1
|
Burke RM, Ramani S, Lynch J, Cooper LV, Cho H, Bandyopadhyay AS, Kirkwood CD, Steele AD, Kang G. Geographic disparities impacting oral vaccine performance: Observations and future directions. Clin Exp Immunol 2025; 219:uxae124. [PMID: 39774633 PMCID: PMC11773816 DOI: 10.1093/cei/uxae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Oral vaccines have several advantages compared with parenteral administration: they can be relatively cheap to produce in high quantities, easier to administer, and induce intestinal mucosal immunity that can protect against infection. These characteristics have led to successful use of oral vaccines against rotavirus, polio, and cholera. Unfortunately, oral vaccines for all three diseases have demonstrated lower performance in the highest-burden settings where they are most needed. Rotavirus vaccines are estimated to have >85% effectiveness against hospitalization in children <12 months in countries with low child mortality, but only ~65% effectiveness in countries with high child mortality. Similarly, oral polio vaccines have lower immunogenicity in developing country settings compared with high-resource settings. Data are more limited for oral cholera vaccines, but suggest lower titers among children compared with adults, and, for some vaccines, lower efficacy in endemic settings compared with non-endemic settings. These disparities are likely multifactorial, and available evidence suggests a role for maternal factors (e.g. transplacental antibodies, breastmilk), host factors (e.g. genetic polymorphisms-with the best evidence for rotavirus-or previous infection), and environmental factors (e.g. gut microbiome, co-infections). Overall, these data highlight the rather ambiguous and often contradictory nature of evidence on factors affecting oral vaccine response, cautioning against broad extrapolation of outcomes based on one population or one vaccine type. Meaningful impact on performance of oral vaccines will likely only be possible with a suite of interventions, given the complex and multifactorial nature of the problem, and the degree to which contributing factors are intertwined.
Collapse
Affiliation(s)
- Rachel M Burke
- Global Development Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Julia Lynch
- Office of the Director General, International Vaccine Institute, Seoul, Republic of Korea
| | - Laura V Cooper
- School of Public Health, Imperial College London, London, UK
| | - Haeun Cho
- Department of Data Science and Innovation, International Vaccine Institute, Seoul, Republic of Korea
| | | | - Carl D Kirkwood
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - A Duncan Steele
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Gagandeep Kang
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
2
|
Kerdoncuff E, Skov L, Patterson N, Zhao W, Lueng YY, Schellenberg GD, Smith JA, Dey S, Ganna A, Dey AB, Kardia SL, Lee J, Moorjani P. 50,000 years of Evolutionary History of India: Insights from ~2,700 Whole Genome Sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580575. [PMID: 38405782 PMCID: PMC10888882 DOI: 10.1101/2024.02.15.580575] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
India has been underrepresented in whole genome sequencing studies. We generated 2,762 high coverage genomes from India-including individuals from most geographic regions, speakers of all major languages, and tribal and caste groups-providing a comprehensive survey of genetic variation in India. With these data, we reconstruct the evolutionary history of India through space and time at fine scales. We show that most Indians derive ancestry from three ancestral groups related to ancient Iranian farmers, Eurasian Steppe pastoralists and South Asian hunter-gatherers. We uncover a common source of Iranian-related ancestry from early Neolithic cultures of Central Asia into the ancestors of Ancestral South Indians (ASI), Ancestral North Indians (ANI), Austro-asiatic-related and East Asian-related groups in India. Following these admixtures, India experienced a major demographic shift towards endogamy, resulting in extensive homozygosity and identity-by-descent sharing among individuals. At deep time scales, Indians derive around 1-2% of their ancestry from gene flow from archaic hominins, Neanderthals and Denisovans. By assembling the surviving fragments of archaic ancestry in modern Indians, we recover ~1.5 Gb (or 50%) of the introgressing Neanderthal and ~0.6 Gb (or 20%) of the introgressing Denisovan genomes, more than any other previous archaic ancestry study. Moreover, Indians have the largest variation in Neanderthal ancestry, as well as the highest amount of population-specific Neanderthal segments among worldwide groups. Finally, we demonstrate that most of the genetic variation in Indians stems from a single major migration out of Africa that occurred around 50,000 years ago, with minimal contribution from earlier migration waves. Together, these analyses provide a detailed view of the population history of India and underscore the value of expanding genomic surveys to diverse groups outside Europe.
Collapse
Affiliation(s)
- Elise Kerdoncuff
- Department of Molecular and Cell Biology, University of California, Berkeley, United States of America
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California, Berkeley, United States of America
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yuk Yee Lueng
- Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States of America
| | - Gerard D. Schellenberg
- Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States of America
| | - Jennifer A. Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - AB Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sharon L.R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jinkook Lee
- Department of Economics, and Center for Economic & Social Research, University of Southern California, Los Angeles, California, United States of America
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley, United States of America
- Center for Computational Biology, University of California, Berkeley, United States of America
| |
Collapse
|
3
|
Jones LO, Willms RJ, Xu X, Graham RDV, Eklund M, Shin M, Foley E. Single-cell resolution of the adult zebrafish intestine under conventional conditions and in response to an acute Vibrio cholerae infection. Cell Rep 2023; 42:113407. [PMID: 37948182 DOI: 10.1016/j.celrep.2023.113407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Vibrio cholerae is an aquatic bacterium that causes severe and potentially deadly diarrheal disease. Despite the impact on global health, our understanding of host mucosal responses to Vibrio remains limited, highlighting a knowledge gap critical for the development of effective prevention and treatment strategies. Using a natural infection model, we combine physiological and single-cell transcriptomic studies to characterize conventionally reared adult zebrafish guts and guts challenged with Vibrio. We demonstrate that Vibrio causes a mild mucosal immune response characterized by T cell activation and enhanced antigen capture; Vibrio suppresses host interferon signaling; and ectopic activation of interferon alters the course of infection. We show that the adult zebrafish gut shares similarities with mammalian counterparts, including the presence of Best4+ cells, tuft cells, and a population of basal cycling cells. These findings provide important insights into host-pathogen interactions and emphasize the utility of zebrafish as a natural model of Vibrio infection.
Collapse
Affiliation(s)
- Lena O Jones
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Reegan J Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xinyue Xu
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ralph Derrick V Graham
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mckenna Eklund
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Kelly M, Jeon S, Yun J, Lee B, Park M, Whang Y, Lee C, Charles RC, Bhuiyan TR, Qadri F, Kamruzzaman M, Cho S, Vann WF, Xu P, Kováč P, Ganapathy R, Lynch J, Ryan ET. Vaccination of Rabbits with a Cholera Conjugate Vaccine Comprising O-Specific Polysaccharide and a Recombinant Fragment of Tetanus Toxin Heavy Chain Induces Protective Immune Responses against Vibrio cholerae O1. Am J Trop Med Hyg 2023; 109:1122-1128. [PMID: 37783453 PMCID: PMC10622467 DOI: 10.4269/ajtmh.23-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/16/2023] [Indexed: 10/04/2023] Open
Abstract
There is a need for next-generation cholera vaccines that provide high-level and durable protection in young children in cholera-endemic areas. A cholera conjugate vaccine (CCV) is in development to address this need. This vaccine contains the O-specific polysaccharide (OSP) of Vibrio cholerae O1 conjugated via squaric acid chemistry to a recombinant fragment of the tetanus toxin heavy chain (OSP:rTTHc). This vaccine has been shown previously to be immunogenic and protective in mice and found to be safe in a recent preclinical toxicological analysis in rabbits. We took advantage of excess serum samples collected as part of the toxicological study and assessed the immunogenicity of CCV OSP:rTTHc in rabbits. We found that vaccination with CCV induced OSP-, lipopolysaccharide (LPS)-, and rTTHc-specific immune responses in rabbits, that immune responses were functional as assessed by vibriocidal activity, and that immune responses were protective against death in an established virulent challenge assay. CCV OSP:rTTHc immunogenicity in two animal model systems (mice and rabbits) is encouraging and supports further development of this vaccine for evaluation in humans.
Collapse
Affiliation(s)
- Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Suhi Jeon
- Eubiologics Ltd, Gangnam-gu, Seoul, South Korea
| | - Jeesun Yun
- Eubiologics Ltd, Gangnam-gu, Seoul, South Korea
| | - Byungman Lee
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | | | | | - Chankyu Lee
- Eubiologics Ltd, Gangnam-gu, Seoul, South Korea
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Taufiqur R. Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Somyoung Cho
- International Vaccine Institute, Seoul, South Korea
| | - Willie F. Vann
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Peng Xu
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Bioorganic Chemistry, NIH, Bethesda, Maryland
| | - Pavol Kováč
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Bioorganic Chemistry, NIH, Bethesda, Maryland
| | | | - Julia Lynch
- International Vaccine Institute, Seoul, South Korea
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
5
|
Singla A, Boucher A, Wallom KL, Lebens M, Kohler JJ, Platt FM, Yrlid U. Cholera intoxication of human enteroids reveals interplay between decoy and functional glycoconjugate ligands. Glycobiology 2023; 33:801-816. [PMID: 37622990 PMCID: PMC10629719 DOI: 10.1093/glycob/cwad069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Prior research on cholera toxin (CT) binding and intoxication has relied on human colonic cancer derived epithelial cells. While these transformed cell lines have been beneficial, they neither derive from small intestine where intoxication occurs, nor represent the diversity of small intestinal epithelial cells (SI-ECs) and variation in glycoconjugate expression among individuals. Here, we used human enteroids, derived from jejunal biopsies of multipledonors to study CT binding and intoxication of human non-transformed SI-ECs. We modulated surface expression of glycosphingolipids, glycoproteins and specific glycans to distinguish the role of each glycan/glycoconjugate. Cholera-toxin-subunit-B (CTB) mutants were generated to decipher the preference of each glycoconjugate to different binding sites and the correlation between CT binding and intoxication. Human enteroids contain trace amounts of GM1, but other glycosphingolipids may be contributing to CT intoxication. We discovered that inhibition of either fucosylation or O-glycosylation sensitize enteroids to CT-intoxication. This can either be a consequence of the removal of fucosylated "decoy-like-ligands" binding to CTB's non-canonical site and/or increase in the availability of Gal/GalNAc-terminating glycoconjugates binding to the canonical site. Furthermore, simultaneous inhibition of fucosylation and O-glycosylation increased the availability of additional Gal/GalNAc-terminating glycoconjugates but counteracted the sensitization in CT intoxication caused by inhibiting O-glycosylation because of reduction in fucose. This implies a dual role of fucose as a functional glycan and a decoy, the interplay of which influences CT binding and intoxication. Finally, while the results were similar for enteroids from different donors, they were not identical, pointing to a role for human genetic variation in determining sensitivity to CT.
Collapse
Affiliation(s)
- Akshi Singla
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Kerri-Lee Wallom
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Michael Lebens
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9185, United States
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| |
Collapse
|
6
|
Das R, Nasrin S, Palit P, Sobi RA, Sultana AA, Khan SH, Haque MA, Nuzhat S, Ahmed T, Faruque ASG, Chisti MJ. Vibrio cholerae in rural and urban Bangladesh, findings from hospital-based surveillance, 2000-2021. Sci Rep 2023; 13:6411. [PMID: 37076586 PMCID: PMC10115832 DOI: 10.1038/s41598-023-33576-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
With more than 100,000 cases estimated each year, Bangladesh is one of the countries with the highest number of people at risk for cholera. Moreover, Bangladesh is formulating a countrywide cholera-control plan to satisfy the GTFCC (The Global Task Force on Cholera Control) Roadmap's goals. With a particular focus on cholera trends, variance in baseline and clinical characteristics of cholera cases, and trends in antibiotic susceptibility among clinical isolates of Vibrio cholerae, we used data from facility-based surveillance systems from icddr,b's Dhaka, and Matlab Hospitals from years 2000 to 2021. Female patients comprised 3,553 (43%) in urban and 1,099 (51.6%) in rural sites. Of the cases and most patients 5,236 (63.7%) in urban and 1,208 (56.7%) in the rural site were aged 15 years and more. More than 50% of the families belonged to the poor and lower-middle-class; in 2009 (24.4%) were in urban and in 1,791 (84.2%) were in rural sites. In the urban site, 2,446 (30%) of households used untreated drinking water, and 702 (9%) of families disposed of waste in their courtyard. In the multiple logistic regression analysis, the risk of cholera has significantly increased due to waste disposal in the courtyard and the boiling of water has a protective effect against cholera. Rotavirus (9.7%) was the most prevalent co-pathogen among the under-5 children in both sites. In urban sites, the percentage of V. cholerae along with co-existing ETEC and Campylobacter is changing in the last 20 years; Campylobacter (8.36%) and Enterotoxigenic Escherichia coli (ETEC) (7.15%) were the second and third most prevalent co-pathogens. Shigella (1.64%) was the second most common co-pathogen in the rural site. Azithromycin susceptibility increased slowly from 265 (8%) in 2006-2010 to 1485 (47.8%) in 2016-2021, and erythromycin susceptibility dropped substantially over 20 years period from 2,155 (98.4%) to 21 (0.9%). Tetracycline susceptibility decreased in the urban site from 2051 (45.9%) to 186 (4.2%) and ciprofloxacin susceptibility decreased from 2,581 (31.6%) to 1,360 (16.6%) until 2015, then increased 1,009 (22.6%) and 1,490 (18.2%) in 2016-2021, respectively. Since 2016, doxycycline showed 902 (100%) susceptibility. Clinicians need access to up-to-date information on antimicrobial susceptibility for treating hospitalized patients. To achieve the WHO-backed objective of eliminating cholera by 2030, the health systems need to be put under a proper surveillance system that may help to improve water and sanitation practices and deploy oral cholera vaccines strategically.
Collapse
Grants
- 1992-011 International Centre for Diarrhoeal Disease Research, Bangladesh
- 1992-011 International Centre for Diarrhoeal Disease Research, Bangladesh
- 1992-011 International Centre for Diarrhoeal Disease Research, Bangladesh
- 1992-011 International Centre for Diarrhoeal Disease Research, Bangladesh
- 1992-011 International Centre for Diarrhoeal Disease Research, Bangladesh
- 1992-011 International Centre for Diarrhoeal Disease Research, Bangladesh
- 1992-011 International Centre for Diarrhoeal Disease Research, Bangladesh
- 1992-011 International Centre for Diarrhoeal Disease Research, Bangladesh
- 1992-011 International Centre for Diarrhoeal Disease Research, Bangladesh
- 1992-011 International Centre for Diarrhoeal Disease Research, Bangladesh
- 1992-011 International Centre for Diarrhoeal Disease Research, Bangladesh
Collapse
Affiliation(s)
- Rina Das
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sharani, Dhaka, 1212, Bangladesh.
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| | - Sabiha Nasrin
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sharani, Dhaka, 1212, Bangladesh
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Parag Palit
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sharani, Dhaka, 1212, Bangladesh
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Rukaeya Amin Sobi
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sharani, Dhaka, 1212, Bangladesh
| | - Al-Afroza Sultana
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sharani, Dhaka, 1212, Bangladesh
| | - Soroar Hossain Khan
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sharani, Dhaka, 1212, Bangladesh
| | - Md Ahshanul Haque
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sharani, Dhaka, 1212, Bangladesh
| | - Sharika Nuzhat
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sharani, Dhaka, 1212, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sharani, Dhaka, 1212, Bangladesh
- James P. Grant School of Public Health, BRAC University, Dhaka, 1212, Bangladesh
- Department of Global Health, University of Washington, Seattle, WA, 98104, USA
| | - A S G Faruque
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sharani, Dhaka, 1212, Bangladesh
| | - Mohammod Jobayer Chisti
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sharani, Dhaka, 1212, Bangladesh
| |
Collapse
|
7
|
Wiens KE, Iyer AS, Bhuiyan TR, Lu LL, Cizmeci D, Gorman MJ, Yuan D, Becker RL, Ryan ET, Calderwood SB, LaRocque RC, Chowdhury F, Khan AI, Levine MM, Chen WH, Charles RC, Azman AS, Qadri F, Alter G, Harris JB. Predicting Vibrio cholerae infection and symptomatic disease: a systems serology study. THE LANCET. MICROBE 2023; 4:e228-e235. [PMID: 36907197 PMCID: PMC10186354 DOI: 10.1016/s2666-5247(22)00391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 03/11/2023]
Abstract
BACKGROUND Vibriocidal antibodies are currently the best characterised correlate of protection against cholera and are used to gauge immunogenicity in vaccine trials. Although other circulating antibody responses have been associated with a decreased risk of infection, the correlates of protection against cholera have not been comprehensively compared. We aimed to analyse antibody-mediated correlates of protection from both V cholerae infection and cholera-related diarrhoea. METHODS We conducted a systems serology study that analysed 58 serum antibody biomarkers as correlates of protection against V cholerae O1 infection or diarrhoea. We used serum samples from two cohorts: household contacts of people with confirmed cholera in Dhaka, Bangladesh, and cholera-naive volunteers who were recruited at three centres in the USA, vaccinated with a single dose of CVD 103-HgR live oral cholera vaccine, and then challenged with V cholerae O1 El Tor Inaba strain N16961. We measured antigen-specific immunoglobulin responses against antigens using a customised Luminex assay and used conditional random forest models to examine which baseline biomarkers were most important for classifying individuals who went on to develop infection versus those who remained uninfected or asymptomatic. V cholerae infection was defined as having a positive stool culture result on days 2-7 or day 30 after enrolment of the household's index cholera case and, in the vaccine challenge cohort, was the development of symptomatic diarrhoea (defined as two or more loose stools of ≥200 mL each, or a single loose stool of ≥300 mL over a 48-h period). FINDINGS In the household contact cohort (261 participants from 180 households), 20 (34%) of the 58 studied biomarkers were associated with protection against V cholerae infection. We identified serum antibody-dependent complement deposition targeting the O1 antigen as the most predictive correlate of protection from infection in the household contacts, whereas vibriocidal antibody titres ranked lower. A five-biomarker model predicted protection from V cholerae infection with a cross-validated area under the curve (cvAUC) of 79% (95% CI 73-85). This model also predicted protection against diarrhoea in unvaccinated volunteers challenged with V cholerae O1 after vaccination (n=67; area under the curve [AUC] 77%, 95% CI 64-90). Although a different five-biomarker model best predicted protection from the development of cholera diarrhoea in the challenged vaccinees (cvAUC 78%, 95% CI 66-91), this model did poorly at predicting protection against infection in the household contacts (AUC 60%, 52-67). INTERPRETATION Several biomarkers predict protection better than vibriocidal titres. A model based on protection against infection among household contacts was predictive of protection against both infection and diarrhoeal illness in challenged vaccinees, suggesting that models based on observed conditions in a cholera-endemic population might be more likely to identify broadly applicable correlates of protection than models trained on single experimental settings. FUNDING National Institute of Allergy and Infectious Diseases and National Institute of Child Health and Human Development, National Institutes of Health.
Collapse
Affiliation(s)
- Kirsten E Wiens
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA
| | - Anita S Iyer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Taufiqur R Bhuiyan
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Lenette L Lu
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine and Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Parkland Health and Hospital System, Dallas, TX, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Matthew J Gorman
- Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Dansu Yuan
- Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Rachel L Becker
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Myron M Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrheoal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Galit Alter
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Garcia OA, Arslanian K, Whorf D, Thariath S, Shriver M, Li JZ, Bigham AW. The Legacy of Infectious Disease Exposure on the Genomic Diversity of Indigenous Southern Mexicans. Genome Biol Evol 2023; 15:7023365. [PMID: 36726304 PMCID: PMC10016042 DOI: 10.1093/gbe/evad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
To characterize host risk factors for infectious disease in Mesoamerican populations, we interrogated 857,481 SNPs assayed using the Affymetrix 6.0 genotyping array for signatures of natural selection in immune response genes. We applied three statistical tests to identify signatures of natural selection: locus-specific branch length (LSBL), the cross-population extended haplotype homozygosity (XP-EHH), and the integrated haplotype score (iHS). Each of the haplotype tests (XP-EHH and iHS) were paired with LSBL and significance was determined at the 1% level. For the paired analyses, we identified 95 statistically significant windows for XP-EHH/LSBL and 63 statistically significant windows for iHS/LSBL. Among our top immune response loci, we found evidence of recent directional selection associated with the major histocompatibility complex (MHC) and the peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling pathway. These findings illustrate that Mesoamerican populations' immunity has been shaped by exposure to infectious disease. As targets of selection, these variants are likely to encode phenotypes that manifest themselves physiologically and therefore may contribute to population-level variation in immune response. Our results shed light on past selective events influencing the host response to modern diseases, both pathogenic infection as well as autoimmune disorders.
Collapse
Affiliation(s)
- Obed A Garcia
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Data Science, Stanford University, Stanford, California
| | | | - Daniel Whorf
- College of Medicine, University of Illinois, Peoria, Illinois
| | - Serena Thariath
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee
| | - Mark Shriver
- Department of Anthropology, Penn State University, State College, Pennsylvania
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, California
| |
Collapse
|
9
|
Monir MM, Islam MT, Mazumder R, Mondal D, Nahar KS, Sultana M, Morita M, Ohnishi M, Huq A, Watanabe H, Qadri F, Rahman M, Thomson N, Seed K, Colwell RR, Ahmed T, Alam M. Genomic attributes of Vibrio cholerae O1 responsible for 2022 massive cholera outbreak in Bangladesh. Nat Commun 2023; 14:1154. [PMID: 36859426 PMCID: PMC9977884 DOI: 10.1038/s41467-023-36687-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
In 2022, one of its worst cholera outbreaks began in Bangladesh and the icddr,b Dhaka hospital treated more than 1300 patients and ca. 42,000 diarrheal cases from March-1 to April-10, 20221. Here, we present genomic attributes of V. cholerae O1 responsible for the 2022 Dhaka outbreak and 960 7th pandemic El Tor (7PET) strains from 88 countries. Results show strains isolated during the Dhaka outbreak cluster with 7PET wave-3 global clade strains, but comprise subclade BD-1.2, for which the most recent common ancestor appears to be that responsible for recent endemic cholera in India. BD-1.2 strains are present in Bangladesh since 2016, but not establishing dominance over BD-2 lineage strains2 until 2018 and predominantly associated with endemic cholera. In conclusion, the recent shift in lineage and genetic attributes, including serotype switching of BD-1.2 from Ogawa to Inaba, may explain the increasing number of cholera cases in Bangladesh.
Collapse
Affiliation(s)
- Md Mamun Monir
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammad Tarequl Islam
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Razib Mazumder
- Laboratory Sciences and Services Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Dinesh Mondal
- Laboratory Sciences and Services Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Kazi Sumaita Nahar
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Marzia Sultana
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Masatomo Morita
- Department of Bacteriology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Haruo Watanabe
- Department of Bacteriology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Firdausi Qadri
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mustafizur Rahman
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Nicholas Thomson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Kimberley Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Munirul Alam
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| |
Collapse
|
10
|
Andreev I, Laidlaw KME, Giovanetti SM, Urtecho G, Shriner D, Bloom JS, MacDonald C, Sadhu MJ. Discovery of a rapidly evolving yeast defense factor, KTD1, against the secreted killer toxin K28. Proc Natl Acad Sci U S A 2023; 120:e2217194120. [PMID: 36800387 PMCID: PMC9974470 DOI: 10.1073/pnas.2217194120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/09/2022] [Indexed: 02/18/2023] Open
Abstract
Secreted protein toxins are widely used weapons in conflicts between organisms. Elucidating how organisms genetically adapt to defend themselves against these toxins is fundamental to understanding the coevolutionary dynamics of competing organisms. Within yeast communities, "killer" toxins are secreted to kill nearby sensitive yeast, providing a fitness advantage in competitive growth environments. Natural yeast isolates vary in their sensitivity to these toxins, but to date, no polymorphic genetic factors contributing to defense have been identified. We investigated the variation in resistance to the killer toxin K28 across diverse natural isolates of the Saccharomyces cerevisiae population. Using large-scale linkage mapping, we discovered a novel defense factor, which we named KTD1. We identified many KTD1 alleles, which provided different levels of K28 resistance. KTD1 is a member of the DUP240 gene family of unknown function, which is rapidly evolving in a region spanning its two encoded transmembrane helices. We found that this domain is critical to KTD1's protective ability. Our findings implicate KTD1 as a key polymorphic factor in the defense against K28 toxin.
Collapse
Affiliation(s)
- Ilya Andreev
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Kamilla M. E. Laidlaw
- Biology Department, University of York, YorkYO10 5DD, UK
- York Biomedical Research Institute, University of York, YorkYO10 5NG, UK
| | - Simone M. Giovanetti
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Guillaume Urtecho
- Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, CA90095
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Joshua S. Bloom
- Department of Human Genetics, University of California, Los Angeles, CA90095
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
- HHMI, University of California, Los Angeles, CA90095
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, CA90095
- Department of Computational Medicine, University of California, Los Angeles, CA90095
| | - Chris MacDonald
- Biology Department, University of York, YorkYO10 5DD, UK
- York Biomedical Research Institute, University of York, YorkYO10 5NG, UK
| | - Meru J. Sadhu
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| |
Collapse
|
11
|
van der Kuyl AC. Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens. EPIDEMIOLOGIA 2022; 3:443-464. [PMID: 36547255 PMCID: PMC9778136 DOI: 10.3390/epidemiologia3040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Since life on earth developed, parasitic microbes have thrived. Increases in host numbers, or the conquest of a new species, provide an opportunity for such a pathogen to enjoy, before host defense systems kick in, a similar upsurge in reproduction. Outbreaks, caused by "endemic" pathogens, and epidemics, caused by "novel" pathogens, have thus been creating chaos and destruction since prehistorical times. To study such (pre)historic epidemics, recent advances in the ancient DNA field, applied to both archeological and historical remains, have helped tremendously to elucidate the evolutionary trajectory of pathogens. These studies have offered new and unexpected insights into the evolution of, for instance, smallpox virus, hepatitis B virus, and the plague-causing bacterium Yersinia pestis. Furthermore, burial patterns and historical publications can help in tracking down ancient pathogens. Another source of information is our genome, where selective sweeps in immune-related genes relate to past pathogen attacks, while multiple viruses have left their genomes behind for us to study. This review will discuss the sources available to investigate (pre)historic diseases, as molecular knowledge of historic and prehistoric pathogens may help us understand the past and the present, and prepare us for future epidemics.
Collapse
Affiliation(s)
- Antoinette C. van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; ; Tel.: +31-205-666-778
- Amsterdam Institute for Infection and Immunity, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
12
|
Chowdhury F, Ross AG, Islam MT, McMillan NAJ, Qadri F. Diagnosis, Management, and Future Control of Cholera. Clin Microbiol Rev 2022; 35:e0021121. [PMID: 35726607 PMCID: PMC9491185 DOI: 10.1128/cmr.00211-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera, caused by Vibrio cholerae, persists in developing countries due to inadequate access to safe water, sanitation, and hygiene. There are approximately 4 million cases and 143,000 deaths each year due to cholera. The disease is transmitted fecally-orally via contaminated food or water. Severe dehydrating cholera can progress to hypovolemic shock due to the rapid loss of fluids and electrolytes, which requires a rapid infusion of intravenous (i.v.) fluids. The case fatality rate exceeds 50% without proper clinical management but can be less than 1% with prompt rehydration and antibiotics. Oral cholera vaccines (OCVs) serve as a major component of an integrated control package during outbreaks or within zones of endemicity. Water, sanitation, and hygiene (WaSH); health education; and prophylactic antibiotic treatment are additional components of the prevention and control of cholera. The World Health Organization (WHO) and the Global Task Force for Cholera Control (GTFCC) have set an ambitious goal of eliminating cholera by 2030 in high-risk areas.
Collapse
Affiliation(s)
- Fahima Chowdhury
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Allen G. Ross
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, Australia
| | - Md Taufiqul Islam
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Firdausi Qadri
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
13
|
Mendes M, Jonnalagadda M, Ozarkar S, Lima Torres FC, Borda Pua V, Kendall C, Tarazona-Santos E, Parra EJ. Identifying signatures of natural selection in Indian populations. PLoS One 2022; 17:e0271767. [PMID: 35925921 PMCID: PMC9352006 DOI: 10.1371/journal.pone.0271767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we present the results of a genome-wide scan for signatures of positive selection using data from four tribal groups (Kokana, Warli, Bhil, and Pawara) and two caste groups (Deshastha Brahmin and Kunbi Maratha) from West of the Maharashtra State In India, as well as two samples of South Asian ancestry from the 1KG project (Gujarati Indian from Houston, Texas and Indian Telugu from UK). We used an outlier approach based on different statistics, including PBS, xpEHH, iHS, CLR, Tajima's D, as well as two recently developed methods: Graph-aware Retrieval of Selective Sweeps (GRoSS) and Ascertained Sequentially Markovian Coalescent (ASMC). In order to minimize the risk of false positives, we selected regions that are outliers in all the samples included in the study using more than one method. We identified putative selection signals in 107 regions encompassing 434 genes. Many of the regions overlap with only one gene. The signals observed using microarray-based data are very consistent with our analyses using high-coverage sequencing data, as well as those identified with a novel coalescence-based method (ASMC). Importantly, at least 24 of these genomic regions have been identified in previous selection scans in South Asian populations or in other population groups. Our study highlights genomic regions that may have played a role in the adaptation of anatomically modern humans to novel environmental conditions after the out of Africa migration.
Collapse
Affiliation(s)
- Marla Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| | - Manjari Jonnalagadda
- Symbiosis School for Liberal Arts (SSLA), Symbiosis International University (SIU), Pune, India
| | - Shantanu Ozarkar
- Department of Anthropology, Savitribai Phule Pune University, Pune, India
| | - Flávia Carolina Lima Torres
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Borda Pua
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Christopher Kendall
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Esteban J. Parra
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| |
Collapse
|
14
|
Sit B, Fakoya B, Waldor MK. Animal models for dissecting Vibrio cholerae intestinal pathogenesis and immunity. Curr Opin Microbiol 2022; 65:1-7. [PMID: 34695646 PMCID: PMC8792189 DOI: 10.1016/j.mib.2021.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023]
Abstract
The human diarrheal disease cholera is caused by the bacterium Vibrio cholerae. Efforts to develop animal models that closely mimic cholera to study the pathogenesis of this disease began >125 years ago. Here, we review currently used non-surgical, oral inoculation-based animal models for investigation of V. cholerae intestinal colonization and disease and highlight recent discoveries that have illuminated mechanisms of cholera pathogenesis and immunity, particularly in the area of how V. cholerae interacts with the gut microbiome to influence infection. The emergence of high-throughput tools for studies of pathogen-host interactions, along with continued advances in host genetic engineering and manipulation in animal models of V. cholerae will deepen understanding of cholera pathogenesis, uncovering knowledge important for control of this globally important bacterial pathogen.
Collapse
Affiliation(s)
- Brandon Sit
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bolutife Fakoya
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Massachusetts, USA,Howard Hughes Medical Institute, Bethesda, Maryland, USA,corresponding author: , Phone: 6175254646, Address: MCP-759, 181 Longwood Avenue, Boston, Massachusetts, USA 02115
| |
Collapse
|
15
|
Ryan ET, Leung DT, Jensen O, Weil AA, Bhuiyan TR, Khan AI, Chowdhury F, LaRocque RC, Harris JB, Calderwood SB, Qadri F, Charles RC. Systemic, Mucosal, and Memory Immune Responses following Cholera. Trop Med Infect Dis 2021; 6:192. [PMID: 34842841 PMCID: PMC8628923 DOI: 10.3390/tropicalmed6040192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 01/13/2023] Open
Abstract
Vibrio cholerae O1, the major causative agent of cholera, remains a significant public health threat. Although there are available vaccines for cholera, the protection provided by killed whole-cell cholera vaccines in young children is poor. An obstacle to the development of improved cholera vaccines is the need for a better understanding of the primary mechanisms of cholera immunity and identification of improved correlates of protection. Considerable progress has been made over the last decade in understanding the adaptive and innate immune responses to cholera disease as well as V. cholerae infection. This review will assess what is currently known about the systemic, mucosal, memory, and innate immune responses to clinical cholera, as well as recent advances in our understanding of the mechanisms and correlates of protection against V. cholerae O1 infection.
Collapse
Affiliation(s)
- Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Daniel T. Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (D.T.L.); (O.J.)
| | - Owen Jensen
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (D.T.L.); (O.J.)
| | - Ana A. Weil
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA;
| | - Taufiqur Rahman Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Fahima Chowdhury
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA 02114, USA
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02115, USA
- Division of Pediatric Global Health, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
16
|
Gut Microbiota and Development of Vibrio cholerae-Specific Long-Term Memory B Cells in Adults after Whole-Cell Killed Oral Cholera Vaccine. Infect Immun 2021; 89:e0021721. [PMID: 34228490 PMCID: PMC8370679 DOI: 10.1128/iai.00217-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholera is a diarrheal disease caused by Vibrio cholerae that continues to be a major public health concern in populations without access to safe water. IgG- and IgA-secreting memory B cells (MBC) targeting the V. cholerae O-specific polysaccharide (OSP) correlate with protection from infection in persons exposed to V. cholerae and may be a major determinant of long-term protection against cholera. Shanchol, a widely used oral cholera vaccine (OCV), stimulates OSP MBC responses in only some people after vaccination, and the gut microbiota is a possible determinant of variable immune responses observed after OCV. Using 16S rRNA sequencing of feces from the time of vaccination, we compared the gut microbiota among adults with and without MBC responses to OCV. Gut microbial diversity measures were not associated with MBC isotype or OSP-specific responses, but individuals with a higher abundance of Clostridiales and lower abundance of Enterobacterales were more likely to develop an MBC response. We applied protein-normalized fecal supernatants of high and low MBC responders to THP-1-derived human macrophages to investigate the effect of microbial factors at the time of vaccination. Feces from individuals with higher MBC responses induced significantly different IL-1β and IL-6 levels than individuals with lower responses, indicating that the gut microbiota at the time of vaccination may "prime" the mucosal immune response to vaccine antigens. Our results suggest the gut microbiota could impact immune responses to OCVs, and further study of microbial metabolites as potential vaccine adjuvants is warranted.
Collapse
|
17
|
Chac D, Dunmire CN, Singh J, Weil AA. Update on Environmental and Host Factors Impacting the Risk of Vibrio cholerae Infection. ACS Infect Dis 2021; 7:1010-1019. [PMID: 33844507 DOI: 10.1021/acsinfecdis.0c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vibrio cholerae is the causative agent of cholera, a diarrheal disease that kills tens of thousands of people each year. Cholera is transmitted primarily by the ingestion of drinking water contaminated with fecal matter, and a safe water supply remains out of reach in many areas of the world. In this Review, we discuss host and environmental factors that impact the susceptibility to V. cholerae infection and the severity of disease.
Collapse
Affiliation(s)
- Denise Chac
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Chelsea N. Dunmire
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Jasneet Singh
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Ana A. Weil
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
18
|
Quintana-Murci L. Dangerous liaisons: human genetic adaptation to infectious agents. C R Biol 2021; 343:297-309. [PMID: 33621457 DOI: 10.5802/crbiol.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
The study of the demographic and adaptive history of Homo sapiens has entered its golden age with the advent of genome-wide approaches. The analyses of genome diversity across different human populations have allowed us to better understand the ways in which our species rapidly dispersed around the world, how our ancestors admixed with archaic, now-extinct hominins, and the effects of natural selection on the diversity of the human genome. This work has, in turn, made it possible to increase our understanding of the genetic mechanisms by which humans have adapted to the wide range of environments they have encountered. These studies, combined with functional genomics approaches, have helped to identify genes and biological functions of key importance for host survival against pathogens and involved in the phenotypic variability of our species, including the risk to develop infectious, autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Lluis Quintana-Murci
- Chaire Génomique Humaine et Évolution, Collège de France, Paris 75005, France.,Unité de Génétique Évolutive Humaine, CNRS UMR 2000, Institut Pasteur, Paris 75015, France
| |
Collapse
|
19
|
Cho JY, Liu R, Macbeth JC, Hsiao A. The Interface of Vibrio cholerae and the Gut Microbiome. Gut Microbes 2021; 13:1937015. [PMID: 34180341 PMCID: PMC8244777 DOI: 10.1080/19490976.2021.1937015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
The bacterium Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. The gut microbiome, or the native community of microorganisms found in the human gastrointestinal tract, is increasingly being recognized as a factor in driving susceptibility to infection, in vivo fitness, and host interactions of this pathogen. Here, we review a subset of the emerging studies in how gut microbiome structure and microbial function are able to drive V. cholerae virulence gene regulation, metabolism, and modulate host immune responses to cholera infection and vaccination. Improved mechanistic understanding of commensal-pathogen interactions offers new perspectives in the design of prophylactic and therapeutic approaches for cholera control.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, California, USA
| | - John C. Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
20
|
Host genetics and infectious disease: new tools, insights and translational opportunities. Nat Rev Genet 2020; 22:137-153. [PMID: 33277640 PMCID: PMC7716795 DOI: 10.1038/s41576-020-00297-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Understanding how human genetics influence infectious disease susceptibility offers the opportunity for new insights into pathogenesis, potential drug targets, risk stratification, response to therapy and vaccination. As new infectious diseases continue to emerge, together with growing levels of antimicrobial resistance and an increasing awareness of substantial differences between populations in genetic associations, the need for such work is expanding. In this Review, we illustrate how our understanding of the host–pathogen relationship is advancing through holistic approaches, describing current strategies to investigate the role of host genetic variation in established and emerging infections, including COVID-19, the need for wider application to diverse global populations mirroring the burden of disease, the impact of pathogen and vector genetic diversity and a broad array of immune and inflammation phenotypes that can be mapped as traits in health and disease. Insights from study of inborn errors of immunity and multi-omics profiling together with developments in analytical methods are further advancing our knowledge of this important area. Infectious diseases are an ever-present global threat. In this Review, Kwok, Mentzer and Knight discuss our latest understanding of how human genetics influence susceptibility to disease. Furthermore, they discuss emerging progress in the interplay between host and pathogen genetics, molecular responses to infection and vaccination, and opportunities to bring these aspects together for rapid responses to emerging diseases such as COVID-19.
Collapse
|
21
|
Abstract
As human populations spread across the world, they adapted genetically to local conditions. So too did the resident microorganism communities that everyone carries with them. However, the collective influence of the diverse and dynamic community of resident microbes on host evolution is poorly understood. The taxonomic composition of the microbiota varies among individuals and displays a range of sometimes redundant functions that modify the physicochemical environment of the host and may alter selection pressures. Here we review known human traits and genes for which the microbiota may have contributed or responded to changes in host diet, climate, or pathogen exposure. Integrating host–microbiota interactions in human adaptation could offer new approaches to improve our understanding of human health and evolution.
Collapse
Affiliation(s)
- Taichi A. Suzuki
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
22
|
Werren EA, Garcia O, Bigham AW. Identifying adaptive alleles in the human genome: from selection mapping to functional validation. Hum Genet 2020; 140:241-276. [PMID: 32728809 DOI: 10.1007/s00439-020-02206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
The suite of phenotypic diversity across geographically distributed human populations is the outcome of genetic drift, gene flow, and natural selection throughout human evolution. Human genetic variation underlying local biological adaptations to selective pressures is incompletely characterized. With the emergence of population genetics modeling of large-scale genomic data derived from diverse populations, scientists are able to map signatures of natural selection in the genome in a process known as selection mapping. Inferred selection signals further can be used to identify candidate functional alleles that underlie putative adaptive phenotypes. Phenotypic association, fine mapping, and functional experiments facilitate the identification of candidate adaptive alleles. Functional investigation of candidate adaptive variation using novel techniques in molecular biology is slowly beginning to unravel how selection signals translate to changes in biology that underlie the phenotypic spectrum of our species. In addition to informing evolutionary hypotheses of adaptation, the discovery and functional annotation of adaptive alleles also may be of clinical significance. While selection mapping efforts in non-European populations are growing, there remains a stark under-representation of diverse human populations in current public genomic databases, of both clinical and non-clinical cohorts. This lack of inclusion limits the study of human biological variation. Identifying and functionally validating candidate adaptive alleles in more global populations is necessary for understanding basic human biology and human disease.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed Garcia
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California Los Angeles, 341 Haines Hall, Los Angeles, CA, 90095, USA.
| |
Collapse
|
23
|
Deen J, Mengel MA, Clemens JD. Epidemiology of cholera. Vaccine 2020; 38 Suppl 1:A31-A40. [DOI: 10.1016/j.vaccine.2019.07.078] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/06/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
|
24
|
Prasad H, Shenoy AR, Visweswariah SS. Cyclic nucleotides, gut physiology and inflammation. FEBS J 2020; 287:1970-1981. [PMID: 31889413 DOI: 10.1111/febs.15198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022]
Abstract
Misregulation of gut function and homeostasis impinges on the overall well-being of the entire organism. Diarrheal disease is the second leading cause of death in children under 5 years of age, and globally, 1.7 billion cases of childhood diarrhea are reported every year. Accompanying diarrheal episodes are a number of secondary effects in gut physiology and structure, such as erosion of the mucosal barrier that lines the gut, facilitating further inflammation of the gut in response to the normal microbiome. Here, we focus on pathogenic bacteria-mediated diarrhea, emphasizing the role of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate in driving signaling outputs that result in the secretion of water and ions from the epithelial cells of the gut. We also speculate on how this aberrant efflux and influx of ions could modulate inflammasome signaling, and therefore cell survival and maintenance of gut architecture and function.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | | |
Collapse
|
25
|
Trumble BC, Finch CE. THE EXPOSOME IN HUMAN EVOLUTION: FROM DUST TO DIESEL. THE QUARTERLY REVIEW OF BIOLOGY 2019; 94:333-394. [PMID: 32269391 PMCID: PMC7141577 DOI: 10.1086/706768] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global exposures to air pollution and cigarette smoke are novel in human evolutionary history and are associated with about 16 million premature deaths per year. We investigate the history of the human exposome for relationships between novel environmental toxins and genetic changes during human evolution in six phases. Phase I: With increased walking on savannas, early human ancestors inhaled crustal dust, fecal aerosols, and spores; carrion scavenging introduced new infectious pathogens. Phase II: Domestic fire exposed early Homo to novel toxins from smoke and cooking. Phases III and IV: Neolithic to preindustrial Homo sapiens incurred infectious pathogens from domestic animals and dense communities with limited sanitation. Phase V: Industrialization introduced novel toxins from fossil fuels, industrial chemicals, and tobacco at the same time infectious pathogens were diminishing. Thereby, pathogen-driven causes of mortality were replaced by chronic diseases driven by sterile inflammogens, exogenous and endogenous. Phase VI: Considers future health during global warming with increased air pollution and infections. We hypothesize that adaptation to some ancient toxins persists in genetic variations associated with inflammation and longevity.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution & Social Change and Center for Evolution and Medicine, Arizona State University Tempe, Arizona 85287 USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California Los Angeles, California 90089-0191 USA
| |
Collapse
|
26
|
Abstract
Vibrio cholerae is a noninvasive pathogen that colonizes the small intestine and produces cholera toxin, causing severe secretory diarrhea. Cholera results in long lasting immunity, and recent studies have improved our understanding of the antigenic repertoire of V. cholerae Interactions between the host, V. cholerae, and the intestinal microbiome are now recognized as factors which impact susceptibility to cholera and the ability to mount a successful immune response to vaccination. Here, we review recent data and corresponding models to describe immune responses to V. cholerae infection and explain how the host microbiome may impact the pathogenesis of V. cholerae In the ongoing battle against cholera, the intestinal microbiome represents a frontier for new approaches to intervention and prevention.
Collapse
|
27
|
Hossain M, Islam K, Kelly M, Mayo Smith LM, Charles RC, Weil AA, Bhuiyan TR, Kováč P, Xu P, Calderwood SB, Simon JK, Chen WH, Lock M, Lyon CE, Kirkpatrick BD, Cohen M, Levine MM, Gurwith M, Leung DT, Azman AS, Harris JB, Qadri F, Ryan ET. Immune responses to O-specific polysaccharide (OSP) in North American adults infected with Vibrio cholerae O1 Inaba. PLoS Negl Trop Dis 2019; 13:e0007874. [PMID: 31743334 PMCID: PMC6863522 DOI: 10.1371/journal.pntd.0007874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Background Antibodies targeting O-specific polysaccharide (OSP) of Vibrio cholerae may protect against cholera; however, little is known about this immune response in infected immunologically naïve humans. Methodology We measured serum anti-OSP antibodies in adult North American volunteers experimentally infected with V. cholerae O1 Inaba El Tor N16961. We also measured vibriocidal and anti-cholera toxin B subunit (CtxB) antibodies and compared responses to those in matched cholera patients in Dhaka, Bangladesh, an area endemic for cholera. Principal findings We found prominent anti-OSP antibody responses following initial cholera infection: these responses were largely IgM and IgA, and highest to infecting serotype with significant cross-serotype reactivity. The anti-OSP responses peaked 10 days after infection and remained elevated over baseline for ≥ 6 months, correlated with vibriocidal responses, and may have been blunted in blood group O individuals (IgA anti-OSP). We found significant differences in immune responses between naïve and endemic zone cohorts, presumably reflecting previous exposure in the latter. Conclusions Our results define immune responses to O-specific polysaccharide in immunologically naive humans with cholera, find that they are largely IgM and IgA, may be blunted in blood group O individuals, and differ in a number of significant ways from responses in previously humans. These differences may explain in part varying degrees of protective efficacy afforded by cholera vaccination between these two populations. Trial registration number ClinicalTrials.gov NCT01895855. Cholera is an acute, secretory diarrheal disease caused by Vibrio cholerae O1. There is a growing body of evidence that immune responses targetting the O-specific polysaccharide (OSP) of V. cholerae are associated with protecton against cholera. Despite this, little is known about immune responses targeting OSP in immunologically naive individals. Cholera affects populations in severely resource-limited areas. To address this, we assessed anti-OSP immune responses in North American volunteers experimentally infected with wild type V. cholerae O1 El Tor Inaba strain N16961. We found that antibody responses were largely IgM and IgA, cross-reacted to both Inaba and Ogawa serotypes, and correlated with vibriocidal responses. We found no association of responses to severity of disease, but did find that blood group O individuals mounted lower IgA fold-changes to OSP than did non-blood group O individuals. Individuals with blood group O are at particular risk for severe cholera, and are less well protected against cholera following oral vaccination. We also compared anti-OSP responses in previously unexposed individuals to responses in matched endemic zone patients, and found a number of significant differences. Such differences may explain in part the varying degrees of protective efficacy afforded by cholera vaccination between these two populations.
Collapse
Affiliation(s)
- Motaher Hossain
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- * E-mail:
| | - Kamrul Islam
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Leslie M. Mayo Smith
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ana A. Weil
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Pavol Kováč
- National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry (LBC), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peng Xu
- National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry (LBC), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jakub K. Simon
- Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Wilbur H. Chen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michael Lock
- PaxVax, Inc., Redwood City, California, United States of America
| | - Caroline E. Lyon
- Vaccine Testing Center, Departments of Medicine and Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Beth D. Kirkpatrick
- Vaccine Testing Center, Departments of Medicine and Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Mitchell Cohen
- Cincinnati Children’s Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Myron M. Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marc Gurwith
- PaxVax, Inc., Redwood City, California, United States of America
| | - Daniel T. Leung
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Andrew S. Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
28
|
Weil AA, Ellis CN, Debela MD, Bhuiyan TR, Rashu R, Bourque DL, Khan AI, Chowdhury F, LaRocque RC, Charles RC, Ryan ET, Calderwood SB, Qadri F, Harris JB. Posttranslational Regulation of IL-23 Production Distinguishes the Innate Immune Responses to Live Toxigenic versus Heat-Inactivated Vibrio cholerae. mSphere 2019; 4:e00206-19. [PMID: 31434744 PMCID: PMC6706466 DOI: 10.1128/msphere.00206-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/06/2019] [Indexed: 12/25/2022] Open
Abstract
Vibrio cholerae infection provides long-lasting protective immunity, while oral, inactivated cholera vaccines (OCV) result in more-limited protection. To identify characteristics of the innate immune response that may distinguish natural V. cholerae infection from OCV, we stimulated differentiated, macrophage-like THP-1 cells with live versus heat-inactivated V. cholerae with and without endogenous or exogenous cholera holotoxin (CT). Interleukin 23A gene (IL23A) expression was higher in cells exposed to live V. cholerae than in cells exposed to inactivated organisms (mean change, 38-fold; 95% confidence interval [95% CI], 4.0 to 42; P < 0.01). IL-23 secretion was also higher in cells exposed to live V. cholerae than in cells exposed to inactivated V. cholerae (mean change, 5.6-fold; 95% CI, 4.4 to 11; P < 0.001). This increase in IL-23 secretion was more marked than for other key innate immune cytokines (e.g., IL-1β and IL-6) and dependent on exposure to the combination of both live V. cholerae and CT. While IL-23 secretion was reduced following stimulation with either heat-inactivated wild-type V. cholerae or a live isogenic ctxAB mutant of V. cholerae, the addition of exogenous CT restored IL-23 secretion in combination with the live isogenic ctxAB mutant V. cholerae, but not when it was paired with stimulation by heat-inactivated V. cholerae The posttranslational regulation of IL-23 under these conditions was dependent on the activity of the cysteine protease cathepsin B. In humans, IL-23 promotes the differentiation of Th17 cells to T follicular helper cells, which maintain and support long-term memory B cell generation after infection. Based on these findings, the stimulation of IL-23 production may be a determinant of protective immunity following V. cholerae infection.IMPORTANCE An episode of cholera provides better protection against reinfection than oral cholera vaccines, and the reasons for this are still under study. To better understand this, we compared the immune responses of human cells exposed to live Vibrio cholerae with those of cells exposed to heat-killed V. cholerae (similar to the contents of oral cholera vaccines). We also compared the effects of active cholera toxin and the inactive cholera toxin B subunit (which is included in some cholera vaccines). One key immune signaling molecule, IL-23, was uniquely produced in response to the combination of live bacteria and active cholera holotoxin. Stimulation with V. cholerae that did not produce the active toxin or was killed did not produce an IL-23 response. The stimulation of IL-23 production by cholera toxin-producing V. cholerae may be important in conferring long-term immunity after cholera.
Collapse
Affiliation(s)
- Ana A Weil
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Crystal N Ellis
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Meti D Debela
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Taufiqur R Bhuiyan
- Infectious Diseases Division, International Center for Diarrheal Disease and Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rasheduzzaman Rashu
- Infectious Diseases Division, International Center for Diarrheal Disease and Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Daniel L Bourque
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ashraful I Khan
- Infectious Diseases Division, International Center for Diarrheal Disease and Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- Infectious Diseases Division, International Center for Diarrheal Disease and Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Regina C LaRocque
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Richelle C Charles
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward T Ryan
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Stephen B Calderwood
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Center for Diarrheal Disease and Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jason B Harris
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW In this review, we will examine updates in cholera epidemiology, advances in our understanding of pathogenesis and protective immunity, and changes to prevention strategies. RECENT FINDINGS New modeling techniques and molecular epidemiology have led to advancements in our understanding of how Vibrio cholerae has persisted and re-emerged in new areas during the seventh pandemic. Use of next-generation sequencing has shed new light on immune responses to disease and vaccination, and the role of the gut microbiome in cholera. Increased efficacy and availability of vaccines have made long-term goals of global control of cholera more achievable. SUMMARY Advancements in our understanding of immunity and susceptibility to V. cholerae, in addition to an increased global commitment to disease prevention, have led to optimism for the future of cholera prevention.
Collapse
|
30
|
Reynolds AW, Mata-Míguez J, Miró-Herrans A, Briggs-Cloud M, Sylestine A, Barajas-Olmos F, Garcia-Ortiz H, Rzhetskaya M, Orozco L, Raff JA, Hayes MG, Bolnick DA. Comparing signals of natural selection between three Indigenous North American populations. Proc Natl Acad Sci U S A 2019; 116:9312-9317. [PMID: 30988184 PMCID: PMC6511053 DOI: 10.1073/pnas.1819467116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
While many studies have highlighted human adaptations to diverse environments worldwide, genomic studies of natural selection in Indigenous populations in the Americas have been absent from this literature until very recently. Since humans first entered the Americas some 20,000 years ago, they have settled in many new environments across the continent. This diversity of environments has placed variable selective pressures on the populations living in each region, but the effects of these pressures have not been extensively studied to date. To help fill this gap, we collected genome-wide data from three Indigenous North American populations from different geographic regions of the continent (Alaska, southeastern United States, and central Mexico). We identified signals of natural selection in each population and compared signals across populations to explore the differences in selective pressures among the three regions sampled. We find evidence of adaptation to cold and high-latitude environments in Alaska, while in the southeastern United States and central Mexico, pathogenic environments seem to have created important selective pressures. This study lays the foundation for additional functional and phenotypic work on possible adaptations to varied environments during the history of population diversification in the Americas.
Collapse
Affiliation(s)
- Austin W Reynolds
- Department of Anthropology, University of California, Davis, CA 95616;
| | - Jaime Mata-Míguez
- Department of Anthropology, The University of Texas at Austin, Austin, TX 78712
| | - Aida Miró-Herrans
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
| | - Marcus Briggs-Cloud
- Maskoke, Gainesville, FL 32611
- School of Natural Resources and Environment, University of Florida, Gainesville, FL 32611
| | | | | | | | - Margarita Rzhetskaya
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lorena Orozco
- National Institute of Genomic Medicine, Delegación Tlalpan, 14610 México
| | - Jennifer A Raff
- Department of Anthropology, University of Kansas, Lawrence, KS 66045-7556
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Anthropology, Northwestern University, Evanston, IL 60208
| | - Deborah A Bolnick
- Department of Anthropology, University of Connecticut, Storrs, CT 06269-1176
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269-1176
| |
Collapse
|
31
|
Human Immunology through the Lens of Evolutionary Genetics. Cell 2019; 177:184-199. [DOI: 10.1016/j.cell.2019.02.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/04/2023]
|
32
|
Richterman A, Sainvilien DR, Eberly L, Ivers LC. Individual and Household Risk Factors for Symptomatic Cholera Infection: A Systematic Review and Meta-analysis. J Infect Dis 2018; 218:S154-S164. [PMID: 30137536 PMCID: PMC6188541 DOI: 10.1093/infdis/jiy444] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Cholera has caused 7 global pandemics, including the current one which has been ongoing since 1961. A systematic review of risk factors for symptomatic cholera infection has not been previously published. Methods In accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we performed a systematic review and meta-analysis of individual and household risk factors for symptomatic cholera infection. Results We identified 110 studies eligible for inclusion in qualitative synthesis. Factors associated with symptomatic cholera that were eligible for meta-analysis included education less than secondary level (summary odds ratio [SOR], 2.64; 95% confidence interval [CI], 1.41-4.92; I2 = 8%), unimproved water source (SOR, 3.48; 95% CI, 2.18-5.54; I2 = 77%), open container water storage (SOR, 2.03; 95% CI, 1.09-3.76; I2 = 62%), consumption of food outside the home (SOR, 2.76; 95% CI, 1.62-4.69; I2 = 64%), household contact with cholera (SOR, 2.91; 95% CI, 1.62-5.25; I2 = 89%), water treatment (SOR, 0.37; 95% CI, .21-.63; I2 = 74%), and handwashing (SOR, 0.29; 95% CI, .20-.43; I2 = 37%). Other notable associations with symptomatic infection included income/wealth, blood group, gastric acidity, infant breastfeeding status, and human immunodeficiency virus infection. Conclusions We identified potential risk factors for symptomatic cholera infection including environmental characteristics, socioeconomic factors, and intrinsic patient factors. Ultimately, a combination of interventional approaches targeting various groups with risk-adapted intensities may prove to be the optimal strategy for cholera control.
Collapse
Affiliation(s)
- Aaron Richterman
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Lauren Eberly
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Louise C Ivers
- Center for Global Health, Massachusetts General Hospital
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Abstract
Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Natural selection is an important influence on human genetic variation. Because immune and inflammatory function genes are enriched for signals of positive selection, the prevalence of rheumatic disease-risk alleles seen in different populations is partially the result of differing selective pressures (eg, due to pathogens). This review summarizes the genetic regions associated with susceptibility to different rheumatic diseases and concomitant evidence for natural selection, including known agents of selection exerting selective pressure in these regions.
Collapse
Affiliation(s)
- Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 816, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
34
|
Ferdous J, Sultana R, Rashid RB, Tasnimuzzaman M, Nordland A, Begum A, Jensen PKM. A Comparative Analysis of Vibrio cholerae Contamination in Point-of-Drinking and Source Water in a Low-Income Urban Community, Bangladesh. Front Microbiol 2018; 9:489. [PMID: 29616005 PMCID: PMC5867346 DOI: 10.3389/fmicb.2018.00489] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Bangladesh is a cholera endemic country with a population at high risk of cholera. Toxigenic and non-toxigenic Vibrio cholerae (V. cholerae) can cause cholera and cholera-like diarrheal illness and outbreaks. Drinking water is one of the primary routes of cholera transmission in Bangladesh. The aim of this study was to conduct a comparative assessment of the presence of V. cholerae between point-of-drinking water and source water, and to investigate the variability of virulence profile using molecular methods of a densely populated low-income settlement of Dhaka, Bangladesh. Water samples were collected and tested for V. cholerae from "point-of-drinking" and "source" in 477 study households in routine visits at 6 week intervals over a period of 14 months. We studied the virulence profiles of V. cholerae positive water samples using 22 different virulence gene markers present in toxigenic O1/O139 and non-O1/O139 V. cholerae using polymerase chain reaction (PCR). A total of 1,463 water samples were collected, with 1,082 samples from point-of-drinking water in 388 households and 381 samples from 66 water sources. V. cholerae was detected in 10% of point-of-drinking water samples and in 9% of source water samples. Twenty-three percent of households and 38% of the sources were positive for V. cholerae in at least one visit. Samples collected from point-of-drinking and linked sources in a 7 day interval showed significantly higher odds (P < 0.05) of V. cholerae presence in point-of-drinking compared to source [OR = 17.24 (95% CI = 7.14-42.89)] water. Based on the 7 day interval data, 53% (17/32) of source water samples were negative for V. cholerae while linked point-of-drinking water samples were positive. There were significantly higher odds (p < 0.05) of the presence of V. cholerae O1 [OR = 9.13 (95% CI = 2.85-29.26)] and V. cholerae O139 [OR = 4.73 (95% CI = 1.19-18.79)] in source water samples than in point-of-drinking water samples. Contamination of water at the point-of-drinking is less likely to depend on the contamination at the water source. Hygiene education interventions and programs should focus and emphasize on water at the point-of-drinking, including repeated cleaning of drinking vessels, which is of paramount importance in preventing cholera.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Rebeca Sultana
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark.,International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh.,Institute of Health Economics, University of Dhaka, Dhaka, Bangladesh
| | - Ridwan B Rashid
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Md Tasnimuzzaman
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Andreas Nordland
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K M Jensen
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Analysis of the Human Mucosal Response to Cholera Reveals Sustained Activation of Innate Immune Signaling Pathways. Infect Immun 2018; 86:IAI.00594-17. [PMID: 29133347 DOI: 10.1128/iai.00594-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
To better understand the innate immune response to Vibrio cholerae infection, we tracked gene expression in the duodenal mucosa of 11 Bangladeshi adults with cholera, using biopsy specimens obtained immediately after rehydration and 30 and 180 days later. We identified differentially expressed genes and performed an analysis to predict differentially regulated pathways and upstream regulators. During acute cholera, there was a broad increase in the expression of genes associated with innate immunity, including activation of the NF-κB, mitogen-activated protein kinase (MAPK), and Toll-like receptor (TLR)-mediated signaling pathways, which, unexpectedly, persisted even 30 days after infection. Focusing on early differences in gene expression, we identified 37 genes that were differentially expressed on days 2 and 30 across the 11 participants. These genes included the endosomal Toll-like receptor gene TLR8, which was expressed in lamina propria cells. Underscoring a potential role for endosomal TLR-mediated signaling in vivo, our pathway analysis found that interferon regulatory factor 7 and beta 1 and alpha 2 interferons were among the top upstream regulators activated during cholera. Among the innate immune effectors, we found that the gene for DUOX2, an NADPH oxidase involved in the maintenance of intestinal homeostasis, was upregulated in intestinal epithelial cells during cholera. Notably, the observed increases in DUOX2 and TLR8 expression were also modeled in vitro when Caco-2 or THP-1 cells, respectively, were stimulated with live V. cholerae but not with heat-killed organisms or cholera toxin alone. These previously unidentified features of the innate immune response to V. cholerae extend our understanding of the mucosal immune signaling pathways and effectors activated in vivo following cholera.
Collapse
|
36
|
Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. Lancet 2017; 390:1539-1549. [PMID: 28302312 DOI: 10.1016/s0140-6736(17)30559-7] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/01/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
Cholera is an acute, watery diarrhoeal disease caused by Vibrio cholerae of the O1 or O139 serogroups. In the past two centuries, cholera has emerged and spread from the Ganges Delta six times and from Indonesia once to cause global pandemics. Rational approaches to the case management of cholera with oral and intravenous rehydration therapy have reduced the case fatality of cholera from more than 50% to much less than 1%. Despite improvements in water quality, sanitation, and hygiene, as well as in the clinical treatment of cholera, the disease is still estimated to cause about 100 000 deaths every year. Most deaths occur in cholera-endemic settings, and virtually all deaths occur in developing countries. Contemporary understanding of immune protection against cholera, which results from local intestinal immunity, has yielded safe and protective orally administered cholera vaccines that are now globally stockpiled for use in the control of both epidemic and endemic cholera.
Collapse
Affiliation(s)
- John D Clemens
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh; UCLA Fielding School of Public Health, Los Angeles, CA, USA; Korea University School of Medicine, Seoul, Korea.
| | | | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | | |
Collapse
|
37
|
Mottram L, Wiklund G, Larson G, Qadri F, Svennerholm AM. FUT2 non-secretor status is associated with altered susceptibility to symptomatic enterotoxigenic Escherichia coli infection in Bangladeshis. Sci Rep 2017; 7:10649. [PMID: 28878367 PMCID: PMC5587594 DOI: 10.1038/s41598-017-10854-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Polymorphisms of the FUT2 gene alters glycan ABO(H) blood group and Lewis antigen expression (commonly known as non-secretor status) in the small intestinal mucosa. Whilst non-secretor status affects 20% of the population worldwide, it has been reported to be present in up to 40% of all Bangladeshis. Furthermore, Bangladeshi children are reportedly more susceptible to symptomatic enterotoxigenic Escherichia coli (ETEC) infection if they are non-secretors. Therefore, in an attempt to identify a non-secretor status genotypic biomarker of altered susceptibility to ETEC infection, we used the 1000 Genomes Project to identify three population related non-synonymous FUT2 single nucleotide polymorphisms (SNPs). We then assessed the genotypic frequency of these SNPs in Bangladeshi children who had been clinically monitored for ETEC infection. One novel missense FUT2 SNP, rs200157007-TT and the earlier established rs601338-AA SNP were shown to be causing non-secretor status, with these SNPs being associated with symptomatic but not asymptomatic ETEC infection. Moreover, rs200157007-TT and rs601338-AA were associated with symptomatic but not asymptomatic ETEC infection irrespective of the child’s Lewis secretor status, suggesting FUT2, the regulator of Lewis and ABO(H) antigens in the intestinal mucosa, could be a host genotypic feature affecting susceptibility to ETEC infection.
Collapse
Affiliation(s)
- Lynda Mottram
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Gudrun Wiklund
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Liu X, Lu D, Saw WY, Shaw PJ, Wangkumhang P, Ngamphiw C, Fucharoen S, Lert-Itthiporn W, Chin-Inmanu K, Chau TNB, Anders K, Kasturiratne A, de Silva HJ, Katsuya T, Kimura R, Nabika T, Ohkubo T, Tabara Y, Takeuchi F, Yamamoto K, Yokota M, Mamatyusupu D, Yang W, Chung YJ, Jin L, Hoh BP, Wickremasinghe AR, Ong RH, Khor CC, Dunstan SJ, Simmons C, Tongsima S, Suriyaphol P, Kato N, Xu S, Teo YY. Characterising private and shared signatures of positive selection in 37 Asian populations. Eur J Hum Genet 2017; 25:499-508. [PMID: 28098149 DOI: 10.1038/ejhg.2016.181] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 10/22/2016] [Accepted: 11/01/2016] [Indexed: 11/09/2022] Open
Abstract
The Asian Diversity Project (ADP) assembled 37 cosmopolitan and ethnic minority populations in Asia that have been densely genotyped across over half a million markers to study patterns of genetic diversity and positive natural selection. We performed population structure analyses of the ADP populations and divided these populations into four major groups based on their genographic information. By applying a highly sensitive algorithm haploPS to locate genomic signatures of positive selection, 140 distinct genomic regions exhibiting evidence of positive selection in at least one population were identified. We examined the extent of signal sharing for regions that were selected in multiple populations and observed that populations clustered in a similar fashion to that of how the ancestry clades were phylogenetically defined. In particular, populations predominantly located in South Asia underwent considerably different adaptation as compared with populations from the other geographical regions. Signatures of positive selection present in multiple geographical regions were predicted to be older and have emerged prior to the separation of the populations in the different regions. In contrast, selection signals present in a single population group tended to be of lower frequencies and thus can be attributed to recent evolutionary events.
Collapse
Affiliation(s)
- Xuanyao Liu
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Dongsheng Lu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Woei-Yuh Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Philip J Shaw
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pongsakorn Wangkumhang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Suthat Fucharoen
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Worachart Lert-Itthiporn
- Faculty of Science, Molecular Medicine Graduate Programme, Mahidol University, Bangkok, Thailand.,Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kwanrutai Chin-Inmanu
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tran Nguyen Bich Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Katie Anders
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK
| | | | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Takayoshi Ohkubo
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Japan
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi, China
| | - Wenjun Yang
- Key Laboratory of Reproduction and Heredity of Ningxia Region, Ningxia Medical University, YinchuanChina
| | - Yeun-Jun Chung
- Department of Microbiology, Integrated Research Center for Genome Polymorphism, The Catholic University Medical College, Seoul, Korea
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE), Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Boon-Peng Hoh
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | | | - RickTwee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sarah J Dunstan
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Cameron Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK.,Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Prapat Suriyaphol
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Institute of Personalized Genomics and Gene Therapy (IPGG), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shuhua Xu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Yik-Ying Teo
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Abstract
The wealth of available genetic information is allowing the reconstruction of human demographic and adaptive history. Demography and purifying selection affect the purge of rare, deleterious mutations from the human population, whereas positive and balancing selection can increase the frequency of advantageous variants, improving survival and reproduction in specific environmental conditions. In this review, I discuss how theoretical and empirical population genetics studies, using both modern and ancient DNA data, are a powerful tool for obtaining new insight into the genetic basis of severe disorders and complex disease phenotypes, rare and common, focusing particularly on infectious disease risk.
Collapse
Affiliation(s)
- Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes & Genetics, Institut Pasteur, Paris, 75015, France.
- Centre National de la Recherche Scientifique, URA3012, Paris, 75015, France.
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
40
|
Vatsiou AI, Bazin E, Gaggiotti OE. Changes in selective pressures associated with human population expansion may explain metabolic and immune related pathways enriched for signatures of positive selection. BMC Genomics 2016; 17:504. [PMID: 27444955 PMCID: PMC4955149 DOI: 10.1186/s12864-016-2783-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
Background The study of local adaptation processes is a very important research topic in the field of population genomics. There is a particular interest in the study of human populations because they underwent a process of rapid spatial expansion and faced important environmental changes that translated into changes in selective pressures. New mutations may have been selected for in the new environment and previously existing genetic variants may have become detrimental. Immune related genes may have been released from the selective pressure exerted by pathogens in the ancestral environment and new variants may have been positively selected due to pathogens present in the newly colonized habitat. Also, variants that had a selective advantage in past environments may have become deleterious in the modern world due to external stimuli including climatic, dietary and behavioral changes, which could explain the high prevalence of some polygenic diseases such as diabetes and obesity. Results We performed an enrichment analysis to identify gene sets enriched for signals of positive selection in humans. We used two genome scan methods, XPCLR and iHS to detect selection using a dense coverage of SNP markers combined with two gene set enrichment approaches. We identified immune related gene sets that could be involved in the protection against pathogens especially in the African population. We also identified the glycolysis & gluconeogenesis gene set, related to metabolism, which supports the thrifty genotype hypothesis invoked to explain the current high prevalence of diseases such as diabetes and obesity. Extending our analysis to the gene level, we found signals for 23 candidate genes linked to metabolic syndrome, 13 of which are new candidates for positive selection. Conclusions Our study provides a list of genes and gene sets associated with immunity and metabolic syndrome that are enriched for signals of positive selection in three human populations (Europeans, Africans and Asians). Our results highlight differences in the relative importance of pathogens as drivers of local adaptation in different continents and provide new insights into the evolution and high incidence of metabolic syndrome in modern human populations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2783-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra I Vatsiou
- Laboratoire d'Écologie Alpine (LECA), Univesrity Joseph Fourier, 2233 Rue de la Piscine, 38041, Grenoble, Cedex 9, France. .,Scottish Oceans Institute, East Sands, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK. .,Oh no sequences! Research group, Era7Bioinformatics, Plaza de Campo Verde, 3, 18001, Granada, Spain.
| | - Eric Bazin
- Laboratoire d'Écologie Alpine (LECA), Univesrity Joseph Fourier, 2233 Rue de la Piscine, 38041, Grenoble, Cedex 9, France
| | - Oscar E Gaggiotti
- Laboratoire d'Écologie Alpine (LECA), Univesrity Joseph Fourier, 2233 Rue de la Piscine, 38041, Grenoble, Cedex 9, France.,Scottish Oceans Institute, East Sands, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK
| |
Collapse
|
41
|
Kuhlmann FM, Santhanam S, Kumar P, Luo Q, Ciorba MA, Fleckenstein JM. Blood Group O-Dependent Cellular Responses to Cholera Toxin: Parallel Clinical and Epidemiological Links to Severe Cholera. Am J Trop Med Hyg 2016; 95:440-3. [PMID: 27162272 DOI: 10.4269/ajtmh.16-0161] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/01/2016] [Indexed: 12/25/2022] Open
Abstract
Because O blood group has been associated with more severe cholera infections, it has been hypothesized that cholera toxin (CT) may bind non-O blood group antigens of the intestinal mucosae, thereby preventing efficient interaction with target GM1 gangliosides required for uptake of the toxin and activation of cyclic adenosine monophosphate (cAMP) signaling in target epithelia. Herein, we show that after exposure to CT, human enteroids expressing O blood group exhibited marked increase in cAMP relative to cells derived from blood group A individuals. Likewise, using CRISPR/Cas9 engineering, a functional group O line (HT-29-A(-/-)) was generated from a parent group A HT-29 line. CT stimulated robust cAMP responses in HT-29-A(-/-) cells relative to HT-29 cells. These findings provide a direct molecular link between blood group O expression and differential cellular responses to CT, recapitulating clinical and epidemiologic observations.
Collapse
Affiliation(s)
- F Matthew Kuhlmann
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Srikanth Santhanam
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Pardeep Kumar
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Qingwei Luo
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Matthew A Ciorba
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri. Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri. Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri. Veterans Affairs Medical Center, Saint Louis, Missouri.
| |
Collapse
|
42
|
Mentzer AJ, O'Connor D, Pollard AJ, Hill AVS. Searching for the human genetic factors standing in the way of universally effective vaccines. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0341. [PMID: 25964463 DOI: 10.1098/rstb.2014.0341] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccines have revolutionized modern public health. The effectiveness of some vaccines is limited by the variation in response observed between individuals and across populations. There is compelling evidence that a significant proportion of this variability can be attributed to human genetic variation, especially for those vaccines administered in early life. Identifying and understanding the determinants of this variation could have a far-reaching influence upon future methods of vaccine design and deployment. In this review, we summarize the genetic studies that have been undertaken attempting to identify the genetic determinants of response heterogeneity for the vaccines against hepatitis B, measles and rubella. We offer a critical appraisal of these studies and make a series of suggestions about how modern genetic techniques, including genome-wide association studies, could be used to characterize the genetic architecture of vaccine response heterogeneity. We conclude by suggesting how the findings from such studies could be translated to improve vaccine effectiveness and target vaccination in a more cost-effective manner.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel O'Connor
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Adrian V S Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| |
Collapse
|
43
|
Genomic reconstruction of the history of extant populations of India reveals five distinct ancestral components and a complex structure. Proc Natl Acad Sci U S A 2016; 113:1594-9. [PMID: 26811443 DOI: 10.1073/pnas.1513197113] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
India, occupying the center stage of Paleolithic and Neolithic migrations, has been underrepresented in genome-wide studies of variation. Systematic analysis of genome-wide data, using multiple robust statistical methods, on (i) 367 unrelated individuals drawn from 18 mainland and 2 island (Andaman and Nicobar Islands) populations selected to represent geographic, linguistic, and ethnic diversities, and (ii) individuals from populations represented in the Human Genome Diversity Panel (HGDP), reveal four major ancestries in mainland India. This contrasts with an earlier inference of two ancestries based on limited population sampling. A distinct ancestry of the populations of Andaman archipelago was identified and found to be coancestral to Oceanic populations. Analysis of ancestral haplotype blocks revealed that extant mainland populations (i) admixed widely irrespective of ancestry, although admixtures between populations was not always symmetric, and (ii) this practice was rapidly replaced by endogamy about 70 generations ago, among upper castes and Indo-European speakers predominantly. This estimated time coincides with the historical period of formulation and adoption of sociocultural norms restricting intermarriage in large social strata. A similar replacement observed among tribal populations was temporally less uniform.
Collapse
|
44
|
Parolo S, Lisa A, Gentilini D, Di Blasio AM, Barlera S, Nicolis EB, Boncoraglio GB, Parati EA, Bione S. Characterization of the biological processes shaping the genetic structure of the Italian population. BMC Genet 2015; 16:132. [PMID: 26553317 PMCID: PMC4640365 DOI: 10.1186/s12863-015-0293-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
Background The genetic structure of human populations is the outcome of the combined action of different processes such as demographic dynamics and natural selection. Several efforts toward the characterization of population genetic architectures and the identification of adaptation signatures were recently made. In this study, we provide a genome-wide depiction of the Italian population structure and the analysis of the major determinants of the current existing genetic variation. Results We defined and characterized 210 genomic loci associated with the first Principal Component calculated on the Italian genotypic data and correlated to the North–south genetic gradient. Using a gene-enrichment approach we identified the immune function as primarily involved in the Italian population differentiation and we described a locus on chromosome 13 showing combined evidence of North–south diversification in allele frequencies and signs of recent positive selection. In this region our bioinformatics analysis pinpointed an uncharacterized long intergenic non-coding (lincRNA), whose expression appeared specific for immune-related tissues suggesting its relevance for the immune function. Conclusions Our study, combining population genetic analyses with biological insights provides a description of the Italian genetic structure that in future could contribute to the evaluation of complex diseases risk in the population context. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0293-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvia Parolo
- Computational Biology Unit, Institute of Molecular Genetics-National Research Council, Pavia, Italy.
| | - Antonella Lisa
- Computational Biology Unit, Institute of Molecular Genetics-National Research Council, Pavia, Italy.
| | - Davide Gentilini
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy.
| | | | - Simona Barlera
- Department of Cardiovascular Research, IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy.
| | - Enrico B Nicolis
- Department of Cardiovascular Research, IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy.
| | - Giorgio B Boncoraglio
- Department of Cerebrovascular Diseases, IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Eugenio A Parati
- Department of Cerebrovascular Diseases, IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Silvia Bione
- Computational Biology Unit, Institute of Molecular Genetics-National Research Council, Pavia, Italy.
| |
Collapse
|
45
|
Chowdhury F, Kuchta A, Khan AI, Faruque ASG, Calderwood SB, Ryan ET, Qadri F. The increased severity in patients presenting to hospital with diarrhea in Dhaka, Bangladesh since the emergence of the hybrid strain of Vibrio cholerae O1 is not unique to cholera patients. Int J Infect Dis 2015; 40:9-14. [PMID: 26409202 PMCID: PMC4666742 DOI: 10.1016/j.ijid.2015.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/07/2015] [Accepted: 09/06/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND A hybrid strain of Vibrio cholerae O1 El Tor that expresses a classical cholera toxin (CT) emerged in 2001. This hybrid variant rapidly replaced the previous El Tor strain around the world. The global emergence of this variant coincided with anecdotal reports that cholera patients were presenting with more severe dehydration and disease in many locations. METHODS A comparison was made of the severity of disease before and after the emergence of the hybrid strain in cholera patients attending an icddr,b hospital in Dhaka, Bangladesh. RESULTS It was found that cholera patients presented with more severe dehydration and severe disease in the later period. However, this was also true for all non-cholera patients as well. In addition, in sub-analyses of patients who presented with rotavirus and enterotoxigenic Escherichia coli (ETEC), similar results were found. Comparing the two periods for differences in patient characteristics, nutritional status, vaccination status, and income, no plausible cause for patients presenting with more severe disease was identified in the later period. CONCLUSIONS As a shift in severity for both cholera and non-cholera was observed, these results indicate that the altered El Tor strain cannot fully explain the difference in cholera severity before and after 2001.
Collapse
Affiliation(s)
- Fahima Chowdhury
- International Centre for Diarrheal Disease Research (icddr,b), Dhaka, Bangladesh
| | - Alison Kuchta
- International Centre for Diarrheal Disease Research (icddr,b), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrheal Disease Research (icddr,b), Dhaka, Bangladesh
| | - A S G Faruque
- International Centre for Diarrheal Disease Research (icddr,b), Dhaka, Bangladesh
| | - Stephen B Calderwood
- Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Edward T Ryan
- Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Harvard School of Public Health, Boston, Massachusetts, USA
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research (icddr,b), Dhaka, Bangladesh.
| |
Collapse
|
46
|
Ramos PS, Shedlock AM, Langefeld CD. Genetics of autoimmune diseases: insights from population genetics. J Hum Genet 2015; 60:657-64. [PMID: 26223182 PMCID: PMC4660050 DOI: 10.1038/jhg.2015.94] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 12/14/2022]
Abstract
Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Autoimmune diseases (ADs) are a family of complex heterogeneous disorders with similar underlying mechanisms characterized by immune responses against self. Collectively, ADs are common, exhibit gender and ethnic disparities, and increasing incidence. As natural selection is an important influence on human genetic variation, and immune function genes are enriched for signals of positive selection, it is thought that the prevalence of AD risk alleles seen in different population is partially the result of differing selective pressures (for example, due to pathogens). With the advent of high-throughput technologies, new analytical methodologies and large-scale projects, evidence for the role of natural selection in contributing to the heritable component of ADs keeps growing. This review summarizes the genetic regions associated with susceptibility to different ADs and concomitant evidence for selection, including known agents of selection exerting selective pressure in these regions. Examples of specific adaptive variants with phenotypic effects are included as an evidence of natural selection increasing AD susceptibility. Many of the complexities of gene effects in different ADs can be explained by population genetics phenomena. Integrating AD susceptibility studies with population genetics to investigate how natural selection has contributed to genetic variation that influences disease risk will help to identify functional variants and elucidate biological mechanisms. As such, the study of population genetics in human population holds untapped potential for elucidating the genetic causes of human disease and more rapidly focusing to personalized medicine.
Collapse
Affiliation(s)
- Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew M Shedlock
- Department of Biology, College of Charleston, Charleston, SC, USA
- Hollings Marine Laboratory Center for Marine Biomedicine and College of Graduate Studies, Medical University of South Carolina, Charleston, SC, USA
| | - Carl D Langefeld
- Division of Public Health Sciences, Department of Biostatistical Sciences; and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
47
|
Boucher Y, Orata FD, Alam M. The out-of-the-delta hypothesis: dense human populations in low-lying river deltas served as agents for the evolution of a deadly pathogen. Front Microbiol 2015; 6:1120. [PMID: 26539168 PMCID: PMC4609888 DOI: 10.3389/fmicb.2015.01120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/28/2015] [Indexed: 12/03/2022] Open
Abstract
Cholera is a diarrheal disease that has changed the history of mankind, devastating the world with seven pandemics from 1817 to the present day. Although there is little doubt in the causative agent of these pandemics being Vibrio cholerae of the O1 serogroup, where, when, and how this pathogen emerged is not well understood. V. cholerae is a ubiquitous coastal species that likely existed for tens of thousands of years. However, the evolution of a strain capable of causing a large-scale epidemic is likely more recent historically. Here, we propose that the unique human and physical geography of low-lying river deltas made it possible for an environmental bacterium to evolve into a deadly human pathogen. Such areas are often densely populated and salt intrusion in drinking water frequent. As V. cholerae is most abundant in brackish water, its favored environment, it is likely that coastal inhabitants would regularly ingest the bacterium and release it back in the environment. This creates a continuous selection pressure for V. cholerae to adapt to life in the human gut.
Collapse
Affiliation(s)
- Yan Boucher
- Department of Biological Sciences, University of Alberta , Edmonton, AB, Canada
| | - Fabini D Orata
- Department of Biological Sciences, University of Alberta , Edmonton, AB, Canada
| | - Munirul Alam
- Centre for Communicable Diseases, International Centre for Diarrhoeal Disease Research , Bangladesh (ICDDR,B), Dhaka, Bangladesh
| |
Collapse
|
48
|
Computational dissection of human episodic memory reveals mental process-specific genetic profiles. Proc Natl Acad Sci U S A 2015; 112:E4939-48. [PMID: 26261317 DOI: 10.1073/pnas.1500860112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory.
Collapse
|
49
|
Kim EJ, Lee CH, Nair GB, Kim DW. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1. Trends Microbiol 2015; 23:479-89. [DOI: 10.1016/j.tim.2015.03.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
|
50
|
Rishishwar L, Conley AB, Wigington CH, Wang L, Valderrama-Aguirre A, Jordan IK. Ancestry, admixture and fitness in Colombian genomes. Sci Rep 2015. [PMID: 26197429 PMCID: PMC4508918 DOI: 10.1038/srep12376] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The human dimension of the Columbian Exchange entailed substantial genetic admixture between ancestral source populations from Africa, the Americas and Europe, which had evolved separately for many thousands of years. We sought to address the implications of the creation of admixed American genomes, containing novel allelic combinations, for human health and fitness via analysis of an admixed Colombian population from Medellin. Colombian genomes from Medellin show a wide range of three-way admixture contributions from ancestral source populations. The primary ancestry component for the population is European (average = 74.6%, range = 45.0%–96.7%), followed by Native American (average = 18.1%, range = 2.1%–33.3%) and African (average = 7.3%, range = 0.2%–38.6%). Locus-specific patterns of ancestry were evaluated to search for genomic regions that are enriched across the population for particular ancestry contributions. Adaptive and innate immune system related genes and pathways are particularly over-represented among ancestry-enriched segments, including genes (HLA-B and MAPK10) that are involved in defense against endemic pathogens such as malaria. Genes that encode functions related to skin pigmentation (SCL4A5) and cutaneous glands (EDAR) are also found in regions with anomalous ancestry patterns. These results suggest the possibility that ancestry-specific loci were differentially retained in the modern admixed Colombian population based on their utility in the New World environment.
Collapse
Affiliation(s)
- Lavanya Rishishwar
- 1] School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA [2] PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia [3] BIOS Centro de Bioinformática y Biología Computacional, Manizales, Caldas, Colombia
| | - Andrew B Conley
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Lu Wang
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Augusto Valderrama-Aguirre
- 1] PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia [2] Biomedical Research Institute, Universidad Libre, Cali, Valle del Cauca, Colombia [3] Regenerar - Center of Excellence for Regenerative and Personalized Medicine, Cali, Valle del Cauca, Colombia
| | - I King Jordan
- 1] School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA [2] PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia [3] BIOS Centro de Bioinformática y Biología Computacional, Manizales, Caldas, Colombia
| |
Collapse
|