1
|
Järvinen-Seppo KM. Effect of Feeding Human Milk on Development of the Infant Immune System and Allergic Outcomes-An Area of Research Challenge and Need. Breastfeed Med 2025; 20:201-204. [PMID: 39905904 DOI: 10.1089/bfm.2024.0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Surprisingly little is known about the effect of breastfeeding on the infant's immune system development. Systematic reviews have suggested the role of breastfeeding in the prevention against asthma, autoimmune diseases, inflammatory bowel disease, and childhood leukemia. However, studies on atopic disease suffer from reverse causation, small size, and those assessing food allergy (FA) have often relied on parent-reported outcomes. Randomized controlled trials (RCTs) are not possible for ethical reasons. In addition, epidemiological studies have not considered that there is a large interindividual variation in human milk (HM) composition and feeding at the breast versus pumped HM potentially impacting the effect of breastfeeding between mothers. While prevention strategies such as early introduction of highly allergenic food are impactful in preventing peanut and egg allergies, implementation of early introduction guidelines has been slow, and many infants are already sensitized by 4-6 months of age. To be more effective, primary prevention strategies must commence much earlier, during breastfeeding. There are studies that imply a definitive effect of breastfeeding on the gut microbiome and regulatory T cells (Tregs) as well as a higher rate of FA in populations with historically low rates of breastfeeding. These provide a strong rationale for assessing the effect of feeding HM in the context of HM composition and mode of feeding on immune development. The lack of well-conducted, large studies assessing the role of breastfeeding and HM composition in the development of immune system development is a significant gap when designing prevention strategies.
Collapse
Affiliation(s)
- Kirsi M Järvinen-Seppo
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Pediatric Allergy and Immunology, Rochester, New York, USA
- Center for Food Allergy, Golisano Children's Hospital, Rochester, New York, USA
| |
Collapse
|
2
|
Vijayan K. K. V, De Paris K. Nonhuman primate models of pediatric viral diseases. Front Cell Infect Microbiol 2024; 14:1493885. [PMID: 39691699 PMCID: PMC11649651 DOI: 10.3389/fcimb.2024.1493885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious diseases are the leading cause of death in infants and children under 5 years of age. In utero exposure to viruses can lead to spontaneous abortion, preterm birth, congenital abnormalities or other developmental defects, often resulting in lifelong health sequalae. The underlying biological mechanisms are difficult to study in humans due to ethical concerns and limited sample access. Nonhuman primates (NHP) are closely related to humans, and pregnancy and immune ontogeny in infants are very similar to humans. Therefore, NHP are a highly relevant model for understanding fetal and postnatal virus-host interactions and to define immune mechanisms associated with increased morbidity and mortality in infants. We will discuss NHP models of viruses causing congenital infections, respiratory diseases in early life, and HIV. Cytomegalovirus (CMV) remains the most common cause of congenital defects worldwide. Measles is a vaccine-preventable disease, yet measles cases are resurging. Zika is an example of an emerging arbovirus with devastating consequences for the developing fetus and the surviving infant. Among the respiratory viruses, we will discuss influenza and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We will finish with HIV as an example of a lifelong infection without a cure or vaccine. The review will highlight (i) the impact of viral infections on fetal and infant immune development, (ii) how differences in infant and adult immune responses to infection alter disease outcome, and emphasize the invaluable contribution of pediatric NHP infection models to the design of effective treatment and prevention strategies, including vaccines, for human infants.
Collapse
Affiliation(s)
- Vidya Vijayan K. K.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina, Chapel Hill, NC, United States
- Children’s Research Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Mady EA, Osuga H, Toyama H, El-Husseiny HM, Inoue R, Murase H, Yamamoto Y, Nagaoka K. Relationship between the components of mare breast milk and foal gut microbiome: shaping gut microbiome development after birth. Vet Q 2024; 44:1-9. [PMID: 38733121 PMCID: PMC11089936 DOI: 10.1080/01652176.2024.2349948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota (GM) is essential for mammalian health. Although the association between infant GM and breast milk (BM) composition has been well established in humans, such a relationship has not been investigated in horses. Hence, this study was conducted to analyze the GM formation of foals during lactation and determine the presence of low-molecular-weight metabolites in mares' BM and their role in shaping foals' GM. The fecal and BM samples from six pairs of foals and mares were subjected to 16S ribosomal RNA metagenomic and metabolomic analyses, respectively. The composition of foal GM changed during lactation time; hierarchical cluster analysis divided the fetal GM into three groups corresponding to different time points in foal development. The level of most metabolites in milk decreased over time with increasing milk yield, while threonic acid and ascorbic acid increased. Further analyses revealed gut bacteria that correlated with changes in milk metabolites; for instance, there was a positive correlation between Bacteroidaceae in the foal's gut microbiota and serine/glycine in the mother's milk. These findings help improve the rearing environment of lactating horses and establish artificial feeding methods for foals.
Collapse
Affiliation(s)
- Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, Egypt
| | - Haruna Osuga
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haruka Toyama
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Science, Setsunan University, Osaka, Japan
| | - Harutaka Murase
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Sariyati NH, Othman N, Abdullah-Fauzi NAF, Chan E, Md-Zain BM, Karuppannan KV, Abdul-Latiff MAB. Characterizing the gastrointestinal microbiome diversity in endangered Malayan Siamang (Symphalangus syndactylus): Insights into group composition, age variability and sex-related patterns. J Med Primatol 2024; 53:e12730. [PMID: 39148344 DOI: 10.1111/jmp.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The gut morphology of Symphalangus syndactylus exhibits an intermediate structure that aligns with its consumption of fruit and ability to supplement its diet with leaves. The Siamang relies on its gut microbiome for energy extraction, immune system development, and the synthesis of micronutrients. Gut microbiome composition may be structured based on several factors such as age, sex, and habitat. No study has yet been carried out on the gut microbiota of the Hylobatidae members in Malaysia especially S. syndactylus. METHODS This study aims to resolve the gut microbiome composition of S. syndactylus by using a fecal sample as DNA source, adapting high-throughput sequencing, and 16S rRNA as the targeted region. RESULTS A total of 1 272 903 operational taxonomic units (OTUs) reads were assigned to 22 phyla, 139 families, and 210 genera of microbes. The {Unknown Phylum} Bacteria-2 is the dominant phyla found across all samples. Meanwhile, {Unknown Phylum} Bacteria-2 and Firmicutes are genera that have the highest relative abundance found in the Siamang gut. CONCLUSIONS This study yields nonsignificance relationship between Siamang gut microbiome composition with these three factors: group, sex, and age.
Collapse
Affiliation(s)
- Nur Hartini Sariyati
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nursyuhada Othman
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nurfatiha Akmal Fawwazah Abdullah-Fauzi
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Eddie Chan
- Treks Event Sdn Bhd, Lot AW/G5.00, GF, Awana Hotel Genting Highlands Resort, Genting Highlands, Pahang, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kayal Vizi Karuppannan
- National Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN), Kuala Lumpur, Malaysia
| | - Muhammad Abu Bakar Abdul-Latiff
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| |
Collapse
|
5
|
Gilbert SF. Inter-kingdom communication and the sympoietic way of life. Front Cell Dev Biol 2024; 12:1427798. [PMID: 39071805 PMCID: PMC11275584 DOI: 10.3389/fcell.2024.1427798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.
Collapse
Affiliation(s)
- Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Evolutionary Phenomics Group, Biotechnology Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Lian V, Hinrichs H, Young M, Faerber A, Özler O, Xie Y, Ballentine SJ, Tarr PI, Davidson NO, Thompson MD. Maternal Obesogenic Diet Attenuates Microbiome-Dependent Offspring Weaning Reaction with Worsening of Steatotic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:209-224. [PMID: 38029921 PMCID: PMC10835466 DOI: 10.1016/j.ajpath.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
The mechanisms by which maternal obesity increases the susceptibility to steatotic liver disease in offspring are incompletely understood. Models using different maternal obesogenic diets (MODEs) display phenotypic variability, likely reflecting the influence of timing and diet composition. This study compared three maternal obesogenic diets using standardized exposure times to identify differences in offspring disease progression. This study found that the severity of hepatic inflammation and fibrosis in the offspring depends on the composition of the maternal obesogenic diet. Offspring cecal microbiome composition was shifted in all MODE groups relative to control. Decreased α-diversity in some MODE offspring with shifts in abundance of multiple genera were suggestive of delayed maturation of the microbiome. The weaning reaction typically characterized by a spike in intestinal expression of Tnfa and Ifng was attenuated in MODE offspring in an early microbiome-dependent manner using cross-fostering. Cross-fostering also switched the severity of disease progression in offspring dependent on the diet of the fostering dam. These results identify maternal diet composition and timing of exposure as modifiers in mediating transmissible changes in the microbiome. These changes in the early microbiome alter a critical window during weaning that drives susceptibility to progressive liver disease in the offspring.
Collapse
Affiliation(s)
- Vung Lian
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Holly Hinrichs
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Monica Young
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Austin Faerber
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Oğuz Özler
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel J Ballentine
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
7
|
Chen Z, Liu Y, Huang W. Alveolar macrophage modulation via the gut-lung axis in lung diseases. Front Immunol 2023; 14:1279677. [PMID: 38077401 PMCID: PMC10702770 DOI: 10.3389/fimmu.2023.1279677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Several studies have demonstrated great potential implications for the gut-lung axis in lung disease etiology and treatment. The gut environment can be influenced by diet, metabolites, microbiotal composition, primary diseases, and medical interventions. These changes modulate the functions of alveolar macrophages (AMs) to shape the pulmonary immune response, which greatly impacts lung health. The immune modulation of AMs is implicated in the pathogenesis of various lung diseases. However, the mechanism of the gut-lung axis in lung diseases has not yet been determined. This mini-review aimed to shed light on the critical nature of communication between the gut and AMs during the development of pulmonary infection, injury, allergy, and malignancy. A better understanding of their crosstalk may provide new insights into future therapeutic strategies targeting the gut-AM interaction.
Collapse
Affiliation(s)
| | | | - Weizhe Huang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Di Lorenzo F, Paparo L, Pisapia L, Oglio F, Pither MD, Cirella R, Nocerino R, Carucci L, Silipo A, de Filippis F, Ercolini D, Molinaro A, Berni Canani R. The chemistry of gut microbiome-derived lipopolysaccharides impacts on the occurrence of food allergy in the pediatric age. Front Mol Biosci 2023; 10:1266293. [PMID: 37900913 PMCID: PMC10606559 DOI: 10.3389/fmolb.2023.1266293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Food allergy (FA) in children is a major health concern. A better definition of the pathogenesis of the disease could facilitate effective preventive and therapeutic measures. Gut microbiome alterations could modulate the occurrence of FA, although the mechanisms involved in this phenomenon are poorly characterized. Gut bacteria release signaling byproducts from their cell wall, such as lipopolysaccharides (LPSs), which can act locally and systemically, modulating the immune system function. Methods: In the current study gut microbiome-derived LPS isolated from fecal samples of FA and healthy children was chemically characterized providing insights into the carbohydrate and lipid composition as well as into the LPS macromolecular nature. In addition, by means of a chemical/MALDI-TOF MS and MS/MS approach we elucidated the gut microbiome-derived lipid A mass spectral profile directly on fecal samples. Finally, we evaluated the pro-allergic and pro-tolerogenic potential of these fecal LPS and lipid A by harnessing peripheral blood mononuclear cells from healthy donors. Results: By analyzing fecal samples, we have identified different gut microbiome-derived LPS chemical features comparing FA children and healthy controls. We also have provided evidence on a different immunoregulatory action elicited by LPS on peripheral blood mononuclear cells collected from healthy donors suggesting that LPS from healthy individuals could be able to protect against the occurrence of FA, while LPS from children affected by FA could promote the allergic response. Discussion: Altogether these data highlight the relevance of gut microbiome-derived LPSs as potential biomarkers for FA and as a target of intervention to limit the disease burden.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
- European Laboratory for Investigation of Food Induced Diseases, University Federico II, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | | | - Roberta Cirella
- Department of Chemical Sciences, University Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
| | - Francesca de Filippis
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Agriculture, University Federico II, Naples, Italy
| | - Danilo Ercolini
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Agriculture, University Federico II, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Chemistry, School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Roberto Berni Canani
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
- European Laboratory for Investigation of Food Induced Diseases, University Federico II, Naples, Italy
| |
Collapse
|
9
|
Nakatani JY, Pomerantz O, Stockinger D, Christe K, Hopkins L, Roberts JA, Reader RJ, Ardeshir A. Early-life behavioral features are associated with chronic emesis in rhesus macaques (Macaca mulatta). Am J Primatol 2023; 85:e23488. [PMID: 36975141 PMCID: PMC10231223 DOI: 10.1002/ajp.23488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023]
Abstract
Chronic emesis (CE) is a poorly understood condition in human and nonhuman primates that negatively impacts the quality of life. Early identification of risk factors for the development of CE is likely to improve the ability to manage CE cases successfully and is, therefore, desirable. Using a case-control study, we reviewed the necropsy records of the California National Primate Research Center and identified 24 animals with recorded CE, defined as five or more incidents of emesis in 1 month. A group of 89 healthy rhesus macaques (Macaca mulatta), comparable in age and percent time housed indoors, was similarly identified. Next, we investigated the association between the occurrence of CE during later stages of life after infancy and the behavioral temperament scores attained in infancy, age, sex, birth location, rearing condition, history of self-injurious behavior (SIB), and the number of lifetime sedation events. Our analysis revealed that CE was associated with degrees of temperament constructs obtained in infancy (data was available for n = 113), such as Confidence (odds ratio (OR) = 0.45, 95% CI: 0.18, 1.08, p = 0.07), Gentleness (OR = 0.47, 95% CI: 0.23, 0.96, p = 0.03), Nervousness (OR = 2.04, 95% CI: 0.98, 4.23, p = 0.05), and Vigilance (OR = 0.36, 95% CI: 015, 0.87, p = 0.02), suggesting that CE is linked to behavioral phenomenon measured in early life, long before it becomes a medical concern. Our data suggest that CE was positively correlated with a history of SIB (OR 4.26, 95% CI: 0.98, 18.47, p = 0.04). Accurate prediction of CE can then assist behavioral and colony management professionals in making informed decisions regarding the care of animals at risk of developing CE. Moreover, the novel information we reported here could have valuable implications in human medicine, where gastrointestinal distress is a common complaint affecting a person's quality of life.
Collapse
Affiliation(s)
- Jamie Y. Nakatani
- California National Primate Research Center, University of California, Davis, California, USA
| | - Ori Pomerantz
- California National Primate Research Center, University of California, Davis, California, USA
| | - Diane Stockinger
- California National Primate Research Center, University of California, Davis, California, USA
| | - Kari Christe
- California National Primate Research Center, University of California, Davis, California, USA
| | - Lincoln Hopkins
- California National Primate Research Center, University of California, Davis, California, USA
| | - Jeffrey A. Roberts
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Rachel J. Reader
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, California, USA
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| |
Collapse
|
10
|
Donovan SM, Aghaeepour N, Andres A, Azad MB, Becker M, Carlson SE, Järvinen KM, Lin W, Lönnerdal B, Slupsky CM, Steiber AL, Raiten DJ. Evidence for human milk as a biological system and recommendations for study design-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 4. Am J Clin Nutr 2023; 117 Suppl 1:S61-S86. [PMID: 37173061 PMCID: PMC10356565 DOI: 10.1016/j.ajcnut.2022.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk contains all of the essential nutrients required by the infant within a complex matrix that enhances the bioavailability of many of those nutrients. In addition, human milk is a source of bioactive components, living cells and microbes that facilitate the transition to life outside the womb. Our ability to fully appreciate the importance of this matrix relies on the recognition of short- and long-term health benefits and, as highlighted in previous sections of this supplement, its ecology (i.e., interactions among the lactating parent and breastfed infant as well as within the context of the human milk matrix itself). Designing and interpreting studies to address this complexity depends on the availability of new tools and technologies that account for such complexity. Past efforts have often compared human milk to infant formula, which has provided some insight into the bioactivity of human milk, as a whole, or of individual milk components supplemented with formula. However, this experimental approach cannot capture the contributions of the individual components to the human milk ecology, the interaction between these components within the human milk matrix, or the significance of the matrix itself to enhance human milk bioactivity on outcomes of interest. This paper presents approaches to explore human milk as a biological system and the functional implications of that system and its components. Specifically, we discuss study design and data collection considerations and how emerging analytical technologies, bioinformatics, and systems biology approaches could be applied to advance our understanding of this critical aspect of human biology.
Collapse
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA.
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health and Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Martin Becker
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Allergy and Immunology and Center for Food Allergy, University of Rochester Medical Center, New York, NY, USA
| | - Weili Lin
- Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, USA; Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Hora B, Li H, Shen X, Martin M, Chen Y, Berry M, Evangelous T, Macintyre AN, Arus-Altuz A, Wang S, Singh A, Zhao C, De Naeyer N, DeMarco T, Kuykendall C, Gurley T, Saunders KO, Denny T, Moody MA, Misamore J, Lewis MG, Wiehe K, Cain DW, Montefiori DC, Shaw GM, Williams WB. Neonatal SHIV infection in rhesus macaques elicited heterologous HIV-1-neutralizing antibodies. Cell Rep 2023; 42:112255. [PMID: 36924501 PMCID: PMC10117998 DOI: 10.1016/j.celrep.2023.112255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Infants and children infected with human immunodeficiency virus (HIV)-1 have been shown to develop neutralizing antibodies (nAbs) against heterologous HIV-1 strains, characteristic of broadly nAbs (bnAbs). Thus, having a neonatal model for the induction of heterologous HIV-1 nAbs may provide insights into the mechanisms of neonatal bnAb development. Here, we describe a neonatal model for heterologous HIV-1 nAb induction in pathogenic simian-HIV (SHIV)-infected rhesus macaques (RMs). Viral envelope (env) evolution showed mutations at multiple sites, including nAb epitopes. All 13 RMs generated plasma autologous HIV-1 nAbs. However, 8/13 (62%) RMs generated heterologous HIV-1 nAbs with increasing potency over time, albeit with limited breadth, and mapped to multiple nAb epitopes, suggestive of a polyclonal response. Moreover, plasma heterologous HIV-1 nAb development was associated with antigen-specific, lymph-node-derived germinal center activity. We define a neonatal model for heterologous HIV-1 nAb induction that may inform future pediatric HIV-1 vaccines for bnAb induction in infants and children.
Collapse
Affiliation(s)
- Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mitchell Martin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yue Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Madison Berry
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tyler Evangelous
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aria Arus-Altuz
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ajay Singh
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyan Zhao
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole De Naeyer
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cindy Kuykendall
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thaddeus Gurley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Alonso S, Braña I, Pardo E, Burger S, González del Pozo P, Alperi M, Queiro R. Are Patients with Axial Spondyloarthritis Who Were Breastfed Protected against the Development of Severe Disease? J Clin Med 2023; 12:jcm12051863. [PMID: 36902650 PMCID: PMC10003909 DOI: 10.3390/jcm12051863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/12/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND AND AIMS Breastfeeding is recognized as one of the most influential drivers of the gut microbiome. In turn, alterations in the gut microbiome may play a role in the development and severity of spondyloarthritis (SpA). We aimed to analyze different disease outcomes in patients with axial SpA (axSpA) based on the history of breastfeeding. PATIENTS AND METHODS A random sample was selected from a large database of axSpA patients. Patients were divided based on history of breastfeeding and several disease outcomes were compared. Both groups were also compared based on disease severity. Adjusted linear and logistic regression statistical methods were used. RESULTS The study included 105 patients (46 women and 59 men), and the median age was 45 years (IQR: 16-72), and the mean age at diagnosis was 34.3 ± 10.9 years. Sixty-one patients (58.1%) were breastfed, with a median duration of 4 (IQR: 1-24) months. After the fully adjusted model, BASDAI [-1.13 (95%CI: -2.04, -0.23), p = 0.015] and ASDAS [-0.38 (95%CI: -0.72, -0.04), p = 0.030] scores were significantly lower in breastfed patients. Forty-two percent had severe disease. In the adjusted logistic model for age, sex, disease duration, family history, HLA-B27, biologic therapy, smoking, and obesity, breastfeeding had a protective effect against the development of severe disease (OR 0.22, 95%CI: 0.08-0.57, p = 0.003). The selected sample size was sufficient to detect this difference with a statistical power of 87% and a confidence level of 95%. CONCLUSION Breastfeeding might exert a protective effect against severe disease in patients with axSpA. These data need further confirmation.
Collapse
Affiliation(s)
- Sara Alonso
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Ignacio Braña
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Estefanía Pardo
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Stefanie Burger
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Mercedes Alperi
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Rubén Queiro
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- ISPA Translational Immunology Section, Biohealth Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- School of Medicine, Oviedo University, 33011 Oviedo, Spain
- Correspondence: ; Tel.: +34-985-108000
| |
Collapse
|
13
|
Zhang J, Long X, Liao Q, Chai J, Zhang T, Chen L, He H, Yuan Y, Wan K, Wang J, Liu A. Distinct Gut Microbiome Induced by Different Feeding Regimes in Weaned Piglets. Genes (Basel) 2022; 14:49. [PMID: 36672790 PMCID: PMC9858795 DOI: 10.3390/genes14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
It is well accepted that the gut microbiota of breast-fed (BF) and formula-fed (FF) infants are significantly different. However, there is still a limited number of studies comparing the gut microbiota of BF and FF piglets, despite increasing numbers of FF piglets in the modern pig industry. The present study identified the differences in gut microbiota composition between BF- and FF-weaned Rongchang piglets at 30 days old, using pair-end sequencing on the Illumina HiSeq 2500 platform. The BF piglets had lower microbiota diversities than FF piglets (p < 0.05), and the community structures were well clustered as a result of each feeding pattern. Firmicutes and Bacteroidetes represented the most dominant phyla, and Ruminococcus, Prevotella, and Gemmiger were prominent genera in all piglets. Ruminococcus, Prevotella, Oscillospira, Eubacterium, Gemmiger, Dorea, and Lactobacillus populations were significantly higher, while Treponema and Coprococcus were significantly lower in BF piglets compared to FF piglets (p < 0.05). The metabolism pathways in the BF piglets were significantly different from FF piglets, which included carbohydrate and amino acid metabolism (p < 0.05). In addition, the top 10 abundance of microbiota were more or less significantly associated with the two phenotypes (p < 0.05). Collectively, these findings provide probable explanations for the importance of BF in neonates and support a theoretical basis for feeding regimes in indigenous Chinese piglets.
Collapse
Affiliation(s)
- Jie Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xi Long
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Qinfeng Liao
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Jie Chai
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Tinghuan Zhang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Li Chen
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Hang He
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Yancong Yuan
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Kun Wan
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| |
Collapse
|
14
|
Johnson KVA, Watson KK, Dunbar RIM, Burnet PWJ. Sociability in a non-captive macaque population is associated with beneficial gut bacteria. Front Microbiol 2022; 13:1032495. [PMID: 36439813 PMCID: PMC9691693 DOI: 10.3389/fmicb.2022.1032495] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
The relationship between social behaviour and the microbiome is known to be reciprocal. Research in wild animal populations, particularly in primate social groups, has revealed the role that social interactions play in microbial transmission, whilst studies in laboratory animals have demonstrated that the gut microbiome can affect multiple aspects of behaviour, including social behaviour. Here we explore behavioural variation in a non-captive animal population with respect to the abundance of specific bacterial genera. Social behaviour based on grooming interactions is assessed in a population of rhesus macaques (Macaca mulatta), and combined with gut microbiome data. We focus our analyses on microbiome genera previously linked to sociability and autistic behaviours in rodents and humans. We show in this macaque population that some of these genera are also related to an individual's propensity to engage in social interactions. Interestingly, we find that several of the genera positively related to sociability, such as Faecalibacterium, are well known for their beneficial effects on health and their anti-inflammatory properties. In contrast, the genus Streptococcus, which includes pathogenic species, is more abundant in less sociable macaques. Our results indicate that microorganisms whose abundance varies with individual social behaviour also have functional links to host immune status. Overall, these findings highlight the connections between social behaviour, microbiome composition, and health in an animal population.
Collapse
Affiliation(s)
- Katerina V.-A. Johnson
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom,*Correspondence: Katerina V.-A. Johnson,
| | - Karli K. Watson
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Robin I. M. Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
15
|
Chin N, Narayan NR, Méndez-Lagares G, Ardeshir A, Chang WLW, Deere JD, Fontaine JH, Chen C, Kieu HT, Lu W, Barry PA, Sparger EE, Hartigan-O'Connor DJ. Cytomegalovirus infection disrupts the influence of short-chain fatty acid producers on Treg/Th17 balance. MICROBIOME 2022; 10:168. [PMID: 36210471 PMCID: PMC9549678 DOI: 10.1186/s40168-022-01355-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Both the gut microbiota and chronic viral infections have profound effects on host immunity, but interactions between these influences have been only superficially explored. Cytomegalovirus (CMV), for example, infects approximately 80% of people globally and drives significant changes in immune cells. Similarly, certain gut-resident bacteria affect T-cell development in mice and nonhuman primates. It is unknown if changes imposed by CMV on the intestinal microbiome contribute to immunologic effects of the infection. RESULTS We show that rhesus cytomegalovirus (RhCMV) infection is associated with specific differences in gut microbiota composition, including decreased abundance of Firmicutes, and that the extent of microbial change was associated with immunologic changes including the proliferation, differentiation, and cytokine production of CD8+ T cells. Furthermore, RhCMV infection disrupted the relationship between short-chain fatty acid producers and Treg/Th17 balance observed in seronegative animals, showing that some immunologic effects of CMV are due to disruption of previously existing host-microbe relationships. CONCLUSIONS Gut microbes have an important influence on health and disease. Diet is known to shape the microbiota, but the influence of concomitant chronic viral infections is unclear. We found that CMV influences gut microbiota composition to an extent that is correlated with immunologic changes in the host. Additionally, pre-existing correlations between immunophenotypes and gut microbes can be subverted by CMV infection. Immunologic effects of CMV infection on the host may therefore be mediated by two different mechanisms involving gut microbiota. Video Abstract.
Collapse
Affiliation(s)
- Ning Chin
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Nicole R Narayan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Gema Méndez-Lagares
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, USA
| | - W L William Chang
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Jesse D Deere
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Justin H Fontaine
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Connie Chen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Hung T Kieu
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Wenze Lu
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Peter A Barry
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, USA
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, Davis, USA.
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA.
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, USA.
| |
Collapse
|
16
|
Pinacho-Guendulain B, Montiel-Castro AJ, Ramos-Fernández G, Pacheco-López G. Social complexity as a driving force of gut microbiota exchange among conspecific hosts in non-human primates. Front Integr Neurosci 2022; 16:876849. [PMID: 36110388 PMCID: PMC9468716 DOI: 10.3389/fnint.2022.876849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The emergent concept of the social microbiome implies a view of a highly connected biological world, in which microbial interchange across organisms may be influenced by social and ecological connections occurring at different levels of biological organization. We explore this idea reviewing evidence of whether increasing social complexity in primate societies is associated with both higher diversity and greater similarity in the composition of the gut microbiota. By proposing a series of predictions regarding such relationship, we evaluate the existence of a link between gut microbiota and primate social behavior. Overall, we find that enough empirical evidence already supports these predictions. Nonetheless, we conclude that studies with the necessary, sufficient, explicit, and available evidence are still scarce. Therefore, we reflect on the benefit of founding future analyses on the utility of social complexity as a theoretical framework.
Collapse
Affiliation(s)
- Braulio Pinacho-Guendulain
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México, Mexico
| | - Augusto Jacobo Montiel-Castro
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- *Correspondence: Augusto Jacobo Montiel-Castro,
| | - Gabriel Ramos-Fernández
- Institute for Research on Applied Mathematics and Systems (IIMAS), National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Center for Complexity Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gustavo Pacheco-López
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- Gustavo Pacheco-López,
| |
Collapse
|
17
|
Li P, Chang X, Chen X, Tang T, Liu Y, Shang Y, Qi K. Dynamic colonization of gut microbiota and its influencing factors among the breast-feeding infants during the first two years of life. J Microbiol 2022; 60:780-794. [DOI: 10.1007/s12275-022-1641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022]
|
18
|
Michel C, Blottière HM. Neonatal Programming of Microbiota Composition: A Plausible Idea That Is Not Supported by the Evidence. Front Microbiol 2022; 13:825942. [PMID: 35783422 PMCID: PMC9247513 DOI: 10.3389/fmicb.2022.825942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Underpinning the theory "developmental origins of health and disease" (DOHaD), evidence is accumulating to suggest that the risks of adult disease are in part programmed by exposure to environmental factors during the highly plastic "first 1,000 days of life" period. An elucidation of the mechanisms involved in this programming is challenging as it would help developing new strategies to promote adult health. The intestinal microbiome is proposed as a long-lasting memory of the neonatal environment. This proposal is supported by indisputable findings such as the concomitance of microbiota assembly and the first 1,000-day period, the influence of perinatal conditions on microbiota composition, and the impact of microbiota composition on host physiology, and is based on the widely held but unconfirmed view that the microbiota is long-lastingly shaped early in life. In this review, we examine the plausibility of the gut microbiota being programmed by the neonatal environment and evaluate the evidence for its validity. We highlight that the capacity of the pioneer bacteria to control the implantation of subsequent bacteria is supported by both theoretical principles and statistical associations, but remains to be demonstrated experimentally. In addition, our critical review of the literature on the long-term repercussions of selected neonatal modulations of the gut microbiota indicates that sustained programming of the microbiota composition by neonatal events is unlikely. This does not exclude the microbiota having a role in DOHaD due to a possible interaction with tissue and organ development during the critical windows of neonatal life.
Collapse
Affiliation(s)
| | - Hervé M. Blottière
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
| |
Collapse
|
19
|
Stevens J, Steinmeyer S, Bonfield M, Peterson L, Wang T, Gray J, Lewkowich I, Xu Y, Du Y, Guo M, Wynn JL, Zacharias W, Salomonis N, Miller L, Chougnet C, O’Connor DH, Deshmukh H. The balance between protective and pathogenic immune responses to pneumonia in the neonatal lung is enforced by gut microbiota. Sci Transl Med 2022; 14:eabl3981. [PMID: 35704600 PMCID: PMC10032669 DOI: 10.1126/scitranslmed.abl3981] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although modern clinical practices such as cesarean sections and perinatal antibiotics have improved infant survival, treatment with broad-spectrum antibiotics alters intestinal microbiota and causes dysbiosis. Infants exposed to perinatal antibiotics have an increased likelihood of life-threatening infections, including pneumonia. Here, we investigated how the gut microbiota sculpt pulmonary immune responses, promoting recovery and resolution of infection in newborn rhesus macaques. Early-life antibiotic exposure interrupted the maturation of intestinal commensal bacteria and disrupted the developmental trajectory of the pulmonary immune system, as assessed by single-cell proteomic and transcriptomic analyses. Early-life antibiotic exposure rendered newborn macaques more susceptible to bacterial pneumonia, concurrent with increases in neutrophil senescence and hyperinflammation, broad inflammatory cytokine signaling, and macrophage dysfunction. This pathogenic reprogramming of pulmonary immunity was further reflected by a hyperinflammatory signature in all pulmonary immune cell subsets coupled with a global loss of tissue-protective, homeostatic pathways in the lungs of dysbiotic newborns. Fecal microbiota transfer was associated with partial correction of the broad immune maladaptations and protection against severe pneumonia. These data demonstrate the importance of intestinal microbiota in programming pulmonary immunity and support the idea that gut microbiota promote the balance between pathways driving tissue repair and inflammatory responses associated with clinical recovery from infection in infants. Our results highlight a potential role for microbial transfer for immune support in these at-risk infants.
Collapse
Affiliation(s)
- Joseph Stevens
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shelby Steinmeyer
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Madeline Bonfield
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Laura Peterson
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Timothy Wang
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jerilyn Gray
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ian Lewkowich
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Bioinformatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yina Du
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Minzhe Guo
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James L. Wynn
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - William Zacharias
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Bioinformatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa Miller
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
- California National Primate Research Center, Davis, CA 95616, USA
| | - Claire Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Dennis Hartigan O’Connor
- California National Primate Research Center, Davis, CA 95616, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Hitesh Deshmukh
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Corresponding author.
| |
Collapse
|
20
|
Dzanibe S, Lennard K, Kiravu A, Seabrook MSS, Alinde B, Holmes SP, Blish CA, Jaspan HB, Gray CM. Stereotypic Expansion of T Regulatory and Th17 Cells during Infancy Is Disrupted by HIV Exposure and Gut Epithelial Damage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:27-37. [PMID: 34819390 PMCID: PMC8702481 DOI: 10.4049/jimmunol.2100503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023]
Abstract
Few studies have investigated immune cell ontogeny throughout the neonatal and early pediatric period, when there is often increased vulnerability to infections. In this study, we evaluated the dynamics of two critical T cell populations, T regulatory (Treg) cells and Th17 cells, over the first 36 wk of human life. First, we observed distinct CD4+ T cells phenotypes between cord blood and peripheral blood, collected within 12 h of birth, showing that cord blood is not a surrogate for newborn blood. Second, both Treg and Th17 cells expanded in a synchronous fashion over 36 wk of life. However, comparing infants exposed to HIV in utero, but remaining uninfected, with HIV-unexposed uninfected control infants, there was a lower frequency of peripheral blood Treg cells at birth, resulting in a delayed expansion, and then declining again at 36 wk. Focusing on birth events, we found that Treg cells coexpressing CCR4 and α4β7 inversely correlated with plasma concentrations of CCL17 (the ligand for CCR4) and intestinal fatty acid binding protein, IL-7, and CCL20. This was in contrast with Th17 cells, which showed a positive association with these plasma analytes. Thus, despite the stereotypic expansion of both cell subsets over the first few months of life, there was a disruption in the balance of Th17 to Treg cells at birth likely being a result of gut damage and homing of newborn Treg cells from the blood circulation to the gut.
Collapse
Affiliation(s)
- Sonwabile Dzanibe
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa;
| | - Katie Lennard
- Division of Computational Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Agano Kiravu
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Melanie S S Seabrook
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Berenice Alinde
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Susan P Holmes
- Department of Statistic, Stanford University, Stanford, CA
| | - Catherine A Blish
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Heather B Jaspan
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Seattle Children's Research Institute and Departments of Paediatrics and Global Health, University of Washington, Seattle, WA; and
| | - Clive M Gray
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa;
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
21
|
Taylor RA, McRaven MD, Carias AM, Anderson MR, Matias E, Araínga M, Allen EJ, Rogers KA, Gupta S, Kulkarni V, Lakhashe S, Lorenzo-Redondo R, Thomas Y, Strickland A, Villinger FJ, Ruprecht RM, Hope TJ. Localization of infection in neonatal rhesus macaques after oral viral challenge. PLoS Pathog 2021; 17:e1009855. [PMID: 34793582 PMCID: PMC8639050 DOI: 10.1371/journal.ppat.1009855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/02/2021] [Accepted: 11/06/2021] [Indexed: 12/24/2022] Open
Abstract
Vertical transmission of human immunodeficiency virus (HIV) can occur in utero, during delivery, and through breastfeeding. We utilized Positron Emission Tomography (PET) imaging coupled with fluorescent microscopy of 64Cu-labeled photoactivatable-GFP-HIV (PA-GFP-BaL) to determine how HIV virions distribute and localize in neonatal rhesus macaques two and four hours after oral viral challenge. Our results show that by four hours after oral viral exposure, HIV virions localize to and penetrate the rectal mucosa. We also used a dual viral challenge with a non-replicative viral vector and a replication competent SHIV-1157ipd3N4 to examine viral transduction and dissemination at 96 hours. Our data show that while SHIV-1157ipd3N4 infection can be found in the oral cavity and upper gastrointestinal (GI) tract, the small and large intestine contained the largest number of infected cells. Moreover, we found that T cells were the biggest population of infected immune cells. Thus, thanks to these novel technologies, we are able to visualize and delineate of viral distribution and infection throughout the entire neonatal GI tract during acute viral infection. Approximately 1.8 million children are currently living with human immunodeficiency virus (HIV). While mother-to-child HIV transmission can occur in utero and during delivery, it most commonly occurs through breastfeeding, creating the need to understand how the virus moves throughout the body and infects the infant once breast milk is consumed. Here, we used multiple imaging techniques and PCR to determine how HIV distributes throughout the gastrointestinal tract after oral viral exposure and in which tissues and cell types become acutely infected. We found that HIV rapidly spreads throughout and penetrates the entire gastrointestinal tract as early as four hours after exposure. We also found that the intestine contained the largest number of infected cells at 96 hours and that most cells infected were T cells. Our study shows that these imaging technologies allow for the examination of viral distribution and infection in a rhesus macaque model.
Collapse
Affiliation(s)
- Roslyn A. Taylor
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael D. McRaven
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ann M. Carias
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Meegan R. Anderson
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Edgar Matias
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Mariluz Araínga
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Edward J. Allen
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Kenneth A. Rogers
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Sandeep Gupta
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Viraj Kulkarni
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Samir Lakhashe
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Ramon Lorenzo-Redondo
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Institute for Global Health, Chicago, Illinois, United States of America
| | - Yanique Thomas
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Amanda Strickland
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Francois J. Villinger
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Ruth M. Ruprecht
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
Purpose of Review Observations of differing bacterial, intestinal microbiomes in people living with HIV have propelled interest in contributions of the microbiome to HIV disease. Non-human primate (NHP) models of HIV infection provide a controlled setting for assessing contributions of the microbiome by standardizing environmental confounders. We provide an overview of the findings of microbiome contributions to aspects of HIV disease derived from these animal models. Recent Findings Observations of differing bacterial, intestinal microbiomes are inconsistently observed in the NHP model following SIV infection. Differences in lentiviral susceptibility and vaccine efficacy have been attributed to variations in the intestinal microbiome; however, by-and-large, these differences have not been experimentally assessed. Summary Although compelling associations exist, clearly defined contributions of the microbiome to HIV and SIV disease are lacking. The empirical use of comprehensive multi-omics assessments and longitudinal and interventional study designs in NHP models is necessary to define this contribution more clearly.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA.
| |
Collapse
|
23
|
Milk Formula Diet Alters Bacterial and Host Protein Profile in Comparison to Human Milk Diet in Neonatal Piglet Model. Nutrients 2021; 13:nu13113718. [PMID: 34835974 PMCID: PMC8618976 DOI: 10.3390/nu13113718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
The metaproteome profiling of cecal contents collected from neonatal piglets fed pasteurized human milk (HM) or a dairy-based infant formula (MF) from postnatal day (PND) 2 to 21 were assessed. At PND 21, a subset of piglets from each group (n = 11/group) were euthanized, and cecal contents were collected for further metaproteome analysis. Cecal microbiota composition showed predominantly more Firmicutes phyla and Lachnospiraceae family in the lumen of cecum of HM-fed piglets in comparison to the MF-fed group. Ruminococcus gnavus was the most abundant species from the Firmicutes phyla in the cecal contents of the HM-fed piglets at 21 days of age. A greater number of expressed proteins were identified in the cecal contents of the HM-fed piglets relative to the MF-fed piglets. Greater abundances of proteins potentially expressed by Bacteroides spp. such as glycoside enzymes were noted in the cecal lumen of HM-fed piglets relative to the MF. Additionally, lyases associated with Lachnospiraceae family were abundant in the cecum of the HM group relative to the MF group. Overall, our findings indicate that neonatal diet impacts the gut bacterial taxa and microbial proteins prior to weaning. The metaproteomics data were deposited into PRIDE, PXD025432 and 10.6019/PXD025432.
Collapse
|
24
|
Osman M, Olkun A, Maldonado AM, Lopez-Tremoleda J, Sanchez-Perea N, Paredes UM. Parentally deprived juvenile Owl monkeys suffer from long-term high infection rates but not from altered hair cortisol concentrations nor from stereotypic behaviours. J Med Primatol 2021; 50:306-312. [PMID: 34622472 DOI: 10.1111/jmp.12545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/26/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND In captive colonies, owl monkeys' mothers sometimes reject their newborns. To prevent, mortality infants are manually raised by veterinarians. Both parental separation and rejection are stressful experiences, associated with elevated stress, physical, and behavioural disorders. The effect of parental deprivation in IVITA's owl monkeys stress profiles and health is unknown. METHODS We compared stress biomarkers such as hair cortisol (using cortisol ELISA), stereotypic behaviours (with infrared cameras), and infection histories in juveniles separated from parents soon after birth (n = 14, ~17 months) and controls (n = 11, ~17 months). RESULTS Parentally deprived owl monkeys show higher infection rates than controls (p = .001). However, they display no higher incidence of biomarkers of stress: Neither stereotypic behaviour nor cortisol in hair was different between cohorts. Irrespective of deprivation status, rates of infection, and concentration of cortisol in hair were positively associated (R2 = .29, p = .005). CONCLUSION Early parental deprivation and natural high levels of cortisol secretion are associated with elevated infection levels in the IVITA owl monkey juveniles detectable up to 17 months post separation.
Collapse
Affiliation(s)
- Mahdiyah Osman
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Aylin Olkun
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Jordi Lopez-Tremoleda
- Barts and the London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Nofre Sanchez-Perea
- Veterinary School, Instituto Veterinario de Investigaciones Tropicales y de Altura (IVITA-Iquitos), Center for Conservation and Reproduction of Primates, Universidad Nacional Mayor de San Marcos (UNMSM), Lima, Peru
| | - Ursula M Paredes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Méndez-Lagares G, Chin N, Chang WW, Lee J, Rosás-Umbert M, Kieu HT, Merriam D, Lu W, Kim S, Adamson L, Brander C, Luciw PA, Barry PA, Hartigan-O’Connor DJ. Cytomegalovirus mediates expansion of IL-15-responsive innate-memory cells with SIV killing function. J Clin Invest 2021; 131:148542. [PMID: 34153005 PMCID: PMC8321572 DOI: 10.1172/jci148542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Interindividual immune variability is driven predominantly by environmental factors, including exposure to chronic infectious agents such as cytomegalovirus (CMV). We investigated the effects of rhesus CMV (RhCMV) on composition and function of the immune system in young macaques. Within months of infection, RhCMV was associated with impressive changes in antigen presenting cells, T cells, and NK cells-and marked expansion of innate-memory CD8+ T cells. These cells express high levels of NKG2A/C and the IL-2 and IL-15 receptor beta chain, CD122. IL-15 was sufficient to drive differentiation of the cells in vitro and in vivo. Expanded NKG2A/C+CD122+CD8+ T cells in RhCMV-infected macaques, but not their NKG2-negative counterparts, were endowed with cytotoxicity against class I-deficient K562 targets and prompt IFN-γ production in response to stimulation with IL-12 and IL-18. Because RhCMV clone 68-1 forms the viral backbone of RhCMV-vectored SIV vaccines, we also investigated immune changes following administration of RhCMV 68-1-vectored SIV vaccines. These vaccines led to impressive expansion of NKG2A/C+CD8+ T cells with capacity to inhibit SIV replication ex vivo. Thus, CMV infection and CMV-vectored vaccination drive expansion of functional innate-like CD8 cells via host IL-15 production, suggesting that innate-memory expansion could be achieved by other vaccine platforms expressing IL-15.
Collapse
Affiliation(s)
- Gema Méndez-Lagares
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Ning Chin
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - W.L. William Chang
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Jaewon Lee
- Graduate Group in Immunology, and
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | | | - Hung T. Kieu
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - David Merriam
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Wenze Lu
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Sungjin Kim
- Department of Medical Microbiology and Immunology
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | - Lourdes Adamson
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | - Christian Brander
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Paul A. Luciw
- California National Primate Research Center
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, USA
| | - Peter A. Barry
- California National Primate Research Center
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, USA
| | - Dennis J. Hartigan-O’Connor
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
26
|
Nunez N, Réot L, Menu E. Neonatal Immune System Ontogeny: The Role of Maternal Microbiota and Associated Factors. How Might the Non-Human Primate Model Enlighten the Path? Vaccines (Basel) 2021; 9:584. [PMID: 34206053 PMCID: PMC8230289 DOI: 10.3390/vaccines9060584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant's microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother-fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant's microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant's health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.
Collapse
Affiliation(s)
- Natalia Nunez
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
| | - Louis Réot
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
| | - Elisabeth Menu
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
- MISTIC Group, Department of Virology, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
27
|
Yeruva L, Munblit D, Collado MC. Editorial: Impact of Early Life Nutrition on Immune System Development and Related Health Outcomes in Later Life. Front Immunol 2021; 12:668569. [PMID: 33841449 PMCID: PMC8027300 DOI: 10.3389/fimmu.2021.668569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Daniel Munblit
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.,Solov'ev Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - Maria Carmen Collado
- Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
28
|
Afrin S, Akter S, Begum S, Hossain MN. The Prospects of Lactobacillus oris as a Potential Probiotic With Cholesterol-Reducing Property From Mother's Milk. Front Nutr 2021; 8:619506. [PMID: 33748173 PMCID: PMC7969506 DOI: 10.3389/fnut.2021.619506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
This experiment was conducted to characterize potential Lactobacillus spp. isolated from mother's milk and infant feces to obtain new and specific probiotic strains. In this study, seven ascendant strains were identified as Lactobacillus spp. based on their morphological characteristics and biochemical properties. Among them, only one (C-1) isolate was identified as Lactobacillus oris through BioLogTM identification. The study further investigated the isolate through probiotic potentiality tests such as pH and bile tolerance, NaCl tolerance test, gastric juice tolerance, antioxidant activity, resistance to hydrogen, reduction of sodium nitrate, antimicrobial activity, and antibiotic susceptibility test. The result showed that the strain is a potential probiotic based on probiotic capability. The identified strain was most acid-tolerant and retained around 80% viability for up to 4 h at pH 1.0 and 2.0. The isolate showed tolerance against up to 1.50% bile concentration and gastric juice and was able to grow 1-6% NaCl concentrations. Lactobacillus oris showed resistance to most antibiotics as well as antagonistic activity against the tested pathogen, good antioxidant properties, reduction of sodium nitrate and H2O2. The isolate exhibited good intestinal epithelial adhesion properties, and SDS page was performed for secreted protein analysis. Moreover, the strain showed promising cholesterol-lowering properties based on the cholesterol level. This present result indicates that L. oris has superior probiotic properties and can be regarded as a potential probiotic candidate.
Collapse
Affiliation(s)
- Sadia Afrin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Suraiya Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Shamima Begum
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Md Nur Hossain
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| |
Collapse
|
29
|
Chin N, Méndez-Lagares G, Taft DH, Laleau V, Kieu H, Narayan NR, Roberts SB, Mills DA, Hartigan-O’Connor DJ, Flaherman VJ. Transient Effect of Infant Formula Supplementation on the Intestinal Microbiota. Nutrients 2021; 13:807. [PMID: 33804415 PMCID: PMC7998963 DOI: 10.3390/nu13030807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Breastfeeding is the gold standard for feeding infants because of its long-term benefits to health and development, but most infants in the United States are not exclusively breastfed in the first six months. We enrolled 24 infants who were either exclusively breastfed or supplemented with formula by the age of one month. We collected diet information, stool samples for evaluation of microbiotas by 16S rRNA sequencing, and blood samples for assessment of immune development by flow cytometry from birth to 6 months of age. We further typed the Bifidobacterium strains in stool samples whose 16S rRNA sequencing showed the presence of Bifidobacteriaceae. Supplementation with formula during breastfeeding transiently changed the composition of the gut microbiome, but the impact dissipated by six months of age. For example, Bifidobacterium longum, a bacterial species highly correlated with human milk consumption, was found to be significantly different only at 1 month of age but not at later time points. No immunologic differences were found to be associated with supplementation, including the development of T-cell subsets, B cells, or monocytes. These data suggest that early formula supplementation, given in addition to breast milk, has minimal lasting impact on the gut microbiome or immunity.
Collapse
Affiliation(s)
- Ning Chin
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (N.C.); (G.M.-L.); (H.K.); (N.R.N.)
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
| | - Gema Méndez-Lagares
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (N.C.); (G.M.-L.); (H.K.); (N.R.N.)
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
| | - Diana H. Taft
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA; (D.H.T.); (D.A.M.)
- Foods for Health Institute, University of California, Davis, CA 95616, USA
| | - Victoria Laleau
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA; (V.L.); (V.J.F.)
| | - Hung Kieu
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (N.C.); (G.M.-L.); (H.K.); (N.R.N.)
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
| | - Nicole R. Narayan
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (N.C.); (G.M.-L.); (H.K.); (N.R.N.)
| | - Susan B. Roberts
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA;
| | - David A. Mills
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA; (D.H.T.); (D.A.M.)
- Foods for Health Institute, University of California, Davis, CA 95616, USA
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Dennis J. Hartigan-O’Connor
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (N.C.); (G.M.-L.); (H.K.); (N.R.N.)
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Valerie J. Flaherman
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA; (V.L.); (V.J.F.)
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
30
|
Harper A, Vijayakumar V, Ouwehand AC, ter Haar J, Obis D, Espadaler J, Binda S, Desiraju S, Day R. Viral Infections, the Microbiome, and Probiotics. Front Cell Infect Microbiol 2021; 10:596166. [PMID: 33643929 PMCID: PMC7907522 DOI: 10.3389/fcimb.2020.596166] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/23/2020] [Indexed: 01/07/2023] Open
Abstract
Viral infections continue to cause considerable morbidity and mortality around the world. Recent rises in these infections are likely due to complex and multifactorial external drivers, including climate change, the increased mobility of people and goods and rapid demographic change to name but a few. In parallel with these external factors, we are gaining a better understanding of the internal factors associated with viral immunity. Increasingly the gastrointestinal (GI) microbiome has been shown to be a significant player in the host immune system, acting as a key regulator of immunity and host defense mechanisms. An increasing body of evidence indicates that disruption of the homeostasis between the GI microbiome and the host immune system can adversely impact viral immunity. This review aims to shed light on our understanding of how host-microbiota interactions shape the immune system, including early life factors, antibiotic exposure, immunosenescence, diet and inflammatory diseases. We also discuss the evidence base for how host commensal organisms and microbiome therapeutics can impact the prevention and/or treatment of viral infections, such as viral gastroenteritis, viral hepatitis, human immunodeficiency virus (HIV), human papilloma virus (HPV), viral upper respiratory tract infections (URTI), influenza and SARS CoV-2. The interplay between the gastrointestinal microbiome, invasive viruses and host physiology is complex and yet to be fully characterized, but increasingly the evidence shows that the microbiome can have an impact on viral disease outcomes. While the current evidence base is informative, further well designed human clinical trials will be needed to fully understand the array of immunological mechanisms underlying this intricate relationship.
Collapse
Affiliation(s)
- Ashton Harper
- ADM Health & Wellness, Medical Affairs Department, Somerset, United Kingdom
| | | | - Arthur C. Ouwehand
- Global Health and Nutrition Sciences, DuPont Nutrition and Biosciences, Kantvik, Finland
| | | | - David Obis
- Innovation Science & Nutrition Department, Danone Nutricia Research, Palaiseau, France
| | | | - Sylvie Binda
- Lallemand Health Solutions, Montreal, QC, Canada
| | | | - Richard Day
- ADM Health & Wellness, Medical Affairs Department, Somerset, United Kingdom
| |
Collapse
|
31
|
Carr LE, Virmani MD, Rosa F, Munblit D, Matazel KS, Elolimy AA, Yeruva L. Role of Human Milk Bioactives on Infants' Gut and Immune Health. Front Immunol 2021; 12:604080. [PMID: 33643310 PMCID: PMC7909314 DOI: 10.3389/fimmu.2021.604080] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
Exclusive human milk feeding of the newborn is recommended during the first 6 months of life to promote optimal health outcomes during early life and beyond. Human milk contains a variety of bioactive factors such as hormones, cytokines, leukocytes, immunoglobulins, lactoferrin, lysozyme, stem cells, human milk oligosaccharides (HMOs), microbiota, and microRNAs. Recent findings highlighted the potential importance of adding HMOs into infant formula for their roles in enhancing host defense mechanisms in neonates. Therefore, understanding the roles of human milk bioactive factors on immune function is critical to build the scientific evidence base around breastfeeding recommendations, and to enhance positive health outcomes in formula fed infants through modifications to formulas. However, there are still knowledge gaps concerning the roles of different milk components, the interactions between the different components, and the mechanisms behind health outcomes are poorly understood. This review aims to show the current knowledge about HMOs, milk microbiota, immunoglobulins, lactoferrin, and milk microRNAs (miRNAs) and how these could have similar mechanisms of regulating gut and microbiota function. It will also highlight the knowledge gaps for future research.
Collapse
Affiliation(s)
- Laura E. Carr
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Misty D. Virmani
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Fernanda Rosa
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Daniel Munblit
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Inflammation, Repair and Development Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom
- Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | | | - Ahmed A. Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Laxmi Yeruva
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
- Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
32
|
Adriansjach J, Baum ST, Lefkowitz EJ, Van Der Pol WJ, Buford TW, Colman RJ. Age-Related Differences in the Gut Microbiome of Rhesus Macaques. J Gerontol A Biol Sci Med Sci 2021; 75:1293-1298. [PMID: 32052009 DOI: 10.1093/gerona/glaa048] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is a multifactorial process characterized by progressive changes in gut physiology and the intestinal mucosal immune system. These changes, along with alterations in lifestyle, diet, nutrition, inflammation and immune function alter both composition and stability of the gut microbiota. Given the impact of environmental influences on the gut microbiota, animal models are particularly useful in this field. To understand the relationship between the gut microbiota and aging in nonhuman primates, we collected fecal samples from 20 male and 20 female rhesus macaques (Macaca mulatta), across the natural macaque age range, for 16S rRNA gene analyses. Operational taxonomic units were then grouped together to summarize taxon abundance at different hierarchical levels of classification and alpha- and beta-diversity were calculated. There were no age or sex differences in alpha diversity. At the phylum level, relative abundance of Proteobacteria and Firmicutes and Firmicutes to Bacteriodetes ratio were different between age groups though significance disappeared after correction for multiple comparisons. At the class level, relative abundance of Firmicutes_Bacilli decreased and Proteobacteria_Alphaproteobacteria and Proteobacteria_Betaproteobacteria increased with each successively older group. Only differences in Firmicutes_Bacilli remained significant after correction for multiple comparisons. No sex differences were identified in relative abundances after correction for multiple comparisons. Our results are not surprising given the known impact of environmental factors on the gut microbiota.
Collapse
Affiliation(s)
- Julie Adriansjach
- Wisconsin National Primate Research Center, University of Wisconsin, Madison
| | - Scott T Baum
- Wisconsin National Primate Research Center, University of Wisconsin, Madison
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Madison
| | - William J Van Der Pol
- Biomedical Informatics, Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Madison
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, Madison
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison.,Department of Cell and Regenerative Biology, University of Wisconsin, Madison
| |
Collapse
|
33
|
Xin L, He F, Li S, Zhou ZX, Ma XL. Intestinal microbiota and juvenile idiopathic arthritis: current understanding and future prospective. World J Pediatr 2021; 17:40-51. [PMID: 32533534 DOI: 10.1007/s12519-020-00371-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) characterized by arthritis of unknown origin is the most common childhood chronic rheumatic disease, caused by both host genetic factors and environmental triggers. Recent evidence has mounted to focus on the intestinal microbiota, a potentially recognized set of environmental triggers affecting JIA development. Here we offer an overview of recently published animal and human studies that support the impact of intestinal microbiota in JIA. DATA SOURCES We searched PubMed for animal and human studies publications with the search terms "intestinal microbiota or gut microbiota" and "juvenile idiopathic arthritis or juvenile chronic arthritis or juvenile rheumatoid arthritis or childhood rheumatoid arthritis or pediatric rheumatoid arthritis". RESULTS Several comparative studies have demonstrated that intestinal microbial alterations might be triggers in disease pathogenesis. Alternatively, a slice of studies has suggested environmental triggers in early life might disrupt intestinal microbial colonization, including cesarean section, formula feeding, and antibiotic exposure. Aberrant intestinal microbiota may influence the development of JIA by mediating host immune programming and by altering mucosal permeability. CONCLUSIONS Specific microbial factors may contribute to the pathogenesis of JIA. Intensive studies, however, are warranted to investigate the causality between intestinal dysbiosis and JIA and the mechanisms behind these epidemiologic relationships. Studies are also needed to design the best interventional administrations to restore balanced intestinal microbial communities.
Collapse
Affiliation(s)
- Le Xin
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Feng He
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Yabao Road No. 2, Chaoyang District, Beijing, China
| | - Sen Li
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Yabao Road No. 2, Chaoyang District, Beijing, China
| | - Zhi-Xuan Zhou
- Department of Rheumatology, Capital Institute of Pediatrics, Beijing, China
| | - Xiao-Lin Ma
- Department of Rheumatology, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
34
|
Li Y, Chen T, Liang J, Li Y, Huang Z. Seasonal variation in the gut microbiota of rhesus macaques inhabiting limestone forests of southwest Guangxi, China. Arch Microbiol 2020; 203:787-798. [PMID: 33057745 DOI: 10.1007/s00203-020-02069-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022]
Abstract
Data on the gut microbiota of animals can provide new insights into dietary ecology of hosts, consequently assisting in understanding their adaptation strategy and evolutionary potential. We studied the gut microbiota composition and function of the wild rhesus macaques (Macaca mulatta) using 16S rRNA sequencing method. Our results revealed that the gut microbiota of the wild rhesus macaques was dominated by Firmicutes, Bacteroidetes, and Spirochaetes. Diversity and richness of gut microbiota were higher during the dry season than the rainy season. Specifically, higher proportions of Firmicutes, Tenericutes, Cyanobacteria, and unclassified bacteria at the phylum level and more Coprococcus at the genus level were detected in the dry season. Predictive functional analysis showed that pathways associated with carbohydrate metabolism and drug resistance (antimicrobial and antineoplastic) were richer in the dry season. These seasonal differences in microbiota could be due to their heavier dependence on leaf-based diet in the dry season. Additionally, macaques in limestone forests had a higher percentage of Spirochaetes, probably suggesting that the proportion of fruits in dietary composition also play an important role in the gut microbiota. We concluded that diet was strongly linked to the diversity, composition, and function of the gut microbiota in the wild groups of rhesus macaques living in the limestone forest, highlighting the importance of diet in the gut microbiota of macaques and the need to conduct further study on the adaptation strategy in response of environmental changes in the ground of gut microbiota.
Collapse
Affiliation(s)
- Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China
| | - Ting Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China
| | - Jipeng Liang
- Administration Centre of Guangxi Chongzuo White-headed Langur National Nature Reserve, Chongzuo, China
| | - Youbang Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China.
| | - Zhonghao Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China.
| |
Collapse
|
35
|
Wang H, Yang F, Xin R, Cui D, He J, Zhang S, Sun Y. The gut microbiota attenuate neuroinflammation in manganese exposure by inhibiting cerebral NLRP3 inflammasome. Biomed Pharmacother 2020; 129:110449. [PMID: 32768944 DOI: 10.1016/j.biopha.2020.110449] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Manganese (Mn) exposure has been reported to cause neurodegenerative disorders. β-Amyloid (Aβ) induced Tau pathology in an NLRP3-dependent manner is at the heart of Alzheimer's and Parkinson's diseases. The gut microbiota plays a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities. In this study, we found that Mn exposure increases Aβ1-40 and Tau production in brain, and causes hippocampal degeneration and necrosis. Meanwhile, Mn exposure can stimulate neurotoxicity by increasing inflammation either in peripheral blood and CNS. Importantly, we found that transplantation of gut microbiota from normal rats into Mn exposure rats reduced Aβ and Tau expression, and the cerebral expression of NLRP3 was downregulated, and the expression of neuroinflammatory factors was also downregulated. Therefore, improving the composition of gut microbiota in Mn exposure rats can attenuate neuroinflammation, which is considered as a novel therapeutic strategy for Mn exposure by remodelling the gut microbiota.
Collapse
Affiliation(s)
- Hui Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Feng Yang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ruihua Xin
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Dongan Cui
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jiongjie He
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shidong Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Yan Sun
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
36
|
Chen T, Li Y, Liang J, Li Y, Huang Z. Variations in the gut microbiota of sympatric François’ langurs and rhesus macaques living in limestone forests in southwest Guangxi, China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e00929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
37
|
Sariola S, Gilbert SF. Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene. Microorganisms 2020; 8:E746. [PMID: 32429344 PMCID: PMC7285259 DOI: 10.3390/microorganisms8050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Microbes evolve in complex environments that are often fashioned, in part, by human desires. In a global perspective, public health has played major roles in structuring how microbes are perceived, cultivated, and destroyed. The germ theory of disease cast microbes as enemies of the body and the body politic. Antibiotics have altered microbial development by providing stringent natural selection on bacterial species, and this has led to the formation of antibiotic-resistant bacterial strains. Public health perspectives such as "Precision Public Health" and "One Health" have recently been proposed to further manage microbial populations. However, neither of these take into account the symbiotic relationships that exist between bacterial species and between bacteria, viruses, and their eukaryotic hosts. We propose a perspective on public health that recognizes microbial evolution through symbiotic associations (the hologenome theory) and through lateral gene transfer. This perspective has the advantage of including both the pathogenic and beneficial interactions of humans with bacteria, as well as combining the outlook of the "One Health" model with the genomic methodologies utilized in the "Precision Public Health" model. In the Anthropocene, the conditions for microbial evolution have been altered by human interventions, and public health initiatives must recognize both the beneficial (indeed, necessary) interactions of microbes with their hosts as well as their pathogenic interactions.
Collapse
Affiliation(s)
- Salla Sariola
- Faculty of Social Sciences, Sociology, University of Helsinki, 00014 Helsinki, Finland;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
38
|
Wang H, Zhang S, Yang F, Xin R, Wang S, Cui D, Sun Y. The gut microbiota confers protection in the CNS against neurodegeneration induced by manganism. Biomed Pharmacother 2020; 127:110150. [PMID: 32330797 DOI: 10.1016/j.biopha.2020.110150] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/15/2022] Open
Abstract
Among all types of pollution, heavy metals are considered the greatest threat to human health, and heavy metals are associated with an increased risk of cardiovascular disease, coronary heart disease and neurodegenerative disorders. Manganese (Mn) exposure is well reported to exert neurotoxicity and various neurodegenerative disorders, but the mechanisms are not clear. The gut microbiota plays a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities. The changes in chemical signaling, metabolism and gut microbiota associated with Mn exposure have provided deeper insight into the neurotoxic mechanism of Mn. We observed that Mn exposure increases host manganic bioaccumulation, and β-amyloid (Aβ), receptor-interacting protein kinase 3 (RIP3) and caspase-3 production in the brain, and causes hippocampal degeneration and necrosis. Mn exposure led to decreased gut bacterial richness, especially for Prevotellaceae, Fusobacteriaceae and Lactobacillaceae. In addition, Mn exposure altered the metabolism of tryptamine, taurodeoxycholic acid, β-hydroxypyruvic acid and urocanic acid. Meanwhile, we found correlations between the abundance of certain bacterial species and the level of tryptamine, taurodeoxycholic acid, β-hydroxypyruvic acid and urocanic acid. Fecal microbiome transplantation from normal rats could alleviate the neurotoxicity of Mn exposure by shaping the gut microbiota. Our findings highlight the role of gut dysbiosis-promoted neurotoxicity in Mn exposure and suggest a novel therapeutic strategy of remodeling the gut microbiota.
Collapse
Affiliation(s)
- Hui Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Shidong Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Feng Yang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Ruihua Xin
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Shengyi Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Dongan Cui
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Yan Sun
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
39
|
Chen T, Li Y, Liang J, Li Y, Huang Z. Gut microbiota of provisioned and wild rhesus macaques (Macaca mulatta) living in a limestone forest in southwest Guangxi, China. Microbiologyopen 2020; 9:e981. [PMID: 31880067 PMCID: PMC7066464 DOI: 10.1002/mbo3.981] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota plays an important role in animal health and is strongly affected by the environment. Captivity and human source food have been shown to influence drastically the gut microbiota composition and function of wild animals. Therefore, in the present study, the gut microbiota of provisioned and wild populations of limestone-living rhesus macaques (Macaca mulatta) were compared using high-throughput 16S rRNA sequencing and bioinformatic analyses. The results indicated that provisioned macaques had a higher microbial richness than wild macaques, but there was no significant difference in the evenness of the gut microbiota between the two populations. Provisioned macaques also showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than wild macaques. Functional analysis revealed that wild macaques had enriched microbial pathways involved in glycan biosynthesis and metabolism, transport and catabolism, and the digestive and endocrine systems, while provisioned macaques were richer in pathways associated with signaling molecules and interaction, neurodegenerative diseases. These differences were likely due to modification of the gut microbiota of the provisioned macaques to enable the digestion of new foods.
Collapse
Affiliation(s)
- Ting Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Jipeng Liang
- Administration of Guangxi Chongzuo White‐headed Langur National Nature ReserveChongzuoChina
| | - Youbang Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Zhonghao Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| |
Collapse
|
40
|
Han Q, Bradley T, Williams WB, Cain DW, Montefiori DC, Saunders KO, Parks RJ, Edwards RW, Ferrari G, Mueller O, Shen X, Wiehe KJ, Reed S, Fox CB, Rountree W, Vandergrift NA, Wang Y, Sutherland LL, Santra S, Moody MA, Permar SR, Tomaras GD, Lewis MG, Van Rompay KKA, Haynes BF. Neonatal Rhesus Macaques Have Distinct Immune Cell Transcriptional Profiles following HIV Envelope Immunization. Cell Rep 2020; 30:1553-1569.e6. [PMID: 32023469 PMCID: PMC7243677 DOI: 10.1016/j.celrep.2019.12.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/16/2019] [Accepted: 12/24/2019] [Indexed: 12/30/2022] Open
Abstract
HIV-1-infected infants develop broadly neutralizing antibodies (bnAbs) more rapidly than adults, suggesting differences in the neonatal versus adult responses to the HIV-1 envelope (Env). Here, trimeric forms of HIV-1 Env immunogens elicit increased gp120- and gp41-specific antibodies more rapidly in neonatal macaques than adult macaques. Transcriptome analyses of neonatal versus adult immune cells after Env vaccination reveal that neonatal macaques have higher levels of the apoptosis regulator BCL2 in T cells and lower levels of the immunosuppressive interleukin-10 (IL-10) receptor alpha (IL10RA) mRNA transcripts in T cells, B cells, natural killer (NK) cells, and monocytes. In addition, immunized neonatal macaques exhibit increased frequencies of activated blood T follicular helper-like (Tfh) cells compared to adults. Thus, neonatal macaques have transcriptome signatures of decreased immunosuppression and apoptosis compared with adult macaques, providing an immune landscape conducive to early-life immunization prior to sexual debut.
Collapse
Affiliation(s)
- Qifeng Han
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Regina W Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Olaf Mueller
- Center for Genomics of Microbial Systems, Duke University Medical Center, Durham, NC, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin J Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nathan A Vandergrift
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
41
|
Liu H, Zeng X, Zhang G, Hou C, Li N, Yu H, Shang L, Zhang X, Trevisi P, Yang F, Liu Z, Qiao S. Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut. BMC Biol 2019; 17:106. [PMID: 31852478 PMCID: PMC6921401 DOI: 10.1186/s12915-019-0729-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The early-life microbiota exerts a profound and lifelong impact on host health. Longitudinal studies in humans have been informative but are mostly based on the analysis of fecal samples and cannot shed direct light on the early development of mucosa-associated intestinal microbiota and its impact on GI function. Using piglets as a model for human infants, we assess here the succession of mucosa-associated microbiota across the intestinal tract in the first 35 days after birth. RESULTS Although sharing a similar composition and predicted functional profile at birth, the mucosa-associated microbiome in the small intestine (jejunum and ileum) remained relatively stable, while that of the large intestine (cecum and colon) quickly expanded and diversified by day 35. Among detected microbial sources (milk, vagina, areolar skin, and feces of sows, farrowing crate, and incubator), maternal milk microbes were primarily responsible for the colonization of the small intestine, contributing approximately 90% bacteria throughout the first 35 days of the neonatal life. Although maternal milk microbes contributed greater than 90% bacteria to the large intestinal microbiota of neonates upon birth, their presence gradually diminished, and they were replaced by maternal fecal microbes by day 35. We found strong correlations between the relative abundance of specific mucosa-associated microbes, particularly those vertically transmitted from the mother, and the expression levels of multiple intestinal immune and barrier function genes in different segments of the intestinal tract. CONCLUSION We revealed spatially specific trajectories of microbial colonization of the intestinal mucosa in the small and large intestines, which can be primarily attributed to the colonization by vertically transmitted maternal milk and intestinal microbes. Additionally, these maternal microbes may be involved in the establishment of intestinal immune and barrier functions in neonates. Our findings strengthen the notion that studying fecal samples alone is insufficient to fully understand the co-development of the intestinal microbiota and immune system and suggest the possibility of improving neonatal health through the manipulation of maternal microbiota.
Collapse
Affiliation(s)
- Hongbin Liu
- State Key Laboratory of Animal Nutrition and Beijing Key Laboratory of Bio-Feed Additives, China Agricultural University, Beijing, China
- Present Address: Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Beijing Key Laboratory of Bio-Feed Additives, China Agricultural University, Beijing, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition and Beijing Key Laboratory of Bio-Feed Additives, China Agricultural University, Beijing, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Beijing Key Laboratory of Bio-Feed Additives, China Agricultural University, Beijing, China
| | - Lijun Shang
- State Key Laboratory of Animal Nutrition and Beijing Key Laboratory of Bio-Feed Additives, China Agricultural University, Beijing, China
| | - Xiaoya Zhang
- State Key Laboratory of Animal Nutrition and Beijing Key Laboratory of Bio-Feed Additives, China Agricultural University, Beijing, China
| | - Paolo Trevisi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Beijing Key Laboratory of Bio-Feed Additives, China Agricultural University, Beijing, China.
| |
Collapse
|
42
|
Rendina DN, Lubach GR, Phillips GJ, Lyte M, Coe CL. Maternal and Breast Milk Influences on the Infant Gut Microbiome, Enteric Health and Growth Outcomes of Rhesus Monkeys. J Pediatr Gastroenterol Nutr 2019; 69:363-369. [PMID: 31107796 PMCID: PMC6706299 DOI: 10.1097/mpg.0000000000002394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Gut bacteria play an essential role during infancy and are strongly influenced by the mode of birth and feeding. A primate model was used to investigate the benefits of exposure to the mother or conversely the negative impact of early nursery rearing on microbial colonization. METHOD Rectal swabs were obtained from rhesus macaques born vaginally and mother-reared (MR, N = 35) or delivered primarily via cesarean-section and human-reared (HR, N = 19). Microbiome composition was determined by rRNA gene amplicon sequencing at 2, 4, and 8 weeks of age and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs used to assess influences on functional metabolic pathways in the gut. Growth trajectories and incidence of diarrheic symptoms were evaluated. RESULTS The microbial community structure was different between MR and HR infants with respect to phylogeny and abundance at all 3 ages. When examining dominant phyla, HR infants had a higher Firmicutes-to-Bacteroidetes ratio. At the genus level, breast milk-dependent commensal taxa and adult-typical genera were more abundant in MR infants. This difference resulted in a corresponding shift in the predicted metabolic effects, specifically for microbial genes associated with metabolism and immune function. HR infants had faster growth trajectories (P < 0.001), but more diarrheic symptoms by 6 months postnatal (P = 0.008). CONCLUSIONS MR infants acquired adult-typical microbiota more quickly, and had higher levels of several beneficial commensal taxa. Cesarean-delivered and formula-fed infants had different developmental trajectories of bacterial colonization. Establishment of the gut microbiome was associated with an infant's growth trajectory, and implicated in the subsequent vulnerability to Campylobacter infections associated with diarrhea in infant monkeys.
Collapse
Affiliation(s)
| | | | | | - Mark Lyte
- College of Veterinary Medicine, Iowa State University, Ames, IA
| | | |
Collapse
|
43
|
Cheng D, Song J, Xie M, Song D. The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Brown BP, Jaspan HB. Compositional analyses reveal correlations between taxon-level gut bacterial abundance and peripheral T cell marker expression in African infants. Gut Microbes 2019; 11:237-244. [PMID: 31347944 PMCID: PMC7053881 DOI: 10.1080/19490976.2019.1643673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although exclusive breastfeeding has been linked to lower rates of postnatal HIV transmission compared to nonexclusive breastfeeding, mechanisms underlying this are unclear. Across a longitudinally sampled cohort of South African infants, we showed that exclusively breastfed (EBF) infants had altered gut bacterial communities when compared to nonexclusively breastfed (NEBF) infants, as well as reduced peripheral CD4 + T cell activation and lowered chemokine and chemokine receptor expression in the oral mucosa. We further demonstrated that the relative abundance of key taxa was correlated with peripheral CD4 + T cell activation. Here, we supplement those findings by using compositional data analyses to identify shifts in the abundance of several Bifidobacteria strains relative to select strains of Escherichia, Bacteroides, and others that are associated with the transition to NEBF. We illustrate that the abundance ratio of these taxa is tightly correlated with feeding modality and is a strong predictor of peripheral T cell activation. More broadly, we discuss our study in the context of novel developments and explore future directions for the field.
Collapse
Affiliation(s)
- Bryan P. Brown
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, DC, USA,Departments of Pediatrics and Global Health, Schools of Medicine and Public Health, University of WA, Seattle, WA, USA,CONTACT Heather Jaspan Seattle Children’s Research Institute, Seattle, Washington, 98101 USA
| | - Heather B. Jaspan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, DC, USA,Departments of Pediatrics and Global Health, Schools of Medicine and Public Health, University of WA, Seattle, WA, USA,Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
45
|
Zanella A, Silveira RC, Roesch LFW, Corso AL, Dobbler PT, Mai V, Procianoy RS. Influence of own mother's milk and different proportions of formula on intestinal microbiota of very preterm newborns. PLoS One 2019; 14:e0217296. [PMID: 31107919 PMCID: PMC6527203 DOI: 10.1371/journal.pone.0217296] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Objective To determine the differences in preterm infants’ stool microbiota considering the use of exclusive own mother’s milk and formula in different proportions in the first 28 days of life. Methods The study included newborns with GA ≤ 32 weeks divided in 5 group according the feeding regimen: 7 exclusive own mother’s milk, 8 exclusive preterm formula, 16 mixed feeding with >70% own mother’s milk, 16 mixed feeding with >70% preterm formula, and 15 mixed 50% own mother’s milk and preterm formula. Exclusion criteria: congenital infections, congenital malformations and newborns of drug addicted mothers. Stools were collected weekly during the first 28 days. Microbial DNA extraction, 16S rRNA amplification and sequencing were performed. Results All groups were similar in perinatal and neonatal data. There were significant differences in microbial community among treatments. Approximately 37% of the variation in distance between microbial communities was explained by use of exclusive own mother´s milk only compared to other diets. The diet composed by exclusive own mother´s milk allowed for greater microbial richness (average of 85 OTUs) while diets based on preferably formula, exclusive formula, preferably maternal milk, and mixed of formula and maternal milk presented an average of 9, 29, 23, and 25 OTUs respectively. The mean proportion of the genus Escherichia and Clostridium was always greater in those containing formula than in the those with maternal milk only. Conclusions Fecal microbiota in the neonatal period of preterm infants fed with exclusive own mother’s milk presented increased richness and differences in microbial composition from those fed with different proportions of formula.
Collapse
Affiliation(s)
- Adriana Zanella
- Unidade de Neonatologia do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rita C. Silveira
- Unidade de Neonatologia do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz F. W. Roesch
- Centro Interdisciplinar de Pesquisas em Biotecnologia–CIP-Biotec, Campus São Gabriel, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - Andréa L. Corso
- Unidade de Neonatologia do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Priscila T. Dobbler
- Centro Interdisciplinar de Pesquisas em Biotecnologia–CIP-Biotec, Campus São Gabriel, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Renato S. Procianoy
- Unidade de Neonatologia do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
46
|
Dettmer AM, Allen JM, Jaggers RM, Bailey MT. A descriptive analysis of gut microbiota composition in differentially reared infant rhesus monkeys (Macaca mulatta) across the first 6 months of life. Am J Primatol 2019; 81:e22969. [PMID: 30941799 DOI: 10.1002/ajp.22969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
The gastrointestinal microbiome is recognized as a critical component in host immune function, physiology, and behavior. Early life experiences that alter diet and social contact also influence these outcomes. Despite the growing number of studies in this area, no studies to date have examined the contribution of early life experiences on the gut microbiome in infants across development. Such studies are important for understanding the biological and environmental factors that contribute to optimal gut microbial colonization and subsequent health. We studied infant rhesus monkeys (Macaca mulatta) across the first 6 months of life that were pseudo-randomly assigned to one of two different rearing conditions at birth: mother-peer-reared (MPR), in which infants were reared in social groups with many other adults and peers and nursed on their mothers, or nursery-reared (NR), in which infants were reared by human caregivers, fed formula, and given daily social contact with peers. We analyzed the microbiome from rectal swabs (total N = 97; MPR = 43, NR = 54) taken on the day of birth and at postnatal Days 14, 30, 90, and 180 using 16S rRNA gene sequencing. Bacterial composition differences were evident as early as 14 days, with MPR infants exhibiting a lower abundance of Bifidobacterium and a higher abundance of Bacteroides than NR infants. The most marked differences were observed at 90 days, when Bifidobacterium, Lactobacillus, Streptococcus, Bacteroides, Clostridium, and Prevotella differed across rearing groups. By Day 180, no differences in the relative abundances of the bacteria of interest were observed. These novel findings in developing primate neonates indicate that the early social environment as well as diet influence gut microbiota composition very early in life. These results also lay the groundwork for mechanistic studies examining the effects of early experiences on gut microbiota across development with the ultimate goal of understanding the clinical significance of developmental changes.
Collapse
Affiliation(s)
- Amanda M Dettmer
- Laboratory of Comparative Ethology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Poolesville, Maryland.,Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Jacob M Allen
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Robert M Jaggers
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Michael T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
47
|
Zangara MT, McDonald C. How diet and the microbiome shape health or contribute to disease: A mini-review of current models and clinical studies. Exp Biol Med (Maywood) 2019; 244:484-493. [PMID: 30704299 PMCID: PMC6547010 DOI: 10.1177/1535370219826070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPACT STATEMENT The studies reviewed in this article combine diet in the context of disease progression or treatment with analysis of the microbiome. First, we present findings on how diet manipulation impacts the microbiome and disease pathogenesis in a broad variety of rodent models of disease. Then, we describe results from clinical trials that are using diet therapies to attempt to shift the microbiome and treat disease symptoms. Finally, we discuss what these studies have taught us about the influence of the microbiome of disease and health states and highlight the evidence suggesting that dietary modulation of the microbiome is an emerging therapeutic option for a variety of different diseases.
Collapse
Affiliation(s)
- Megan T Zangara
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve, Cleveland, OH 44106, USA
| | - Christine McDonald
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve, Cleveland, OH 44106, USA
| |
Collapse
|
48
|
Neal-Kluever A, Fisher J, Grylack L, Kakiuchi-Kiyota S, Halpern W. Physiology of the Neonatal Gastrointestinal System Relevant to the Disposition of Orally Administered Medications. Drug Metab Dispos 2019; 47:296-313. [PMID: 30567878 DOI: 10.1124/dmd.118.084418] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/14/2018] [Indexed: 02/13/2025] Open
Abstract
A thorough knowledge of the newborn (age, birth to 1 month postpartum) infant's gastrointestinal tract (GIT) is critical to the evaluation of the absorption, distribution, metabolism, and excretion (ADME) of orally administered drugs in this population. Developmental changes in the GIT during the newborn period are important for nutrient uptake as well as the disposition of orally administered medications. Some aspects of gastrointestinal function do not mature until driven by increased dietary complexity and nutritional demands later in the postnatal period. The functionalities present at birth, and subsequent maturation, can also impact the ADME parameters of orally administered compounds. This review will examine some specific contributors to the ADME processes in human neonates, as well as what is currently understood about the drivers for their maturation. Key species differences will be highlighted, with a focus on laboratory animals used in juvenile toxicity studies. Because of the gaps and inconsistencies in our knowledge, we will also highlight areas where additional study is warranted to better inform the appropriate use of medicines specifically intended for neonates.
Collapse
Affiliation(s)
- April Neal-Kluever
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland (A.N.-K.); US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas (J.F.); Independent Consultant, Vienna, Virginia (L.G.); and Genentech Inc., South San Francisco, California (S.K.-K., W.H.)
| | - Jeffrey Fisher
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland (A.N.-K.); US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas (J.F.); Independent Consultant, Vienna, Virginia (L.G.); and Genentech Inc., South San Francisco, California (S.K.-K., W.H.)
| | - Lawrence Grylack
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland (A.N.-K.); US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas (J.F.); Independent Consultant, Vienna, Virginia (L.G.); and Genentech Inc., South San Francisco, California (S.K.-K., W.H.)
| | - Satoko Kakiuchi-Kiyota
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland (A.N.-K.); US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas (J.F.); Independent Consultant, Vienna, Virginia (L.G.); and Genentech Inc., South San Francisco, California (S.K.-K., W.H.)
| | - Wendy Halpern
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland (A.N.-K.); US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas (J.F.); Independent Consultant, Vienna, Virginia (L.G.); and Genentech Inc., South San Francisco, California (S.K.-K., W.H.)
| |
Collapse
|
49
|
Sagebiel AF, Steinert F, Lunemann S, Körner C, Schreurs RRCE, Altfeld M, Perez D, Reinshagen K, Bunders MJ. Tissue-resident Eomes + NK cells are the major innate lymphoid cell population in human infant intestine. Nat Commun 2019; 10:975. [PMID: 30816112 PMCID: PMC6395753 DOI: 10.1038/s41467-018-08267-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/18/2018] [Indexed: 01/20/2023] Open
Abstract
Innate lymphoid cells (ILC), including natural killer (NK) cells, are implicated in host-defense and tissue-growth. However, the composition and kinetics of NK cells in the intestine during the first year of life, when infants are first broadly exposed to exogenous antigens, are still unclear. Here we show that CD103+ NK cells are the major ILC population in the small intestines of infants. When compared to adult intestinal NK cells, infant intestinal NK cells exhibit a robust effector phenotype, characterized by Eomes, perforin and granzyme B expression, and superior degranulation capacity. Absolute intestinal NK cell numbers decrease gradually during the first year of life, coinciding with an influx of intestinal Eomes+ T cells; by contrast, epithelial NKp44+CD69+ NK cells with less cytotoxic capacity persist in adults. In conclusion, NK cells are abundant in infant intestines, where they can provide effector functions while Eomes+ T cell responses mature. Innate lymphoid cells (ILC), including natural killer (NK) cells, are important innate immune regulators. Here the authors show that, in human infant intestines, CD103+Eomes+ NK cells are the predominant ILC population, but are replaced gradually by Eomes+ T cells, while NKp44+ NK cells persist in adult intestines.
Collapse
Affiliation(s)
- Adrian F Sagebiel
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Fenja Steinert
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Sebastian Lunemann
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Christian Körner
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Renée R C E Schreurs
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Marcus Altfeld
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Daniel Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Madeleine J Bunders
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany. .,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Dzanibe S, Jaspan HB, Zulu MZ, Kiravu A, Gray CM. Impact of maternal HIV exposure, feeding status, and microbiome on infant cellular immunity. J Leukoc Biol 2019; 105:281-289. [PMID: 30577072 PMCID: PMC6923687 DOI: 10.1002/jlb.mr0318-120r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/17/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
At least one-third of infants born in sub-Saharan Africa have been exposed to the effects of maternal HIV infection and antiretroviral treatment. Intrauterine HIV exposure is associated with increased rates of morbidity and mortality in children. Although the mechanisms responsible for poor infant health with HIV-1 exposure are likely to be multifactorial, we posit that the maternal environment during gestation and in the perinatal period results in altered infant immunity and is possibly the strongest contributing factor responsible for the disproportionally high infectious events among HIV-exposed infants who remain HIV uninfected. This review provides a synthesis of studies reporting the impact of intrauterine HIV exposure, feeding practices, and microbiota on immune ontogeny in the first year of life in HIV-exposed uninfected infants.
Collapse
Affiliation(s)
- Sonwabile Dzanibe
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Heather B. Jaspan
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Seattle Children’s Research Institute and Departments of Paediatrics and Global Health, University of Washington, Seattle, WA, USA
| | - Michael Z. Zulu
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Agano Kiravu
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clive M. Gray
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|