduced, as is the number of inhibitory synapses that play an important role in preventing seizures. Other results indicate that the loss of IGF-1 prevents the normal development of these inhibitory synapses. Treatment of epileptic animals with (1-3)IGF-1 restored IGF-1 levels and inhibitory synapses and abolished spasms. Thus, (1-3)IGF-1 or an analog is a potential new therapy for epileptic spasms.
Collapse
Affiliation(s)
- John W Swann
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Carlos J Ballester-Rosado
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Chih-Hong Lee
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
2
|
Derbie AY, Altaye M, Wang J, Allahverdy A, He L, Tamm L, Parikh NA. Early life brain network connectivity antecedents of executive function in children born preterm. Commun Biol 2025; 8:345. [PMID: 40025105 PMCID: PMC11873160 DOI: 10.1038/s42003-025-07745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
Preterm birth is associated with an increased risk of executive function (EF) deficits, yet the underlying neural mechanisms remain unclear. We combine diffusion MRI, resting-state functional MRI, and graph theory analyses to examine how structural (SC) and functional connectivity (FC) at term-equivalent age (TEA) influence EF outcomes at 3 years corrected age in children born at or below 32 weeks' gestation. Here we show shorter average path length (a measure of efficient structural communication) in the insula is linked to better EF performance, implying that more direct structural pathways in this region facilitate critical cognitive processes. Additionally, higher betweenness centrality (a node-level metric of information flow) in parietal and superior temporal regions is associated with improved EF, reflecting these areas' prominent integrative roles in the whole-brain functional network. Importantly, our multimodal analyses reveal that regional structural efficiency helps shape functional organization, indicating a specific interplay between white-matter architecture and emergent functional hubs at TEA. These findings extend current knowledge by demonstrating how earlier disruptions in SC can alter subsequent FC patterns that support EF. By focusing on precise node-level metrics rather than broad within-network effects, our results clarify the contribution that SC has in guiding functional relationships essential for EF.
Collapse
Affiliation(s)
- Abiot Y Derbie
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mekibib Altaye
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Junqi Wang
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Armin Allahverdy
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lili He
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leanne Tamm
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nehal A Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Ballester-Rosado CJ, Le JT, Lam TT, Anderson AE, Frost JD, Swann JW. IGF-1 impacts neocortical interneuron connectivity in epileptic spasm generation and resolution. Neurotherapeutics 2025; 22:e00477. [PMID: 39516073 PMCID: PMC11743118 DOI: 10.1016/j.neurot.2024.e00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Little is known about the mechanisms that generate epileptic spasms following perinatal brain injury. Recent studies have implicated reduced levels of Insulin-like Growth Factor 1 (IGF-1) in these patients' brains. Other studies have reported low levels of the inhibitory neurotransmitter, GABA. In the TTX brain injury model of epileptic spasms, we undertook experiments to evaluate the impact of IGF-1 deficiencies on neocortical interneurons and their role in spasms. Quantitative immunohistochemical analyses revealed that neocortical interneurons that express glutamic acid decarboxylase, parvalbumin, or synaptotagmin 2 co-express IGF-1. In epileptic rats, expression of these three interneuron markers were reduced in the neocortex. IGF-1 expression was also reduced, but surprisingly this loss was confined to interneurons. Interneuron connectivity was reduced in tandem with IGF-1 deficiencies. Similar changes were observed in surgically resected neocortex from infantile epileptic spasms syndrome (IESS) patients. To evaluate the impact of IGF-1 deficiencies on interneuron development, IGF-1R levels were reduced in the neocortex of neonatal conditional IGF-1R knock out mice by viral injections. Four weeks later, this experimental maneuver resulted in similar reductions in interneuron connectivity. Treatment with the IGF-1 derived tripeptide, (1-3)IGF-1, abolished epileptic spasms in most animals, rescued interneuron connectivity, and restored neocortical levels of IGF-1. Our results implicate interneuron IGF-1 deficiencies, possibly impaired autocrine IGF-1 signaling and a resultant interneuron dysmaturation in epileptic spasm generation. By restoring IGF-1 levels, (1-3)IGF-1 likely suppresses spasms by rescuing interneuron connectivity. Results point to (1-3)IGF-1 and its analogues as potential novel disease-modifying therapies for this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Carlos J Ballester-Rosado
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John T Le
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Trang T Lam
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Anne E Anderson
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - James D Frost
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - John W Swann
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Urru A, Benkarim O, Martí‐Juan G, Hahner N, Piella G, Eixarch E, González Ballester MA. Longitudinal Assessment of Abnormal Cortical Folding in Fetuses and Neonates With Isolated Non-Severe Ventriculomegaly. Brain Behav 2025; 15:e70255. [PMID: 39832168 PMCID: PMC11745156 DOI: 10.1002/brb3.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/22/2025] Open
Abstract
PURPOSE The impact of ventriculomegaly (VM) on cortical development and brain functionality has been extensively explored in existing literature. VM has been associated with higher risks of attention-deficit and hyperactivity disorders, as well as cognitive, language, and behavior deficits. Some studies have also shown a relationship between VM and cortical overgrowth, along with reduced cortical folding, both in fetuses and neonates. However, there is a lack of longitudinal studies that study this relationship from fetuses to neonates. METHOD We used a longitudinal dataset of 30 subjects (15 healthy controls and 15 subjects diagnosed with isolated non-severe VM (INSVM)) with structural MRI acquired in and ex utero for each subject. We focused on the impact of fetal INSVM on cortical development from a longitudinal perspective, from the fetal to the neonatal stage. Particularly, we examined the relationship between ventricular enlargement and both volumetric features and a multifaceted set of cortical folding measures, including local gyrification, sulcal depth, curvature, and cortical thickness. FINDINGS Our results show significant effects of isolated non-severe VM (INSVM) compared to healthy controls, with reduced cortical thickness in specific brain regions such as the occipital, parietal, and frontal lobes. CONCLUSION These findings align with existing literature, confirming the presence of alterations in cortical growth and folding in subjects with isolated non-severe VM (INSVM) from the fetal to neonatal stage compared to controls.
Collapse
Affiliation(s)
- Andrea Urru
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Oualid Benkarim
- McConnell Brain Imaging CentreMontreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
| | - Gerard Martí‐Juan
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Nadine Hahner
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu)University of BarcelonaBarcelonaSpain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
| | - Gemma Piella
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Elisenda Eixarch
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu)University of BarcelonaBarcelonaSpain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centre for Biomedical Research on Rare Diseases (CIBERER)BarcelonaSpain
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
5
|
Prasad J, Van Steenwinckel J, Gunn AJ, Bennet L, Korzeniewski SJ, Gressens P, Dean JM. Chronic Inflammation Offers Hints About Viable Therapeutic Targets for Preeclampsia and Potentially Related Offspring Sequelae. Int J Mol Sci 2024; 25:12999. [PMID: 39684715 PMCID: PMC11640791 DOI: 10.3390/ijms252312999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The combination of hypertension with systemic inflammation during pregnancy is a hallmark of preeclampsia, but both processes also convey dynamic information about its antecedents and correlates (e.g., fetal growth restriction) and potentially related offspring sequelae. Causal inferences are further complicated by the increasingly frequent overlap of preeclampsia, fetal growth restriction, and multiple indicators of acute and chronic inflammation, with decreased gestational length and its correlates (e.g., social vulnerability). This complexity prompted our group to summarize information from mechanistic studies, integrated with key clinical evidence, to discuss the possibility that sustained or intermittent systemic inflammation-related phenomena offer hints about viable therapeutic targets, not only for the prevention of preeclampsia, but also the neurobehavioral and other developmental deficits that appear to be overrepresented in surviving offspring. Importantly, we feel that carefully designed hypothesis-driven observational studies are necessary if we are to translate the mechanistic evidence into child health benefits, namely because multiple pregnancy disorders might contribute to heightened risks of neuroinflammation, arrested brain development, or dysconnectivity in survivors who exhibit developmental problems later in life.
Collapse
Affiliation(s)
- Jaya Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | | | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Steven J. Korzeniewski
- C.S. Mott Center for Human Growth and Development, Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Pierre Gressens
- Inserm, Neurodiderot, Université de Paris, 75019 Paris, France;
- Centre for the Developing Brain, Division of Imaging Sciences and Department of Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| |
Collapse
|
6
|
Lear BA, Zhou KQ, Dhillon SK, Lear CA, Bennet L, Gunn AJ. Preventive, rescue and reparative neuroprotective strategies for the fetus and neonate. Semin Fetal Neonatal Med 2024; 29:101542. [PMID: 39472238 DOI: 10.1016/j.siny.2024.101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Neonatal encephalopathy remains a major contributor to death and disability around the world. Acute hypoxia-ischaemia before, during or after birth creates a series of events that can lead to neonatal brain injury. Understanding the evolution of injury underpinned the development of therapeutic hypothermia. This review discusses the determinants of injury, including maturity, the pattern of exposure to HI, impaired placental function, often associated with fetal growth restriction and in the long-term, socio-economic deprivation. Chorioamnionitis has been associated with the presence of NE, but it is important to note that experimentally, inflammation can either sensitize to greater neural injury after HI or alleviate injury, depending on its precise timing. As fetal surveillance tools improve it is likely that improved detection of specific pathways will offer future opportunities for preventive and reparative interventions in utero and after birth.
Collapse
Affiliation(s)
- Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Cromb D, Wilson S, Bonthrone AF, Chew A, Kelly C, Kumar M, Cawley P, Dimitrova R, Arichi T, Tournier JD, Pushparajah K, Simpson J, Rutherford M, Hajnal JV, Edwards AD, Nosarti C, O’Muircheartaigh J, Counsell SJ. Individualized cortical gyrification in neonates with congenital heart disease. Brain Commun 2024; 6:fcae356. [PMID: 39429246 PMCID: PMC11487749 DOI: 10.1093/braincomms/fcae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/08/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Congenital heart disease is associated with impaired early brain development and adverse neurodevelopmental outcomes. This study investigated how individualized measures of preoperative cortical gyrification index differ in 142 infants with congenital heart disease, using a normative modelling approach with reference data from 320 typically developing infants. Gyrification index Z-scores for the whole brain and six major cortical areas were generated using two different normative models: one accounting for post-menstrual age at scan, post-natal age at scan and sex, and another additionally accounting for supratentorial brain volume. These Z-scores were compared between congenital heart disease and control groups to test the hypothesis that cortical folding in infants with congenital heart disease deviates from the normal developmental trajectory. The relationships between whole-brain gyrification index Z-scores from the two normative models and both cerebral oxygen delivery and neurodevelopmental outcomes were also investigated. Global and regional brain gyrification was significantly reduced in neonates with congenital heart disease, but not when supratentorial brain volume was accounted for. This finding suggests that whilst cortical folding is reduced in congenital heart disease, it is primarily driven by a reduction in brain size. There was a significant positive correlation between cerebral oxygen delivery and whole-brain gyrification index Z-scores in congenital heart disease, but not when supratentorial brain volume was accounted for. Cerebral oxygen delivery is therefore likely to play a more important role in the biological processes underlying volumetric brain growth than cortical folding. No significant associations between whole-brain gyrification index Z-scores and motor/cognitive outcomes or autism traits were identified in the 70 infants with congenital heart disease who underwent neurodevelopmental assessment at 22-months. Our results suggest that chronic in utero and early post-natal hypoxia in congenital heart disease is associated with reductions in cortical folding that are proportional to reductions in supratentorial brain volume.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Siân Wilson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Manu Kumar
- GKT Medical School, King’s College London, London SE1 7EH, UK
| | - Paul Cawley
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, London SE1 7EH, UK
| | - J Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Kuberan Pushparajah
- Department of Cardiovascular Imaging, King’s College London, London SE1 7EH, UK
- Department of Fetal and Paediatric Cardiology, Evelina London Children’s Hospital, London SE1 7EH, UK
| | - John Simpson
- Department of Cardiovascular Imaging, King’s College London, London SE1 7EH, UK
- Department of Fetal and Paediatric Cardiology, Evelina London Children’s Hospital, London SE1 7EH, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, London SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
8
|
White P, Ranasinghe S, Chen J, Van de Looij Y, Sizonenko S, Prasad J, Berry M, Bennet L, Gunn A, Dean J. Comparative utility of MRI and EEG for early detection of cortical dysmaturation after postnatal systemic inflammation in the neonatal rat. Brain Behav Immun 2024; 121:104-118. [PMID: 39043347 DOI: 10.1016/j.bbi.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Exposure to postnatal systemic inflammation is associated with increased risk of brain injury in preterm infants, leading to impaired maturation of the cerebral cortex and adverse neurodevelopmental outcomes. However, the optimal method for identifying cortical dysmaturation is unclear. Herein, we compared the utility of electroencephalography (EEG), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) at different recovery times after systemic inflammation in newborn rats. METHODS Sprague Dawley rat pups of both sexes received single-daily lipopolysaccharide (LPS; 0.3 mg/kg i.p.; n = 51) or saline (n = 55) injections on postnatal days (P)1, 2, and 3. A subset of these animals were implanted with EEG electrodes. Cortical EEG was recorded for 30 min from unanesthetized, unrestrained pups at P7, P14, and P21, and in separate groups, brain tissues were collected at these ages for ex-vivo MRI analysis (9.4 T) and Golgi-Cox staining (to assess neuronal morphology) in the motor cortex. RESULTS Postnatal inflammation was associated with reduced cortical pyramidal neuron arborization from P7, P14, and P21. These changes were associated with dysmature EEG features (e.g., persistence of delta waveforms, higher EEG amplitude, reduced spectral edge frequency) at P7 and P14, and higher EEG power in the theta and alpha ranges at P21. By contrast, there were no changes in cortical DTI or NODDI in LPS rats at P7 or P14, while there was an increase in cortical fractional anisotropy (FA) and decrease in orientation dispersion index (ODI) at P21. CONCLUSIONS EEG may be useful for identifying the early evolution of impaired cortical development after early life postnatal systemic inflammation, while DTI and NODDI seem to be more suited to assessing established cortical changes.
Collapse
Affiliation(s)
- Petra White
- University of Auckland, Auckland, New Zealand
| | | | - Joseph Chen
- University of Auckland, Auckland, New Zealand
| | - Yohan Van de Looij
- University of Geneva, Geneva, Switzerland; Lausanne Federal Polytechnic School, Lausanne, Switzerland
| | | | - Jaya Prasad
- University of Auckland, Auckland, New Zealand
| | - Mary Berry
- University of Otago, Wellington, New Zealand
| | | | | | - Justin Dean
- University of Auckland, Auckland, New Zealand.
| |
Collapse
|
9
|
Li H, Liu M, Zhang J, Liu S, Fang Z, Pan M, Sui X, Rang W, Xiao H, Jiang Y, Zheng Y, Ge X. The effect of preterm birth on thalamic development based on shape and structural covariance analysis. Neuroimage 2024; 297:120708. [PMID: 38950664 DOI: 10.1016/j.neuroimage.2024.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Acting as a central hub in regulating brain functions, the thalamus plays a pivotal role in controlling high-order brain functions. Considering the impact of preterm birth on infant brain development, traditional studies focused on the overall development of thalamus other than its subregions. In this study, we compared the volumetric growth and shape development of the thalamic hemispheres between the infants born preterm and full-term (Left volume: P = 0.027, Left normalized volume: P < 0.0001; Right volume: P = 0.070, Right normalized volume: P < 0.0001). The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus exhibit higher vulnerability to alterations induced by preterm birth. The structural covariance (SC) between the thickness of thalamus and insula in preterm infants (Left: corrected P = 0.0091, Right: corrected P = 0.0119) showed significant increase as compared to full-term controls. Current findings suggest that preterm birth affects the development of the thalamus and has differential effects on its subregions. The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus are more susceptible to the impacts of preterm birth.
Collapse
Affiliation(s)
- Hongzhuang Li
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Mengting Liu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
| | - Jianfeng Zhang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Shujuan Liu
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Zhicong Fang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Minmin Pan
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Xiaodan Sui
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Wei Rang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Hang Xiao
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Yanyun Jiang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Shandong, China.
| | - Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, Shandong, China.
| |
Collapse
|
10
|
Lear CA, Lear BA, Davidson JO, King VJ, Maeda Y, McDouall A, Dhillon SK, Gunn AJ, Bennet L. Dysmaturation of sleep state and electroencephalographic activity after hypoxia-ischaemia in preterm fetal sheep. J Cereb Blood Flow Metab 2024; 44:1376-1392. [PMID: 38415649 PMCID: PMC11342719 DOI: 10.1177/0271678x241236014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Antenatal hypoxia-ischaemia (HI) in preterm fetal sheep can trigger delayed evolution of severe, cystic white matter injury (WMI), in a similar timecourse to WMI in preterm infants. We therefore examined how severe hypoxia-ischaemia affects recovery of electroencephalographic (EEG) activity. Chronically instrumented preterm fetal sheep (0.7 gestation) received 25 min of complete umbilical cord occlusion (UCO, n = 9) or sham occlusion (controls, n = 9), and recovered for 21 days. HI was associated with a shift to lower frequency EEG activity for the first 5 days with persisting loss of EEG power in the delta and theta bands, and initial loss of power in the alpha and beta bands in the first 14 days of recovery. In the final 3 days of recovery, there was a marked rhythmic shift towards higher frequency EEG activity after UCO. The UCO group spent less time in high-voltage sleep, and in the early evening (7:02 pm ± 47 min) abruptly stopped cycling between sleep states, with a shift to a high frequency state for 2 h 48 min ± 40 min, with tonic electromyographic activity. These findings demonstrate persisting EEG and sleep state dysmaturation after severe hypoxia-ischaemia. Loss of fetal or neonatal sleep state cycling in the early evening may be a useful biomarker for evolving cystic WMI.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Victoria J King
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Yoshiki Maeda
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alice McDouall
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Riddle A, Srivastava T, Wang K, Tellez E, O'Neill H, Gong X, O'Niel A, Bell JA, Raber J, Lattal M, Maylie J, Back SA. Mild neonatal hypoxia disrupts adult hippocampal learning and memory and is associated with CK2-mediated dysregulation of synaptic calcium-activated potassium channel KCNN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602558. [PMID: 39071376 PMCID: PMC11275740 DOI: 10.1101/2024.07.10.602558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Objective Although nearly half of preterm survivors display persistent neurobehavioral dysfunction including memory impairment without overt gray matter injury, the underlying mechanisms of neuronal or glial dysfunction, and their relationship to commonly observed cerebral white matter injury are unclear. We developed a mouse model to test the hypothesis that mild hypoxia during preterm equivalence is sufficient to persistently disrupt hippocampal neuronal maturation related to adult cellular mechanisms of learning and memory. Methods: Neonatal (P2) mice were exposed to mild hypoxia (8%O 2 ) for 30 min and evaluated for acute injury responses or survived until adulthood for assessment of learning and memory and hippocampal neurodevelopment. Results Neonatal mild hypoxia resulted in clinically relevant oxygen desaturation and tachycardia without bradycardia and was not accompanied by cerebral gray or white matter injury. Neonatal hypoxia exposure was sufficient to cause hippocampal learning and memory deficits and abnormal maturation of CA1 neurons that persisted into adulthood. This was accompanied by reduced hippocampal CA3-CA1 synaptic strength and LTP and reduced synaptic activity of calcium-sensitive SK2 channels, key regulators of spike timing dependent neuroplasticity, including LTP. Structural illumination microscopy revealed reduced synaptic density, but intact SK2 localization at the synapse. Persistent loss of SK2 activity was mediated by altered casein kinase 2 (CK2) signaling. Interpretation Clinically relevant mild hypoxic exposure in the neonatal mouse is sufficient to produce morphometric and functional disturbances in hippocampal neuronal maturation independently of white matter injury. Additionally, we describe a novel persistent mechanism of potassium channel dysregulation after neonatal hypoxia. Collectively our findings suggest an unexplored explanation for the broad spectrum of neurobehavioral, cognitive and learning disabilities that paradoxically persist into adulthood without overt gray matter injury after preterm birth.
Collapse
|
12
|
Wilson S, Christiaens D, Yun H, Uus A, Cordero-Grande L, Karolis V, Price A, Deprez M, Tournier JD, Rutherford M, Grant E, Hajnal JV, Edwards AD, Arichi T, O'Muircheartaigh J, Im K. Dynamic changes in subplate and cortical plate microstructure at the onset of cortical folding in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562524. [PMID: 38979235 PMCID: PMC11230247 DOI: 10.1101/2023.10.16.562524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cortical gyrification takes place predominantly during the second to third trimester, alongside other fundamental developmental processes, such as the development of white matter connections, lamination of the cortex and formation of neural circuits. The mechanistic biology that drives the formation cortical folding patterns remains an open question in neuroscience. In our previous work, we modelled the in utero diffusion signal to quantify the maturation of microstructure in transient fetal compartments, identifying patterns of change in diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester. In this work, we apply the same modelling approach to explore whether microstructural maturation of these compartments is correlated with the process of gyrification. We quantify the relationship between sulcal depth and tissue anisotropy within the cortical plate (CP) and underlying subplate (SP), key transient fetal compartments often implicated in mechanistic hypotheses about the onset of gyrification. Using in utero high angular resolution multi-shell diffusion-weighted imaging (HARDI) from the Developing Human Connectome Project (dHCP), our analysis reveals that the anisotropic, tissue component of the diffusion signal in the SP and CP decreases immediately prior to the formation of sulcal pits in the fetal brain. By back-projecting a map of folded brain regions onto the unfolded brain, we find evidence for cytoarchitectural differences between gyral and sulcal areas in the late second trimester, suggesting that regional variation in the microstructure of transient fetal compartments precedes, and thus may have a mechanistic function, in the onset of cortical folding in the developing human brain.
Collapse
Affiliation(s)
- Siân Wilson
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daan Christiaens
- Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium
| | - Hyukjin Yun
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alena Uus
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom
| | | | - Vyacheslav Karolis
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
| | - Anthony Price
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
| | - Maria Deprez
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom
| | - Jacques-Donald Tournier
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom
| | - Mary Rutherford
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
| | - Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph V Hajnal
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom
| | - A David Edwards
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
| | - Tomoki Arichi
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, United Kingdom
- Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| | - Jonathan O'Muircheartaigh
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, King's College London, United Kingdom
| | - Kiho Im
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Rojczyk P, Heller C, Seitz-Holland J, Kaufmann E, Sydnor VJ, Berger L, Pankatz L, Rathi Y, Bouix S, Pasternak O, Salat D, Hinds SR, Esopenko C, Fortier CB, Milberg WP, Shenton ME, Koerte IK. Intimate partner violence perpetration among veterans: associations with neuropsychiatric symptoms and limbic microstructure. Front Neurol 2024; 15:1360424. [PMID: 38882690 PMCID: PMC11178105 DOI: 10.3389/fneur.2024.1360424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background Intimate partner violence (IPV) perpetration is highly prevalent among veterans. Suggested risk factors of IPV perpetration include combat exposure, post-traumatic stress disorder (PTSD), depression, alcohol use, and mild traumatic brain injury (mTBI). While the underlying brain pathophysiological characteristics associated with IPV perpetration remain largely unknown, previous studies have linked aggression and violence to alterations of the limbic system. Here, we investigate whether IPV perpetration is associated with limbic microstructural abnormalities in military veterans. Further, we test the effect of potential risk factors (i.e., PTSD, depression, substance use disorder, mTBI, and war zone-related stress) on the prevalence of IPV perpetration. Methods Structural and diffusion-weighted magnetic resonance imaging (dMRI) data were acquired from 49 male veterans of the Iraq and Afghanistan wars (Operation Enduring Freedom/Operation Iraqi Freedom; OEF/OIF) of the Translational Research Center for TBI and Stress Disorders (TRACTS) study. IPV perpetration was assessed using the psychological aggression and physical assault sub-scales of the Revised Conflict Tactics Scales (CTS2). Odds ratios were calculated to assess the likelihood of IPV perpetration in veterans with either of the following diagnoses: PTSD, depression, substance use disorder, or mTBI. Fractional anisotropy tissue (FA) measures were calculated for limbic gray matter structures (amygdala-hippocampus complex, cingulate, parahippocampal gyrus, entorhinal cortex). Partial correlations were calculated between IPV perpetration, neuropsychiatric symptoms, and FA. Results Veterans with a diagnosis of PTSD, depression, substance use disorder, or mTBI had higher odds of perpetrating IPV. Greater war zone-related stress, and symptom severity of PTSD, depression, and mTBI were significantly associated with IPV perpetration. CTS2 (psychological aggression), a measure of IPV perpetration, was associated with higher FA in the right amygdala-hippocampus complex (r = 0.400, p = 0.005). Conclusion Veterans with psychiatric disorders and/or mTBI exhibit higher odds of engaging in IPV perpetration. Further, the more severe the symptoms of PTSD, depression, or TBI, and the greater the war zone-related stress, the greater the frequency of IPV perpetration. Moreover, we report a significant association between psychological aggression against an intimate partner and microstructural alterations in the right amygdala-hippocampus complex. These findings suggest the possibility of a structural brain correlate underlying IPV perpetration that requires further research.
Collapse
Affiliation(s)
- Philine Rojczyk
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Carina Heller
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Elisabeth Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
| | - Luisa Berger
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Lara Pankatz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Software Engineering and IT, École de technologie supérieure, Montreal, QC, Canada
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, United States
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, United States
| | - Sidney R Hinds
- Department of Radiology and Neurology, Uniformed Services University, Bethesda, MD, United States
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, MA, United States
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
14
|
Wróbel PP, Guder S, Feldheim JF, Graterol Pérez JA, Frey BM, Choe CU, Bönstrup M, Cheng B, Rathi Y, Pasternak O, Thomalla G, Gerloff C, Shenton ME, Schulz R. Assessing the cortical microstructure in contralesional sensorimotor areas after stroke. Brain Commun 2024; 6:fcae115. [PMID: 39872912 PMCID: PMC11771308 DOI: 10.1093/braincomms/fcae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 01/30/2025] Open
Abstract
Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure. Animal data obtained in rats and monkeys have evidenced that contralesional motor areas undergo degenerative alterations in their microstructure which are accompanied by compensatory changes as well. We hypothesized that cortical diffusion imaging can detect similar changes in human stroke survivors. We re-analysed clinical and imaging data of 42 well-recovered chronic stroke patients from two independent cohorts (mean age 64 years, 4 left-handed, 71% male, 16 right-sided strokes) and 33 healthy controls of similar age and gender. Cortical fractional anisotropy, axial diffusivity, radial diffusivity and cortical thickness values were obtained for six key sensorimotor areas of the contralesional hemisphere. The regions included the primary motor cortex, dorsal and ventral premotor cortex, supplementary and pre-supplementary motor areas and primary somatosensory cortex. Linear models were estimated for group comparisons between patients and controls and for correlations between cortical fractional anisotropy, axial diffusivity, radial diffusivity and cortical thickness and clinical scores. Against our hypothesis, we did not find any significant alterations in contralesional cortical microstructure after stroke. Likewise, we did not detect any correlations between cortical microstructure and behavioural scores. Future analyses are warranted to investigate whether such alterations might occur in different populations, e.g. in later stages of recovery, in more severely impaired patients, or only in the ipsilesional hemisphere in patients with specific lesion patterns.
Collapse
Affiliation(s)
- Paweł P Wróbel
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan F Feldheim
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jose A Graterol Pérez
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chi-un Choe
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Neurology, University Medical Center,
04103 Leipzig, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Sommerville, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA 02115, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Sommerville, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA 02115, USA
| | - Götz Thomalla
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Sommerville, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA 02115, USA
| | - Robert Schulz
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
15
|
Damera SR, De Asis-Cruz J, Cook KM, Kapse K, Spoehr E, Murnick J, Basu S, Andescavage N, Limperopoulos C. Regional homogeneity as a marker of sensory cortex dysmaturity in preterm infants. iScience 2024; 27:109662. [PMID: 38665205 PMCID: PMC11043889 DOI: 10.1016/j.isci.2024.109662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Atypical perinatal sensory experience in preterm infants is thought to increase their risk of neurodevelopmental disabilities by altering the development of the sensory cortices. Here, we used resting-state fMRI data from preterm and term-born infants scanned between 32 and 48 weeks post-menstrual age to assess the effect of early ex-utero exposure on sensory cortex development. Specifically, we utilized a measure of local correlated-ness called regional homogeneity (ReHo). First, we demonstrated that the brain-wide distribution of ReHo mirrors the known gradient of cortical maturation. Next, we showed that preterm birth differentially reduces ReHo across the primary sensory cortices. Finally, exploratory analyses showed that the reduction of ReHo in the primary auditory cortex of preterm infants is related to increased risk of autism at 18 months. In sum, we show that local connectivity within sensory cortices has different developmental trajectories, is differentially affected by preterm birth, and may be associated with later neurodevelopment.
Collapse
Affiliation(s)
- Srikanth R. Damera
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kevin M. Cook
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Emma Spoehr
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Jon Murnick
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Sudeepta Basu
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
16
|
Milczarek O, Jarocha D, Starowicz-Filip A, Kasprzycki M, Kijowski J, Mordel A, Kwiatkowski S, Majka M. Bone Marrow Nucleated Cells and Bone Marrow-Derived CD271+ Mesenchymal Stem Cell in Treatment of Encephalopathy and Drug-Resistant Epilepsy. Stem Cell Rev Rep 2024; 20:1015-1025. [PMID: 38483743 DOI: 10.1007/s12015-023-10673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 05/12/2024]
Abstract
The broad spectrum of brain injuries in preterm newborns and the plasticity of the central nervous system prompts us to seek solutions for neurodegeneration to prevent the consequences of prematurity and perinatal problems. The study aimed to evaluate the safety and efficacy of the implantation of autologous bone marrow nucleated cells and bone marrow mesenchymal stem cells in different schemes in patients with hypoxic-ischemic encephalopathy and immunological encephalopathy. Fourteen patients received single implantation of bone marrow nucleated cells administered intrathecally and intravenously, followed by multiple rounds of bone marrow mesenchymal stem cells implanted intrathecally, and five patients were treated only with repeated rounds of bone marrow mesenchymal stem cells. Seizure outcomes improved in most cases, including fewer seizures and status epilepticus and reduced doses of antiepileptic drugs compared to the period before treatment. The neuropsychological improvement was more frequent in patients with hypoxic-ischemic encephalopathy than in the immunological encephalopathy group. Changes in emotional functioning occurred with similar frequency in both groups of patients. In the hypoxic-ischemic encephalopathy group, motor improvement was observed in all patients and the majority in the immunological encephalopathy group. The treatment had manageable toxicity, mainly mild to moderate early-onset adverse events. The treatment was generally safe in the 4-year follow-up period, and the effects of the therapy were maintained after its termination.
Collapse
Affiliation(s)
- Olga Milczarek
- Faculty of Medicine, Department of Children's Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland.
| | - Danuta Jarocha
- Hematology Department, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna Starowicz-Filip
- Faculty of Medicine, Department of Children's Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
- Faculty of Medicine, Department of Psychology, Jagiellonian University Medicl College, Cracow, Poland
| | - Maciej Kasprzycki
- Students' Scientific Group at the Department of Pediatric Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Jacek Kijowski
- Faculty of Medicine, Department of Transplantation, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Anna Mordel
- Faculty of Medicine, Department of Transplantation, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Stanisław Kwiatkowski
- Faculty of Medicine, Department of Children's Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Marcin Majka
- Faculty of Medicine, Department of Transplantation, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| |
Collapse
|
17
|
Suman A, Mahapatra A, Gupta P, Ray SS, Singh RK. Polystyrene microplastics induced disturbances in neuronal arborization and dendritic spine density in mice prefrontal cortex. CHEMOSPHERE 2024; 351:141165. [PMID: 38224746 DOI: 10.1016/j.chemosphere.2024.141165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
An increasing use of plastics in daily life leads to the accumulation of microplastics (MPs) in the environment, posing a serious threat to the ecosystem, including humans. It has been reported that MPs cause neurotoxicity, but the deleterious effect of polystyrene (PS) MPs on neuronal cytoarchitectural morphology in the prefrontal cortex (PFC) region of mice brain remains to be established. In the present study, Swiss albino male mice were orally exposed to 0.1, 1, and 10 ppm PS-MPs for 28 days. After exposure, we found a significant accumulation of PS-MPs with a decreased number of Nissl bodies in the PFC region of the entire treated group compared to the control. Morphometric analysis in the PFC neurons using Golgi-Cox staining accompanied by Sholl analysis showed a significant reduction in basal dendritic length, dendritic intersections, nodes, and number of intersections at seventh branch order in PFC neurons of 1 ppm treated PS-MPs. In neurons of 0.1 ppm treated mice, we found only decrease in the number of intersections at the seventh branch order. While 10 ppm treated neurons decreased in basal dendritic length, dendritic intersections, followed by the number of intersections at the third and seventh branch order were observed. As well, spine density on the apical secondary branches along with mRNA level of BDNF was significantly reduced in all the PS-MPs treated PFC neurons, mainly at 1 ppm versus control. These results suggest that PS-MPs exposure affects overall basal neuronal arborization, with the highest levels at 1 and 10 ppm, followed by 0.1 ppm treated neurons, which may be related to the down-regulation of BDNF expression in PFC.
Collapse
Affiliation(s)
- Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shubhendu Shekhar Ray
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Cooper MS, Mackay MT, Shepherd DA, Dagia C, Fahey MC, Reddihough D, Reid SM, Harvey AS. Distinct manifestations and potential mechanisms of seizures due to cortical versus white matter injury in children. Epilepsy Res 2024; 199:107267. [PMID: 38113603 DOI: 10.1016/j.eplepsyres.2023.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE To study seizure manifestations and outcomes in children with cortical versus white matter injury, differences potentially explaining variability of epilepsy in children with cerebral palsy. METHODS In this population-based retrospective cohort study, MRIs of children with cerebral palsy due to ischemia or haemorrhage were classified according to presence or absence of cortical injury. MRI findings were then correlated with history of neonatal seizures, seizures during childhood, epilepsy syndromes, and seizure outcomes. RESULTS Of 256 children studied, neonatal seizures occurred in 57 and seizures during childhood occurred in 93. Children with neonatal seizures were more likely to develop seizures during childhood, mostly those with cortical injury. Cortical injury was more strongly associated with (1) developing seizures during childhood, (2) more severe epilepsy syndromes (infantile spasms syndrome, focal epilepsy, Lennox-Gastaut syndrome), and (3) less likelihood of reaching > 2 years without seizures at last follow-up, compared to children without cortical injury. Children without cortical injury, mainly those with white matter injury, were less likely to develop neonatal seizures and seizures during childhood, and when they did, epilepsy syndromes were more commonly febrile seizures and self-limited focal epilepsies of childhood, with most achieving > 2 years without seizures at last follow-up. The presence of cortical injury also influenced seizure occurrence, severity, and outcome within the different predominant injury patterns of the MRI Classification System in cerebral palsy, most notably white matter injury. CONCLUSIONS Epileptogenesis is understood with cortical injury but not well with white matter injury, the latter potentially related to altered postnatal white matter development or myelination leading to apoptosis, abnormal synaptogenesis or altered thalamic connectivity of cortical neurons. These findings, and the potential mechanisms discussed, likely explain the variability of epilepsy in children with cerebral palsy and epilepsy following early-life brain injury in general.
Collapse
Affiliation(s)
- Monica S Cooper
- Department of Neurodevelopment & Disability, The Royal Children's Hospital, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia.
| | - Mark T Mackay
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Daisy A Shepherd
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Charuta Dagia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Department of Medical Imaging, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Dinah Reddihough
- Department of Neurodevelopment & Disability, The Royal Children's Hospital, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Susan M Reid
- Department of Neurodevelopment & Disability, The Royal Children's Hospital, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - A Simon Harvey
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Sarkislali K, Kobayashi K, Sarić N, Maeda T, Henmi S, Somaa FA, Bansal A, Tu SC, Leonetti C, Hsu CH, Li J, Vyas P, Kawasawa YI, Tu TW, Wang PC, Hanley PJ, Hashimoto-Torii K, Frank JA, Jonas RA, Ishibashi N. Mesenchymal Stromal Cell Delivery Via Cardiopulmonary Bypass Provides Neuroprotection in a Juvenile Porcine Model. JACC Basic Transl Sci 2023; 8:1521-1535. [PMID: 38205346 PMCID: PMC10774600 DOI: 10.1016/j.jacbts.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 01/12/2024]
Abstract
Oxidative/inflammatory stresses due to cardiopulmonary bypass (CPB) cause prolonged microglia activation and cortical dysmaturation, thereby contributing to neurodevelopmental impairments in children with congenital heart disease (CHD). This study found that delivery of mesenchymal stromal cells (MSCs) via CPB minimizes microglial activation and neuronal apoptosis, with subsequent improvement of cortical dysmaturation and behavioral alteration after neonatal cardiac surgery. Furthermore, transcriptomic analyses suggest that exosome-derived miRNAs may be the key drivers of suppressed apoptosis and STAT3-mediated microglial activation. Our findings demonstrate that MSC treatment during cardiac surgery has significant translational potential for improving cortical dysmaturation and neurological impairment in children with CHD.
Collapse
Affiliation(s)
- Kamil Sarkislali
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Kei Kobayashi
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | - Nemanja Sarić
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Takuya Maeda
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Soichiro Henmi
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | - Fahad A. Somaa
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Ankush Bansal
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
| | - Shao Ching Tu
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Camille Leonetti
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Chao-Hsiung Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Jingang Li
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Pranav Vyas
- Department of Radiology, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yuka Imamura Kawasawa
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Tsang-Wei Tu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Paul C. Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Patrick J. Hanley
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Program for Cell Enhancement and Technologies for Immunotherapy, Division of Blood and Marrow Transplantation, Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Joseph A. Frank
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health; Bethesda, Maryland, USA
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard A. Jonas
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
20
|
Fan Y, McMath AL, Donovan SM. Review on the Impact of Milk Oligosaccharides on the Brain and Neurocognitive Development in Early Life. Nutrients 2023; 15:3743. [PMID: 37686775 PMCID: PMC10490528 DOI: 10.3390/nu15173743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Milk Oligosaccharides (MOS), a group of complex carbohydrates found in human and bovine milk, have emerged as potential modulators of optimal brain development for early life. This review provides a comprehensive investigation of the impact of milk oligosaccharides on brain and neurocognitive development of early life by synthesizing current literature from preclinical models and human observational studies. The literature search was conducted in the PubMed search engine, and the inclusion eligibility was evaluated by three reviewers. Overall, we identified 26 articles for analysis. While the literature supports the crucial roles of fucosylated and sialylated milk oligosaccharides in learning, memory, executive functioning, and brain structural development, limitations were identified. In preclinical models, the supplementation of only the most abundant MOS might overlook the complexity of naturally occurring MOS compositions. Similarly, accurately quantifying MOS intake in human studies is challenging due to potential confounding effects such as formula feeding. Mechanistically, MOS is thought to impact neurodevelopment through modulation of the microbiota and enhancement of neuronal signaling. However, further advancement in our understanding necessitates clinical randomized-controlled trials to elucidate the specific mechanisms and long-term implications of milk oligosaccharides exposure. Understanding the interplay between milk oligosaccharides and cognition may contribute to early nutrition strategies for optimal cognitive outcomes in children.
Collapse
Affiliation(s)
- Yuting Fan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Arden L. McMath
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| |
Collapse
|
21
|
Kelly SB, Dean JM, Zahra VA, Dudink I, Thiel A, Polglase GR, Miller SL, Hooper SB, Bennet L, Gunn AJ, Galinsky R. Progressive inflammation reduces high-frequency EEG activity and cortical dendritic arborisation in late gestation fetal sheep. J Neuroinflammation 2023; 20:124. [PMID: 37226206 DOI: 10.1186/s12974-023-02805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Antenatal infection/inflammation is associated with disturbances in neuronal connectivity, impaired cortical growth and poor neurodevelopmental outcomes. The pathophysiological substrate that underpins these changes is poorly understood. We tested the hypothesis that progressive inflammation in late gestation fetal sheep would alter cortical neuronal microstructure and neural function assessed using electroencephalogram band power analysis. METHODS Fetal sheep (0.85 of gestation) were surgically instrumented for continuous electroencephalogram (EEG) recording and randomly assigned to repeated saline (control; n = 9) or LPS (0 h = 300 ng, 24 h = 600 ng, 48 h = 1200 ng; n = 8) infusions to induce inflammation. Sheep were euthanised 4 days after the first LPS infusion for assessment of inflammatory gene expression, histopathology and neuronal dendritic morphology in the somatosensory cortex. RESULTS LPS infusions increased delta power between 8 and 50 h, with reduced beta power from 18 to 96 h (P < 0.05 vs. control). Basal dendritic length, numbers of dendritic terminals, dendritic arborisation and numbers of dendritic spines were reduced in LPS-exposed fetuses (P < 0.05 vs. control) within the somatosensory cortex. Numbers of microglia and interleukin (IL)-1β immunoreactivity were increased in LPS-exposed fetuses compared with controls (P < 0.05). There were no differences in total numbers of cortical NeuN + neurons or cortical area between the groups. CONCLUSIONS Exposure to antenatal infection/inflammation was associated with impaired dendritic arborisation, spine number and loss of high-frequency EEG activity, despite normal numbers of neurons, that may contribute to disturbed cortical development and connectivity.
Collapse
Affiliation(s)
- Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Justin M Dean
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Valerie A Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC, 3168, Australia
| | - Ingrid Dudink
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Alison Thiel
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC, 3168, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC, 3168, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
22
|
Wróbel PP, Guder S, Feldheim JF, Graterol Pérez JA, Frey BM, Choe CU, Bönstrup M, Cheng B, Rathi Y, Pasternak O, Thomalla G, Gerloff C, Shenton ME, Schulz R. Altered microstructure of the contralesional ventral premotor cortex and motor output after stroke. Brain Commun 2023; 5:fcad160. [PMID: 37265601 PMCID: PMC10231803 DOI: 10.1093/braincomms/fcad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/17/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure. We re-analysed clinical and imaging data of 42 well-recovered chronic stroke patients from 2 independent cohorts (mean age 64 years, 4 left-handed, 71% male, 16 right-sided strokes) and 33 healthy controls of similar age and gender. Cortical fractional anisotropy and cortical thickness values were obtained for six key sensorimotor areas of the contralesional hemisphere. The regions included the primary motor cortex, dorsal and ventral premotor cortex, supplementary and pre-supplementary motor areas, and primary somatosensory cortex. Linear models were estimated for group comparisons between patients and controls and for correlations between cortical fractional anisotropy and cortical thickness and clinical scores. Compared with controls, stroke patients exhibited a reduction in fractional anisotropy in the contralesional ventral premotor cortex (P = 0.005). Fractional anisotropy of the other regions and cortical thickness did not show a comparable group difference. Higher fractional anisotropy of the ventral premotor cortex, but not cortical thickness, was positively associated with residual grip force in the stroke patients. These data provide novel evidence that the contralesional ventral premotor cortex might constitute a key sensorimotor area particularly susceptible to stroke-related alterations in cortical microstructure as measured by diffusion MRI and they suggest a link between these changes and residual motor output after stroke.
Collapse
Affiliation(s)
- Paweł P Wróbel
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jan F Feldheim
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - José A Graterol Pérez
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Chi-un Choe
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
- Department of Neurology, University Medical Center,
Leipzig 04103, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston 02115, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston 02115, MA, USA
| | - Götz Thomalla
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston 02115, MA, USA
| | - Robert Schulz
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
23
|
Schmitz-Koep B, Menegaux A, Gaser C, Brandes E, Schinz D, Thalhammer M, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Sorg C, Hedderich DM. Altered Gray Matter Cortical and Subcortical T1-Weighted/T2-Weighted Ratio in Premature-Born Adults. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:495-504. [PMID: 35276405 DOI: 10.1016/j.bpsc.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microscopic studies in newborns and animal models indicate impaired myelination after premature birth, particularly for cortical myelination; however, it remains unclear whether such myelination impairments last into adulthood and, if so, are relevant for impaired cognitive performance. It has been suggested that the ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging signal intensity (T1w/T2w ratio) is a proxy for myelin content. We hypothesized altered gray matter (GM) T1w/T2w ratio in premature-born adults, which is associated with lower cognitive performance after premature birth. METHODS We analyzed GM T1w/T2w ratio in 101 adults born very premature (VP) and/or at very low birth weight (VLBW) (<32 weeks of gestation and/or birth weight <1500 g) and 109 full-term control subjects at 26 years of age, controlled for voxelwise volume alterations. Cognitive performance was assessed by verbal, performance, and full scale IQ using the Wechsler Adult Intelligence Scale. RESULTS Significantly higher T1w/T2w ratio in VP/VLBW subjects was found bilaterally in widespread cortical areas, particularly in frontal, parietal, and temporal cortices, and in putamen and pallidum. In these areas, T1w/T2w ratio was not related to birth variables, such as gestational age, or IQ scores. In contrast, significantly lower T1w/T2w ratio in VP/VLBW subjects was found in bilateral clusters in superior temporal gyrus, which was associated with birth weight in the VP/VLBW group. Furthermore, lower T1w/T2w ratio in left superior temporal gyrus was associated with lower full scale and verbal IQ. CONCLUSIONS Results demonstrate GM T1w/T2w ratio alterations in premature-born adults and suggest altered GM myelination development after premature birth with lasting and functionally relevant effects into early adulthood.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Gaser
- Departments of Psychiatry, University Hospital Jena, Jena, Germany; Departments of Neurology, University Hospital Jena, Jena, Germany
| | - Elin Brandes
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin and Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Berlin, Germany; UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom; Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
24
|
Lear BA, Lear CA, Dhillon SK, Davidson JO, Gunn AJ, Bennet L. Evolution of grey matter injury over 21 days after hypoxia-ischaemia in preterm fetal sheep. Exp Neurol 2023; 363:114376. [PMID: 36889575 DOI: 10.1016/j.expneurol.2023.114376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/05/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Reduced grey matter volume in preterm infants is associated with later disability, but its time course and relationship with white matter injury are not well understood. We recently showed that moderate-severe hypoxia-ischaemia (HI) in preterm fetal sheep led to severe cystic injury 2-3 weeks later. In the same cohort we now show profound hippocampal neuronal loss from 3 days after HI. By contrast, reduction in cortical area and perimeter developed much more slowly, with maximum reduction at day 21. There was transient upregulation of cleaved caspase-3-positive apoptosis in the cortex at day 3 but no change in neuronal density or macroscopic injury of the cortex. Both microglia and astrocytes were transiently upregulated in the grey matter. EEG power was initially profoundly suppressed but partially recovered by 21 days of recovery, and final power was correlated with white matter area (p < 0.001, r2 = 0.75, F = 24.19), cortical area (p = 0.004, r2 = 0.44, F = 11.90) and hippocampi area (p = 0.049, r2 = 0.23, F = 4.58). In conclusion, the present study suggests that in preterm fetal sheep, hippocampal injury is established within a few days of acute HI, but impaired cortical growth develops slowly, in a similar time course to severe white matter injury.
Collapse
Affiliation(s)
- Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
25
|
Romantsik O, Moreira A, Thébaud B, Ådén U, Ley D, Bruschettini M. Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants. Cochrane Database Syst Rev 2023; 2:CD013201. [PMID: 36790019 PMCID: PMC9932000 DOI: 10.1002/14651858.cd013201.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) and encephalopathy of prematurity (EoP) remain substantial issues in neonatal intensive care units worldwide. Current therapies to prevent or treat these conditions are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. This is an update of the 2019 review, which did not include EoP. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for prevention or treatment of GM-IVH and EoP in preterm infants. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search was April 2022. SELECTION CRITERIA We attempted to include randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing 1. stem cell-based interventions versus control; 2. mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; 3. stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or 4. MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH or EoP; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH or with EoP. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. all-cause neonatal mortality, 2. major neurodevelopmental disability, 3. GM-IVH, 4. EoP, and 5. extension of pre-existing non-severe GM-IVH or EoP. We planned to use GRADE to assess certainty of evidence for each outcome. MAIN RESULTS We identified no studies that met our inclusion criteria. Three studies are currently registered and ongoing. Phase 1 trials are described in the 'Excluded studies' section. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment or prevention of GM-IVH or EoP in preterm infants. We identified three ongoing studies, with a sample size range from 20 to 200. In two studies, autologous cord blood mononuclear cells will be administered to extremely preterm infants via the intravenous route; in one, intracerebroventricular injection of MSCs will be administered to preterm infants up to 34 weeks' gestational age.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Ulrika Ådén
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
26
|
Rimol LM, Rise HH, Evensen KAI, Yendiki A, Løhaugen GC, Indredavik MS, Brubakk AM, Bjuland KJ, Eikenes L, Weider S, Håberg A, Skranes J. Atypical brain structure mediates reduced IQ in young adults born preterm with very low birth weight. Neuroimage 2023; 266:119816. [PMID: 36528311 DOI: 10.1016/j.neuroimage.2022.119816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Preterm birth with very low birth weight (VLBW) confers heightened risk for perinatal brain injury and long-term cognitive deficits, including a reduction in IQ of up to one standard deviation. Persisting gray and white matter aberrations have been documented well into adolescence and adulthood in preterm born individuals. What has not been documented so far is a plausible causal link between reductions in cortical surface area or subcortical brain structure volumes, and the observed reduction in IQ. The NTNU Low Birth Weight in a Lifetime Perspective study is a prospective longitudinal cohort study, including a preterm born VLBW group (birthweight ≤1500 g) and a term born control group. Structural magnetic resonance imaging data were obtained from 38 participants aged 19, born preterm with VLBW, and 59 term-born peers. The FreeSurfer software suite was used to obtain measures of cortical thickness, cortical surface area, and subcortical brain structure volumes. Cognitive ability was estimated using the Wechsler Adult Intelligence Scale, 3rd Edition, including four IQ-indices: Verbal comprehension, Working memory, Perceptual organization, and Processing speed. Statistical mediation analyses were employed to test for indirect effects of preterm birth with VLBW on IQ, mediated by atypical brain structure. The mediation analyses revealed negative effects of preterm birth with VLBW on IQ that were partially mediated by reduced surface area in multiple regions of frontal, temporal, parietal and insular cortex, and by reductions in several subcortical brain structure volumes. The analyses did not yield sufficient evidence of mediation effects of cortical thickness on IQ. This is, to our knowledge, the first time a plausible causal relationship has been established between regional cortical area reductions, as well as reductions in specific subcortical and cerebellar structures, and general cognitive ability in preterm born survivors with VLBW.
Collapse
Affiliation(s)
- Lars M Rimol
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway.
| | - Henning Hoel Rise
- Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway
| | - Kari Anne I Evensen
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway; Department of Public Health and Nursing, NTNU, Trondheim, Norway
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, United States
| | - Gro C Løhaugen
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | | | - Ann-Mari Brubakk
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | | | - Live Eikenes
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway
| | - Siri Weider
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Asta Håberg
- Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Jon Skranes
- Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway; Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| |
Collapse
|
27
|
León-Ortiz P, Reyes-Madrigal F, Kochunov P, Gómez-Cruz G, Moncada-Habib T, Malacara M, Mora-Durán R, Rowland LM, de la Fuente-Sandoval C. White matter alterations and the conversion to psychosis: A combined diffusion tensor imaging and glutamate 1H MRS study. Schizophr Res 2022; 249:85-92. [PMID: 32595100 PMCID: PMC10025976 DOI: 10.1016/j.schres.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Widespread white matter abnormalities and alterations in glutamate levels have been reported in patients with schizophrenia. We hypothesized that alterations in white matter integrity and glutamate levels in individuals at clinical high risk (CHR) for psychosis are associated with the subsequent development of psychosis. METHODS Participants included 33 antipsychotic naïve CHR (Female 7/Male 26, Age 19.55 (4.14) years) and 38 healthy controls (Female 10/Male 28, Age 20.92 (3.37) years). Whole brain diffusion tensor imaging for fractional anisotropy (FA) and right frontal white matter proton magnetic resonance spectroscopy for glutamate levels were acquired. CHR participants were clinically followed for 2 years to determine conversion to psychosis. RESULTS CHR participants that transitioned to psychosis (N = 7, 21%) were characterized by significantly lower FA values in the posterior thalamic radiation compared to those who did not transition and healthy controls. In the CHR group that transitioned to psychosis only, positive exploratory correlations between glutamate levels and FA values of the posterior thalamic radiation and the retrolenticular part of the internal capsule and a negative correlation between glutamate levels and the cingulum FA values were found. CONCLUSION The results of the present study highlight that alterations in white matter structure and glutamate are related with the conversion to psychosis.
Collapse
Affiliation(s)
- Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Department of Education, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States of America
| | - Gladys Gómez-Cruz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Tomás Moncada-Habib
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Melanie Malacara
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ricardo Mora-Durán
- Emergency Department, Hospital Fray Bernardino Álvarez, Mexico City, Mexico
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States of America
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
28
|
Khozhai LI, Otellin VA. Distribution of GABAergic Neurons and Expression Levels of GABA Transporter 1 in the Rat Neocortex during the Neonatal Period after Perinatal Hypoxic Exposure. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Yates AG, Kislitsyna E, Alfonso Martin C, Zhang J, Sewell AL, Goikolea-Vives A, Cai V, Alkhader LF, Skaland A, Hammond B, Dimitrova R, Batalle D, Fernandes C, Edwards AD, Gressens P, Thornton C, Stolp HB. Montelukast reduces grey matter abnormalities and functional deficits in a mouse model of inflammation-induced encephalopathy of prematurity. J Neuroinflammation 2022; 19:265. [PMID: 36309753 PMCID: PMC9617353 DOI: 10.1186/s12974-022-02625-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Encephalopathy of prematurity (EoP) affects approximately 30% of infants born < 32 weeks gestation and is highly associated with inflammation in the foetus. Here we evaluated the efficacy of montelukast, a cysteinyl leukotriene receptor antagonist widely used to treat asthma in children, to ameliorate peripheral and central inflammation, and subsequent grey matter neuropathology and behaviour deficits in a mouse model of EoP. Male CD-1 mice were treated with intraperitoneal (i.p.) saline or interleukin-1beta (IL-1β, 40 μg/kg, 5 μL/g body weight) from postnatal day (P)1-5 ± concomitant montelukast (1-30 mg/kg). Saline or montelukast treatment was continued for a further 5 days post-injury. Assessment of systemic and central inflammation and short-term neuropathology was performed from 4 h following treatment through to P10. Behavioural testing, MRI and neuropathological assessments were made on a second cohort of animals from P36 to 54. Montelukast was found to attenuate both peripheral and central inflammation, reducing the expression of pro-inflammatory molecules (IL-1β, IL-6, TNF) in the brain. Inflammation induced a reduction in parvalbumin-positive interneuron density in the cortex, which was normalised with high-dose montelukast. The lowest effective dose, 3 mg/kg, was able to improve anxiety and spatial learning deficits in this model of inflammatory injury, and alterations in cortical mean diffusivity were not present in animals that received this dose of montelukast. Repurposed montelukast administered early after preterm birth may, therefore, improve grey matter development and outcome in EoP.
Collapse
Affiliation(s)
- Abi G Yates
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Kislitsyna
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Carla Alfonso Martin
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jiaying Zhang
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Amy L Sewell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Ane Goikolea-Vives
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Valerie Cai
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Lama F Alkhader
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Aleksander Skaland
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Basil Hammond
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Cathy Fernandes
- SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopment Disorders, King's College London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | | | - Claire Thornton
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Helen B Stolp
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
30
|
Brain Development and Maternal Behavior in Relation to Cognitive and Language Outcomes in Preterm-Born Children. Biol Psychiatry 2022; 92:663-673. [PMID: 35599181 DOI: 10.1016/j.biopsych.2022.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Children born very preterm (≤32 weeks gestational age) show poorer cognitive and language development compared with their term-born peers. The importance of supportive maternal responses to the child's cues for promoting neurodevelopment is well established. However, little is known about whether supportive maternal behavior can buffer the association of early brain dysmaturation with cognitive and language performance. METHODS Infants born very preterm (N = 226) were recruited from the neonatal intensive care unit for a prospective, observational cohort study. Chart review (e.g., size at birth, postnatal infection) was conducted from birth to discharge. Magnetic resonance imaging, including diffusion tensor imaging, was acquired at approximately 32 weeks postmenstrual age and again at term-equivalent age. Fractional anisotropy, a quantitative measure of brain maturation, was obtained from 11 bilateral regions of interest in the cortical gray matter. At 3 years (n = 187), neurodevelopmental testing (Bayley Scales of Infant and Toddler Development-III) was administered, and parent-child interaction was filmed. Maternal behavior was scored using the Emotional Availability Scale-IV. A total of 146 infants with neonatal brain imaging and follow-up data were included for analysis. Generalized estimating equations were used to examine whether maternal support interacted with mean fractional anisotropy values to predict Cognitive and Language scores at 3 years, accounting for confounding neonatal and maternal factors. RESULTS Higher maternal support significantly moderated cortical fractional anisotropy values at term-equivalent age to predict higher Cognitive (interaction term β = 2.01, p = .05) and Language (interaction term β = 1.85, p = .04) scores. CONCLUSIONS Findings suggest that supportive maternal behavior following early brain dysmaturation may provide an opportunity to promote optimal neurodevelopment in children born very preterm.
Collapse
|
31
|
Kaufmann E, Rojczyk P, Sydnor VJ, Guenette JP, Tripodis Y, Kaufmann D, Umminger L, Seitz-Holland J, Sollmann N, Rathi Y, Bouix S, Fortier CB, Salat D, Pasternak O, Hinds SR, Milberg WP, McGlinchey RE, Shenton ME, Koerte IK. Association of War Zone-Related Stress With Alterations in Limbic Gray Matter Microstructure. JAMA Netw Open 2022; 5:e2231891. [PMID: 36112375 PMCID: PMC9482063 DOI: 10.1001/jamanetworkopen.2022.31891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
IMPORTANCE Military service members returning from theaters of war are at increased risk for mental illness, but despite high prevalence and substantial individual and societal burden, the underlying pathomechanisms remain largely unknown. Exposure to high levels of emotional stress in theaters of war and mild traumatic brain injury (mTBI) are presumed factors associated with risk for the development of mental disorders. OBJECTIVE To investigate (1) whether war zone-related stress is associated with microstructural alterations in limbic gray matter (GM) independent of mental disorders common in this population, (2) whether associations between war zone-related stress and limbic GM microstructure are modulated by a history of mTBI, and (3) whether alterations in limbic GM microstructure are associated with neuropsychological functioning. DESIGN, SETTING, AND PARTICIPANTS This cohort study was part of the TRACTS (Translational Research Center for TBI and Stress Disorders) study, which took place in 2010 to 2014 at the Veterans Affair Rehabilitation Research and Development TBI National Network Research Center. Participants included male veterans (aged 18-65 years) with available diffusion tensor imaging data enrolled in the TRACTS study. Data analysis was performed between December 2017 to September 2021. EXPOSURES The Deployment Risk and Resilience Inventory (DRRI) was used to measure exposure to war zone-related stress. The Boston Assessment of TBI-Lifetime was used to assess history of mTBI. Stroop Inhibition (Stroop-IN) and Inhibition/Switching (Stroop-IS) Total Error Scaled Scores were used to assess executive or attentional control functions. MAIN OUTCOMES AND MEASURES Diffusion characteristics (fractional anisotropy of tissue [FAT]) of 16 limbic and paralimbic GM regions and measures of functional outcome. RESULTS Among 384 male veterans recruited, 168 (mean [SD] age, 31.4 [7.4] years) were analyzed. Greater war zone-related stress was associated with lower FAT in the cingulate (DRRI-combat left: P = .002, partial r = -0.289; DRRI-combat right: P = .02, partial r = -0.216; DRRI-aftermath left: P = .004, partial r = -0.281; DRRI-aftermath right: P = .02, partial r = -0.219), orbitofrontal (DRRI-combat left medial orbitofrontal cortex: P = .02, partial r = -0.222; DRRI-combat right medial orbitofrontal cortex: P = .005, partial r = -0.256; DRRI-aftermath left medial orbitofrontal cortex: P = .02, partial r = -0.214; DRRI-aftermath right medial orbitofrontal cortex: P = .005, partial r = -0.260; DRRI-aftermath right lateral orbitofrontal cortex: P = .03, partial r = -0.196), and parahippocampal (DRRI-aftermath right: P = .03, partial r = -0.191) gyrus, as well as with higher FAT in the amygdala-hippocampus complex (DRRI-combat: P = .005, partial r = 0.254; DRRI-aftermath: P = .02, partial r = 0.223). Lower FAT in the cingulate-orbitofrontal gyri was associated with impaired response inhibition (Stroop-IS left cingulate: P < .001, partial r = -0.440; Stroop-IS right cingulate: P < .001, partial r = -0.372; Stroop-IS left medial orbitofrontal cortex: P < .001, partial r = -0.304; Stroop-IS right medial orbitofrontal cortex: P < .001, partial r = -0.340; Stroop-IN left cingulate: P < .001, partial r = -0.421; Stroop-IN right cingulate: P < .001, partial r = -0.300; Stroop-IN left medial orbitofrontal cortex: P = .01, partial r = -0.223; Stroop-IN right medial orbitofrontal cortex: P < .001, partial r = -0.343), whereas higher FAT in the mesial temporal regions was associated with improved short-term memory and processing speed (left amygdala-hippocampus complex: P < .001, partial r = -0.574; right amygdala-hippocampus complex: P < .001, partial r = 0.645; short-term memory left amygdala-hippocampus complex: P < .001, partial r = 0.570; short-term memory right amygdala-hippocampus complex: P < .001, partial r = 0.633). A history of mTBI did not modulate the association between war zone-related stress and GM diffusion. CONCLUSIONS AND RELEVANCE This study revealed an association between war zone-related stress and alteration of limbic GM microstructure, which was associated with cognitive functioning. These results suggest that altered limbic GM microstructure may underlie the deleterious outcomes of war zone-related stress on brain health. Military service members may benefit from early therapeutic interventions after deployment to a war zone.
Collapse
Affiliation(s)
- Elisabeth Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philine Rojczyk
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Valerie J. Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jeffrey P. Guenette
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - David Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Klinikum Augsburg, Germany
| | - Lisa Umminger
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Nico Sollmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders and Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - David Salat
- Translational Research Center for TBI and Stress Disorders and Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Sidney R. Hinds
- Department of Neurology, Uniformed Services University of the Health Science, Bethesda, Maryland
| | - William P. Milberg
- Translational Research Center for TBI and Stress Disorders and Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Regina E. McGlinchey
- Translational Research Center for TBI and Stress Disorders and Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
When Is Infantile Strabismus a Sign of Neurologic Disease? Am J Ophthalmol 2022; 240:xi-xiv. [PMID: 35381205 DOI: 10.1016/j.ajo.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
|
33
|
Selvanathan T, Smith JM, Miller SP, Field TS. Neurodevelopment and cognition across the lifespan in patients with single ventricle physiology: Abnormal brain maturation and accumulation of brain injuries. Can J Cardiol 2022; 38:977-987. [DOI: 10.1016/j.cjca.2022.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
|
34
|
Volpe J. Commentary - The late preterm infant: Vulnerable cerebral cortex and large burden of disability. J Neonatal Perinatal Med 2022; 15:1-5. [PMID: 34219675 PMCID: PMC8842754 DOI: 10.3233/npm-210803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- J.J. Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
- Address for correspondence: J.J. Volpe,
| |
Collapse
|
35
|
Dimitrova R, Pietsch M, Ciarrusta J, Fitzgibbon SP, Williams LZJ, Christiaens D, Cordero-Grande L, Batalle D, Makropoulos A, Schuh A, Price AN, Hutter J, Teixeira RP, Hughes E, Chew A, Falconer S, Carney O, Egloff A, Tournier JD, McAlonan G, Rutherford MA, Counsell SJ, Robinson EC, Hajnal JV, Rueckert D, Edwards AD, O'Muircheartaigh J. Preterm birth alters the development of cortical microstructure and morphology at term-equivalent age. Neuroimage 2021; 243:118488. [PMID: 34419595 PMCID: PMC8526870 DOI: 10.1016/j.neuroimage.2021.118488] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.
Collapse
Affiliation(s)
- Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sean P Fitzgibbon
- Centre for Functional MRI of the Brain (FMRIB), Welcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Belgium
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Rui Pag Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Olivia Carney
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Faculty of Informatics and Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
36
|
Hedderich DM, Menegaux A, Li H, Schmitz-Koep B, Stämpfli P, Bäuml JG, Berndt MT, Bäuerlein FJB, Grothe MJ, Dyrba M, Avram M, Boecker H, Daamen M, Zimmer C, Bartmann P, Wolke D, Sorg C. Aberrant Claustrum Microstructure in Humans after Premature Birth. Cereb Cortex 2021; 31:5549-5559. [PMID: 34171095 DOI: 10.1093/cercor/bhab178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Several observations suggest an impact of prematurity on the claustrum. First, the claustrum's development appears to depend on transient subplate neurons of intra-uterine brain development, which are affected by prematurity. Second, the claustrum is the most densely connected region of the mammalian forebrain relative to its volume; due to its effect on pre-oligodendrocytes, prematurity impacts white matter connections and thereby the development of sources and targets of such connections, potentially including the claustrum. Third, due to its high connection degree, the claustrum contributes to general cognitive functioning (e.g., selective attention and task switching/maintaining); general cognitive functioning, however, is at risk in prematurity. Thus, we hypothesized altered claustrum structure after premature birth, with these alterations being associated with impaired general cognitive performance in premature born persons. Using T1-weighted and diffusion-weighted magnetic resonance imaging in 70 very preterm/very low-birth-weight (VP/VLBW) born adults and 87 term-born adults, we found specifically increased mean diffusivity in the claustrum of VP/VLBW adults, associated both with low birth weight and at-trend with reduced IQ. This result demonstrates altered claustrum microstructure after premature birth. Data suggest aberrant claustrum development, which is potentially related with aberrant subplate neuron and forebrain connection development of prematurity.
Collapse
Affiliation(s)
- Dennis M Hedderich
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hongwei Li
- Department of Informatics, Technical University of Munich, 85748 Garching, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Philipp Stämpfli
- MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, 8032 Zurich, Switzerland
| | - Josef G Bäuml
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maria T Berndt
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Felix J B Bäuerlein
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, 82152 Martinsried, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 18147 Rostock, Germany.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 18147 Rostock, Germany
| | - Mihai Avram
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, Schleswig Holstein University Hospital, University Lübeck, 23538 Lübeck, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany.,Department of Neonatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, CV4 7AL, Coventry, UK.,Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Department of Psychiatry, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
37
|
Dudink I, Hüppi PS, Sizonenko SV, Castillo-Melendez M, Sutherland AE, Allison BJ, Miller SL. Altered trajectory of neurodevelopment associated with fetal growth restriction. Exp Neurol 2021; 347:113885. [PMID: 34627856 DOI: 10.1016/j.expneurol.2021.113885] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022]
Abstract
Fetal growth restriction (FGR) is principally caused by suboptimal placental function. Poor placental function causes an under supply of nutrients and oxygen to the developing fetus, restricting development of individual organs and overall growth. Estimated fetal weight below the 10th or 3rd percentile with uteroplacental dysfunction, and knowledge regarding the onset of growth restriction (early or late), provide diagnostic criteria for fetuses at greatest risk for adverse outcome. Brain development and function is altered with FGR, with ongoing clinical and preclinical studies elucidating neuropathological etiology. During the third trimester of pregnancy, from ~28 weeks gestation, neurogenesis is complete and neuronal complexity is expanding, through axonal and dendritic outgrowth, dendritic branching and synaptogenesis, accompanied by myelin production. Fetal compromise over this period, as occurs in FGR, has detrimental effects on these processes. Total brain volume and grey matter volume is reduced in infants with FGR, first evident in utero, with cortical volume particularly vulnerable. Imaging studies show that cerebral morphology is disturbed in FGR, with altered cerebral cortex, volume and organization of brain networks, and reduced connectivity of long- and short-range circuits. Thus, FGR induces a deviation in brain development trajectory affecting both grey and white matter, however grey matter volume is preferentially reduced, contributed by cell loss, and reduced neurite outgrowth of surviving neurons. In turn, cell-to-cell local networks are adversely affected in FGR, and whole brain left and right intrahemispheric connections and interhemispheric connections are altered. Importantly, disruptions to region-specific brain networks are linked to cognitive and behavioral impairments.
Collapse
Affiliation(s)
- Ingrid Dudink
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Petra S Hüppi
- Department of Pediatrics, Obstetrics and Gynecology, University of Geneva, Switzerland
| | - Stéphane V Sizonenko
- Department of Pediatrics, Obstetrics and Gynecology, University of Geneva, Switzerland
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
38
|
Volpe JJ. Primary neuronal dysmaturation in preterm brain: Important and likely modifiable. J Neonatal Perinatal Med 2021; 14:1-6. [PMID: 33136070 PMCID: PMC7990400 DOI: 10.3233/npm-200606] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Cayam-Rand D, Guo T, Synnes A, Chau V, Mabbott C, Benavente-Fernández I, Grunau RE, Miller SP. Interaction between Preterm White Matter Injury and Childhood Thalamic Growth. Ann Neurol 2021; 90:584-594. [PMID: 34436793 DOI: 10.1002/ana.26201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this study was to determine how preterm white matter injury (WMI) and long-term thalamic growth interact to predict 8-year neurodevelopmental outcomes. METHODS A prospective cohort of 114 children born at 24 to 32 weeks' gestational age (GA) underwent structural and diffusion tensor magnetic resonance imaging early in life (median 32 weeks), at term-equivalent age and at 8 years. Manual segmentation of neonatal WMI was performed on T1-weighted images and thalamic volumes were obtained using the MAGeT brain segmentation pipeline. Cognitive, motor, and visual-motor outcomes were evaluated at 8 years of age. Multivariable regression was used to examine the relationship among neonatal WMI volume, school-age thalamic volume, and neurodevelopmental outcomes. RESULTS School-age thalamic volumes were predicted by neonatal thalamic growth rate, GA, sex, and neonatal WMI volume (p < 0.0001). After accounting for total cerebral volume, WMI volume remained associated with school-age thalamic volume (β = -0.31, p = 0.005). In thalamocortical tracts, fractional anisotropy (FA) at term-equivalent age interacted with early WMI volume to predict school-age thalamic volumes (all p < 0.02). School-age thalamic volumes and neonatal WMI interacted to predict full-scale IQ (p = 0.002) and adverse motor scores among those with significant WMI (p = 0.01). Visual-motor scores were predicted by thalamic volumes (p = 0.04). INTERPRETATION In very preterm-born children, neonatal thalamic growth and WMI volume predict school-age thalamic volumes. The emergence at term of an interaction between FA and WMI to impact school-age thalamic volume indicates dysmaturation as a mechanism of thalamic growth failure. Cognition is predicted by the interaction of WMI and thalamic growth, highlighting the need to consider multiple dimensions of brain injury in these children. ANN NEUROL 2021;90:584-594.
Collapse
Affiliation(s)
- Dalit Cayam-Rand
- Department of Paediatrics, Hospital for Sick Children & University of Toronto, Toronto, ON, Canada
| | - Ting Guo
- Department of Paediatrics, Hospital for Sick Children & University of Toronto, Toronto, ON, Canada
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Vann Chau
- Department of Paediatrics, Hospital for Sick Children & University of Toronto, Toronto, ON, Canada
| | - Connor Mabbott
- Department of Paediatrics, Hospital for Sick Children & University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Isabel Benavente-Fernández
- Department of Paediatrics, Hospital for Sick Children & University of Toronto, Toronto, ON, Canada.,Department of Neonatology & Biomedical Research and Innovation Institute of Cadiz, University Hospital Puerta del Mar, Cadiz, Spain
| | - Ruth E Grunau
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Steven P Miller
- Department of Paediatrics, Hospital for Sick Children & University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Connecting the Neurobiology of Developmental Brain Injury: Neuronal Arborisation as a Regulator of Dysfunction and Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22158220. [PMID: 34360985 PMCID: PMC8348801 DOI: 10.3390/ijms22158220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders can derive from a complex combination of genetic variation and environmental pressures on key developmental processes. Despite this complex aetiology, and the equally complex array of syndromes and conditions diagnosed under the heading of neurodevelopmental disorder, there are parallels in the neuropathology of these conditions that suggest overlapping mechanisms of cellular injury and dysfunction. Neuronal arborisation is a process of dendrite and axon extension that is essential for the connectivity between neurons that underlies normal brain function. Disrupted arborisation and synapse formation are commonly reported in neurodevelopmental disorders. Here, we summarise the evidence for disrupted neuronal arborisation in these conditions, focusing primarily on the cortex and hippocampus. In addition, we explore the developmentally specific mechanisms by which neuronal arborisation is regulated. Finally, we discuss key regulators of neuronal arborisation that could link to neurodevelopmental disease and the potential for pharmacological modification of arborisation and the formation of synaptic connections that may provide therapeutic benefit in the future.
Collapse
|
41
|
Menegaux A, Meng C, Bäuml JG, Berndt MT, Hedderich DM, Schmitz-Koep B, Schneider S, Nuttall R, Zimmermann J, Daamen M, Zimmer C, Boecker H, Bartmann P, Wolke D, Sorg C. Aberrant cortico-thalamic structural connectivity in premature-born adults. Cortex 2021; 141:347-362. [PMID: 34126289 DOI: 10.1016/j.cortex.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Premature birth is associated with alterations in brain structure, particularly in white matter. Among white matter, alterations in cortico-thalamic connections are present in premature-born infants, and they have been suggested both to last until adulthood and to contribute to impaired cognitive functions. To test these hypotheses, 70 very premature-born adults and 67 full-term controls underwent cognitive testing and diffusion-weighted imaging. Each cortical hemisphere was parcellated into six lobes, from which probabilistic tractography was performed to the thalamus. Connection probability was chosen as metric of structural connectivity. We found increased cortico-thalamic connection probability between left prefrontal cortices and left medio-dorsal thalamus and reduced connection probability between bilateral temporal cortices and bilateral anterior thalami in very premature-born adults. Aberrant prefronto- and temporo-thalamic connection probabilities were correlated with birth weight and days on ventilation, respectively, supporting the suggestion that these connectivity changes relate with the degree of prematurity. Moreover, an increase in left prefronto-thalamic connection probability also correlated with lower verbal comprehension index indicating its relevance for verbal cognition. Together, our results demonstrate that cortico-thalamic structural connectivity is aberrant in premature-born adults, with these changes being linked with impairments in verbal cognitive abilities. Due to corresponding findings in infants, data suggest aberrant development of cortico-thalamic connectivity after premature birth with lasting effects into adulthood.
Collapse
Affiliation(s)
- Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Chun Meng
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Josef G Bäuml
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maria T Berndt
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Schneider
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rachel Nuttall
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
42
|
Hong H, Yu X, Zhang R, Jiaerken Y, Wang S, Luo X, Lou M, Huang P, Zhang M. Cortical degeneration detected by neurite orientation dispersion and density imaging in chronic lacunar infarcts. Quant Imaging Med Surg 2021; 11:2114-2124. [PMID: 33936992 PMCID: PMC8047380 DOI: 10.21037/qims-20-880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/14/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although lacunar infarcts are focal lesions, they may also have more widespread effects. A reduction in cortical thickness in the remote cortex after lacunar infarcts has been detected by structural imaging; however, its underlying microstructural changes are yet to be elucidated. This study aimed to investigate the effects of lacunar infarcts on the microstructural abnormalities associated with cortical thickness reduction in the remote cortex. METHODS Thirty-seven patients with chronic lacunar infarcts were included. Brain structural magnetic resonance images (MRIs) and diffusion tensor images were acquired. We constructed the white matter tracts connecting with the lacunar infarcts and identified the connected cortical area based on a standard brain atlas warped into the subject space. Cortical thickness and microstructural neurite orientation dispersion and density imaging (NODDI) metrics of the ipsilesional and contralesional cortices were compared, and correlations between cortical thickness and NODDI metrics were also investigated. RESULTS We found decreased cortical thickness and reduced neurite orientation dispersion index (ODI) in the ipsilesional cortex (2.47 vs. 2.50 mm, P=0.008; 0.451 vs. 0.456, P=0.035, respectively). In patients with precentral gyrus involvement (n=23), we found that ODI in the ipsilesional cortex was correlated with cortical thickness (r=0.437, P=0.037), and ODI in the contralesional cortex was also correlated with contralesional cortical thickness (r=0.440, P=0.036). CONCLUSIONS NODDI metrics could reflect cortical microstructural changes following lacunar infarcts. The correlation between decreased ODI and reduced cortical thickness suggests that dendrites' loss might contribute to lacunar infarct-related cortical atrophy.
Collapse
Affiliation(s)
- Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Prasad JD, van de Looij Y, Gunn KC, Ranchhod SM, White PB, Berry MJ, Bennet L, Sizonenko SV, Gunn AJ, Dean JM. Long-term coordinated microstructural disruptions of the developing neocortex and subcortical white matter after early postnatal systemic inflammation. Brain Behav Immun 2021; 94:338-356. [PMID: 33307171 DOI: 10.1016/j.bbi.2020.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Severe postnatal systemic infection is highly associated with persistent disturbances in brain development and neurobehavioral outcomes in survivors of preterm birth. However, the contribution of less severe but prolonged postnatal infection and inflammation to such disturbances is unclear. Further, the ability of modern imaging techniques to detect the underlying changes in cellular microstructure of the brain in these infants remains to be validated. We used high-field ex-vivo MRI, neurohistopathology, and behavioral tests in newborn rats to demonstrate that prolonged postnatal systemic inflammation causes subtle, persisting disturbances in brain development, with neurodevelopmental delays and mild motor impairments. Diffusion-tensor MRI and neurite orientation dispersion and density imaging (NODDI) revealed delayed maturation of neocortical and subcortical white matter microstructure. Analysis of pyramidal neurons showed that the cortical deficits involved impaired dendritic arborization and spine formation. Analysis of oligodendrocytes showed that the white matter deficits involved impaired oligodendrocyte maturation and axonal myelination. These findings indicate that prolonged postnatal inflammation, without severe infection, may critically contribute to the diffuse spectrum of brain pathology and subtle long-term disability in preterm infants, with a cellular mechanism involving oligodendrocyte and neuronal dysmaturation. NODDI may be useful for clinical detection of these microstructural deficits.
Collapse
Affiliation(s)
- Jaya D Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging - Animal Imaging and Technology, Lausanne Federal Polytechnic School, Lausanne, Switzerland
| | - Katherine C Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Sonya M Ranchhod
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Petra B White
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Mary J Berry
- The Department of Pediatrics and Health Care, University of Otago, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Stéphane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
44
|
Prasad JD, Gunn KC, Davidson JO, Galinsky R, Graham SE, Berry MJ, Bennet L, Gunn AJ, Dean JM. Anti-Inflammatory Therapies for Treatment of Inflammation-Related Preterm Brain Injury. Int J Mol Sci 2021; 22:4008. [PMID: 33924540 PMCID: PMC8069827 DOI: 10.3390/ijms22084008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of preterm brain injury, there are no established neuroprotective strategies to prevent or alleviate mild-to-moderate inflammation-related brain injury. Perinatal infection and inflammation have been shown to trigger acute neuroinflammation, including proinflammatory cytokine release and gliosis, which are associated with acute and chronic disturbances in brain cell survival and maturation. These findings suggest the hypothesis that the inhibition of peripheral immune responses following infection or nonspecific inflammation may be a therapeutic strategy to reduce the associated brain injury and neurobehavioral deficits. This review provides an overview of the neonatal immunity, neuroinflammation, and mechanisms of inflammation-related brain injury in preterm infants and explores the safety and efficacy of anti-inflammatory agents as potentially neurotherapeutics.
Collapse
Affiliation(s)
- Jaya D. Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Katherine C. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Joanne O. Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
| | - Scott E. Graham
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Mary J. Berry
- Department of Pediatrics and Health Care, University of Otago, Dunedin 9016, New Zealand;
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| |
Collapse
|
45
|
Lucignani M, Longo D, Fontana E, Rossi-Espagnet MC, Lucignani G, Savelli S, Bascetta S, Sgrò S, Morini F, Giliberti P, Napolitano A. Morphometric Analysis of Brain in Newborn with Congenital Diaphragmatic Hernia. Brain Sci 2021; 11:brainsci11040455. [PMID: 33918479 PMCID: PMC8065764 DOI: 10.3390/brainsci11040455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe pediatric disorder with herniation of abdominal viscera into the thoracic cavity. Since neurodevelopmental impairment constitutes a common outcome, we performed morphometric magnetic resonance imaging (MRI) analysis on CDH infants to investigate cortical parameters such as cortical thickness (CT) and local gyrification index (LGI). By assessing CT and LGI distributions and their correlations with variables which might have an impact on oxygen delivery (total lung volume, TLV), we aimed to detect how altered perfusion affects cortical development in CDH. A group of CDH patients received both prenatal (i.e., fetal stage) and postnatal MRI. From postnatal high-resolution T2-weighted images, mean CT and LGI distributions of 16 CDH were computed and statistically compared to those of 13 controls. Moreover, TLV measures obtained from fetal MRI were further correlated to LGI. Compared to controls, CDH infants exhibited areas of hypogiria within bilateral fronto-temporo-parietal labels, while no differences were found for CT. LGI significantly correlated with TLV within bilateral temporal lobes and left frontal lobe, involving language- and auditory-related brain areas. Although the causes of neurodevelopmental impairment in CDH are still unclear, our results may suggest their link with altered cortical maturation and possible impaired oxygen perfusion.
Collapse
Affiliation(s)
- Martina Lucignani
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.L.); (E.F.); (M.C.R.-E.); (G.L.)
| | - Elena Fontana
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.L.); (E.F.); (M.C.R.-E.); (G.L.)
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.L.); (E.F.); (M.C.R.-E.); (G.L.)
- NESMOS Department, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Giulia Lucignani
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.L.); (E.F.); (M.C.R.-E.); (G.L.)
| | - Sara Savelli
- Imaging Department, Bambino Gesù Children’s Hospital and Research Institute, 00165 Rome, Italy; (S.S.); (S.B.)
| | - Stefano Bascetta
- Imaging Department, Bambino Gesù Children’s Hospital and Research Institute, 00165 Rome, Italy; (S.S.); (S.B.)
| | - Stefania Sgrò
- Department of Anesthesia and Critical Care, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Francesco Morini
- Department of Medical and Surgical Neonatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.M.); (P.G.)
| | - Paola Giliberti
- Department of Medical and Surgical Neonatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.M.); (P.G.)
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Correspondence: ; Tel.: +39-333-3214614
| |
Collapse
|
46
|
Hedderich DM, Menegaux A, Schmitz-Koep B, Nuttall R, Zimmermann J, Schneider SC, Bäuml JG, Daamen M, Boecker H, Wilke M, Zimmer C, Wolke D, Bartmann P, Sorg C, Gaser C. Increased Brain Age Gap Estimate (BrainAGE) in Young Adults After Premature Birth. Front Aging Neurosci 2021; 13:653365. [PMID: 33867970 PMCID: PMC8047054 DOI: 10.3389/fnagi.2021.653365] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Recent evidence suggests increased metabolic and physiologic aging rates in premature-born adults. While the lasting consequences of premature birth on human brain development are known, its impact on brain aging remains unclear. We addressed the question of whether premature birth impacts brain age gap estimates (BrainAGE) using an accurate and robust machine-learning framework based on structural MRI in a large cohort of young premature-born adults (n = 101) and full-term (FT) controls (n = 111). Study participants are part of a geographically defined population study of premature-born individuals, which have been followed longitudinally from birth until young adulthood. We investigated the association between BrainAGE scores and perinatal variables as well as with outcomes of physical (total intracranial volume, TIV) and cognitive development (full-scale IQ, FS-IQ). We found increased BrainAGE in premature-born adults [median (interquartile range) = 1.4 (-1.3-4.7 years)] compared to full-term controls (p = 0.002, Cohen's d = 0.443), which was associated with low Gestational age (GA), low birth weight (BW), and increased neonatal treatment intensity but not with TIV or FS-IQ. In conclusion, results demonstrate elevated BrainAGE in premature-born adults, suggesting an increased risk for accelerated brain aging in human prematurity.
Collapse
Affiliation(s)
- Dennis M. Hedderich
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rachel Nuttall
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Anesthesiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian C. Schneider
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef G. Bäuml
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marko Wilke
- Department of Pediatric Neurology and Developmental Medicine and Experimental Pediatric Neuroimaging group, University of Tübingen, Tübingen, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus, Bonn, Germany
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Gaser
- Department of Psychiatry, University Hospital Jena, Jena, Germany
- Department of Neurology, University Hospital Jena, Jena, Germany
| |
Collapse
|
47
|
Morrison JL, Ayonrinde OT, Care AS, Clarke GD, Darby JRT, David AL, Dean JM, Hooper SB, Kitchen MJ, Macgowan CK, Melbourne A, McGillick EV, McKenzie CA, Michael N, Mohammed N, Sadananthan SA, Schrauben E, Regnault TRH, Velan SS. Seeing the fetus from a DOHaD perspective: discussion paper from the advanced imaging techniques of DOHaD applications workshop held at the 2019 DOHaD World Congress. J Dev Orig Health Dis 2021; 12:153-167. [PMID: 32955011 DOI: 10.1017/s2040174420000884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Oyekoya T Ayonrinde
- Fiona Stanley Hospital, Murdoch, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Alison S Care
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Marcus J Kitchen
- School of Physics and Astronomy, Monash University, Melbourne, Victoria, Australia
| | | | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Erin V McGillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Nuruddin Mohammed
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Aga Khan University Hospital, Karachi, Pakistan
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Eric Schrauben
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Timothy R H Regnault
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - S Sendhil Velan
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
48
|
Sexual Dimorphisms and Asymmetries of the Thalamo-Cortical Pathways and Subcortical Grey Matter of Term Born Healthy Neonates: An Investigation with Diffusion Tensor MRI. Diagnostics (Basel) 2021; 11:diagnostics11030560. [PMID: 33804771 PMCID: PMC8003947 DOI: 10.3390/diagnostics11030560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
Diffusion-tensor-MRI was performed on 28 term born neonates. For each hemisphere, we quantified separately the axial and the radial diffusion (AD, RD), the apparent diffusion coefficient (ADC) and the fractional anisotropy (FA) of the thalamo-cortical pathway (THC) and four structures: thalamus (TH), putamen (PT), caudate nucleus (CN) and globus-pallidus (GP). There was no significant difference between boys and girls in either the left or in the right hemispheric THC, TH, GP, CN and PT. In the combined group (boys + girls) significant left greater than right symmetry was observed in the THC (AD, RD and ADC), and TH (AD, ADC). Within the same group, we reported left greater than right asymmetry in the PT (FA), CN (RD and ADC). Different findings were recorded when we split the group of neonates by gender. Girls exhibited right > left AD, RD and ADC in the THC and left > right FA in the PT. In the group of boys, we observed right > left RD and ADC. We also reported left > right FA in the PT and left > right RD in the CN. These results provide insights into normal asymmetric development of sensory-motor networks within boys and girls.
Collapse
|
49
|
Pla L, Illa M, Loreiro C, Lopez MC, Vázquez-Aristizabal P, Kühne BA, Barenys M, Eixarch E, Gratacós E. Structural Brain Changes during the Neonatal Period in a Rabbit Model of Intrauterine Growth Restriction. Dev Neurosci 2021; 42:217-229. [PMID: 33677448 DOI: 10.1159/000512948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is associated with abnormal neurodevelopment, but the associated structural brain changes are poorly documented. The aim of this study was to describe in an animal model the brain changes at the cellular level in the gray and white matter induced by IUGR during the neonatal period. METHODS The IUGR model was surgically induced in pregnant rabbits by ligating 40-50% of the uteroplacental vessels in 1 horn, whereas the uteroplacental vessels of the contralateral horn were not ligated. After 5 days, IUGR animals from the ligated horn and controls from the nonligated were delivered. On the day of delivery, perinatal data and placentas were collected. On postnatal day 1, functional changes were first evaluated, and thereafter, neuronal arborization in the frontal cortex and density of pre-oligodendrocytes, astrocytes, and microglia in the corpus callosum were evaluated. RESULTS Higher stillbirth in IUGR fetuses together with a reduced birth weight as compared to controls was evidenced. IUGR animals showed poorer functional results, an altered neuronal arborization pattern, and a decrease in the pre-oligodendrocytes, with no differences in microglia and astrocyte densities. CONCLUSIONS Overall, in the rabbit model used, IUGR is related to functional and brain changes evidenced already at birth, including changes in the neuronal arborization and abnormal oligodendrocyte maturation.
Collapse
Affiliation(s)
- Laura Pla
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Illa
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain, .,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain,
| | - Carla Loreiro
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mari Carmen Lopez
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Paula Vázquez-Aristizabal
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Britta Anna Kühne
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Marta Barenys
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Elisenda Eixarch
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| |
Collapse
|
50
|
Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics? Biochem Pharmacol 2021; 186:114461. [PMID: 33571501 DOI: 10.1016/j.bcp.2021.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Acquired perinatal brain injuries are a set of conditions that remains a key challenge for neonatologists and that have significant social, emotional and financial implications for our communities. In our perspective article, we will introduce perinatal brain injury focusing specifically on the events leading to brain damage in preterm born infants and outcomes for these infants. Then we will summarize and discuss the preclinical and clinical studies testing the efficacy of stem cells as neuroprotectants in the last ten years in perinatal brain injury. There are no therapies to treat brain damage in preterm born infants and a primary finding from this review is that there is a scarcity of stem cell trials focused on overcoming brain injuries in these infants. Overall, across all forms of perinatal brain injury there is a remarkable heterogeneity in previous and on-going preclinical and clinical studies in terms of the stem cell type, animal models/patient selection, route and time of administration. Despite the quality of many of the studies this variation makes it difficult to reach a valid consensus for future developments. However, it is clear that stem cells (and stem cell derived exosomes) can reduce perinatal brain injury and our field needs to work collectively to refine an effective protocol for each type of injury. The use of standardized stem cell products and testing these products across multiple models of injury will provide a stronger framework for clinical trials development.
Collapse
|