1
|
Dai J, Chen H, Fang J, Wu S, Jia Z. Vascular Remodeling: The Multicellular Mechanisms of Pulmonary Hypertension. Int J Mol Sci 2025; 26:4265. [PMID: 40362501 PMCID: PMC12072204 DOI: 10.3390/ijms26094265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Pulmonary hypertension (PH) is a serious cardiovascular disease caused by a variety of pathogenic factors, which is characterized by increased pulmonary vascular resistance (PVR) and progressive elevation of mean pulmonary artery pressure (mPAP). This disease can lead to right ventricular hypertrophy and, in severe cases, right heart failure and even death. Vascular remodeling-a pathological modification involving aberrant vasoconstriction, cell proliferation, apoptosis resistance, and inflammation in the pulmonary vascular system-is a significant pathological hallmark of PH and a critical process in its progression. Recent studies have found that vascular remodeling involves the participation of a diversity of cellular pathological alterations, such as the dysfunction of pulmonary artery endothelial cells (PAECs), the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), the phenotypic differentiation of pulmonary artery fibroblasts, the inflammatory response of immune cells, and pericyte proliferation. This review focuses on the mechanisms and the intercellular crosstalk of these cells in the PH process, emphasizing recent advances in knowledge regarding cellular signaling pathways, inflammatory responses, apoptosis, and proliferation. To develop better treatments, a list of possible therapeutic approaches meant to slow down certain biological functions is provided, with the aim of providing new insights into the treatment of PH by simplifying the intricacies of these complex connections. In this review, comprehensive academic databases such as PubMed, Embase, Web of Science, and Google Scholar were systematically searched to discuss studies relevant to human and animal PH, with a focus on vascular remodeling in PH.
Collapse
Affiliation(s)
- Jinjin Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Hongyang Chen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Jindong Fang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Shiguo Wu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Zhuangzhuang Jia
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| |
Collapse
|
2
|
Zhou X, Tian W, Gu S, Rabinovitch M, Nicolls MR, Snyder MP. Microbiome-Immune Interaction in Pulmonary Arterial Hypertension: What Have We Missed? RESEARCH (WASHINGTON, D.C.) 2025; 8:0669. [PMID: 40207016 PMCID: PMC11979341 DOI: 10.34133/research.0669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/02/2025] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease characterized by perivascular inflammation, immune dysregulation, and vascular remodeling. Recent studies have unveiled a potential link between the gut microbiome and PAH pathogenesis, suggesting that microbial dysbiosis and increased intestinal permeability may contribute to the inflammatory pathology in PAH and ultimately disease progression. This perspective highlights the emerging evidence of the role of leaky gut in PAH, the interplay between microbiota-induced immune responses, and the activation of endogenous retroviruses like human endogenous retrovirus K. Understanding these complex interactions opens new interdisciplinary avenues for research and therapeutic interventions, potentially transforming PAH management through microbiome-targeted strategies.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics,
Stanford University School of Medicine, Stanford, CA, USA
| | - Wen Tian
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Stanford University School of Medicine, Stanford, CA, USA
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Shenbiao Gu
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Stanford University School of Medicine, Stanford, CA, USA
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Marlene Rabinovitch
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital,
Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute,
Stanford University School of Medicine, Stanford, CA, USA
| | - Mark R. Nicolls
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Stanford University School of Medicine, Stanford, CA, USA
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford Cardiovascular Institute,
Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P. Snyder
- Department of Genetics,
Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute,
Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Peng TY, Lu JM, Zheng XL, Zeng C, He YH. The role of lactate metabolism and lactylation in pulmonary arterial hypertension. Respir Res 2025; 26:99. [PMID: 40075458 PMCID: PMC11905457 DOI: 10.1186/s12931-025-03163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by elevated pulmonary artery pressure and vascular remodeling. Recent studies have underscored the pivotal role of metabolic dysregulation and epigenetic modifications in the pathogenesis of PAH. Lactate, a byproduct of glycolysis, is now recognized as a key molecule that links cellular metabolism with activity regulation. Recent findings indicate that, in addition to altered glycolytic activity and dysregulated. Lactate homeostasis and lactylation-a novel epigenetic modification-also play a significant role in the development of PAH. This review synthesizes current knowledge regarding the relationship between altered glycolytic activity and PAH, with a particular focus on the cumulative effects of lactate in pulmonary vascular cells. Furthermore, lactylation, an emerging epigenetic modification, is discussed in the context of PAH. By elucidating the complex interplay between lactate metabolism and lactylation in PAH, this review aims to provide insights into potential therapeutic targets. Understanding these metabolic pathways may lead to innovative strategies for managing PAH and improving patient outcomes. Future research should focus on the underlying mechanisms through which lactylation influences the pathophysiology of PAH, thereby aiding in the development of targeted interventions.
Collapse
Affiliation(s)
- Tong-Yu Peng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jun-Mi Lu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xia-Lei Zheng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu-Hu He
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Lin D, Hu L, Wei D, Li Y, Yu Y, Wang Q, Sun X, Shen Y, Yu Y, Li K, Zhang Z, Cao Y, Li J, Li Y, Fulton D, Chen J, Wang J, Huang H, Chen F. Peli1 Deficiency in Macrophages Attenuates Pulmonary Hypertension by Enhancing Foxp1-Mediated Transcriptional Inhibition of IL-6. Hypertension 2025; 82:445-459. [PMID: 39618410 DOI: 10.1161/hypertensionaha.124.23542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 02/21/2025]
Abstract
BACKGROUND The infiltration of macrophages into the lungs is a common characteristic of perivascular inflammation, contributing to vascular remodeling in pulmonary hypertension (PH). Peli1 (pellino E3 ubiquitin-protein ligase 1) plays a critical role in regulating the production of proinflammatory cytokines and the polarization of macrophages in various diseases. However, the role of Peli1 in PH remains to be investigated. METHODS The expression and biological function of Peli1 were investigated in both human and experimental models of PH. Peli1-deficient mice and bone marrow transplant mice were utilized to explore the roles of Peli1 in macrophages in vivo. Proteomic analysis and molecular biology techniques were used to uncover the underlying mechanisms. RESULTS The upregulation of Peli1 in the lungs and alveolar macrophages was observed in hypoxia-treated mice. Peli1 knockout mice and myeloid Peli1-deficient mice significantly ameliorated hypoxia-induced right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling. Mechanistically, Peli1 facilitated the ubiquitination and subsequent proteasomal degradation of Foxp1 (forkhead box p1), thereby alleviating its suppression of IL (interleukin)-6 transcription and contributing to macrophage activation. Furthermore, myeloid Foxp1 deficiency partially eliminates the protective effect of myeloid Peli1 deficiency in hypoxia-induced PH mice. CONCLUSIONS Our findings demonstrate that the Peli1-Foxp1-IL-6 pathway plays a crucial role in macrophage activation and recruitment during the development of PH, underscoring the potential of Peli1 as a therapeutic target for PH.
Collapse
Affiliation(s)
- Donghai Lin
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Li Hu
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.H., J.L., Yuehua Li, J.W., F.C.), Nanjing Medical University, China
| | - Dong Wei
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center (D.W., J.C., F.C.), Nanjing Medical University, China
| | - Yan Li
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Yanfang Yu
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Qiang Wang
- Department of Rheumatology, First Affiliated Hospital of Nanjing Medical University, China (Q.W., X.S.)
| | - Xiaoxuan Sun
- Department of Rheumatology, First Affiliated Hospital of Nanjing Medical University, China (Q.W., X.S.)
| | - Yueyao Shen
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Youjia Yu
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Kai Li
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Zhiwei Zhang
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Yue Cao
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.H., J.L., Yuehua Li, J.W., F.C.), Nanjing Medical University, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.H., J.L., Yuehua Li, J.W., F.C.), Nanjing Medical University, China
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, GA (D.F., F.C.)
| | - Jingyu Chen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center (D.W., J.C., F.C.), Nanjing Medical University, China
| | - Jie Wang
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.H., J.L., Yuehua Li, J.W., F.C.), Nanjing Medical University, China
| | - Huijie Huang
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Feng Chen
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.H., J.L., Yuehua Li, J.W., F.C.), Nanjing Medical University, China
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center (D.W., J.C., F.C.), Nanjing Medical University, China
- Vascular Biology Center, Medical College of Georgia at Augusta University, GA (D.F., F.C.)
| |
Collapse
|
5
|
Kirillova A, Sethuraman M, Dong X, Kirdar A, Speyer G, Al Aaraj Y, Watson A, Schneider LK, Creager MD, Lafyatis R, Okawa S, Kim S, Chan SY. Reversal of inflammatory reprogramming by vasodilator agents in pulmonary hypertension. ERJ Open Res 2025; 11:00486-2024. [PMID: 39811555 PMCID: PMC11726584 DOI: 10.1183/23120541.00486-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a deadly disease without effective non-invasive diagnostic and prognostic testing. It remains unclear whether vasodilators reverse inflammatory activation, a part of PAH pathogenesis. Single-cell profiling of inflammatory cells in blood could clarify these PAH mechanisms. Methods We evaluated a University of Pittsburgh Medical Center cohort consisting of idiopathic PAH (iPAH) and systemic sclerosis-associated PAH (sscPAH) patients and non-PAH controls. We performed single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from controls (n=3) and from PAH patients (iPAH and sscPAH) naïve to treatment (n=4), PAH patients 3 months after phosphodiesterase-5 inhibitor (PDE5i) treatment (n=7) and PAH patients 3 months after PDE5i+macitentan treatment (n=6). We compared the transcriptomes of five PBMC subtypes from iPAH and sscPAH to observe their serial responses to treatments. Furthermore, we utilised network analysis to illuminate the altered connectivity of biological networks in this complex disease. Results We defined differential gene expression and perturbed network connectivity in PBMCs of PAH patients following treatment with PDE5i or PDE5i+macitentan. Importantly, we identified significant reversal of inflammatory transcripts and pathways in the combined PAH patient cohort after vasodilator therapy in every PBMC type assessed. The "glucagon signalling in metabolic regulation" pathway in monocytes was reversed after vasodilator therapy via two independent analysis modalities. Conclusion Via a systems-biology approach, we define inflammatory reprogramming in the blood of PAH patients and the anti-inflammatory activity of vasodilators. Such findings establish diagnostic and prognostic blood-based tools for tracking inflammatory progression of PAH and response to therapy.
Collapse
Affiliation(s)
- Anna Kirillova
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- These authors contributed equally
| | - Meena Sethuraman
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Physician Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- These authors contributed equally
| | - Xishuang Dong
- Department of Electrical and Computer Engineering, Center for Computational Systems Biology, Prairie View A&M University, Prairie View, TX, USA
| | - Almina Kirdar
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Gil Speyer
- Research Computing, Arizona State University, Tempe, AZ, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Annie Watson
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Lily K. Schneider
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Michael D. Creager
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Satoshi Okawa
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally
| | - Seungchan Kim
- Department of Electrical and Computer Engineering, Center for Computational Systems Biology, Prairie View A&M University, Prairie View, TX, USA
- These authors contributed equally
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- These authors contributed equally
| |
Collapse
|
6
|
Tomaszewski M, Styczeń A, Krysa M, Michalski A, Morawska-Michalska I, Hymos A, Wawer J, Rolińska A, Rahnama M, Urbanowicz T, Grywalska E. Lymphocyte Involvement in the Pathology of Pulmonary Arterial Hypertension. Int J Mol Sci 2024; 25:13455. [PMID: 39769220 PMCID: PMC11676877 DOI: 10.3390/ijms252413455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and right heart failure, with emerging evidence suggesting a key role for immune dysregulation in its pathogenesis. This study aimed to assess the involvement of lymphocytes, particularly regulatory T cells (Tregs), and the expression of immune checkpoint molecules PD-1 and PD-L1 on peripheral blood subpopulations in patients diagnosed with PAH. The study involved 25 patients; peripheral blood mononuclear cells were isolated and subsequently analyzed using flow cytometry to quantify the Treg cell percentage and evaluate PD-1 and PD-L1 expression across the T and B cells. We observed a significantly higher percentage of Tregs in idiopathic PAH (iPAH) patients compared to healthy controls and those with congenital heart disease-associated PAH (CHD-PAH), connective tissue disease-associated PAH (CTD-PAH), and chronic thromboembolic pulmonary hypertension (CTEPH). An overexpression of PD-1 and PD-L1 was found on CD4+ and CD8+ lymphocytes in all PAH groups, particularly in iPAH and CHD-PAH patients. These findings align with previous research highlighting Treg dysfunction and PD-1/PD-L1 overexpression as contributors to PAH pathogenesis. Our results suggest that targeting immune checkpoints and modulating Treg function could represent novel therapeutic strategies for PAH. Future research should focus on validating these biomarkers in larger, independent cohorts and exploring their clinical utility in diagnosing and managing PAH.
Collapse
Affiliation(s)
- Michał Tomaszewski
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8 Street, 20-954 Lublin, Poland; (M.T.)
| | - Agnieszka Styczeń
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8 Street, 20-954 Lublin, Poland; (M.T.)
| | - Martyna Krysa
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8 Street, 20-954 Lublin, Poland; (M.T.)
| | - Adam Michalski
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| | - Izabela Morawska-Michalska
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| | - Anna Hymos
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| | - Joanna Wawer
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| | - Agnieszka Rolińska
- Department of Applied Psychology, Medical University of Lublin, Chodźki 7 Street, 20-093 Lublin, Poland
| | - Mansur Rahnama
- Department of Dental Surgery, Medical University of Lublin, Chodźki 6 Street, 20-093 Lublin, Poland
| | - Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznań University of Medical Sciences, Fredry 10 Street, 61-107 Poznań, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Shen YH, Ding D, Lian TY, Qiu BC, Yan Y, Wang PW, Zhang WH, Jing ZC. Panorama of artery endothelial cell dysfunction in pulmonary arterial hypertension. J Mol Cell Cardiol 2024; 197:61-77. [PMID: 39437884 DOI: 10.1016/j.yjmcc.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal lung disease characterized by progressive pulmonary vascular remodeling. The initial cause of pulmonary vascular remodeling is the dysfunction of pulmonary arterial endothelial cells (PAECs), manifested by changes in the categorization of cell subtypes, endothelial programmed cell death, such as apoptosis, necroptosis, pyroptosis, ferroptosis, et al., overproliferation, senescence, metabolic reprogramming, endothelial-to-mesenchymal transition, mechanosensitivity, and regulation ability of peripheral cells. Therefore, it is essential to explore the mechanism of endothelial dysfunction in the context of PAH. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying endothelial dysfunction in PAH. We highlight the developmental process of PAECs and changes in PAH and summarise the latest classification of endothelial dysfunction. Our review could offer valuable insights into potential novel EC-specific targets for preventing and treating PAH.
Collapse
Affiliation(s)
- Ying-Huizi Shen
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dong Ding
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bao-Chen Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Wen Wang
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hua Zhang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Massaro M, Quarta S, Calabriso N, Carluccio MA, Scoditti E, Mancuso P, De Caterina R, Madonna R. Omega-3 polyunsaturated fatty acids and pulmonary arterial hypertension: Insights and perspectives. Eur J Clin Invest 2024; 54:e14277. [PMID: 38940236 PMCID: PMC11490397 DOI: 10.1111/eci.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disorder that affects the pulmonary vasculature. Although recent developments in pharmacotherapy have extended the life expectancy of PAH patients, their 5-year survival remains unacceptably low, underscoring the need for multitarget and more comprehensive approaches to managing the disease. This should incorporate not only medical, but also lifestyle interventions, including dietary changes and the use of nutraceutical support. Among these strategies, n-3 polyunsaturated fatty acids (n-3 PUFAs) are emerging as promising agents able to counteract the inflammatory component of PAH. In this narrative review, we aim at analysing the preclinical evidence for the impact of n-3 PUFAs on the pathogenesis and the course of PAH. Although evidence for the role of n-3 PUFAs deficiencies in the development and progression of PAH in humans is limited, preclinical studies suggest that these dietary components may influence several aspects of the pathobiology of PAH. Further clinical research should test the efficacy of n-3 PUFAs on top of approved clinical management. These studies will provide evidence on whether n-3 PUFAs can genuinely serve as a valuable tool to enhance the efficacy of pharmacotherapy in the treatment of PAH.
Collapse
Affiliation(s)
- Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | | | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Peter Mancuso
- Department of Nutritional Sciences and the Program in Immunology, School of Public Health, University of Michigan, 1415 Washington Hts., Ann Arbor, Michigan 481009
| | | | | |
Collapse
|
9
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
10
|
Vinícius de Paula da Silva M, Vieira Alves I, Rodrigues Pereira Alves A, Soares Lemos V, Assis Lopes do Carmo G, Morato de Castilho F, Léo Gelape C. Crosstalk between cytokines, inflammation and pulmonary arterial hypertension in heart transplant patients. Cytokine 2024; 182:156709. [PMID: 39079217 DOI: 10.1016/j.cyto.2024.156709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND Heart transplant (HT) is a therapeutic option for patients with advanced heart failure (HF) refractory to optimized treatment. Patients with advanced HF often develop pulmonary arterial hypertension (PAH). PAH is defined as a condition in which the mean pulmonary artery pressure is greater than 20 mmHg. Inflammation is an important aspect of PAH development. In this context, the objective of this work was to evaluate the relationship between the inflammatory process and the development of HAP in patients undergoing HT. METHODS The levels of interleukins IL-6, IL-1β and TNF-α were obtained by ELISA and associated with CD68+ and CD66b neutrophil counts using the immunofluorescence technique in fragments of the pulmonary arteries of donors and patients with or without chagasic cardiomyopathy subjected to HT. RESULTS The results showed a positive, statistically significant correlation (p < 0.05) between right atrium pressure levels and IL-6. Furthermore, negative, moderate, and statistically significant correlations (p < 0.05) were observed between the variables cardiac index and TNF-α, and between the levels of transpulmonary pressure grandient and TNF-α. The study also revealed the presence of a statistically significant difference (p < 0.05) between patients who died within 30 days and the highest number of CD68 cells per square micrometer in the vessel of the donor and recipient patient. CONCLUSION Suggesting the presence of a pro-inflammatory profile in HT patients, independent of measured pulmonary artery pressure levels.
Collapse
Affiliation(s)
- Marcus Vinícius de Paula da Silva
- Department of Cardiovascular Surgery, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Ildernandes Vieira Alves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais
| | | | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais
| | - Gabriel Assis Lopes do Carmo
- Department of Cardiovascular Surgery, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio Morato de Castilho
- Department of Cardiovascular Surgery, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudio Léo Gelape
- Department of Cardiovascular Surgery, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Chen D, Zhou Z, Kong N, Xu T, Liang J, Xu P, Yao B, Zhang Y, Sun Y, Li Y, Wu B, Yang X, Wang H. Inhalable SPRAY nanoparticles by modular peptide assemblies reverse alveolar inflammation in lethal Gram-negative bacteria infection. SCIENCE ADVANCES 2024; 10:eado1749. [PMID: 39270015 PMCID: PMC11397428 DOI: 10.1126/sciadv.ado1749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
Current pharmacotherapy remains futile in acute alveolar inflammation induced by Gram-negative bacteria (GNB), eliciting consequent respiratory failure. The release of lipid polysaccharides after antibiotic treatment and subsequent progress of proinflammatory cascade highlights the necessity to apply effective inflammation management simultaneously. This work describes modular self-assembling peptides for rapid anti-inflammatory programming (SPRAY) to form nanoparticles targeting macrophage specifically, having anti-inflammation and bactericidal functions synchronously. SPRAY nanoparticles accelerate the self-delivery process in macrophages via lysosomal membrane permeabilization, maintaining anti-inflammatory programming in macrophages with efficacy close to T helper 2 cytokines. By pulmonary deposition, SPRAY nanoparticles effectively suppress inflammatory infiltration and promote alveoli regeneration in murine aseptic acute lung injury. Moreover, SPRAY nanoparticles efficiently eradicate multidrug-resistant GNB in alveoli by disrupting bacterial membrane. The universal molecular design of SPRAY nanoparticles provides a robust and clinically unseen local strategy in reverse acute inflammation featured by a high accumulation of proinflammatory cellularity and drug-resistant bacteria.
Collapse
Affiliation(s)
- Dinghao Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Ziao Zhou
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Nan Kong
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Tengyan Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Juan Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Pingping Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Bingpeng Yao
- Departments of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China
| | - Yu Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Ying Sun
- Departments of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China
| | - Ying Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Bihan Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
12
|
Yu Y, Zhu J, Fu R, Guo L, Chen T, Xu Z, Zhang J, Chen W, Chen L, Yang X. Unique intestinal microflora and metabolic profile in different stages of hypertension reveal potential biomarkers for early diagnosis and prognosis. J Med Microbiol 2024; 73. [PMID: 39213028 DOI: 10.1099/jmm.0.001839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Introduction. Hypertension is the most prevalent chronic disease and a major risk factor for cardiovascular and cerebrovascular diseases.Gap statement. However, there has been no substantial breakthrough in aetiology, new drug targets, and drug development of hypertension in recent 50 years.Research aim. Therefore, this study was to screen unique intestinal microbiome and serum metabolic biomarkers which can early diagnose and track the prognosis of hypertension patients in different periods, and analyse its underlying mechanisms and functions.Methods. Four groups of stool and serum samples, including healthy controls (HCs), prehypertension (PHT), hypertension (HT), and hypertension-related complications (HTC), were collected. Microbial diversity assessed using 16S rRNA sequencing. The metabolites in serum samples were detected through LC-MS/MS analysis.Results. The composition of gut microbiota in patients exhibited dissimilarities compared to that in healthy subjects, which was distinguished by Prevotella, Slackia, Enterococcus, Bifidobacterium, and Lactobacillales may be potential markers for tracking the progression of hypertension, and Bifidobacterium, Butyricimonas, Adlercreutzia, Faecalibacterium, Lactobacillus, Ruminococcus, Clostridium, and Acidaminococcus demonstrated diagnostic value. Meanwhile, tracking the dynamic changes of deoxycholic acid, 4-oxododecanedioic acid, and l-arginine can serve as biomarkers for early diagnosis, and investigation into the mechanism by which the intestinal microbiome influences the onset and progression of hypertension. In terms of pathogenesis, the findings revealed that Bifidobacterium may caused the changes of AST, indirect bilirubin, ALT, triglyceride and uric acid by affecting metabolites cis-7-hexadecenoic acid methyl ester and N1-acetylspermidine. Additionally, Coprococcus may cause changes in albumin through the influence of androsterone enanthate.Conclusions. These findings highlight that the unique intestinal microbiome and serum metabolic profile in different periods of hypertension will provide valuable insight for timely diagnosis and prognosis tracking in hypertension patients with promising clinical applications.
Collapse
Affiliation(s)
- Yaren Yu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Jiayi Zhu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Ruixue Fu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Lina Guo
- Clinical Nutrition Department, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade RD, Guangzhou 510030, PR China
| | - Tao Chen
- Research and Development Department, Guangdong Longsee Biomedical Corporation, No. 83 Ruihe RD, Guangzhou, Guangdong 510700, PR China
| | - Zhaoyan Xu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Jianyu Zhang
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Wensheng Chen
- Arrhythmia Department, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade RD, Guangzhou 510030, PR China
| | - Lushi Chen
- Health Medical Center, Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Xili Yang
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| |
Collapse
|
13
|
Wang D, Tediashvili G, Kim D, Hu X, Luikart H, Renne T, Tian A, Nadeau KC, Velden J, Schrepfer S, Khush KK. Leukotriene B4: A potential mediator and biomarker for cardiac allograft vasculopathy. J Heart Lung Transplant 2024; 43:1336-1347. [PMID: 38670297 DOI: 10.1016/j.healun.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Cardiac allograft vasculopathy (CAV) remains the leading cause of long-term graft failure and mortality after heart transplantation. Effective preventive and treatment options are not available to date, largely because underlying mechanisms remain poorly understood. We studied the potential role of leukotriene B4 (LTB4), an inflammatory lipid mediator, in the development of CAV. METHODS We used an established preclinical rat CAV model to study the role of LTB4 in CAV. We performed syngeneic and allogeneic orthotopic aortic transplantation, after which neointimal proliferation was quantified. Animals were then treated with Bestatin, an inhibitor of LTB4 synthesis, or vehicle control for 30 days post-transplant, and evidence of graft CAV was determined by histology. We also measured serial LTB4 levels in a cohort of 28 human heart transplant recipients with CAV, 17 matched transplant controls without CAV, and 20 healthy nontransplant controls. RESULTS We showed that infiltration of the arterial wall with macrophages leads to neointimal thickening and a rise in serum LTB4 levels in our rat model of CAV. Inhibition of LTB4 production with the drug Bestatin prevents development of neointimal hyperplasia, suggesting that Bestatin may be effective therapy for CAV prevention. In a parallel study of heart transplant recipients, we found nonsignificantly elevated plasma LTB4 levels in patients with CAV, compared to patients without CAV and healthy, nontransplant controls. CONCLUSIONS This study provides key evidence supporting the role of the inflammatory cytokine LTB4 as an important mediator of CAV development and provides preliminary data suggesting the clinical benefit of Bestatin for CAV prevention.
Collapse
Affiliation(s)
- Dong Wang
- Transplant and Stem Cell Immunobiology (TSI) Lab, Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, California
| | - Grigol Tediashvili
- Transplant and Stem Cell Immunobiology (TSI) Lab, Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, California
| | - Daniel Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Xiaomeng Hu
- Transplant and Stem Cell Immunobiology (TSI) Lab, Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, California
| | - Helen Luikart
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Amy Tian
- Pulmonary and Critical Medicine, Stanford University and Palo Alto Veteran Institute of Research (PAVIR), Stanford, California
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology (TSI) Lab, Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, California
| | - Kiran K Khush
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
14
|
Vuran G, Yılmazer MM, Gerçeker E, Zihni C, Meşe T. Leukotriene B4 levels in CHD-associated paediatric pulmonary hypertension. Cardiol Young 2024; 34:1471-1475. [PMID: 38444233 DOI: 10.1017/s1047951124000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
BACKGROUND The aim of this study is to evaluate the role of leukotriene B4, an inflammatory mediator, in the development of pulmonary hypertension in paediatric patients with CHD with left-right shunt. METHODS The study included forty patients with CHD with left-right shunts. Based on haemodynamic data obtained from cardiac diagnostic catheterisation, 25 patients who met the criteria for pulmonary arterial hypertension were included in the patient group. The control group comprised 15 patients who did not meet the criteria. The standard cardiac haemodynamic study was conducted. Leukotriene B4 levels were assessed in blood samples taken from both pulmonary arteries and peripheral veins. RESULTS The median age of patients with pulmonary arterial hypertension was 10 months (range: 3-168), while the median age of the control group was 50 months (range: 3-194). In the pulmonary hypertension group, the median pulmonary artery systolic/diastolic/mean pressures were 38/18/24 mmHg, compared to 26/10/18 mmHg in the control group. Leukotriene B4 levels in pulmonary artery blood samples were significantly higher in the pulmonary arterial hypertension group compared to the controls (p < 0.05). Peripheral leukotriene B4 levels were also elevated in the pulmonary arterial hypertension group in comparison to the control group, though the difference was not statistically significant. CONCLUSION The discovery of elevated leukotriene B4 levels in pulmonary artery samples from paediatric patients with pulmonary arterial hypertension secondary to CHD with left-to-right shunt suggests that local inflammation may have a pathological role in the development of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Gamze Vuran
- Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| | - Murat Muhtar Yılmazer
- Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| | - Engin Gerçeker
- Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| | - Cüneyt Zihni
- Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| | - Timur Meşe
- Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
15
|
Wu X, Sun AR, Crawford R, Xiao Y, Wang Y, Prasadam I, Mao X. Inhibition of Leukotriene A 4 Hydrolase Suppressed Cartilage Degradation and Synovial Inflammation in a Mouse Model of Experimental Osteoarthritis. Cartilage 2024; 15:184-194. [PMID: 37086004 PMCID: PMC11368897 DOI: 10.1177/19476035231169940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE Chronic inflammation plays an important role in the osteoarthritis (OA) pathology but how this influence OA disease progression is unclear. Leukotriene B4 (LTB4) is a potent proinflammatory lipid mediator generated from arachidonic acid through the sequential activities of 5-lipoxygenase, 5-lipoxygenase-activating protein, Leukotriene A4 hydrolase (LTA4H) and its downstream product LTB4. The aim of this study is to investigate the involvement and the potential therapeutic target of the LTB4 pathway in OA disease progression. DESIGN Both clinical human cartilage samples (n = 7) and mice experimental OA models (n = 6) were used. The levels of LTA4H and leukotriene B4 receptor 1 were first examined using immunostaining in human OA/non-OA cartilage and mice experimental OA models. We also determined whether the LTA4H pathway was associated with cartilage degeneration and synovitis inflammation in OA mice models and human articular chondrocytes. RESULTS We found that both LTA4H and LTB4 receptor (BLT1) were highly expressed in human and mice OA cartilage. Inhibition of LTA4H suppressed cartilage degeneration and synovitis in OA mice model. Furthermore, inhibition of LTA4H promoted cartilage regeneration by upregulating chondrogenic genes expression such as aggrecan (ACAN), collagen 2A1 (COL2A1), and SRY-Box transcription factor 9 (SOX9). CONCLUSIONS Our results indicate that the LTA4H pathway is a crucial regulator of OA pathogenesis and suggest that LTA4H could be a therapeutic target in combat OA.
Collapse
Affiliation(s)
- Xiaoxin Wu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia RuJia Sun
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Orthopaedic Department, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yanping Wang
- Health Management Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
16
|
Zuo Y, Li B, Gao M, Xiong R, He R, Li N, Geng Q. Novel insights and new therapeutic potentials for macrophages in pulmonary hypertension. Respir Res 2024; 25:147. [PMID: 38555425 PMCID: PMC10981837 DOI: 10.1186/s12931-024-02772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Inflammation and immune processes underlie pulmonary hypertension progression. Two main different activated phenotypes of macrophages, classically activated M1 macrophages and alternatively activated M2 macrophages, are both involved in inflammatory processes related to pulmonary hypertension. Recent advances suggest that macrophages coordinate interactions among different proinflammatory and anti-inflammatory mediators, and other cellular components such as smooth muscle cells and fibroblasts. In this review, we summarize the current literature on the role of macrophages in the pathogenesis of pulmonary hypertension, including the origin of pulmonary macrophages and their response to triggers of pulmonary hypertension. We then discuss the interactions among macrophages, cytokines, and vascular adventitial fibroblasts in pulmonary hypertension, as well as the potential therapeutic benefits of macrophages in this disease. Identifying the critical role of macrophages in pulmonary hypertension will contribute to a comprehensive understanding of this pathophysiological abnormality, and may provide new perspectives for pulmonary hypertension management.
Collapse
Affiliation(s)
- Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
17
|
Zhao H, Song J, Li X, Xia Z, Wang Q, Fu J, Miao Y, Wang D, Wang X. The role of immune cells and inflammation in pulmonary hypertension: mechanisms and implications. Front Immunol 2024; 15:1374506. [PMID: 38529271 PMCID: PMC10962924 DOI: 10.3389/fimmu.2024.1374506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a malignant disease with progressive increase of pulmonary vascular pressure, which eventually leads to right heart failure. More and more evidences show that immune cells and inflammation play an important role in the occurrence and development of PH. In the context of pulmonary vascular diseases, immune cells migrate into the walls of the pulmonary vascular system. This leads to an increase in the levels of cytokines and chemokines in both the bloodstream and the surrounding tissues of the pulmonary vessels. As a result, new approaches such as immunotherapy and anti-inflammatory treatments are being considered as potential strategies to halt or potentially reverse the progression of PH. We reviewed the potential mechanisms of immune cells, cytokines and chemokines in PH development. The potential relationship of vascular cells or bone morphogenetic protein receptor 2 (BMPR2) in immune regulation was also expounded. The clinical application and future prospect of immunotherapy were further discussed.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Jialin Song
- Department of Limb Trauma, Wendeng Orthopaedic Hospital of Shandong Province, Weihai, Shandong, China
| | - Xiujun Li
- Department of Medicine, Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Library, Jinan Children's Hospital, Shandong, Jinan, Shandong, China
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiaqi Fu
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Dapeng Wang
- Department of Intensive Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xuguang Wang
- Department of Limb Trauma, Wendeng Orthopaedic Hospital of Shandong Province, Weihai, Shandong, China
| |
Collapse
|
18
|
Rajagopal S, Yu YR. Determining the Architecture of Inflammation in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2024; 209:131-133. [PMID: 38033319 PMCID: PMC10806419 DOI: 10.1164/rccm.202310-1987ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Sudarshan Rajagopal
- Departments of Medicine and Biochemistry Duke University School of Medicine Durham, North Carolina
| | - Yen-Rei Yu
- Department of Medicine University of Colorado Anschutz School of Medicine Aurora, Colorado
| |
Collapse
|
19
|
Mocumbi A, Humbert M, Saxena A, Jing ZC, Sliwa K, Thienemann F, Archer SL, Stewart S. Pulmonary hypertension. Nat Rev Dis Primers 2024; 10:1. [PMID: 38177157 DOI: 10.1038/s41572-023-00486-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Pulmonary hypertension encompasses a range of conditions directly or indirectly leading to elevated pressures within the pulmonary arteries. Five main groups of pulmonary hypertension are recognized, all defined by a mean pulmonary artery pressure of >20 mmHg: pulmonary arterial hypertension (rare), pulmonary hypertension associated with left-sided heart disease (very common), pulmonary hypertension associated with lung disease (common), pulmonary hypertension associated with pulmonary artery obstructions, usually related to thromboembolic disease (rare), and pulmonary hypertension with unclear and/or multifactorial mechanisms (rare). At least 1% of the world's population is affected, with a greater burden more likely in low-income and middle-income countries. Across all its forms, pulmonary hypertension is associated with adverse vascular remodelling with obstruction, stiffening and vasoconstriction of the pulmonary vasculature. Without proactive management this leads to hypertrophy and ultimately failure of the right ventricle, the main cause of death. In older individuals, dyspnoea is the most common symptom. Stepwise investigation precedes definitive diagnosis with right heart catheterization. Medical and surgical treatments are approved for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. There are emerging treatments for other forms of pulmonary hypertension; but current therapy primarily targets the underlying cause. There are still major gaps in basic, clinical and translational knowledge; thus, further research, with a focus on vulnerable populations, is needed to better characterize, detect and effectively treat all forms of pulmonary hypertension.
Collapse
Affiliation(s)
- Ana Mocumbi
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Moçambique.
- Instituto Nacional de Saúde, EN 1, Marracuene, Moçambique.
| | - Marc Humbert
- Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (Assistance Publique Hôpitaux de Paris), Université Paris-Saclay, INSERM UMR_S 999, Paris, France
- ERN-LUNG, Le Kremlin Bicêtre, Paris, France
| | - Anita Saxena
- Sharma University of Health Sciences, Haryana, New Delhi, India
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Karen Sliwa
- Cape Heart Institute, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Friedrich Thienemann
- Department of Medicine, Groote Schuur Hospital, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Simon Stewart
- Institute of Health Research, University of Notre Dame, Fremantle, Western Australia, Australia
| |
Collapse
|
20
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang JL, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal Lymphatic Sphingosine-1-Phosphate Signaling Aggravates Lymphatic Dysfunction and Tissue Inflammation. Circulation 2023; 148:1231-1249. [PMID: 37609838 PMCID: PMC10592179 DOI: 10.1161/circulationaha.123.064181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T-cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T-cell activation. Characterizing this biology is relevant for developing much needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1-deficient (S1pr1LECKO) mice were generated. Disease progression was quantified by tail-volumetric and -histopathologic measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then cocultured with CD4 T cells, followed by an analysis of CD4 T-cell activation and pathway signaling. Last, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T-cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1P receptor 1 (S1PR1). LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T-cell infiltration in mouse lymphedema. LECs, isolated from S1pr1LECKO mice and cocultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs promoted T-helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. Human dermal LECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro, P-selectin blockade reduced the activation and differentiation of Th cells cocultured with shS1PR1-treated human dermal LECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSIONS This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T-cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Lon Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Zhao SS, Liu J, Wu QC, Zhou XL. Role of histone lactylation interference RNA m 6A modification and immune microenvironment homeostasis in pulmonary arterial hypertension. Front Cell Dev Biol 2023; 11:1268646. [PMID: 37771377 PMCID: PMC10522917 DOI: 10.3389/fcell.2023.1268646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease resulting from progressive increases in pulmonary vascular resistance and pulmonary vascular remodeling, ultimately leading to right ventricular failure and even death. Hypoxia, inflammation, immune reactions, and epigenetic modifications all play significant contributory roles in the mechanism of PAH. Increasingly, epigenetic changes and their modifying factors involved in reprogramming through regulation of methylation or the immune microenvironment have been identified. Among them, histone lactylation is a new post-translational modification (PTM), which provides a novel visual angle on the functional mechanism of lactate and provides a promising diagnosis and treatment method for PAH. This review detailed introduces the function of lactate as an important molecule in PAH, and the effects of lactylation on N6-methyladenosine (m6A) and immune cells. It provides a new perspective to further explore the development of lactate regulation of pulmonary hypertension through histone lactylation modification.
Collapse
Affiliation(s)
- Shuai-shuai Zhao
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Qi-cai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xue-liang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Katz MG, Hadas Y, Vincek A, Freage-Kahn L, Shtraizent N, Madjarov JM, Pastuszko P, Eliyahu E. Acid ceramidase gene therapy ameliorates pulmonary arterial hypertension with right heart dysfunction. Respir Res 2023; 24:197. [PMID: 37568148 PMCID: PMC10416391 DOI: 10.1186/s12931-023-02487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/03/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Up-regulation of ceramides in pulmonary hypertension (PH), contributing to perturbations in sphingolipid homeostasis and the transition of cells to a senescence state. We assessed the safety, feasibility, and efficiency of acid ceramidase gene transfer in a rodent PH model. METHODS A model of PH was established by the combination of left pneumonectomy and injection of Sugen toxin. Magnetic resonance imaging and right heart catheterization confirmed development of PH. Animals were subjected to intratracheal administration of synthetic adeno-associated viral vector (Anc80L65) carrying the acid ceramidase (Anc80L65.AC), an empty capsid vector, or saline. Therapeutic efficacy was evaluated 8 weeks after gene delivery. RESULTS Hemodynamic assessment 4 weeks after PH model the development demonstrated an increase in the mean pulmonary artery pressure to 30.4 ± 2.13 mmHg versus 10.4 ± 1.65 mmHg in sham (p < 0.001), which was consistent with the definition of PH. We documented a significant increase in pulmonary vascular resistance in the saline-treated (6.79 ± 0.85 mm Hg) and empty capsid (6.94 ± 0.47 mm Hg) groups, but not in animals receiving Anc80L65.AC (4.44 ± 0.71 mm Hg, p < 0.001). Morphometric analysis demonstrated an increase in medial wall thickness in control groups in comparison to those treated with acid ceramidase. After acid ceramidase gene delivery, a significant decrease of pro-inflammatory factors, interleukins, and senescence markers was observed. CONCLUSION Gene delivery of acid ceramidase provided tropism to pulmonary tissue and ameliorated vascular remodeling with right ventricular dysfunction in pulmonary hypertension.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, P.O. Box 1030, New York, NY, 10029-6574, USA
- Department of Pediatric Cardiac Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, P.O. Box 1030, New York, NY, 10029-6574, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Vincek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, P.O. Box 1030, New York, NY, 10029-6574, USA
| | | | | | - Jeko M Madjarov
- Atrium Health Sanger Heart and Vascular Institute, Charlotte, NC, USA
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Peter Pastuszko
- Department of Pediatric Cardiac Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, P.O. Box 1030, New York, NY, 10029-6574, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Auth R, Klinger JR. Emerging pharmacotherapies for the treatment of pulmonary arterial hypertension. Expert Opin Investig Drugs 2023; 32:1025-1042. [PMID: 37881882 DOI: 10.1080/13543784.2023.2274439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease. Approved treatment options currently primarily target abnormal cell signaling pathways involved in vasoconstriction and proliferation, such as those mediated by prostacyclin, cyclic guanosine monophosphate, and endothelin. AREAS COVERED Recent advancements have led to new applications and modes of delivery of currently approved PAH medications. At the same time, novel drugs targeting specific molecular pathways involved in PAH pathogenesis have been developed and are being investigated in clinical trials. This review summarizes investigational drug trials for PAH gathered from a comprehensive search using PubMed and ClinicalTrials.gov between 2003 and 2023. It includes both currently approved medications studied at different doses or new administration forms and experimental drugs that have not yet been approved. EXPERT OPINION Approved treatments for PAH target imbalances in pulmonary vasoactive pathways that work primarily on enhancing pulmonary vasodilation with less salient effects on pulmonary vascular remodeling. The advent of more locally acting inhaled medications offers additional therapeutic options that may improve the ease of drug delivery and reduce adverse systemic effects. The more recent emphasis on developing and applying therapeutics that directly impact the aberrant signaling pathways implicated in PAH appears more likely to advance the treatment of this devastating disease.
Collapse
Affiliation(s)
- Roger Auth
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - James R Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
24
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang J, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal lymphatic S1P signaling aggravates lymphatic dysfunction and tissue inflammation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.08.23291175. [PMID: 37398237 PMCID: PMC10312855 DOI: 10.1101/2023.06.08.23291175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T cell activation. Characterizing this biology is relevant for developing much-needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1 -deficient ( S1pr1 LECKO ) mice were generated. Disease progression was quantified by tail-volumetric and -histopathological measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then co-cultured with CD4 T cells, followed by an analysis of CD4 T cell activation and pathway signaling. Finally, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1PR1. LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T cell infiltration in mouse lymphedema. LECs, isolated from S1pr1 LECKO mice and co-cultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs (HDLECs) promoted T helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. HDLECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro , P-selectin blockade reduced the activation and differentiation of Th cells co-cultured with sh S1PR1 -treated HDLECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSION This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition. Clinical Perspective What is New?: Lymphatic-specific S1pr1 deletion exacerbates lymphatic vessel malfunction and Th1/Th2 immune responses during lymphedema pathogenesis. S1pr1 -deficient LECs directly induce Th1/Th2 cell differentiation and decrease anti-inflammatory Treg populations. Peripheral dermal LECs affect CD4 T cell immune responses through direct cell contact.LEC P-selectin, regulated by S1PR1 signaling, affects CD4 T cell activation and differentiation.P-selectin blockade improves lymphedema tail swelling and decreases Th1/Th2 population in the diseased skin.What Are the Clinical Implications?: S1P/S1PR1 signaling in LECs regulates inflammation in lymphedema tissue.S1PR1 expression levels on LECs may be a useful biomarker for assessing predisposition to lymphatic disease, such as at-risk women undergoing mastectomyP-selectin Inhibitors may be effective for certain forms of lymphedema.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
25
|
Ye Y, Xu Q, Wuren T. Inflammation and immunity in the pathogenesis of hypoxic pulmonary hypertension. Front Immunol 2023; 14:1162556. [PMID: 37215139 PMCID: PMC10196112 DOI: 10.3389/fimmu.2023.1162556] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is a complicated vascular disorder characterized by diverse mechanisms that lead to elevated blood pressure in pulmonary circulation. Recent evidence indicates that HPH is not simply a pathological syndrome but is instead a complex lesion of cellular metabolism, inflammation, and proliferation driven by the reprogramming of gene expression patterns. One of the key mechanisms underlying HPH is hypoxia, which drives immune/inflammation to mediate complex vascular homeostasis that collaboratively controls vascular remodeling in the lungs. This is caused by the prolonged infiltration of immune cells and an increase in several pro-inflammatory factors, which ultimately leads to immune dysregulation. Hypoxia has been associated with metabolic reprogramming, immunological dysregulation, and adverse pulmonary vascular remodeling in preclinical studies. Many animal models have been developed to mimic HPH; however, many of them do not accurately represent the human disease state and may not be suitable for testing new therapeutic strategies. The scientific understanding of HPH is rapidly evolving, and recent efforts have focused on understanding the complex interplay among hypoxia, inflammation, and cellular metabolism in the development of this disease. Through continued research and the development of more sophisticated animal models, it is hoped that we will be able to gain a deeper understanding of the underlying mechanisms of HPH and implement more effective therapies for this debilitating disease.
Collapse
Affiliation(s)
- Yi Ye
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| |
Collapse
|
26
|
Moriyama H, Endo J. Pathophysiological Involvement of Mast Cells and the Lipid Mediators in Pulmonary Vascular Remodeling. Int J Mol Sci 2023; 24:6619. [PMID: 37047587 PMCID: PMC10094825 DOI: 10.3390/ijms24076619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Mast cells are responsible for IgE-dependent allergic responses, but they also produce various bioactive mediators and contribute to the pathogenesis of various cardiovascular diseases, including pulmonary hypertension (PH). The importance of lipid mediators in the pathogenesis of PH has become evident in recent years, as exemplified by prostaglandin I2, the most central therapeutic target in pulmonary arterial hypertension. New bioactive lipids other than eicosanoids have also been identified that are associated with the pathogenesis of PH. However, it remains largely unknown how mast cell-derived lipid mediators are involved in pulmonary vascular remodeling. Recently, it has been demonstrated that mast cells produce epoxidized n-3 fatty acid (n-3 epoxides) in a degranulation-independent manner, and that n-3 epoxides produced by mast cells regulate the abnormal activation of pulmonary fibroblasts and suppress the progression of pulmonary vascular remodeling. This review summarizes the role of mast cells and bioactive lipids in the pathogenesis of PH. In addition, we introduce the pathophysiological role and therapeutic potential of n-3 epoxides, a mast cell-derived novel lipid mediator, in the pulmonary vascular remodeling in PH. Further knowledge of mast cells and lipid mediators is expected to lead to the development of innovative therapies targeting pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Hidenori Moriyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku 160-8582, Tokyo, Japan
- Department of Cardiology, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa 272-8513, Chiba, Japan
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku 160-8582, Tokyo, Japan
| |
Collapse
|
27
|
Novel Molecular Mechanisms Involved in the Medical Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044147. [PMID: 36835558 PMCID: PMC9965798 DOI: 10.3390/ijms24044147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe condition with a high mortality rate despite advances in diagnostic and therapeutic strategies. In recent years, significant scientific progress has been made in the understanding of the underlying pathobiological mechanisms. Since current available treatments mainly target pulmonary vasodilation, but lack an effect on the pathological changes that develop in the pulmonary vasculature, there is need to develop novel therapeutic compounds aimed at antagonizing the pulmonary vascular remodeling. This review presents the main molecular mechanisms involved in the pathobiology of PAH, discusses the new molecular compounds currently being developed for the medical treatment of PAH and assesses their potential future role in the therapeutic algorithms of PAH.
Collapse
|
28
|
Shioda R, Jo-Watanabe A, Okuno T, Saeki K, Nakayama M, Suzuki Y, Yokomizo T. The leukotriene B 4 /BLT1-dependent neutrophil accumulation exacerbates immune complex-mediated glomerulonephritis. FASEB J 2023; 37:e22789. [PMID: 36692419 DOI: 10.1096/fj.202201936r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Crescent formation is the most important pathological finding that defines the prognosis of nephritis. Although neutrophils are known to play an important role in the progression of crescentic glomerulonephritis, such as anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis, the key chemoattractant for neutrophils in ANCA-associated glomerulonephritis has not been identified. Here, we demonstrate that a lipid chemoattractant, leukotriene B4 (LTB4 ), and its receptor BLT1 are primarily involved in disease pathogenesis in a mouse model of immune complex-mediated crescentic glomerulonephritis. Circulating neutrophils accumulated into glomeruli within 1 h after disease onset, which was accompanied by LTB4 accumulation in the kidney cortex, leading to kidney injury. LTB4 was produced by cross-linking of Fc gamma receptors on neutrophils. Mice deficient in BLT1 or LTB4 biosynthesis exhibited suppressed initial neutrophil infiltration and subsequent thrombotic glomerulonephritis and renal fibrosis. Depletion of neutrophils before, but not after, disease onset prevented proteinuria and kidney injury, indicating the essential role of neutrophils in the early phase of glomerulonephritis. Administration of a BLT1 antagonist before and after disease onset almost completely suppressed induction of glomerulonephritis. Finally, we found that the glomeruli from patients with ANCA-associated glomerulonephritis contained more BLT1-positive cells than glomeruli from patients with other etiologies. Taken together, the LTB4 -BLT1 axis is the key driver of neutrophilic glomerular inflammation, and will be a novel therapeutic target for the crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Ryotaro Shioda
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Airi Jo-Watanabe
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Maiko Nakayama
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Zhang MQ, Wang CC, Pang XB, Shi JZ, Li HR, Xie XM, Wang Z, Zhang HD, Zhou YF, Chen JW, Han ZY, Zhao LL, He YY. Role of macrophages in pulmonary arterial hypertension. Front Immunol 2023; 14:1152881. [PMID: 37153557 PMCID: PMC10154553 DOI: 10.3389/fimmu.2023.1152881] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Chen-Chen Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xiao-Bin Pang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hao-Ran Li
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Zhe Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hong-Da Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Feng Zhou
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Ji-Wang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| |
Collapse
|
30
|
Wang N, Hua J, Fu Y, An J, Chen X, Wang C, Zheng Y, Wang F, Ji Y, Li Q. Updated perspective of EPAS1 and the role in pulmonary hypertension. Front Cell Dev Biol 2023; 11:1125723. [PMID: 36923253 PMCID: PMC10008962 DOI: 10.3389/fcell.2023.1125723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Pulmonary hypertension (PH) is a group of syndromes characterized by irreversible vascular remodeling and persistent elevation of pulmonary vascular resistance and pressure, leading to ultimately right heart failure and even death. Current therapeutic strategies mainly focus on symptoms alleviation by stimulating pulmonary vessel dilation. Unfortunately, the mechanism and interventional management of vascular remodeling are still yet unrevealed. Hypoxia plays a central role in the pathogenesis of PH and numerous studies have shown the relationship between PH and hypoxia-inducible factors family. EPAS1, known as hypoxia-inducible factor-2 alpha (HIF-2α), functions as a transcription factor participating in various cellular pathways. However, the detailed mechanism of EPAS1 has not been fully and systematically described. This article exhibited a comprehensive summary of EPAS1 including the molecular structure, biological function and regulatory network in PH and other relevant cardiovascular diseases, and furthermore, provided theoretical reference for the potential novel target for future PH intervention.
Collapse
Affiliation(s)
- Na Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Jing Hua
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yuhua Fu
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Jiading District, Shanghai, China
| | - Jun An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Chuancui Wang
- Department of Pulmonary and Critical Care Medicine, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Yanghong Zheng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yingqun Ji
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| |
Collapse
|
31
|
Hayashi S, Muraleedharan CK, Oku M, Tomar S, Hogan SP, Quiros M, Parkos CA, Nusrat A. Intestinal epithelial BLT1 promotes mucosal repair. JCI Insight 2022; 7:e162392. [PMID: 36301666 PMCID: PMC9746898 DOI: 10.1172/jci.insight.162392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/26/2022] [Indexed: 01/25/2023] Open
Abstract
Acute and chronic intestinal inflammation is associated with epithelial damage, resulting in mucosal wounds in the forms of erosions and ulcers in the intestinal tract. Intestinal epithelial cells (IECs) and immune cells in the wound milieu secrete cytokines and lipid mediators to influence repair. Leukotriene B4 (LTB4), a lipid chemokine, binds to its receptor BLT1 and promotes migration of immune cells to sites of active inflammation; however, a role for intestinal epithelial BLT1 during mucosal wound repair is not known. Here we report that BLT1 was expressed in IECs both in vitro and in vivo, where it functioned as a receptor not only for LTB4 but also for another ligand, resolvin E1. Intestinal epithelial BLT1 expression was increased when epithelial cells were exposed to an inflammatory microenvironment. Using human and murine primary colonic epithelial cells, we reveal that the LTB4/BLT1 pathway promoted epithelial migration and proliferation leading to accelerated epithelial wound repair. Furthermore, in vivo intestinal wound repair experiments in BLT1-deficient mice and bone marrow chimeras demonstrated an important contribution of epithelial BLT1 during colonic mucosal wound repair. Taken together, our findings show a potentially novel prorepair in IEC mechanism mediated by BLT1 signaling.
Collapse
Affiliation(s)
- Shusaku Hayashi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | | | - Makito Oku
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Sunil Tomar
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Simon P. Hogan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Zhao J, Wang Q, Deng X, Qian J, Tian Z, Liu Y, Li M, Zeng X. The treatment strategy of connective tissue disease associated pulmonary arterial hypertension: Evolving into the future. Pharmacol Ther 2022; 239:108192. [DOI: 10.1016/j.pharmthera.2022.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
|
33
|
Kress S, Wigmann C, Zhao Q, Herder C, Abramson MJ, Schwender H, Schikowski T. Chronic air pollution-induced subclinical airway inflammation and polygenic susceptibility. Respir Res 2022; 23:265. [PMID: 36151579 PMCID: PMC9508765 DOI: 10.1186/s12931-022-02179-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background Air pollutants can activate low-grade subclinical inflammation which further impairs respiratory health. We aimed to investigate the role of polygenic susceptibility to chronic air pollution-induced subclinical airway inflammation. Methods We used data from 296 women (69–79 years) enrolled in the population-based SALIA cohort (Study on the influence of Air pollution on Lung function, Inflammation and Aging). Biomarkers of airway inflammation were measured in induced-sputum samples at follow-up investigation in 2007–2010. Chronic air pollution exposures at residential addresses within 15 years prior to the biomarker assessments were used to estimate main environmental effects on subclinical airway inflammation. Furthermore, we calculated internally weighted polygenic risk scores based on genome-wide derived single nucleotide polymorphisms. Polygenic main and gene-environment interaction (GxE) effects were investigated by adjusted linear regression models. Results Higher exposures to nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter with aerodynamic diameters of ≤ 2.5 μm, ≤ 10 μm, and 2.5–10 µm significantly increased the levels of leukotriene (LT)B4 by 19.7% (p-value = 0.005), 20.9% (p = 0.002), 22.1% (p = 0.004), 17.4% (p = 0.004), and 23.4% (p = 0.001), respectively. We found significant effects of NO2 (25.9%, p = 0.008) and NOx (25.9%, p-value = 0.004) on the total number of cells. No significant GxE effects were observed. The trends were mostly robust in sensitivity analyses. Conclusions While this study confirms that higher chronic exposures to air pollution increase the risk of subclinical airway inflammation in elderly women, we could not demonstrate a significant role of polygenic susceptibility on this pathway. Further studies are required to investigate the role of polygenic susceptibility. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02179-3.
Collapse
Affiliation(s)
- Sara Kress
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.,Medical Research School Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Claudia Wigmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Qi Zhao
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.,Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
34
|
Rafikov R, Rischard F, Vasilyev M, Varghese MV, Yuan JXJ, Desai AA, Garcia JGN, Rafikova O. Cytokine profiling in pulmonary arterial hypertension: the role of redox homeostasis and sex. Transl Res 2022; 247:1-18. [PMID: 35405322 PMCID: PMC10062382 DOI: 10.1016/j.trsl.2022.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease with a well-established sexual dimorphism. Activated inflammatory response and altered redox homeostasis, both known to manifest in a sex-specific manner, are implicated in the pathogenic mechanisms involved in PAH development. This study aimed to evaluate the impact of sex and plasma redox status on circulating cytokine profiles. Plasma oxidation-reduction potential (ORP), as a substitute measure of redox status, was analyzed in male and female Group 1 PAH and healthy subjects. The profiles of 27 circulating cytokines were compared in 2 PAH groups exhibiting the highest and lowest quartile for plasma ORP, correlated with clinical parameters, and used to predict patient survival. The analysis of the PAH groups with the highest and lowest ORP revealed a correlation between elevated cytokine levels and increased oxidative stress in females. In contrast, in males, cytokine expressions were increased in the lower oxidative environment (except for IL-1b). Correlations of the increased cytokine expressions with PAH severity were highly sex-dependent and corresponded to the increase in PAH severity in males and less severe PAH in females. Machine learning algorithms trained on the combined cytokine and redox profiles allowed the prediction of PAH mortality with 80% accuracy. We conclude that the profile of circulating cytokines in PAH patients is redox- and sex-dependent, suggesting the vital need to stratify the patient cohort subjected to anti-inflammatory therapies. Combined cytokine and/or redox profiling showed promising value for predicting the patients' survival.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Franz Rischard
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Mikhail Vasilyev
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Mathews V Varghese
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Joe G N Garcia
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Olga Rafikova
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona.
| |
Collapse
|
35
|
Inhibition of Bruton’s Tyrosine Kinase Alleviates Monocrotaline-Induced Pulmonary Arterial Hypertension by Modulating Macrophage Polarization. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6526036. [PMID: 36071873 PMCID: PMC9444460 DOI: 10.1155/2022/6526036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Macrophage accumulation and activation contribute to the development of pulmonary arterial hypertension (PAH), while Bruton's tyrosine kinase (BTK) is an important regulator for the activation and polarization of macrophage. However, the role of BTK in PAH remains unknown. In the present study, a selective BTK inhibitor (BTKi) BGB-3111 was applied to investigate the role of BTK in monocrotaline- (MCT-) induced PAH rat and phorbol myristate acetate- (PMA-) differentiated U937 macrophages. Our results showed that BTK was mainly distributed and upregulated in CD68+ macrophages in the lungs of PAH rats. Daily treated with BTKi BGB-3111 alleviated MCT-induced PAH, as indicated by the decrease in right ventricular systolic pressure (RVSP), attenuation in right ventricle hypertrophy and pulmonary vascular remodeling, reduction in perivascular collagen deposition, as well as inhibition of inflammation and endothelial-to-mesenchymal transition (EndMT) in the lung. Moreover, BTK inhibition suppressed MCT-induced recruitment of macrophages, especially the classical activated macrophages (M1) in the lung. In vitro, BGB-3111 significantly suppressed lipopolysaccharide- (LPS-) induced M1 polarization and proinflammatory cytokine production in U937-derived macrophages. The underlying mechanism is associated with the inhibition of NF-κB/MAPK pathways and nucleotide-binding oligomerization domain-like receptor with pyrin domain 3 (NLRP3) inflammasome activation. Furthermore, macrophage conditioned medium (CM) from LPS-induced M1 macrophages promoted migration and EndMT of HPAECs, while CM from BGB-3111-pretreated LPS-induced M1 macrophages failed to induce this response. These findings suggest that BTK inhibition alleviates PAH by regulating macrophage recruitment and polarization and may be a potential therapeutic strategy for the treatment of PAH.
Collapse
|
36
|
Zhuang C, Chen R, Zheng Z, Lu J, Hong C. Toll-Like Receptor 3 in Cardiovascular Diseases. Heart Lung Circ 2022; 31:e93-e109. [PMID: 35367134 DOI: 10.1016/j.hlc.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Toll-like receptor 3 (TLR3) is an important member of the innate immune response receptor toll-like receptors (TLRs) family, which plays a vital role in regulating immune response, promoting the maturation and differentiation of immune cells, and participating in the response of pro-inflammatory factors. TLR3 is activated by pathogen-associated molecular patterns and damage-associated molecular patterns, which support the pathophysiology of many diseases related to inflammation. An increasing number of studies have confirmed that TLR3, as a crucial medium of innate immunity, participates in the occurrence and development of cardiovascular diseases (CVDs) by regulating the transcription and translation of various cytokines, thus affecting the structure and physiological function of resident cells in the cardiovascular system, including vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and macrophages. The dysfunction and structural damage of vascular endothelial cells and proliferation of vascular smooth muscle cells are the key factors in the occurrence of vascular diseases such as pulmonary arterial hypertension, atherosclerosis, myocardial hypertrophy, myocardial infarction, ischaemia/reperfusion injury, and heart failure. Meanwhile, cardiomyocytes, fibroblasts, and macrophages are involved in the development of CVDs. Therefore, the purpose of this review was to explore the latest research published on TLR3 in CVDs and discuss current understanding of potential mechanisms by which TLR3 contributes to CVDs. Even though TLR3 is a developing area, it has strong treatment potential as an immunomodulator and deserves further study for clinical translation.
Collapse
Affiliation(s)
- Chunying Zhuang
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Guangzhou, China
| | - Jianmin Lu
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Immune Cells in Pulmonary Arterial Hypertension. Heart Lung Circ 2022; 31:934-943. [PMID: 35361533 DOI: 10.1016/j.hlc.2022.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a complex and serious cardiopulmonary disease; it is characterised by increased pulmonary arterial pressure and pulmonary vascular remodelling accompanied by disordered endothelial and smooth muscle cell proliferation within pulmonary arterioles and arteries. Although recent reports have suggested that dysregulated immunity and inflammation are key players in PAH pathogenesis, their roles in PAH progression remain unclear. Intriguingly, altered host immune cell distribution, number, and polarisation within the lung arterial vasculature have been linked to disease development. This review mainly focusses on the roles of different immune cells in PAH and discusses the underlying mechanisms.
Collapse
|
38
|
Yoshida T, Nagaoka T, Nagata Y, Suzuki Y, Tsutsumi T, Kuriyama S, Watanabe J, Togo S, Takahashi F, Matsushita M, Joki Y, Konishi H, Nunomura S, Izuhara K, Conway SJ, Takahashi K. Periostin-related progression of different types of experimental pulmonary hypertension: A role for M2 macrophage and FGF-2 signalling. Respirology 2022; 27:529-538. [PMID: 35318760 PMCID: PMC9313806 DOI: 10.1111/resp.14249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Remodelling of pulmonary arteries (PA) contributes to the progression of pulmonary hypertension (PH). Periostin, a matricellular protein, has been reported to be involved in the development of PH. We examined the role of periostin in the pathogenesis of PH using different types of experimental PH. METHODS PH was induced by vascular endothelial growth factor receptor antagonist (Sugen5416) plus hypoxic exposure (SuHx) and venous injection of monocrotaline-pyrrole (MCT-P) in wild-type (WT) and periostin-/- mice. Pulmonary haemodynamics, PA remodelling, expression of chemokines and fibroblast growth factor (FGF)-2, accumulation of macrophages to small PA and the right ventricle (RV) were examined in PH-induced WT and periostin-/- mice. Additionally, the role of periostin in the migration of macrophages, human PA smooth muscle (HPASMCs) and endothelial cells (HPMVECs) was investigated. RESULTS In PH induced by SuHx and MCT-P, PH and accumulation of M2 macrophage to small PA were attenuated in periostin-/- mice. PA remodelling post-SuHx treatment was also mild in periostin-/- mice compared to WT mice. Expression of macrophage-associated chemokines and FGF-2 in lung tissue, and accumulation of CD68-positive cells in the RV were less in SuHx periostin-/- than in SuHx WT mice. Periostin secretion in HPASMCs and HPMVECs was enhanced by transforming growth factor-β. Periostin also augmented macrophage, HPASMCs and HPMVECs migration. Separately, serum periostin levels were significantly elevated in patients with PH compared to healthy controls. CONCLUSION Periostin is involved in the development of different types of experimental PH, and may also contribute to the pathogenesis of human PH.
Collapse
Affiliation(s)
- Takashi Yoshida
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Tetsutaro Nagaoka
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Yuichi Nagata
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Yoshifumi Suzuki
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Takeo Tsutsumi
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Sachiko Kuriyama
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Junko Watanabe
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Shinsaku Togo
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Fumiyuki Takahashi
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Masakazu Matsushita
- Department of Internal Medicine and RheumatologyJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Yusuke Joki
- Department of Cardiovascular MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Hakuoh Konishi
- Department of Cardiovascular MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular SciencesSaga Medical SchoolSagaJapan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular SciencesSaga Medical SchoolSagaJapan
| | - Simon J. Conway
- Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kazuhisa Takahashi
- Department of Respiratory MedicineJuntendo University Faculty of Medicine and Graduate School of MedicineTokyoJapan
| |
Collapse
|
39
|
Wang RR, Yuan TY, Wang JM, Chen YC, Zhao JL, Li MT, Fang LH, Du GH. Immunity and inflammation in pulmonary arterial hypertension: From pathophysiology mechanisms to treatment perspective. Pharmacol Res 2022; 180:106238. [DOI: 10.1016/j.phrs.2022.106238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023]
|
40
|
Omega-3 fatty acid epoxides produced by PAF-AH2 in mast cells regulate pulmonary vascular remodeling. Nat Commun 2022; 13:3013. [PMID: 35641514 PMCID: PMC9156667 DOI: 10.1038/s41467-022-30621-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension is a fatal rare disease that causes right heart failure by elevated pulmonary arterial resistance. There is an unmet medical need for the development of therapeutics focusing on the pulmonary vascular remodeling. Bioactive lipids produced by perivascular inflammatory cells might modulate the vascular remodeling. Here, we show that ω-3 fatty acid-derived epoxides (ω-3 epoxides) released from mast cells by PAF-AH2, an oxidized phospholipid-selective phospholipase A2, negatively regulate pulmonary hypertension. Genetic deletion of Pafah2 in mice accelerate vascular remodeling, resulting in exacerbation of hypoxic pulmonary hypertension. Treatment with ω-3 epoxides suppresses the lung fibroblast activation by inhibiting TGF-β signaling. In vivo ω-3 epoxides supplementation attenuates the progression of pulmonary hypertension in several animal models. Furthermore, whole-exome sequencing for patients with pulmonary arterial hypertension identifies two candidate pathogenic variants of Pafah2. Our findings support that the PAF-AH2-ω-3 epoxide production axis could be a promising therapeutic target for pulmonary hypertension. Pulmonary hypertension is a fatal disease that causes right heart failure due to pulmonary artery stenosis. Here, the authors find that ω-3 epoxides produced by the phospholipase PAF-AH2 in mast cells regulate pulmonary vascular remodeling.
Collapse
|
41
|
Joshi SR, Liu J, Bloom T, Karaca Atabay E, Kuo TH, Lee M, Belcheva E, Spaits M, Grenha R, Maguire MC, Frost JL, Wang K, Briscoe SD, Alexander MJ, Herrin BR, Castonguay R, Pearsall RS, Andre P, Yu PB, Kumar R, Li G. Sotatercept analog suppresses inflammation to reverse experimental pulmonary arterial hypertension. Sci Rep 2022; 12:7803. [PMID: 35551212 PMCID: PMC9098455 DOI: 10.1038/s41598-022-11435-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Sotatercept is an activin receptor type IIA-Fc (ActRIIA-Fc) fusion protein that improves cardiopulmonary function in patients with pulmonary arterial hypertension (PAH) by selectively trapping activins and growth differentiation factors. However, the cellular and molecular mechanisms of ActRIIA-Fc action are incompletely understood. Here, we determined through genome-wide expression profiling that inflammatory and immune responses are prominently upregulated in the lungs of a Sugen-hypoxia rat model of severe angio-obliterative PAH, concordant with profiles observed in PAH patients. Therapeutic treatment with ActRIIA-Fc-but not with a vasodilator-strikingly reversed proinflammatory and proliferative gene expression profiles and normalized macrophage infiltration in diseased rodent lungs. Furthermore, ActRIIA-Fc normalized pulmonary macrophage infiltration and corrected cardiopulmonary structure and function in Bmpr2 haploinsufficient mice subjected to hypoxia, a model of heritable PAH. Three high-affinity ligands of ActRIIA-Fc each induced macrophage activation in vitro, and their combined immunoneutralization in PAH rats produced cardiopulmonary benefits comparable to those elicited by ActRIIA-Fc. Our results in complementary experimental and genetic models of PAH reveal therapeutic anti-inflammatory activities of ActRIIA-Fc that, together with its known anti-proliferative effects on vascular cell types, could underlie clinical activity of sotatercept as either monotherapy or add-on to current PAH therapies.
Collapse
Affiliation(s)
- Sachindra R Joshi
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jun Liu
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Troy Bloom
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
- Ultivue, Cambridge, MA, USA
| | - Elif Karaca Atabay
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Tzu-Hsing Kuo
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Michael Lee
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Elitza Belcheva
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Matthew Spaits
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Rosa Grenha
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Michelle C Maguire
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jeffrey L Frost
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Kathryn Wang
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Steven D Briscoe
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Mark J Alexander
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Brantley R Herrin
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Roselyne Castonguay
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - R Scott Pearsall
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
- Cellarity, Cambridge, MA, USA
| | - Patrick Andre
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ravindra Kumar
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Gang Li
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|
42
|
Christou H, Khalil RA. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol 2022; 322:H702-H724. [PMID: 35213243 PMCID: PMC8977136 DOI: 10.1152/ajpheart.00021.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by various degrees of pulmonary vasoconstriction and progressive fibroproliferative remodeling and inflammation of the pulmonary arterioles that lead to increased pulmonary vascular resistance, right ventricular hypertrophy, and failure. Pulmonary vascular tone is regulated by a balance between vasoconstrictor and vasodilator mediators, and a shift in this balance to vasoconstriction is an important component of PH pathology, Therefore, the mainstay of current pharmacological therapies centers on pulmonary vasodilation methodologies that either enhance vasodilator mechanisms such as the NO-cGMP and prostacyclin-cAMP pathways and/or inhibit vasoconstrictor mechanisms such as the endothelin-1, cytosolic Ca2+, and Rho-kinase pathways. However, in addition to the increased vascular tone, many patients have a "fixed" component in their disease that involves altered biology of various cells in the pulmonary vascular wall, excessive pulmonary artery remodeling, and perivascular fibrosis and inflammation. Pulmonary arterial smooth muscle cell (PASMC) phenotypic switch from a contractile to a synthetic and proliferative phenotype is an important factor in pulmonary artery remodeling. Although current vasodilator therapies also have some antiproliferative effects on PASMCs, they are not universally successful in halting PH progression and increasing survival. Mild acidification and other novel approaches that aim to reverse the resident pulmonary vascular pathology and structural remodeling and restore a contractile PASMC phenotype could ameliorate vascular remodeling and enhance the responsiveness of PH to vasodilator therapies.
Collapse
Affiliation(s)
- Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Wu XH, Ma JL, Ding D, Ma YJ, Wei YP, Jing ZC. Experimental animal models of pulmonary hypertension: Development and challenges. Animal Model Exp Med 2022; 5:207-216. [PMID: 35333455 PMCID: PMC9240731 DOI: 10.1002/ame2.12220] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension (PH) is clinically divided into 5 major types, characterized by elevation in pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR), finally leading to right heart failure and death. The pathogenesis of this arteriopathy remains unclear, leaving it impossible to target pulmonary vascular remodeling and reverse the deterioration of right ventricular (RV) function. Different animal models have been designed to reflect the complex mechanistic origins and pathology of PH, roughly divided into 4 categories according to the modeling methods: non‐invasive models in vivo, invasive models in vivo, gene editing models, and multi‐means joint modeling. Though each model shares some molecular and pathological changes with different classes of human PH, in most cases the molecular etiology of human PH is poorly known. The appropriate use of classic and novel PH animal models is essential for the hunt of molecular targets to reverse severe phenotypes.
Collapse
Affiliation(s)
- Xiao-Han Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie-Ling Ma
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Ding
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jiao Ma
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Peng Wei
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Fang M, Tang X, Zhang J, Liao Z, Wang G, Cheng R, Zhang Z, Zhao H, Wang J, Tan Z, Kamau PM, Lu Q, Liu Q, Deng G, Lai R. An inhibitor of leukotriene-A 4 hydrolase from bat salivary glands facilitates virus infection. Proc Natl Acad Sci U S A 2022; 119:e2110647119. [PMID: 35238649 PMCID: PMC8915838 DOI: 10.1073/pnas.2110647119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
SignificanceAn immunosuppressant protein (MTX), which facilitates virus infection by inhibiting leukotriene A4 hydrolase (LTA4H) to produce the lipid chemoattractant leukotriene B4 (LTB4), was identified and characterized from the submandibular salivary glands of the bat Myotis pilosus. To the best of our knowledge, this is a report of an endogenous LTA4H inhibitor in animals. MTX was highly concentrated in the bat salivary glands, suggesting a mechanism for the generation of immunological privilege and immune tolerance and providing evidence of viral shedding through oral secretions. Moreover, given that the immunosuppressant MTX selectively inhibited the proinflammatory activity of LTA4H, without affecting its antiinflammatory activity, MTX might be a potential candidate for the development of antiinflammatory drugs by targeting the LTA4-LTA4H-LTB4 inflammatory axis.
Collapse
Affiliation(s)
- Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
| | - Xiaopeng Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
| | - Juan Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhiyi Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Ruomei Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Hongwen Zhao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jing Wang
- Department of Laboratory Diagnosis, Chongqing Public Health Medical Center, Public Health Hospital of Southwest University, Shapingba District, Chongqing 400038, China
| | - Zhaoxia Tan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Qi Liu
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| |
Collapse
|
45
|
Funk-Hilsdorf TC, Behrens F, Grune J, Simmons S. Dysregulated Immunity in Pulmonary Hypertension: From Companion to Composer. Front Physiol 2022; 13:819145. [PMID: 35250621 PMCID: PMC8891568 DOI: 10.3389/fphys.2022.819145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) represents a grave condition associated with high morbidity and mortality, emphasizing a desperate need for innovative and targeted therapeutic strategies. Cumulative evidence suggests that inflammation and dysregulated immunity interdependently affect maladaptive organ perfusion and congestion as hemodynamic hallmarks of the pathophysiology of PH. The role of altered cellular and humoral immunity in PH gains increasing attention, especially in pulmonary arterial hypertension (PAH), revealing novel mechanistic insights into the underlying immunopathology. Whether these immunophysiological aspects display a universal character and also hold true for other types of PH (e.g., PH associated with left heart disease, PH-LHD), or whether there are unique immunological signatures depending on the underlying cause of disease are points of consideration and discussion. Inflammatory mediators and cellular immune circuits connect the local inflammatory landscape in the lung and heart through inter-organ communication, involving, e.g., the complement system, sphingosine-1-phosphate (S1P), cytokines and subsets of, e.g., monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs), and T- and B-lymphocytes with distinct and organ-specific pro- and anti-inflammatory functions in homeostasis and disease. Perivascular macrophage expansion and monocyte recruitment have been proposed as key pathogenic drivers of vascular remodeling, the principal pathological mechanism in PAH, pinpointing toward future directions of anti-inflammatory therapeutic strategies. Moreover, different B- and T-effector cells as well as DCs may play an important role in the pathophysiology of PH as an imbalance of T-helper-17-cells (TH17) activated by monocyte-derived DCs, a potentially protective role of regulatory T-cells (Treg) and autoantibody-producing plasma cells occur in diverse PH animal models and human PH. This article highlights novel aspects of the innate and adaptive immunity and their interaction as disease mediators of PH and its specific subtypes, noticeable inflammatory mediators and summarizes therapeutic targets and strategies arising thereby.
Collapse
Affiliation(s)
- Teresa C. Funk-Hilsdorf
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Behrens
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jana Grune
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Szandor Simmons
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- *Correspondence: Szandor Simmons,
| |
Collapse
|
46
|
Jeong EM, Pereira M, So EY, Wu KQ, Del Tatto M, Wen S, Dooner MS, Dubielecka PM, Reginato AM, Ventetuolo CE, Quesenberry PJ, Klinger JR, Liang OD. Targeting RUNX1 as a novel treatment modality for pulmonary arterial hypertension. Cardiovasc Res 2022; 118:3211-3224. [PMID: 35018410 PMCID: PMC9799056 DOI: 10.1093/cvr/cvac001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/06/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a fatal disease without a cure. Previously, we found that transcription factor RUNX1-dependent haematopoietic transformation of endothelial progenitor cells may contribute to the pathogenesis of PAH. However, the therapeutic potential of RUNX1 inhibition to reverse established PAH remains unknown. In the current study, we aimed to determine whether RUNX1 inhibition was sufficient to reverse Sugen/hypoxia (SuHx)-induced pulmonary hypertension (PH) in rats. We also aimed to demonstrate possible mechanisms involved. METHODS AND RESULTS We administered a small molecule specific RUNX1 inhibitor Ro5-3335 before, during, and after the development of SuHx-PH in rats to investigate its therapeutic potential. We quantified lung macrophage recruitment and activation in vivo and in vitro in the presence or absence of the RUNX1 inhibitor. We generated conditional VE-cadherin-CreERT2; ZsGreen mice for labelling adult endothelium and lineage tracing in the SuHx-PH model. We also generated conditional Cdh5-CreERT2; Runx1(flox/flox) mice to delete Runx1 gene in adult endothelium and LysM-Cre; Runx1(flox/flox) mice to delete Runx1 gene in cells of myeloid lineage, and then subjected these mice to SuHx-PH induction. RUNX1 inhibition in vivo effectively prevented the development, blocked the progression, and reversed established SuHx-induced PH in rats. RUNX1 inhibition significantly dampened lung macrophage recruitment and activation. Furthermore, lineage tracing with the inducible VE-cadherin-CreERT2; ZsGreen mice demonstrated that a RUNX1-dependent endothelial to haematopoietic transformation occurred during the development of SuHx-PH. Finally, tissue-specific deletion of Runx1 gene either in adult endothelium or in cells of myeloid lineage prevented the mice from developing SuHx-PH, suggesting that RUNX1 is required for the development of PH. CONCLUSION By blocking RUNX1-dependent endothelial to haematopoietic transformation and pulmonary macrophage recruitment and activation, targeting RUNX1 may be as a novel treatment modality for pulmonary arterial hypertension.
Collapse
Affiliation(s)
| | | | - Eui-Young So
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Keith Q Wu
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Michael Del Tatto
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Sicheng Wen
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Mark S Dooner
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Patrycja M Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Anthony M Reginato
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Peter J Quesenberry
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - James R Klinger
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Olin D Liang
- Corresponding author. Tel: 617-816-8885; fax: 401-444-2486, E-mail:
| |
Collapse
|
47
|
Cell-to-Cell Crosstalk: A New Insight into Pulmonary Hypertension. Rev Physiol Biochem Pharmacol 2022; 184:159-179. [PMID: 35380274 DOI: 10.1007/112_2022_70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pulmonary hypertension (PH) is a disease with high pulmonary arterial pressure, pulmonary vasoconstriction, pulmonary vascular remodeling, and microthrombosis in complex plexiform lesions, but it has been unclear of the exact mechanism of PH. A new understanding of the pathogenesis of PH is occurred and focused on the role of crosstalk between the cells on pulmonary vessels and pulmonary alveoli. It was found that the crosstalks among the endothelial cells, smooth muscle cells, fibroblasts, pericytes, alveolar epithelial cells, and macrophages play important roles in cell proliferation, migration, inflammation, and so on. Therefore, the heterogeneity of multiple pulmonary blood vessels and alveolar cells and tracking the transmitters of cell communication could be conducive to the further insights into the pathogenesis of PH to discover the potential therapeutic targets for PH.
Collapse
|
48
|
Diekmann F, Legchenko E, Chouvarine P, Lichtinghagen R, Bertram H, Happel CM, Hansmann G. Circulating Interleukin-7 in Human Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:794549. [PMID: 34957265 PMCID: PMC8692707 DOI: 10.3389/fcvm.2021.794549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Interleukin-7 (IL-7) secures B cell maturation, regulatory T and natural killer (NK) cell survival, and homeostasis, all of which are important for beneficial immunomodulation in pulmonary arterial hypertension (PAH). However, the role and potential impact of IL-7, VEGF-C and the vascular injury markers ICAM-1, and VCAM-1 on the pathobiology and severity of PAH is unknown. Methods: EDTA blood was collected during cardiac catheterization from the superior vena cava (SVC), pulmonary artery (PA), and ascending aorta (AAO) in children with pulmonary hypertension (PH) [n = 10; 9.1 (3.9–18.5) years] and non-PH controls [n = 10; 10.5 (2.0–17.3) years]. Compartment-specific plasma concentrations of IL-7, VEGF-C, aldosterone, ICAM-1, and VCAM-1 were determined using Meso Scale Discovery's multi array technology and the LIAISON Aldosterone Assay. Results: Children with PH had approximately 50% lower IL-7 (p < 0.01) and 59% lower VEGF-C plasma levels (p < 0.001) in the SVC, PA, and AAO versus non-PH controls. IL-7 and VEGF-C concentrations negatively correlated with the pulmonary vascular resistance (PVR)/systemic vascular resistance (SVR) ratio (rho = −0.51 and r = −0.62, respectively). Central-venous IL-7 strongly positively correlated with VEGF-C (r = 0.81). Most patients had a step down in ICAM-1 and VCAM-1 plasma concentrations across the pulmonary circulation and both ICAM-1 and VCAM-1 transpulmonary gradients negatively correlated with invasive hemodynamics. Conclusion: This manuscript is the first report on decreased circulating IL-7 and VEGF-C plasma concentrations in human PAH and their inverse correlations with invasive surrogates of PAH severity. Additional and larger studies are needed to explore the role of the immune-modulatory IL-7 and VEGF-C in pediatric and adult PAH.
Collapse
Affiliation(s)
- Franziska Diekmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| | - Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hanover, Germany
| | - Harald Bertram
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| | - Christoph M Happel
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| |
Collapse
|
49
|
The role of immune cells in pulmonary hypertension: Focusing on macrophages. Hum Immunol 2021; 83:153-163. [PMID: 34844784 DOI: 10.1016/j.humimm.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/06/2023]
Abstract
Pulmonary hypertension (PH) is a life-threatening pathological state with elevated pulmonary arterial pressure, resulting in right ventricular failure and heart functional failure. Analyses of human samples and rodent models of pH support the infiltration of various immune cells, including neutrophils, mast cells, dendritic cells, B-cells, T-cells, and natural killer cells, to the lungs and pulmonary perivascular regions and their involvement in the PH development. There is evidence that macrophages are presented in the pulmonary lesions of pH patients as first-line myeloid leucocytes. Macrophage accumulation and presence, both M1 and M2 phenotypes, is a distinctive hallmark of pH which plays a pivotal role in pulmonary artery remodeling through various cellular and molecular interactions and mechanisms, including CCL2 and CX3CL1 chemokines, adventitial fibroblasts, glucocorticoid-regulated kinase 1 (SGK1), crosstalk with other immune cells, leukotriene B4 (LTB4), bone morphogenetic protein receptor 2 (BMPR2), macrophage migration inhibitory factor (MIF), and thrombospondin-1 (TSP-1). In this paper, we reviewed the molecular mechanisms and the role of immune cells and responses are involved in PH development. We also summarized the polarization of macrophages in response to different stimuli and their pathological role and their infiltration in the lung of pH patients and animal models.
Collapse
|
50
|
Lands B. Lipid nutrition: "In silico" studies and undeveloped experiments. Prog Lipid Res 2021; 85:101142. [PMID: 34818526 DOI: 10.1016/j.plipres.2021.101142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
This review examines lipids and lipid-binding sites on proteins in relation to cardiovascular disease. Lipid nutrition involves food energy from ingested fatty acids plus fatty acids formed from excess ingested carbohydrate and protein. Non-esterified fatty acids (NEFA) and lipoproteins have many detailed attributes not evident in their names. Recognizing attributes of lipid-protein interactions decreases unexpected outcomes. Details of double bond position and configuration interacting with protein binding sites have unexpected consequences in acyltransferase and cell replication events. Highly unsaturated fatty acids (HUFA) have n-3 and n-6 motifs with documented differences in intensity of destabilizing positive feedback loops amplifying pathophysiology. However, actions of NEFA have been neglected relative to cholesterol, which is co-produced from excess food. Native low-density lipoproteins (LDL) bind to a high-affinity cell surface receptor which poorly recognizes biologically modified LDLs. NEFA increase negative charge of LDL and decrease its processing by "normal" receptors while increasing processing by "scavenger" receptors. A positive feedback loop in the recruitment of monocytes and macrophages amplifies chronic inflammatory pathophysiology. Computer tools combine multiple components in lipid nutrition and predict balance of energy and n-3:n-6 HUFA. The tools help design and execute precise clinical nutrition monitoring that either supports or disproves expectations.
Collapse
Affiliation(s)
- Bill Lands
- Fellow ASN, AAAS, SFRBM, ISSFAL, College Park, MD, USA.
| |
Collapse
|