1
|
Ohm B, Giannou AD, Harriman D, Oh J, Jungraithmayr W, Zazara DE. Chimerism and immunological tolerance in solid organ transplantation. Semin Immunopathol 2025; 47:27. [PMID: 40387984 PMCID: PMC12089243 DOI: 10.1007/s00281-025-01052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
In solid organ transplantation, chimerism inevitably occurs via the coexistence of donor-derived cells from the graft and host cells throughout the recipient. However, long-term immunosuppressive treatment is needed to suppress host immune responses to the foreign organ graft. The deliberate induction of stable mixed bone marrow chimerism to achieve donor-specific immunological tolerance in solid organ graft recipients is an ambitious goal that may significantly contribute to the long-term survival of solid organ grafts and their recipients. While this strategy has been effectively established in laboratory animals and some promising clinical case series have been reported, widespread clinical application is still limited by the toxicity of the necessary conditioning regimens. On the other hand, the naturally occurring chimeric state resulting from the bidirectional transplacental cell trafficking during pregnancy, the so-called feto-maternal microchimerism, can also induce immune tolerance and thus influence the outcome of mother-to-child or child-to-mother organ transplantation. This review provides an overview of the field's historical development, clinical results, and underlying principles of (micro) chimerism-based tolerance.
Collapse
Affiliation(s)
- Birte Ohm
- Department of Thoracic Surgery, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- General Surgery, Liver, Pancreas and Intestinal Transplant Unit, Hospital Universitario-Fundación Favaloro, Buenos Aires, Argentina
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - David Harriman
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Jun Oh
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
- Division of Thoracic Surgery, Rostock University Medical Center, Rostock, Germany
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Dimitra E Zazara
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Pettigrew GJ. Direct and indirect allorecognition-not so different after all? Am J Transplant 2025; 25:893-895. [PMID: 39993570 DOI: 10.1016/j.ajt.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Affiliation(s)
- Gavin J Pettigrew
- Department of Surgery, University of Cambridge, Hills Road, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
3
|
Stark H, Ho QY, Cross A, Alessandrini A, Bertaina A, Brennan D, Busque S, Demetris A, Devey L, Fruhwirth G, Fuchs E, Friend P, Geissler E, Guillonneau C, Hester J, Isaacs J, Jaeckel E, Kawai T, Lakkis F, Leventhal J, Levings M, Levitsky J, Lombardi G, Martinez-Llordella M, Mathew J, Moreau A, Reinke P, Riella LV, Sachs D, Fueyo AS, Schreeb K, Sykes M, Tang Q, Thomson A, Tree T, Trzonkowski P, Uchida K, Veale J, Weiner J, Wekerle T, Issa F. Meeting Report: The Sixth International Sam Strober Workshop on Clinical Immune Tolerance. Transplantation 2025; 109:569-579. [PMID: 39800883 DOI: 10.1097/tp.0000000000005311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Affiliation(s)
- Helen Stark
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Quan Yao Ho
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Department of Renal Medicine, Singapore General Hospital, Singapore
| | - Amy Cross
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Daniel Brennan
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stephan Busque
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Palo Alto, CA
| | - Anthony Demetris
- Department of Pathology, Division of Transplantation, University of Pittsburgh, Pittsburgh, PA
| | - Luke Devey
- Quell Therapeutics, Translation and Innovation Hub, London, UK
| | - Gilbert Fruhwirth
- Imaging Therapies and Cancer Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | | | - Peter Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ed Geissler
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Carole Guillonneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - John Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Elmar Jaeckel
- Ajmera Transplant Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Tatsuo Kawai
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Boston, MA
| | - Fadi Lakkis
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Joseph Leventhal
- Comprehensive Transplant Center at Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Megan Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, UK
| | | | - James Mathew
- Departments of Surgery and Microbiology-Immunology, Comprehensive Transplant Center, Northwestern University, Chicago, IL
| | - Aurélie Moreau
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Petra Reinke
- Charité - Universitätsmedizin Berlin, Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David Sachs
- Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, MA
- Medical School, Harvard University, Boston, MA
- Columbia Center of Translational Immunology, Columbia University Medical Center, New York, NY
| | | | | | - Megan Sykes
- Columbia Center for Translational Immunology, Departments of Medicine, Surgery, and Microbiology and Immunology, Columbia University, New York, NY
| | - Qizhi Tang
- Department of Surgery, Diabetes Center, University of California, San Francisco, CA
| | - Angus Thomson
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Piotr Trzonkowski
- Medical University of Gdansk, Department of Medical Immunology, Gdansk, Poland
| | - Koichiro Uchida
- Juntendo University Center for Immunotherapy and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeffrey Veale
- Department of Urology, University of California, Los Angeles, CA
| | - Josh Weiner
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Fadi Issa
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Belardi R, Pacifici F, Baldetti M, Velocci S, Minieri M, Pieri M, Campione E, Della-Morte D, Tisone G, Anselmo A, Novelli G, Bernardini S, Terrinoni A. Trends in Precision Medicine and Pharmacogenetics as an Adjuvant in Establishing a Correct Immunosuppressive Therapy for Kidney Transplant: An Up-to-Date Historical Overview. Int J Mol Sci 2025; 26:1960. [PMID: 40076585 PMCID: PMC11900248 DOI: 10.3390/ijms26051960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Kidney transplantation is currently the treatment of choice for patients with end-stage kidney diseases. Although significant advancements in kidney transplantation have been achieved over the past decades, the host's immune response remains the primary challenge, often leading to potential graft rejection. Effective management of the immune response is essential to ensure the long-term success of kidney transplantation. To address this issue, immunosuppressives have been developed and are now fully integrated into the clinical management of transplant recipients. However, the considerable inter- and intra-patient variability in pharmacokinetics (PK) and pharmacodynamics (PD) of these drugs represents the primary cause of graft rejection. This variability is primarily attributed to the polymorphic nature (genetic heterogeneity) of genes encoding xenobiotic-metabolizing enzymes, transport proteins, and, in some cases, drug targets. These genetic differences can influence drug metabolism and distribution, leading to either toxicity or reduced efficacy. The main objective of the present review is to report an historical overview of the pharmacogenetics of immunosuppressants, shedding light on the most recent findings and also suggesting how relevant is the research and investment in developing validated NGS-based commercial panels for pharmacogenetic profiling in kidney transplant recipients. These advancements will enable the implementation of precision medicine, optimizing immunosuppressive therapies to improve graft survival and kidney transplanted patient outcomes.
Collapse
Affiliation(s)
- Riccardo Belardi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Francesca Pacifici
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (F.P.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Matteo Baldetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Silvia Velocci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Elena Campione
- Dermatology Unit, Policlinico Tor Vergata, System Medicine Department, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (F.P.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Giuseppe Tisone
- Department of Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.T.)
| | - Alessandro Anselmo
- Department of Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.T.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| |
Collapse
|
5
|
Sanders JM, Banbury BL, Schumacher EL, He J, Sambandam Y, Fields PA, Gallon L, Mathew JM, Leventhal JR. Pre-transplant T-cell clonal analysis identifies CD8 + donor reactive clones that contribute to kidney transplant rejection. Front Immunol 2025; 16:1516772. [PMID: 39981250 PMCID: PMC11840674 DOI: 10.3389/fimmu.2025.1516772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/02/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Responses to allogeneic human leukocyte antigen (HLA) molecules limit the survival of transplanted organs. The changes in T-cell alloreactivity that contribute to this process, however, are not fully understood. We defined a set of donor reactive T-cell clones (DRTC) with the goal to elucidate signatures of kidney allograft rejection. Methods DRTC were identified pretransplant using an anti-donor mixed lymphocyte reaction assay: CFSE-diluting CD4+ and CD8+ DRTC were flow-sorted, and the TCR sequences were identified using Adaptive Immunosequencing. DRTC were then tracked in post-transplant biopsies, blood, and urine samples in a cohort of kidney transplant recipients. Results In patients with an abnormal biopsy, the majority of CD8+ DRTC found within the allograft were detected in the circulating pre-transplant repertoire. Circulating CD8+ DRTC were more abundant pre- and post-transplant in patients that received non-lymphodepletional induction and developed an abnormal biopsy when compared to stable patients. Additionally, DRTC were detected as early as two weeks post-transplant in the urine of some patients, with some of these clones subsequently identified in follow-up kidney biopsy samples. Discussion The findings of our study add to our understanding of T-cell alloreactivity following kidney transplantation and provide evidence for the role of pre-defined alloreactive T-cells in the development of allograft rejection.
Collapse
Affiliation(s)
- Jes M. Sanders
- Department of Surgery, Division of Organ Transplantation, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | | | - Jie He
- Department of Surgery, Division of Organ Transplantation, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yuvaraj Sambandam
- Department of Surgery, Division of Organ Transplantation, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Lorenzo Gallon
- Department of Medicine, Division of Nephrology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - James M. Mathew
- Department of Surgery, Division of Organ Transplantation, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R. Leventhal
- Department of Surgery, Division of Organ Transplantation, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
6
|
Hill AE, Son ET, Paul-Heng M, Wang C, Ratnaseelan S, Denkova M, Faridi P, Braun A, Purcell AW, Mifsud NA, Sharland AF. Discovery of conserved peptide-MHC epitopes for directly alloreactive CD8 + T cells. FRONTIERS IN TRANSPLANTATION 2025; 4:1525003. [PMID: 39949593 PMCID: PMC11814428 DOI: 10.3389/frtra.2025.1525003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
Mass Spectrometry allied with in-vivo generation of activated alloreactive T cell populations and tetramer screening facilitates the identification of endogenous peptides that are directly recognised in complex with allogeneic Major Histocompatibility class I (MHC I) molecules by alloreactive CD8+ T cells. We had previously used this approach for the discovery of immunogenic self-peptides presented by the allomorph H-2Kb (Kb). In this study, we identified 22 highly immunogenic self-peptides presented by H-2Kd (Kd). Peptide abundance across skin, spleen and liver samples (estimated as the product of the spectral intensity obtained for these samples) was the principal factor influencing recognition of peptide-Kd epitopes. Predicted binding affinity (BA score) and overall peptide hydrophobicity were also independently correlated with immunogenicity, while there was no significant correlation between the IEDB immunogenicity score and the proportion of T cells recognising a given epitope. Eight peptide-Kd epitopes were selected for inclusion in a tetramer panel to detect directly alloreactive CD8+ T cells. This panel bound over 30% of activated alloreactive CD8+ T cells after a prime-boost against Kd. Moreover, the panel identified alloreactive CD8+ T cells within the graft infiltrate, spleen and draining lymph node during rejection of a Kd-bearing heart graft. In conclusion, small animal studies have demonstrated the feasibility of high-throughput approaches for the discovery of pMHC epitopes recognised by directly alloreactive T cells. Translating this approach to the human setting is achievable and will yield both critical insights into the fundamental basis of alloreactivity and powerful tools for immune monitoring in transplantation.
Collapse
Affiliation(s)
- Alexandra E. Hill
- Transplantation Immunobiology Group, Sydney Medical School, University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Eric T. Son
- Transplantation Immunobiology Group, Sydney Medical School, University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Moumita Paul-Heng
- Transplantation Immunobiology Group, Sydney Medical School, University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Chuanmin Wang
- Transplantation Immunobiology Group, Sydney Medical School, University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Shivanjali Ratnaseelan
- Transplantation Immunobiology Group, Sydney Medical School, University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Martina Denkova
- Transplantation Immunobiology Group, Sydney Medical School, University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Pouya Faridi
- Department of Biochemistry and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Asolina Braun
- Department of Biochemistry and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Nicole A. Mifsud
- Department of Biochemistry and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Alexandra F. Sharland
- Transplantation Immunobiology Group, Sydney Medical School, University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia
| |
Collapse
|
7
|
Tian G, Song S, Zhi Y, Qiu W, Chen Y, Sun X, Huang H, Yu Y, Jiao W, Li M, Lv G. Alloreactive T cells temporarily increased in the peripheral blood of patients before liver allograft rejection. Liver Transpl 2024; 30:1250-1263. [PMID: 38900031 PMCID: PMC11548824 DOI: 10.1097/lvt.0000000000000425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
T cells are key mediators of alloresponse during liver transplantation (LTx). However, the dynamics of donor-reactive T-cell clones in peripheral blood during a clinical T-cell-mediated rejection (TCMR) episode remain unknown. Here, we collected serial peripheral blood mononuclear cell samples spanning from pre-LTx to 1 year after LTx and available biopsies during the TCMR episodes from 26 rejecting patients, and serial peripheral blood mononuclear cell samples were collected from 96 nonrejectors. Immunophenotypic and repertoire analyses were integrated on T cells from rejectors, and they were longitudinally compared to nonrejected patients. Donor-reactive T-cell clone was identified and tracked by cross-matching with the mappable donor-reactive T-cell receptor repertoire of each donor-recipient pair in 9 rejectors and 5 nonrejectors. Before transplantation, the naive T-cell percentage and T-cell receptor repertoire diversity of rejectors was comparable to that of healthy control, but it was reduced in nonrejectors. After transplantation, the naïve T-cell percentages decreased, and T-cell receptor repertoires were skewed in rejectors; the phenomenon was not observed in nonrejectors. Alloreactive clones increased in proportion in the peripheral blood of rejectors before TCMR for weeks. The increase was accompanied by the naïve T-cell decline and memory T-cell increase and acquired an activated phenotype. Intragraft alloreactive clone tracking in pre-LTx and post-LTx peripheral blood mononuclear cell samples revealed that the pretransplant naïve T cells were significant contributors to the donor-reactive clones, and they temporarily increased in proportion and subsequently reduced in blood at the beginning of TCMR. Together, our findings offer an insight into the dynamic and origin of alloreactive T cells in clinical LTx TCMR cases and may facilitate disease prediction and management.
Collapse
|
8
|
Nicosia M, Valujskikh A. Recognizing Complexity of CD8 T Cells in Transplantation. Transplantation 2024; 108:2186-2196. [PMID: 38637929 PMCID: PMC11489323 DOI: 10.1097/tp.0000000000005001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The major role of CD8 + T cells in clinical and experimental transplantation is well documented and acknowledged. Nevertheless, the precise impact of CD8 + T cells on graft tissue injury is not completely understood, thus impeding the development of specific treatment strategies. The goal of this overview is to consider the biology and functions of CD8 + T cells in the context of experimental and clinical allotransplantation, with special emphasis on how this cell subset is affected by currently available and emerging therapies.
Collapse
Affiliation(s)
- Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
9
|
Benichou G, Lancia HH. Intercellular transfer of MHC molecules in T cell alloimmunity and allotransplantation. Biomed J 2024; 47:100749. [PMID: 38797478 PMCID: PMC11414654 DOI: 10.1016/j.bj.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
After transplantation of allogeneic tissues and organs, recognition by recipient T cells of donor MHC molecules initiates the pro-inflammatory adaptive immune response leading to allograft rejection. T cell allorecognition has long been known to be mediated via two distinct pathways: the direct pathway in which T cells recognize intact allogeneic MHC molecules displayed on donor cells and the indirect pathway whereby T cells recognize donor MHC peptides processed and presented by recipient antigen-presenting cells (APCs). It is believed that direct allorecognition is the driving force behind early acute allograft rejection while indirect allorecognition is involved in chronic allograft rejection, a progressive condition characterized by graft vasculopathy and tissue fibrosis. Recently, we and others have reported that after transplantation of allogeneic skin and organs, donor MHC molecules are transferred from donor cells to the host's APCs via trogocytosis or extracellular vesicles. Recipient APCs having captured donor MHC molecules can either present them to T cells in their intact form on their surface (semi-direct pathway) or the form of peptides bound to self-MHC molecules (indirect pathway). The present article provides an overview of recent studies evaluating the role of intercellular exchange of MHC molecules in T cell alloimmunity and its contribution to allograft rejection and tolerance.
Collapse
Affiliation(s)
- Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA.
| | - Hyshem H Lancia
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA
| |
Collapse
|
10
|
Abstract
In this review, the authors outlined concepts and strategies to achieve immune tolerance through inducing hematopoietic chimerism after solid organ transplantation and introduced challenges and opportunities in harnessing two-way alloresponses to improve outcomes after intestinal transplantation (ITx). Next, the authors discussed the dynamics and phenotypes of peripheral blood and intestinal graft T-cell subset chimerism and their association with outcomes. The authors also summarized studies on other types of immune cells after ITx and their potential participation in chimerism-mediated tolerance. The authors further discussed strategies and future directions to promote chimerism-associated tolerance after ITx to overcome rejection and minimize immunosuppression.
Collapse
Affiliation(s)
- Kevin Crosby
- Columbia University Medical Center, New York, NY 10032, USA
| | - Katherine D Long
- Washington University School of Medicine in St. Louis, St Louis, MO 63110, USA
| | - Jianing Fu
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
11
|
Hullegie-Peelen DM, Tejeda-Mora H, Dieterich M, Heidt S, Bindels EMJ, Hoogduijn MJ, Hesselink DA, Baan CC. Tissue-resident memory T cells in human kidney transplants have alloreactive potential. Am J Transplant 2024; 24:1406-1413. [PMID: 38447886 DOI: 10.1016/j.ajt.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
The extent to which tissue-resident memory T (TRM) cells in transplanted organs possess alloreactivity is uncertain. This study investigates the alloreactive potential of TRM cells in kidney explants from 4 patients who experienced severe acute rejection leading to graft loss. Alloreactive T cell receptor (TCR) clones were identified in pretransplant blood samples through mixed lymphocyte reactions, followed by single-cell RNA and TCR sequencing of the proliferated recipient T cells. Subsequently, these TCR clones were traced in the TRM cells of kidney explants, which were also subjected to single-cell RNA and TCR sequencing. The proportion of recipient-derived TRM cells expressing an alloreactive TCR in the 4 kidney explants varied from 0% to 9%. Notably, these alloreactive TCRs were predominantly found among CD4+ and CD8+ TRM cells with an effector phenotype. Intriguingly, these clones were present not only in recipient-derived TRM cells but also in donor-derived TRM cells, constituting up to 4% of the donor population, suggesting the presence of self-reactive TRM cells. Overall, our study demonstrates that T cells with alloreactive potential present in the peripheral blood prior to transplantation can infiltrate the kidney transplant and adopt a TRM phenotype.
Collapse
Affiliation(s)
- Daphne M Hullegie-Peelen
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Hector Tejeda-Mora
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric M J Bindels
- Department of Haematology, University Medical Center, Rotterdam, the Netherlands
| | - Martin J Hoogduijn
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A Hesselink
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C Baan
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
12
|
David AF, Heinzel A, Kammer M, Aschauer C, Reindl-Schwaighofer R, Hu K, Chen HS, Muckenhuber M, Kubetz A, Weijler AM, Worel N, Edinger M, Berlakovich G, Lion T, Sykes M, Wekerle T, Oberbauer R. Combination cell therapy leads to clonal deletion of donor-specific T cells in kidney transplant recipients. EBioMedicine 2024; 106:105239. [PMID: 38996766 PMCID: PMC11284950 DOI: 10.1016/j.ebiom.2024.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Induction of donor-specific tolerance is a promising approach to achieve long-term graft patency in transplantation with little to no maintenance immunosuppression. Changes to the recipient's T cell receptor (TCR) repertoire are understood to play a pivotal role in the establishment of a robust state of tolerance in chimerism-based transplantation protocols. METHODS We investigated changes to the TCR repertoires of patients participating in an ongoing prospective, controlled, phase I/IIa trial designed to evaluate the safety and efficacy of combination cell therapy in living donor kidney transplantation. Using high-throughput sequencing, we characterized the repertoires of six kidney recipients who also received bone marrow from the same donor (CKBMT), together with an infusion of polyclonal autologous Treg cells instead of myelosuppression. FINDINGS Patients undergoing combination cell therapy exhibited partial clonal deletion of donor-reactive CD4+ T cells at one, three, and six months post-transplant, compared to control patients receiving the same immunosuppression regimen but no cell therapy (p = 0.024). The clonality, R20 and turnover rates of the CD4+ and CD8+ TCR repertoires were comparable in both groups, showing our protocol caused no excessive repertoire shift or loss of diversity. Treg clonality was lower in the case group than in control (p = 0.033), suggesting combination cell therapy helps to preserve Treg diversity. INTERPRETATION Overall, our data indicate that combining Treg cell therapy with CKBMT dampens the alloimmune response to transplanted kidneys in humans in the absence of myelosuppression. FUNDING This study was funded by the Vienna Science and Technology Fund (WWTF).
Collapse
Affiliation(s)
- Ana F David
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Kammer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Center for Medical Data Science, Institute for Clinical Biometrics, Medical University of Vienna, Vienna, Austria
| | - Constantin Aschauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karin Hu
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hao-Shan Chen
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Kubetz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Worel
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Edinger
- University Hospital Regensburg, Department of Internal Medicine III & Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Gabriela Berlakovich
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Lion
- St. Anna Children's Cancer, Research Institute and Labdia Labordiagnostik, Vienna, Austria
| | - Megan Sykes
- Columbian Center for Translational Immunology, Department of Medicine, Columbia University, New York City, NY, United States
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Suek N, Young T, Fu J. Immune cell profiling in intestinal transplantation. Hum Immunol 2024; 85:110808. [PMID: 38762429 PMCID: PMC11283363 DOI: 10.1016/j.humimm.2024.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
Since the first published case study of human intestinal transplantation in 1967, there have been significant studies of intestinal transplant immunology in both animal models and humans. An improved understanding of the profiles of different immune cell subsets is critical for understanding their contributions to graft outcomes. While different studies have focused on the contribution of one or a few subsets to intestinal transplant, no study has integrated these data for a comprehensive overview of immune dynamics after intestinal transplant. Here, we provide a systematic review of the literature on different immune subsets and discuss their roles in intestinal transplant outcomes on multiple levels, focusing on chimerism and graft immune reconstitution, clonal alloreactivity, and cell phenotype. In Sections 1, 2 and 3, we lay out a shared framework for understanding intestinal transplant, focusing on the mechanisms of rejection or tolerance in the context of mucosal immunology and illustrate the unique role of the bidirectional graft-versus-host (GvH) and host-versus-graft (HvG) alloresponse. In Sections 4, 5 and 6, we further expand upon these concepts as we discuss the contribution of different cell subsets to intestinal transplant. An improved understanding of intestinal transplantation immunology will bring us closer to maximizing the potential of this important treatment.
Collapse
Affiliation(s)
- Nathan Suek
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Tyla Young
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Ningoo M, Cruz-Encarnación P, Khilnani C, Heeger PS, Fribourg M. T-cell receptor sequencing reveals selected donor-reactive CD8 + T cell clones resist antithymocyte globulin depletion after kidney transplantation. Am J Transplant 2024; 24:755-764. [PMID: 38141722 PMCID: PMC11070313 DOI: 10.1016/j.ajt.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
High frequencies of donor-reactive memory T cells in the periphery of transplant candidates prior to transplantation are linked to the development of posttransplant acute rejection episodes and reduced allograft function. Rabbit antithymocyte globulin (rATG) effectively depletes naïve CD4+ and CD8+ T cells for >6 months posttransplant, but rATG's effects on human donor-reactive T cells have not been carefully determined. To address this, we performed T cell receptor β-chain sequencing on peripheral blood mononuclear cells aliquots collected pretransplant and serially posttransplant in 7 kidney transplant recipients who received rATG as induction therapy. We tracked the evolution of the donor-reactive CD4+ and CD8+ T cell repertoires and identified stimulated pretransplant, CTV-(surface dye)-labeled, peripheral blood mononuclear cells from each patient with donor cells or third-party cells. Our analyses showed that while rATG depleted CD4+ T cells in all tested subjects, a subset of donor-reactive CD8+ T cells that were present at high frequencies pretransplant, consistent with expanded memory cells, resisted rATG depletion, underwent posttransplant expansion and were functional. Together, our data support the conclusion that a subset of human memory CD8+ T cells specifically reactive to donor antigens expand in vivo despite induction therapy with rATG and thus have the potential to mediate allograft damage.
Collapse
Affiliation(s)
- Mehek Ningoo
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pamela Cruz-Encarnación
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Calla Khilnani
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter S Heeger
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Miguel Fribourg
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
15
|
Sykes M. Tolerance in intestinal transplantation. Hum Immunol 2024; 85:110793. [PMID: 38580539 PMCID: PMC11144570 DOI: 10.1016/j.humimm.2024.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Intestinal transplantation (ITx) is highly immunogenic, resulting in the need for high levels of immunosuppression, with frequent complications along with high rejection rates. Tolerance induction would provide a solution to these limitations. Detailed studies of alloreactive T cell clones as well as multiparameter flow cytometry in the graft and peripheral tissues have provided evidence for several tolerance mechanisms that occur spontaneously following ITx, which might provide targets for further interventions. These include the frequent occurrence of macrochimerism and engraftment in the recipient bone marrow of donor hematopoietic stem and progenitor cells carried in the allograft. These phenomena are seen most frequently in recipients of multivisceral transplants and are associated with reduced rejection rates. They reflect powerful graft-vs-host responses that enter the peripheral lymphoid system and bone marrow after expanding within and emigrating from the allograft. Several mechanisms of tolerance that may result from this lymphohematopoietic graft-vs-host response are discussed. Transcriptional profiling in quiescent allografts reveals tolerization of pre-existing host-vs-graft-reactive T cells that enter the allograft mucosa and become tissue-resident memory cells. Dissection of the pathways driving and maintaining this tolerant tissue-resident state among donor-reactive T cells will allow controlled tolerance induction through specific therapeutic approaches.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Department of Microbiology and Immunology and Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Cui J, Xu H, Yu J, Ran S, Zhang X, Li Y, Chen Z, Niu Y, Wang S, Ye W, Chen W, Wu J, Xia J. Targeted depletion of PD-1-expressing cells induces immune tolerance through peripheral clonal deletion. Sci Immunol 2024; 9:eadh0085. [PMID: 38669317 DOI: 10.1126/sciimmunol.adh0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Thymic negative selection of the T cell receptor (TCR) repertoire is essential for establishing self-tolerance and acquired allograft tolerance following organ transplantation. However, it is unclear whether and how peripheral clonal deletion of alloreactive T cells induces transplantation tolerance. Here, we establish that programmed cell death protein 1 (PD-1) is a hallmark of alloreactive T cells and is associated with clonal expansion after alloantigen encounter. Moreover, we found that diphtheria toxin receptor (DTR)-mediated ablation of PD-1+ cells reshaped the TCR repertoire through peripheral clonal deletion of alloreactive T cells and promoted tolerance in mouse transplantation models. In addition, by using PD-1-specific depleting antibodies, we found that antibody-mediated depletion of PD-1+ cells prevented heart transplant rejection and the development of experimental autoimmune encephalomyelitis (EAE) in humanized PD-1 mice. Thus, these data suggest that PD-1 is an attractive target for peripheral clonal deletion and induction of immune tolerance.
Collapse
Affiliation(s)
- Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wenhao Chen
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute and Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Negi S, Rutman AK, Saw CL, Paraskevas S, Tchervenkov J. Pretransplant, Th17 dominant alloreactivity in highly sensitized kidney transplant candidates. FRONTIERS IN TRANSPLANTATION 2024; 3:1336563. [PMID: 38993777 PMCID: PMC11235243 DOI: 10.3389/frtra.2024.1336563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 07/13/2024]
Abstract
Introduction Sensitization to donor human leukocyte antigen (HLA) molecules prior to transplantation is a significant risk factor for delayed access to transplantation and to long-term outcomes. Memory T cells and their cytokines play a pivotal role in shaping immune responses, thereby increasing the risk of allograft rejection among highly sensitized patients. This study aims to elucidate the precise contribution of different CD4+ memory T cell subsets to alloreactivity in highly sensitized (HS) kidney transplant recipients. Methods and results Stimulation of peripheral blood mononuclear cells (PBMC) with various polyclonal stimulating agents to assess non-specific immune responses revealed that HS patients exhibit elevated immune reactivity even before kidney transplantation, compared to non-sensitized (NS) patients. HS patients' PBMC displayed higher frequencies of CD4+ T cells expressing IFNγ, IL4, IL6, IL17A, and TNFα and secreted relatively higher levels of IL17A and IL21 upon stimulation with PMA/ionomycin. Additionally, PBMC from HS patients stimulated with T cell stimulating agent phytohemagglutinin (PHA) exhibited elevated expression levels of IFNγ, IL4 and, IL21. On the other hand, stimulation with a combination of resiquimod (R848) and IL2 for the activation of memory B cells demonstrated higher expression of IL17A, TNFα and IL21, as determined by quantitative real-time PCR. A mixed leukocyte reaction (MLR) assay, employing third-party donor antigen presenting cells (APCs), was implemented to evaluate the direct alloreactive response. HS patients demonstrated notably higher frequencies of CD4+ T cells expressing IL4, IL6 and IL17A. Interestingly, APCs expressing recall HLA antigens triggered a stronger Th17 response compared to APCs lacking recall HLA antigens in sensitized patients. Furthermore, donor APCs induced higher activation of effector memory T cells in HS patients as compared to NS patients. Conclusion These results provide an assessment of pretransplant alloreactive T cell subsets in highly sensitized patients and emphasize the significance of Th17 cells in alloimmune responses. These findings hold promise for the development of treatment strategies tailored to sensitized kidney transplant recipients, with potential clinical implications.
Collapse
Affiliation(s)
- Sarita Negi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
| | | | - Chee Loong Saw
- HLA Laboratory, Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Steven Paraskevas
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Jean Tchervenkov
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
18
|
Baldwin WM, Valujskikh A, Fairchild RL. Gaining Deeper Insights Into Mechanisms of T Cell-mediated Acute Kidney Graft Injury. Transplantation 2024; 108:825-826. [PMID: 38526430 DOI: 10.1097/tp.0000000000004830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Affiliation(s)
- William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
19
|
Jiao W, Martinez M, Muntnich CB, Zuber J, Parks C, Obradovic A, Tian G, Wang Z, Long KD, Waffarn E, Frangaj K, Jones R, Gorur A, Shonts B, Rogers K, Lv G, Velasco M, Ravella S, Weiner J, Kato T, Shen Y, Fu J, Sykes M. Dynamic establishment of recipient resident memory T cell repertoire after human intestinal transplantation. EBioMedicine 2024; 101:105028. [PMID: 38422982 PMCID: PMC10944178 DOI: 10.1016/j.ebiom.2024.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Understanding formation of the human tissue resident memory T cell (TRM) repertoire requires longitudinal access to human non-lymphoid tissues. METHODS By applying flow cytometry and next generation sequencing to serial blood, lymphoid tissue, and gut samples from 16 intestinal transplantation (ITx) patients, we assessed the origin, distribution, and specificity of human TRMs at phenotypic and clonal levels. FINDINGS Donor age ≥1 year and blood T cell macrochimerism (peak level ≥4%) were associated with delayed establishment of stable recipient TRM repertoires in the transplanted ileum. T cell receptor (TCR) overlap between paired gut and blood repertoires from ITx patients was significantly greater than that in healthy controls, demonstrating increased gut-blood crosstalk after ITx. Crosstalk with the circulating pool remained high for years of follow-up. TCR sequences identifiable in pre-Tx recipient gut but not those in lymphoid tissues alone were more likely to populate post-Tx ileal allografts. Clones detected in both pre-Tx gut and lymphoid tissue had distinct transcriptional profiles from those identifiable in only one tissue. Recipient T cells were distributed widely throughout the gut, including allograft and native colon, which had substantial repertoire overlap. Both alloreactive and microbe-reactive recipient T cells persisted in transplanted ileum, contributing to the TRM repertoire. INTERPRETATION Our studies reveal human intestinal TRM repertoire establishment from the circulation, preferentially involving lymphoid tissue counterparts of recipient intestinal T cell clones, including TRMs. We have described the temporal and spatial dynamics of this active crosstalk between the circulating pool and the intestinal TRM pool. FUNDING This study was funded by the National Institute of Allergy and Infectious Diseases (NIAID) P01 grant AI106697.
Collapse
Affiliation(s)
- Wenyu Jiao
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States; Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Jilin, China
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Constanza Bay Muntnich
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Julien Zuber
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Christopher Parks
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Guangyao Tian
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Jilin, China
| | - Zicheng Wang
- Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, NY, United States
| | - Katherine D Long
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Elizabeth Waffarn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kristjana Frangaj
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Rebecca Jones
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Alaka Gorur
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Brittany Shonts
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Jilin, China
| | - Monica Velasco
- School of Nursing, Columbia University, New York, NY, United States
| | - Shilpa Ravella
- Department of Medicine, Columbia University, New York, NY, United States
| | - Joshua Weiner
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States; Department of Surgery, Columbia University, New York, NY, United States
| | - Tomoaki Kato
- Department of Surgery, Columbia University, New York, NY, United States
| | - Yufeng Shen
- Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, NY, United States
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States.
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States; Department of Surgery, Columbia University, New York, NY, United States; Department of Microbiology & Immunology, Columbia University, New York, NY, United States.
| |
Collapse
|
20
|
Baldwin WM, Valujskikh A, Fairchild RL. Gaining Deeper Insights Into Mechanisms of T Cell-Mediated Acute Kidney Graft Injury. Transplantation 2024; 108:308-309. [PMID: 38254278 DOI: 10.1097/tp.0000000000004893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Affiliation(s)
- William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
21
|
Fu J, Wang Z, Martinez M, Obradovic A, Jiao W, Frangaj K, Jones R, Guo XV, Zhang Y, Kuo WI, Ko HM, Iuga A, Bay Muntnich C, Prada Rey A, Rogers K, Zuber J, Ma W, Miron M, Farber DL, Weiner J, Kato T, Shen Y, Sykes M. Plasticity of intragraft alloreactive T cell clones in human gut correlates with transplant outcomes. J Exp Med 2024; 221:e20230930. [PMID: 38091025 PMCID: PMC10720543 DOI: 10.1084/jem.20230930] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
The site of transition between tissue-resident memory (TRM) and circulating phenotypes of T cells is unknown. We integrated clonotype, alloreactivity, and gene expression profiles of graft-repopulating recipient T cells in the intestinal mucosa at the single-cell level after human intestinal transplantation. Host-versus-graft (HvG)-reactive T cells were mainly distributed to TRM, effector T (Teff)/TRM, and T follicular helper compartments. RNA velocity analysis demonstrated a trajectory from TRM to Teff/TRM clusters in association with rejection. By integrating pre- and post-transplantation (Tx) mixed lymphocyte reaction-determined alloreactive repertoires, we observed that pre-existing HvG-reactive T cells that demonstrated tolerance in the circulation were dominated by TRM profiles in quiescent allografts. Putative de novo HvG-reactive clones showed a transcriptional profile skewed to cytotoxic effectors in rejecting grafts. Inferred protein regulon network analysis revealed upstream regulators that accounted for the effector and tolerant T cell states. We demonstrate Teff/TRM interchangeability for individual T cell clones with known (allo)recognition in the human gut, providing novel insight into TRM biology.
Collapse
Affiliation(s)
- Jianing Fu
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Zicheng Wang
- Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | | | - Aleksandar Obradovic
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Wenyu Jiao
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Kristjana Frangaj
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Rebecca Jones
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Xinzheng V. Guo
- Human Immune Monitoring Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Ya Zhang
- Human Immune Monitoring Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Wan-I Kuo
- Human Immune Monitoring Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Huaibin M. Ko
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Alina Iuga
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Constanza Bay Muntnich
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Adriana Prada Rey
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Kortney Rogers
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Julien Zuber
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Wenji Ma
- Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Michelle Miron
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Joshua Weiner
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Tomoaki Kato
- Department of Surgery, Columbia University, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Annamalai C, Kute V, Sheridan C, Halawa A. Hematopoietic cell-based and non-hematopoietic cell-based strategies for immune tolerance induction in living-donor renal transplantation: A systematic review. Transplant Rev (Orlando) 2023; 37:100792. [PMID: 37709652 DOI: 10.1016/j.trre.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite its use to prevent acute rejection, lifelong immunosuppression can adversely impact long-term patient and graft outcomes. In theory, immunosuppression withdrawal is the ultimate goal of kidney transplantation, and is made possible by the induction of immunological tolerance. The purpose of this paper is to review the safety and efficacy of immune tolerance induction strategies in living-donor kidney transplantation, both chimerism-based and non-chimerism-based. The impact of these strategies on transplant outcomes, including acute rejection, allograft function and survival, cost, and immune monitoring, will also be discussed. MATERIALS AND METHODS Databases such as PubMed, Scopus, and Web of Science, as well as additional online resources such as EBSCO, were exhaustively searched. Adult living-donor kidney transplant recipients who developed chimerism-based tolerance after concurrent bone marrow or hematopoietic stem cell transplantation or those who received non-chimerism-based, non-hematopoietic cell therapy using mesenchymal stromal cells, dendritic cells, or regulatory T cells were studied between 2000 and 2021. Individual sources of evidence were evaluated critically, and the strength of evidence and risk of bias for each outcome of the transplant tolerance study were assessed. RESULTS From 28,173 citations, 245 studies were retrieved after suitable exclusion and duplicate removal. Of these, 22 studies (2 RCTs, 11 cohort studies, 6 case-control studies, and 3 case reports) explicitly related to both interventions (chimerism- and non-chimerism-based immune tolerance) were used in the final review process and were critically appraised. According to the findings, chimerism-based strategies fostered immunotolerance, allowing for the safe withdrawal of immunosuppressive medications. Cell-based therapy, on the other hand, frequently did not induce tolerance except for minimising immunosuppression. As a result, the rejection rates, renal allograft function, and survival rates could not be directly compared between these two groups. While chimerism-based tolerance protocols posed safety concerns due to myelosuppression, including infections and graft-versus-host disease, cell-based strategies lacked these adverse effects and were largely safe. There was a lack of direct comparisons between HLA-identical and HLA-disparate recipients, and the cost implications were not examined in several of the retrieved studies. Most studies reported successful immunosuppressive weaning lasting at least 3 years (ranging up to 11.4 years in some studies), particularly with chimerism-based therapy, while only a few investigators used immune surveillance techniques. The studies reviewed were often limited by selection, classification, ascertainment, performance, and attrition bias. CONCLUSIONS This review demonstrates that chimerism-based hematopoietic strategies induce immune tolerance, and a substantial number of patients are successfully weaned off immunosuppression. Despite the risk of complications associated with myelosuppression. Non-chimerism-based, non-hematopoietic cell protocols, on the other hand, have been proven to facilitate immunosuppression minimization but seldom elicit immunological tolerance. However, the results of this review must be interpreted with caution because of the non-randomised study design, potential confounding, and small sample size of the included studies. Further validation and refinement of tolerogenic protocols in accordance with local practice preferences is also warranted, with an emphasis on patient selection, cost ramifications, and immunological surveillance based on reliable tolerance assays.
Collapse
Affiliation(s)
- Chandrashekar Annamalai
- Postgraduate School of Medicine, Institute of Teaching and Learning, Faculty of Health and Life Sciences, University of Liverpool, UK.
| | - Vivek Kute
- Nephrology and Transplantation, Institute of Kidney Diseases and Research Center and Dr. H L Trivedi Institute of Transplantation Sciences (IKDRC-ITS), Ahmedabad, India
| | - Carl Sheridan
- Department of Eye and Vision Science, Ocular Cell Transplantation, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Ahmed Halawa
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
23
|
Mengrelis K, Muckenhuber M, Wekerle T. Chimerism-based Tolerance Induction in Clinical Transplantation: Its Foundations and Mechanisms. Transplantation 2023; 107:2473-2485. [PMID: 37046378 DOI: 10.1097/tp.0000000000004589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hematopoietic chimerism remains the most promising strategy to bring transplantation tolerance into clinical routine. The concept of chimerism-based tolerance aims to extend the recipient's mechanisms of self-tolerance (ie, clonal deletion, anergy, and regulation) to include the tolerization of donor antigens that are introduced through the cotransplantation of donor hematopoietic cells. For this to be successful, donor hematopoietic cells need to engraft in the recipient at least temporarily. Three pioneering clinical trials inducing chimerism-based tolerance in kidney transplantation have been published to date. Within this review, we discuss the mechanisms of tolerance that are associated with the specific therapeutic protocols of each trial. Recent data highlight the importance of regulation as a mechanism that maintains tolerance. Insufficient regulatory mechanisms are also a likely explanation for situations of tolerance failure despite persisting donor chimerism. After decades of preclinical development of chimerism protocols, mechanistic data from clinical trials have recently become increasingly important. Better understanding of the required mechanisms for tolerance to be induced in humans will be a key to design more reliable and less invasive chimerism protocols in the future.
Collapse
Affiliation(s)
- Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
24
|
Jayaraman S, Montagne JM, Nirschl TR, Marcisak E, Johnson J, Huff A, Hsiao MH, Nauroth J, Heumann T, Zarif JC, Jaffee EM, Azad N, Fertig EJ, Zaidi N, Larman HB. Barcoding intracellular reverse transcription enables high-throughput phenotype-coupled T cell receptor analyses. CELL REPORTS METHODS 2023; 3:100600. [PMID: 37776855 PMCID: PMC10626196 DOI: 10.1016/j.crmeth.2023.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/23/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
Assays linking cellular phenotypes with T cell or B cell antigen receptor sequences are crucial for characterizing adaptive immune responses. Existing methodologies are limited by low sample throughput and high cost. Here, we present INtraCEllular Reverse Transcription with Sorting and sequencing (INCERTS), an approach that combines molecular indexing of receptor repertoires within intact cells and fluorescence-activated cell sorting (FACS). We demonstrate that INCERTS enables efficient processing of millions of cells from pooled human peripheral blood mononuclear cell (PBMC) samples while retaining robust association between T cell receptor (TCR) sequences and cellular phenotypes. We used INCERTS to discover antigen-specific TCRs from patients with cancer immunized with a novel mutant KRAS peptide vaccine. After ex vivo stimulation, 28 uniquely barcoded samples were pooled prior to FACS into peptide-reactive and non-reactive CD4+ and CD8+ populations. Combining complementary patient-matched single-cell RNA sequencing (scRNA-seq) data enabled retrieval of full-length, paired TCR alpha and beta chain sequences for future validation of therapeutic utility.
Collapse
Affiliation(s)
- Sahana Jayaraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Janelle M Montagne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Quantitative Sciences, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas R Nirschl
- Pathobiology Graduate Program, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21205, USA
| | - Emily Marcisak
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeanette Johnson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda Huff
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meng-Hsuan Hsiao
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Julie Nauroth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thatcher Heumann
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Hematology Oncology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jelani C Zarif
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21205, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nilo Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Quantitative Sciences, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Tran LM, Macedo C, Zahorchak AF, Gu X, Elinoff B, Singhi AD, Isett B, Zeevi A, Sykes M, Breen K, Srivastava A, Ables EM, Landsittel D, Styn MA, Humar A, Lakkis FG, Metes DM, Thomson AW. Donor-derived regulatory dendritic cell infusion modulates effector CD8 + T cell and NK cell responses after liver transplantation. Sci Transl Med 2023; 15:eadf4287. [PMID: 37820009 DOI: 10.1126/scitranslmed.adf4287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Immune cell-based therapies are promising strategies to facilitate immunosuppression withdrawal after organ transplantation. Regulatory dendritic cells (DCreg) are innate immune cells that down-regulate alloimmune responses in preclinical models. Here, we performed clinical monitoring and comprehensive assessment of peripheral and allograft tissue immune cell populations in DCreg-infused live-donor liver transplant (LDLT) recipients up to 12 months (M) after transplant. Thirteen patients were given a single infusion of donor-derived DCreg 1 week before transplant (STUDY) and were compared with 40 propensity-matched standard-of-care (SOC) patients. Donor-derived DCreg infusion was well tolerated in all STUDY patients. There were no differences in postoperative complications or biopsy-confirmed acute rejection compared with SOC patients up to 12M. DCreg administration was associated with lower frequencies of effector T-bet+Eomes+CD8+ T cells and CD16bright natural killer (NK) cells and an increase in putative tolerogenic CD141+CD163+ DCs compared with SOC at 12M. Antidonor proliferative capacity of interferon-γ+ (IFN-γ+) CD4+ and CD8+ T cells was lower compared with antithird party responses in STUDY participants, but not in SOC patients, at 12M. In addition, lower circulating concentrations of interleukin-12p40 (IL-12p40), IFN-γ, and CXCL10 were detected in STUDY participants compared with SOC patients at 12M. Analysis of 12M allograft biopsies revealed lower frequencies of graft-infiltrating CD8+ T cells, as well as attenuation of cytolytic TH1 effector genes and pathways among intragraft CD8+ T cells and NK cells, in DCreg-infused patients. These reductions may be conducive to reduced dependence on immunosuppressive drug therapy or immunosuppression withdrawal.
Collapse
Affiliation(s)
- Lillian M Tran
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Camila Macedo
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alan F Zahorchak
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xinyan Gu
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Beth Elinoff
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Brian Isett
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15261, USA
| | - Adriana Zeevi
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kevin Breen
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Avantika Srivastava
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Erin M Ables
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN 47405, USA
| | - Douglas Landsittel
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN 47405, USA
| | - Mindi A Styn
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Abhinav Humar
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Diana M Metes
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
van der List ACJ, Litjens NHR, Brouwer RWW, Klepper M, den Dekker AT, van Ijcken WFJ, Betjes MGH. Single-Cell RNA Sequencing of Donor-Reactive T Cells Reveals Role of Apoptosis in Donor-Specific Hyporesponsiveness of Kidney Transplant Recipients. Int J Mol Sci 2023; 24:14463. [PMID: 37833911 PMCID: PMC10572284 DOI: 10.3390/ijms241914463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
After kidney transplantation (KT), donor-specific hyporesponsiveness (DSH) of recipient T cells develops over time. Recently, apoptosis was identified as a possible underlying mechanism. In this study, both transcriptomic profiles and complete V(D)J variable regions of TR transcripts from individual alloreactive T cells of kidney transplant recipients were determined with single-cell RNA sequencing. Alloreactive T cells were identified by CD137 expression after stimulation of peripheral blood mononuclear cells obtained from KT recipients (N = 7) prior to and 3-5 years after transplantation with cells of their donor or a third party control. The alloreactive T cells were sorted, sequenced and the transcriptome and T cell receptor profiles were analyzed using unsupervised clustering. Alloreactive T cells retain a highly polyclonal T Cell Receptor Alpha/Beta repertoire over time. Post transplantation, donor-reactive CD4+ T cells had a specific downregulation of genes involved in T cell cytokine-mediated pathways and apoptosis. The CD8+ donor-reactive T cell profile did not change significantly over time. Single-cell expression profiling shows that activated and pro-apoptotic donor-reactive CD4+ T cell clones are preferentially lost after transplantation in stable kidney transplant recipients.
Collapse
Affiliation(s)
- Amy C. J. van der List
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| | - Nicolle H. R. Litjens
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| | - Rutger W. W. Brouwer
- Erasmus MC Center for Biomics, University Medical Center, 3015 CN Rotterdam, The Netherlands; (R.W.W.B.); (A.T.d.D.); (W.F.J.v.I.)
| | - Mariska Klepper
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| | - Alexander T. den Dekker
- Erasmus MC Center for Biomics, University Medical Center, 3015 CN Rotterdam, The Netherlands; (R.W.W.B.); (A.T.d.D.); (W.F.J.v.I.)
| | - Wilfred F. J. van Ijcken
- Erasmus MC Center for Biomics, University Medical Center, 3015 CN Rotterdam, The Netherlands; (R.W.W.B.); (A.T.d.D.); (W.F.J.v.I.)
| | - Michiel G. H. Betjes
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| |
Collapse
|
27
|
Allocco J, Alegre ML. Biological Time Travel: Tracking the Journey of Alloreactive T Cells Through Longitudinal Biobanking. Transplantation 2023; 107:1862-1864. [PMID: 37606904 PMCID: PMC10926360 DOI: 10.1097/tp.0000000000004684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A significant risk for transplant recipients is the development of tumors. In general, some but not all malignancies are more frequent in transplant hosts due to chronic immunosuppression caused by a compromised immune surveillance. Of additional relevance, checkpoint blockade therapies (CBT) to treat malignancies can also drive transplant rejection. In a recent study published in Nature Communications , Dunlap et al. reported a case study of a patient who experienced kidney allograft rejection following CBT for melanoma. The foresight of longitudinally preserving donor splenocytes, blood samples, and graft biopsies in addition to tumor and metastatic lymph nodes enabled paired single-cell RNA-seq (scRNA-seq) and TCR-sequencing (TCR-seq) and subsequent tracking of alloreactive T cells before and after CBT. This revealed an enrichment of alloreactive TCRs in the kidney transplant post-CBT but not the tumor. In addition, this approach helped identify an alloreactive CD8+ T cell subset with a unique transcriptional profile. This study illustrates possible advances in personalized medicine and highlights a transcriptional signature that may serve as a prospective biomarker of rejection.
Collapse
Affiliation(s)
- Jennifer Allocco
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
28
|
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 2023; 19:544-557. [PMID: 37400628 DOI: 10.1038/s41581-023-00733-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
29
|
Li Q, Wang X, Song Q, Yang S, Wu X, Yang D, Marié IJ, Qin H, Zheng M, Nasri U, Kong X, Wang B, Lizhar E, Cassady K, Tompkins J, Levy D, Martin PJ, Zhang X, Zeng D. Donor T cell STAT3 deficiency enables tissue PD-L1-dependent prevention of graft-versus-host disease while preserving graft-versus-leukemia activity. J Clin Invest 2023; 133:e165723. [PMID: 37526084 PMCID: PMC10378157 DOI: 10.1172/jci165723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/02/2023] [Indexed: 08/02/2023] Open
Abstract
STAT3 deficiency (STAT3-/-) in donor T cells prevents graft-versus-host disease (GVHD), but the impact on graft-versus-leukemia (GVL) activity and mechanisms of GVHD prevention remains unclear. Here, using murine models of GVHD, we show that STAT3-/- donor T cells induced only mild reversible acute GVHD while preserving GVL effects against nonsusceptible acute lymphoblastic leukemia (ALL) cells in a donor T cell dose-dependent manner. GVHD prevention depended on programmed death ligand 1/programmed cell death protein 1 (PD-L1/PD-1) signaling. In GVHD target tissues, STAT3 deficiency amplified PD-L1/PD-1 inhibition of glutathione (GSH)/Myc pathways that regulate metabolic reprogramming in activated T cells, with decreased glycolytic and mitochondrial ATP production and increased mitochondrial ROS production and dysfunction, leading to tissue-specific deletion of host-reactive T cells and prevention of GVHD. Mitochondrial STAT3 deficiency alone did not reduce GSH expression or prevent GVHD. In lymphoid tissues, the lack of host-tissue PD-L1 interaction with PD-1 reduced the inhibition of the GSH/Myc pathway despite reduced GSH production caused by STAT3 deficiency and allowed donor T cell functions that mediate GVL activity. Therefore, STAT3 deficiency in donor T cells augments PD-1 signaling-mediated inhibition of GSH/Myc pathways and augments dysfunction of T cells in GVHD target tissues while sparing T cells in lymphoid tissues, leading to prevention of GVHD while preserving GVL effects.
Collapse
Affiliation(s)
- Qinjian Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Dongyun Yang
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Isabelle J Marié
- Department of Pathology, NYU Grossman School of Medicine, New York, USA
| | - Hanjun Qin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Moqian Zheng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiaohui Kong
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Bixin Wang
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
| | - Elizabeth Lizhar
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Kaniel Cassady
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Josh Tompkins
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - David Levy
- Department of Pathology, NYU Grossman School of Medicine, New York, USA
| | - Paul J Martin
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
30
|
Bremer M, Nardi Bauer F, Tertel T, Dittrich R, Horn PA, Börger V, Giebel B. Qualification of a multidonor mixed lymphocyte reaction assay for the functional characterization of immunomodulatory extracellular vesicles. Cytotherapy 2023; 25:847-857. [PMID: 37097266 DOI: 10.1016/j.jcyt.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND AIMS Extracellular vesicles (EVs), including exosomes and microvesicles, are released by almost all cells and found in all body fluids. Unknown proportions of EVs transmit specific information from their cells of origin to specific target cells and are key mediators in intercellular communication processes. Depending on their origin, EVs can modulate immune responses, either acting as pro- or anti-inflammatory. With the aim to analyze the immunomodulating activities of EV preparations, especially those from mesenchymal stromal cells (MSCs) in vitro, a multi-donor mixed lymphocyte reaction (mdMLR) assay was established and stressed for its reproducibility. METHODS To this end, human peripheral blood-derived mononuclear cells (PBMCs) of 12 different healthy donors were pooled warranting mutual allogeneic cross-reactivity, even following an optimized freezing and thawing procedure. After thawing, mixed PBMCs were cultured for 5 days in the absence or presence of EVs to be tested. Reflecting allogeneic reactions, in the absence of EVs, pooled PBMCs form characteristic satellite colonies whose appearance can be modulated by EVs. More quantifiable, the strength of the allogenic reaction is reflected by the content of activated CD4 and CD8 T cells being recognized by means of their CD25 and CD54 expression. RESULTS Of note, connected to the use of primary cells, independent multi-donor PBMC pools differed in their capability to activate their cultured T cells. Thus, throughout the study, only pooled PBMC batches were used whose activated T-cell contents exceeded 25% of the total T-cell population at culture day 5 and whose contents were reproducibly reduced in the presence of immunomodulatory active MSC-EVs. T-cell activation-suppressing effects of the MSC-EV preparations tested were in all cases accompanied by the impact on monocytes. In the presence of immunomodulatory active MSC-EVs, more monocytes were harvested from mdMLR cultures than in their absence. Furthermore, in the absence of immunomodulatory EVs, most monocytes appeared as non-classical (CD14+CD16+) monocytes, whereas immunomodulatory active MSC-EVs promoted the appearance of classical (CD14++CD16-) and intermediate (CD14++CD16+) monocyte subpopulations. CONCLUSIONS Overall, the obtained results qualify the mdMLR assay as a robust experimental tool for the evaluation of immunomodulatory potentials of given MSC-EV samples. However, further assay development is required to develop and qualify an authority-acceptable potency assay for clinically applicable MSC-EV products.
Collapse
Affiliation(s)
- Michel Bremer
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fabiola Nardi Bauer
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robin Dittrich
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Börger
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
31
|
Tereshchenko V, Shevyrev D, Fisher M, Bulygin A, Khantakova J, Sennikov S. TCR Sequencing in Mouse Models of Allorecognition Unveils the Features of Directly and Indirectly Activated Clonotypes. Int J Mol Sci 2023; 24:12075. [PMID: 37569450 PMCID: PMC10418307 DOI: 10.3390/ijms241512075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Allorecognition is known to involve a large number of lymphocytes carrying diverse T-cell receptor repertoire. Thus, one way to understand allorecognition and rejection mechanisms is via high-throughput sequencing of T-cell receptors. In this study, in order to explore and systematize the properties of the alloreactive T-cell receptor repertoire, we modeled direct and indirect allorecognition pathways using material from inbred mice in vitro and in vivo. Decoding of the obtained T-cell receptor genes using high-throughput sequencing revealed some features of the alloreactive repertoires. Thus, alloreactive T-cell receptor repertoires were characterized by specific V-gene usage patterns, changes in CDR3 loop length, and some amino acid occurrence probabilities in the CDR3 loop. Particularly pronounced changes were observed for directly alloreactive clonotypes. We also revealed a clustering of directly and indirectly alloreactive clonotypes by their ability to bind a single antigen; amino acid patterns of the CDR3 loop of alloreactive clonotypes; and the presence in alloreactive repertoires of clonotypes also associated with infectious, autoimmune, and tumor diseases. The obtained results were determined by the modeling of the simplified allorecognition reaction in inbred mice in which stimulation was performed with a single MHCII molecule. We suppose that the decomposition of the diverse alloreactive TCR repertoire observed in humans with transplants into such simple reactions will help to find alloreactive repertoire features; e.g., a dominant clonotype or V-gene usage pattern, which may be targeted to correct the entire rejection reaction in patients. In this work, we propose several technical ways for such decomposition analysis, including separate modeling of the indirect alloreaction pathway and clustering of alloreactive clonotypes according to their ability to bind a single antigen, among others.
Collapse
Affiliation(s)
- Valeriy Tereshchenko
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Resource Center for Cellular Technologies and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Daniil Shevyrev
- Resource Center for Cellular Technologies and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Marina Fisher
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Aleksei Bulygin
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Julia Khantakova
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| |
Collapse
|
32
|
DeWolf S, Elhanati Y, Nichols K, Waters NR, Nguyen CL, Slingerland JB, Rodriguez N, Lyudovyk O, Giardina PA, Kousa AI, Andrlová H, Ceglia N, Fei T, Kappagantula R, Li Y, Aleynick N, Baez P, Murali R, Hayashi A, Lee N, Gipson B, Rangesa M, Katsamakis Z, Dai A, Blouin AG, Arcila M, Masilionis I, Chaligne R, Ponce DM, Landau HJ, Politikos I, Tamari R, Hanash AM, Jenq RR, Giralt SA, Markey KA, Zhang Y, Perales MA, Socci ND, Greenbaum BD, Iacobuzio-Donahue CA, Hollmann TJ, van den Brink MR, Peled JU. Tissue-specific features of the T cell repertoire after allogeneic hematopoietic cell transplantation in human and mouse. Sci Transl Med 2023; 15:eabq0476. [PMID: 37494469 PMCID: PMC10758167 DOI: 10.1126/scitranslmed.abq0476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
T cells are the central drivers of many inflammatory diseases, but the repertoire of tissue-resident T cells at sites of pathology in human organs remains poorly understood. We examined the site-specificity of T cell receptor (TCR) repertoires across tissues (5 to 18 tissues per patient) in prospectively collected autopsies of patients with and without graft-versus-host disease (GVHD), a potentially lethal tissue-targeting complication of allogeneic hematopoietic cell transplantation, and in mouse models of GVHD. Anatomic similarity between tissues was a key determinant of TCR repertoire composition within patients, independent of disease or transplant status. The T cells recovered from peripheral blood and spleens in patients and mice captured a limited portion of the TCR repertoire detected in tissues. Whereas few T cell clones were shared across patients, motif-based clustering revealed shared repertoire signatures across patients in a tissue-specific fashion. T cells at disease sites had a tissue-resident phenotype and were of donor origin based on single-cell chimerism analysis. These data demonstrate the complex composition of T cell populations that persist in human tissues at the end stage of an inflammatory disorder after lymphocyte-directed therapy. These findings also underscore the importance of studying T cell in tissues rather than blood for tissue-based pathologies and suggest the tissue-specific nature of both the endogenous and posttransplant T cell landscape.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuval Elhanati
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Nichols
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas R. Waters
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chi L. Nguyen
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John B. Slingerland
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasia Rodriguez
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olga Lyudovyk
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul A. Giardina
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anastasia I. Kousa
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hana Andrlová
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nick Ceglia
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajya Kappagantula
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyun Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathan Aleynick
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priscilla Baez
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajmohan Murali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akimasa Hayashi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Kyorin University, Mitaka City, Tokyo, Japan
| | - Nicole Lee
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brianna Gipson
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Madhumitha Rangesa
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zoe Katsamakis
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anqi Dai
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda G. Blouin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignas Masilionis
- Program for Computational and System Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligne
- Program for Computational and System Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doris M. Ponce
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Heather J. Landau
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ioannis Politikos
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Roni Tamari
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Alan M. Hanash
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert R. Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergio A. Giralt
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington; Seattle, WA, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Nicholas D. Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Travis J. Hollmann
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Bristol Myers Squibb, Lawrenceville, NJ 08540
| | - Marcel R.M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
33
|
Shi T, Burg AR, Caldwell JT, Roskin KM, Castro-Rojas CM, Chukwuma PC, Gray GI, Foote SG, Alonso JA, Cuda CM, Allman DA, Rush JS, Regnier CH, Wieczorek G, Alloway RR, Shields AR, Baker BM, Woodle ES, Hildeman DA. Single-cell transcriptomic analysis of renal allograft rejection reveals insights into intragraft TCR clonality. J Clin Invest 2023; 133:e170191. [PMID: 37227784 PMCID: PMC10348771 DOI: 10.1172/jci170191] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding of how rejection occurs despite immunosuppression (IS). We performed combined single-cell RNA transcriptomic and TCR-α/β sequencing on rBx from patients with ACR under differing IS drugs: tacrolimus, iscalimab, and belatacept. We found distinct CD8+ T cell phenotypes (e.g., effector, memory, exhausted) depending upon IS type, particularly within expanded CD8+ T cell clonotypes (CD8EXP). Gene expression of CD8EXP identified therapeutic targets that were influenced by IS type. TCR analysis revealed a highly restricted number of CD8EXP, independent of HLA mismatch or IS type. Subcloning of TCR-α/β cDNAs from CD8EXP into Jurkat 76 cells (TCR-/-) conferred alloreactivity by mixed lymphocyte reaction. Analysis of sequential rBx samples revealed persistence of CD8EXP that decreased, but were not eliminated, after successful antirejection therapy. In contrast, CD8EXP were maintained in treatment-refractory rejection. Finally, most rBx-derived CD8EXP were also observed in matching urine samples, providing precedent for using urine-derived CD8EXP as a surrogate for those found in the rejecting allograft. Overall, our data define the clonal CD8+ T cell response to ACR, paving the next steps for improving detection, assessment, and treatment of rejection.
Collapse
Affiliation(s)
- Tiffany Shi
- Division of Immunobiology and
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Medical Scientist Training Program and
| | - Ashley R. Burg
- Division of Immunobiology and
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Krishna M. Roskin
- Division of Immunobiology and
- Divison of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - P. Chukwunalu Chukwuma
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - George I. Gray
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Sara G. Foote
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jesus A. Alonso
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Carla M. Cuda
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, Illinois, USA
| | - David A. Allman
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James S. Rush
- Novartis Institutes for Biomedical Research, Immunology Disease Area, Basel, Switzerland
| | - Catherine H. Regnier
- Novartis Institutes for Biomedical Research, Immunology Disease Area, Basel, Switzerland
| | - Grazyna Wieczorek
- Novartis Institutes for Biomedical Research, Immunology Disease Area, Basel, Switzerland
| | - Rita R. Alloway
- Division of Nephrology and Hypertension, Department of Internal Medicine, and
| | - Adele R. Shields
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - E. Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David A. Hildeman
- Division of Immunobiology and
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Medical Scientist Training Program and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
34
|
Sadozai H, Rojas-Luengas V, Farrokhi K, Moshkelgosha S, Guo Q, He W, Li A, Zhang J, Chua C, Ferri D, Mian M, Adeyi O, Seidman M, Gorczynski RM, Juvet S, Atkins H, Levy GA, Chruscinski A. Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection. Clin Exp Immunol 2023; 213:138-154. [PMID: 37004176 PMCID: PMC10324556 DOI: 10.1093/cei/uxad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The ability to induce tolerance would be a major advance in the field of solid organ transplantation. Here, we investigated whether autologous (congenic) hematopoietic stem cell transplantation (HSCT) could promote tolerance to heart allografts in mice. In an acute rejection model, fully MHC-mismatched BALB/c hearts were heterotopically transplanted into C57BL/6 (CD45.2) mice. One week later, recipient mice were lethally irradiated and reconstituted with congenic B6 CD45.1 Lin-Sca1+ckit+ cells. Recipient mice received a 14-day course of rapamycin both to prevent rejection and to expand regulatory T cells (Tregs). Heart allografts in both untreated and rapamycin-treated recipients that did not undergo HSCT were rejected within 33 days (median survival time = 8 days for untreated recipients, median survival time = 32 days for rapamycin-treated recipients), whereas allografts in HSCT-treated recipients had a median survival time of 55 days (P < 0.001 vs. both untreated and rapamycin-treated recipients). Enhanced allograft survival following HSCT was associated with increased intragraft Foxp3+ Tregs, reduced intragraft B cells, and reduced serum donor-specific antibodies. In a chronic rejection model, Bm12 hearts were transplanted into C57BL/6 (CD45.2) mice, and congenic HSCT was performed two weeks following heart transplantation. HSCT led to enhanced survival of allografts (median survival time = 70 days vs. median survival time = 28 days in untreated recipients, P < 0.01). Increased allograft survival post-HSCT was associated with prevention of autoantibody development and absence of vasculopathy. These data support the concept that autologous HSCT can promote immune tolerance in the setting of allotransplantation. Further studies to optimize HSCT protocols should be performed before this procedure is adopted clinically.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Rojas-Luengas
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kaveh Farrokhi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Qinli Guo
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei He
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianhua Zhang
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Conan Chua
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Dario Ferri
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhtashim Mian
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele Adeyi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Reginald M Gorczynski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Harold Atkins
- Division of Hematology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gary A Levy
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Sykes M. Leveraging the lymphohematopoietic graft-versus-host reaction (LGVHR) to achieve allograft tolerance and restore self tolerance with minimal toxicity. IMMUNOTHERAPY ADVANCES 2023; 3:ltad008. [PMID: 37426630 PMCID: PMC10327628 DOI: 10.1093/immadv/ltad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 07/11/2023] Open
Abstract
Mixed allogeneic chimerism has considerable potential to advance the achievement of immune tolerance to alloantigens for transplantation and the restoration of self-tolerance in patients with autoimmune disease. In this article, I review evidence that graft-versus-host (GVH) alloreactivity without graft-vs-host disease (GVHD), termed a lymphohematopoietic graft-vs-host reaction (LGVHR), can promote the induction of mixed chimerism with minimal toxicity. LGVHR was originally shown to occur in an animal model when non-tolerant donor lymphocytes were administered to mixed chimeras in the absence of inflammatory stimuli and was found to mediate powerful graft-vs-leukemia/lymphoma effects without GVHD. Recent large animal studies suggest a role for LGVHR in promoting durable mixed chimerism and the demonstration that LGVHR promotes chimerism in human intestinal allograft recipients has led to a pilot study aiming to achieve durable mixed chimerism.
Collapse
Affiliation(s)
- Megan Sykes
- Correspondence: Megan Sykes, Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, 650 West 168th Street, Suite 1512, New York, NY 10032, USA.
| |
Collapse
|
36
|
Hey S, Whyte D, Hoang MC, Le N, Natvig J, Wingfield C, Onyeama C, Howrylak J, Toby IT. Analysis of CDR3 Sequences from T-Cell Receptor β in Acute Respiratory Distress Syndrome. Biomolecules 2023; 13:biom13050825. [PMID: 37238695 DOI: 10.3390/biom13050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is an illness that typically develops in people who are significantly ill or have serious injuries. ARDS is characterized by fluid build-up that occurs in the alveoli. T-cells are implicated as playing a role in the modulation of the aberrant response leading to excessive tissue damage and, eventually, ARDS. Complementarity Determining Region 3 (CDR3) sequences derived from T-cells are key players in the adaptive immune response. This response is governed by an elaborate specificity for distinct molecules and the ability to recognize and vigorously respond to repeated exposures to the same molecules. Most of the diversity in T-cell receptors (TCRs) is contained in the CDR3 regions of the heterodimeric cell-surface receptors. For this study, we employed the novel technology of immune sequencing to assess lung edema fluid. Our goal was to explore the landscape of CDR3 clonal sequences found within these samples. We obtained more than 3615 CDR3 sequences across samples in the study. Our data demonstrate that: (1) CDR3 sequences from lung edema fluid exhibit distinct clonal populations, and (2) CDR3 sequences can be further characterized based on biochemical features. Analysis of these CDR3 sequences offers insight into the CDR3-driven T-cell repertoire of ARDS. These findings represent the first step towards applications of this technology with these types of biological samples in the context of ARDS.
Collapse
Affiliation(s)
- Sara Hey
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Dayjah Whyte
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Minh-Chau Hoang
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Nick Le
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Joseph Natvig
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Claire Wingfield
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | | | - Judie Howrylak
- Pulmonary, Allergy and Critical Care Division, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Inimary T Toby
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| |
Collapse
|
37
|
Genolet R, Bobisse S, Chiffelle J, Arnaud M, Petremand R, Queiroz L, Michel A, Reichenbach P, Cesbron J, Auger A, Baumgaertner P, Guillaume P, Schmidt J, Irving M, Kandalaft LE, Speiser DE, Coukos G, Harari A. TCR sequencing and cloning methods for repertoire analysis and isolation of tumor-reactive TCRs. CELL REPORTS METHODS 2023; 3:100459. [PMID: 37159666 PMCID: PMC10163020 DOI: 10.1016/j.crmeth.2023.100459] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
T cell receptor (TCR) technologies, including repertoire analyses and T cell engineering, are increasingly important in the clinical management of cellular immunity in cancer, transplantation, and other immune diseases. However, sensitive and reliable methods for repertoire analyses and TCR cloning are still lacking. Here, we report on SEQTR, a high-throughput approach to analyze human and mouse repertoires that is more sensitive, reproducible, and accurate as compared with commonly used assays, and thus more reliably captures the complexity of blood and tumor TCR repertoires. We also present a TCR cloning strategy to specifically amplify TCRs from T cell populations. Positioned downstream of single-cell or bulk TCR sequencing, it allows time- and cost-effective discovery, cloning, screening, and engineering of tumor-specific TCRs. Together, these methods will accelerate TCR repertoire analyses in discovery, translational, and clinical settings and permit fast TCR engineering for cellular therapies.
Collapse
Affiliation(s)
- Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Corresponding author
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marion Arnaud
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Rémy Petremand
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Lise Queiroz
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandra Michel
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Patrick Reichenbach
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Julien Cesbron
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Aymeric Auger
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Petra Baumgaertner
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Lana E. Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniel E. Speiser
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Corresponding author
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Corresponding author
| |
Collapse
|
38
|
Dunlap GS, DiToro D, Henderson J, Shah SI, Manos M, Severgnini M, Weins A, Guleria I, Ott PA, Murakami N, Rao DA. Clonal dynamics of alloreactive T cells in kidney allograft rejection after anti-PD-1 therapy. Nat Commun 2023; 14:1549. [PMID: 36941274 PMCID: PMC10027853 DOI: 10.1038/s41467-023-37230-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Kidney transplant recipients are at particular risk for developing tumors, many of which are now routinely treated with immune checkpoint inhibitors (ICIs); however, ICI therapy can precipitate transplant rejection. Here, we use TCR sequencing to identify and track alloreactive T cells in a patient with melanoma who experienced kidney transplant rejection following PD-1 inhibition. The treatment was associated with a sharp increase in circulating alloreactive CD8+ T cell clones, which display a unique transcriptomic signature and were also detected in the rejected kidney but not at tumor sites. Longitudinal and cross-tissue TCR analyses indicate unintended expansion of alloreactive CD8+ T cells induced by ICI therapy for cancer, coinciding with ICI-associated organ rejection.
Collapse
Affiliation(s)
- Garrett S Dunlap
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel DiToro
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Joel Henderson
- Department of Pathology, Boston Medical Center and Boston University, Boston, MA, USA
| | - Sujal I Shah
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Mike Manos
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mariano Severgnini
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Astrid Weins
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Indira Guleria
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick A Ott
- Harvard Medical School, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Naoka Murakami
- Harvard Medical School, Boston, MA, USA.
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Meeting Report: The Fifth International Samuel Strober Workshop on Clinical Immune Tolerance. Transplantation 2023; 107:564-569. [PMID: 36808845 DOI: 10.1097/tp.0000000000004473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
40
|
Shi T, Burg AR, Caldwell JT, Roskin K, Castro-Rojas CM, Chukwuma PC, Gray GI, Foote SG, Alonso J, Cuda CM, Allman DA, Rush JS, Regnier CH, Wieczorek G, Alloway RR, Shields AR, Baker BM, Woodle ES, Hildeman DA. Single cell transcriptomic analysis of renal allograft rejection reveals novel insights into intragraft TCR clonality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.524808. [PMID: 36798151 PMCID: PMC9934650 DOI: 10.1101/2023.02.08.524808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding. We performed combined single cell RNA transcriptomic and TCRα/β sequencing on rBx from patients with ACR under differing immunosuppression (IS): tacrolimus, iscalimab, and belatacept. TCR analysis revealed a highly restricted CD8 + T cell clonal expansion (CD8 EXP ), independent of HLA mismatch or IS type. Subcloning of TCRα/β cDNAs from CD8 EXP into Jurkat76 cells (TCR -/- ) conferred alloreactivity by mixed lymphocyte reaction. scRNAseq analysis of CD8 EXP revealed effector, memory, and exhausted phenotypes that were influenced by IS type. Successful anti-rejection treatment decreased, but did not eliminate, CD8 EXP , while CD8 EXP were maintained during treatment-refractory rejection. Finally, most rBx-derived CD8 EXP were also observed in matching urine samples. Overall, our data define the clonal CD8 + T cell response to ACR, providing novel insights to improve detection, assessment, and treatment of rejection.
Collapse
|
41
|
Zhi Y, Li M, Lv G. Into the multi-omics era: Progress of T cells profiling in the context of solid organ transplantation. Front Immunol 2023; 14:1058296. [PMID: 36798139 PMCID: PMC9927650 DOI: 10.3389/fimmu.2023.1058296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
T cells are the common type of lymphocyte to mediate allograft rejection, remaining long-term allograft survival impeditive. However, the heterogeneity of T cells, in terms of differentiation and activation status, the effector function, and highly diverse T cell receptors (TCRs) have thus precluded us from tracking these T cells and thereby comprehending their fate in recipients due to the limitations of traditional detection approaches. Recently, with the widespread development of single-cell techniques, the identification and characterization of T cells have been performed at single-cell resolution, which has contributed to a deeper comprehension of T cell heterogeneity by relevant detections in a single cell - such as gene expression, DNA methylation, chromatin accessibility, surface proteins, and TCR. Although these approaches can provide valuable insights into an individual cell independently, a comprehensive understanding can be obtained when applied joint analysis. Multi-omics techniques have been implemented in characterizing T cells in health and disease, including transplantation. This review focuses on the thesis, challenges, and advances in these technologies and highlights their application to the study of alloreactive T cells to improve the understanding of T cell heterogeneity in solid organ transplantation.
Collapse
Affiliation(s)
- Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Wong P, Cina DP, Sherwood KR, Fenninger F, Sapir-Pichhadze R, Polychronakos C, Lan J, Keown PA. Clinical application of immune repertoire sequencing in solid organ transplant. Front Immunol 2023; 14:1100479. [PMID: 36865546 PMCID: PMC9971933 DOI: 10.3389/fimmu.2023.1100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Background Measurement of T cell receptor (TCR) or B cell receptor (BCR) gene utilization may be valuable in monitoring the dynamic changes in donor-reactive clonal populations following transplantation and enabling adjustment in therapy to avoid the consequences of excess immune suppression or to prevent rejection with contingent graft damage and to indicate the development of tolerance. Objective We performed a review of current literature to examine research in immune repertoire sequencing in organ transplantation and to assess the feasibility of this technology for clinical application in immune monitoring. Methods We searched MEDLINE and PubMed Central for English-language studies published between 2010 and 2021 that examined T cell/B cell repertoire dynamics upon immune activation. Manual filtering of the search results was performed based on relevancy and predefined inclusion criteria. Data were extracted based on study and methodology characteristics. Results Our initial search yielded 1933 articles of which 37 met the inclusion criteria; 16 of these were kidney transplant studies (43%) and 21 were other or general transplantation studies (57%). The predominant method for repertoire characterization was sequencing the CDR3 region of the TCR β chain. Repertoires of transplant recipients were found to have decreased diversity in both rejectors and non-rejectors when compared to healthy controls. Rejectors and those with opportunistic infections were more likely to have clonal expansion in T or B cell populations. Mixed lymphocyte culture followed by TCR sequencing was used in 6 studies to define an alloreactive repertoire and in specialized transplant settings to track tolerance. Conclusion Methodological approaches to immune repertoire sequencing are becoming established and offer considerable potential as a novel clinical tool for pre- and post-transplant immune monitoring.
Collapse
Affiliation(s)
- Paaksum Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Davide P Cina
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Karen R Sherwood
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franz Fenninger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ruth Sapir-Pichhadze
- Department of Medicine, Division of Nephrology, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Constantin Polychronakos
- Department of Pediatrics, The Research Institute of the McGill University Health Centre and the Montreal Children's Hospital, Montreal, QC, Canada
| | - James Lan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul A Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Abstract
Single-cell technologies open up new opportunities to explore the behavior of cells at the individual level. For solid organ transplantation, single-cell technologies can provide in-depth insights into the underlying mechanisms of the immunological processes involved in alloimmune responses after transplantation by investigating the role of individual cells in tolerance and rejection. Here, we review the value of single-cell technologies, including cytometry by time-of-flight and single-cell RNA sequencing, in the context of solid organ transplantation research. Various applications of single-cell technologies are addressed, such as the characterization and identification of immune cell subsets involved in rejection or tolerance. In addition, we explore the opportunities for analyzing specific alloreactive T- or B-cell clones by linking phenotype data to T- or B-cell receptor data, and for distinguishing donor- from recipient-derived immune cells. Moreover, we discuss the use of single-cell technologies in biomarker identification and risk stratification, as well as the remaining challenges. Together, this review highlights that single-cell approaches contribute to a better understanding of underlying immunological mechanisms of rejection and tolerance, thereby potentially accelerating the development of new or improved therapies to avoid allograft rejection.
Collapse
|
44
|
Sigdel TK, Fields PA, Liberto J, Damm I, Kerwin M, Hood J, Towfighi P, Sirota M, Robins HS, Sarwal MM. Perturbations of the T-cell immune repertoire in kidney transplant rejection. Front Immunol 2022; 13:1012042. [PMID: 36466928 PMCID: PMC9709472 DOI: 10.3389/fimmu.2022.1012042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/26/2022] [Indexed: 01/06/2024] Open
Abstract
In this cross-sectional and longitudinal analysis of mapping the T-cell repertoire in kidney transplant recipients, we have investigated and validated T-cell clonality, immune repertoire chronology at rejection, and contemporaneous allograft biopsy quantitative tissue injury, to better understand the pathobiology of acute T-cell fraction, T-cell repertoire and antibody-mediated kidney transplant rejection. To follow the dynamic evolution of T-cell repertoire changes before and after engraftment and during biopsy-confirmed acute rejection, we sequenced 323 peripheral blood samples from 200 unique kidney transplant recipients, with (n=100) and without (n=100) biopsy-confirmed acute rejection. We report that patients who develop acute allograft rejection, have lower (p=0.01) T-cell fraction even before transplantation, followed by its rise after transplantation and at the time of acute rejection accompanied by high TCR repertoire turnover (p=0.004). Acute rejection episodes occurring after the first 6 months post-transplantation, and those with a component of antibody-mediated rejection, had the highest turnover; p=0.0016) of their T-cell repertoire. In conclusion, we validated that detecting repertoire changes in kidney transplantation correlates with post-transplant rejection episodes suggesting that T-cell receptor sequencing may provide recipient pre-transplant and post-transplant predictors of rejection risk.
Collapse
Affiliation(s)
- Tara K. Sigdel
- Department of Surgery, Division of Multi Organ Transplantation, University of California, San Francisco, San Francisco, CA, United States
| | | | - Juliane Liberto
- Department of Surgery, Division of Multi Organ Transplantation, University of California, San Francisco, San Francisco, CA, United States
| | - Izabella Damm
- Department of Surgery, Division of Multi Organ Transplantation, University of California, San Francisco, San Francisco, CA, United States
| | - Maggie Kerwin
- Department of Surgery, Division of Multi Organ Transplantation, University of California, San Francisco, San Francisco, CA, United States
| | - Jill Hood
- Adaptive Biotechnologies, Seattle, WA, United States
| | - Parhom Towfighi
- Department of Surgery, Division of Multi Organ Transplantation, University of California, San Francisco, San Francisco, CA, United States
| | - Marina Sirota
- Department of Surgery, Division of Multi Organ Transplantation, University of California, San Francisco, San Francisco, CA, United States
| | | | - Minnie M. Sarwal
- Department of Surgery, Division of Multi Organ Transplantation, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
45
|
Tang Q, Leung J, Peng Y, Sanchez-Fueyo A, Lozano JJ, Lam A, Lee K, Greenland JR, Hellerstein M, Fitch M, Li KW, Esensten JH, Putnam AL, Lares A, Nguyen V, Liu W, Bridges ND, Odim J, Demetris AJ, Levitsky J, Taner T, Feng S. Selective decrease of donor-reactive T regs after liver transplantation limits T reg therapy for promoting allograft tolerance in humans. Sci Transl Med 2022; 14:eabo2628. [PMID: 36322627 PMCID: PMC11016119 DOI: 10.1126/scitranslmed.abo2628] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2024]
Abstract
Promoting immune tolerance to transplanted organs can minimize the amount of immunosuppressive drugs that patients need to take, reducing lifetime risks of mortality and morbidity. Regulatory T cells (Tregs) are essential for immune tolerance, and preclinical studies have shown their therapeutic efficacy in inducing transplantation tolerance. Here, we report the results of a phase 1/2 trial (ARTEMIS, NCT02474199) of autologous donor alloantigen-reactive Treg (darTreg) therapy in individuals 2 to 6 years after receiving a living donor liver transplant. The primary efficacy endpoint was calcineurin inhibitor dose reduction by 75% with stable liver function tests for at least 12 weeks. Among 10 individuals who initiated immunosuppression withdrawal, 1 experienced rejection before planned darTreg infusion, 5 received darTregs, and 4 were not infused because of failure to manufacture the minimal infusible dose of 100 × 106 cells. darTreg infusion was not associated with adverse events. Two darTreg-infused participants reached the primary endpoint, but an insufficient number of recipients were treated for assessing the efficacy of darTregs. Mechanistic studies revealed generalized Treg activation, senescence, and selective reduction of donor reactivity after liver transplantation. Overall, the ARTEMIS trial features a design concept for evaluating the efficacy of Treg therapy in transplantation. The mechanistic insight gained from the study may help guide the design of future trials.
Collapse
Affiliation(s)
- Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Joey Leung
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yani Peng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King’s College London University, London WC2R 2LS, UK
| | - Juan-Jose Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alice Lam
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karim Lee
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Medical Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Marc Hellerstein
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark Fitch
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelvin W. Li
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan H. Esensten
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy L. Putnam
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Angela Lares
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weihong Liu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nancy D. Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Jonah Odim
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timucin Taner
- Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sandy Feng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
46
|
Li M, Song S, Tian G, Zhi Y, Chen Y, Huang H, Jiao W, Yu Y, Lv G. Expansion kinetics of graft-versus-host T cell clones in patients with post-liver transplant graft-versus-host disease. Am J Transplant 2022; 22:2689-2693. [PMID: 35665999 DOI: 10.1111/ajt.17112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 01/25/2023]
Abstract
Graft-versus-host disease (GVHD) following liver transplantation is induced by the graft-versus-host (GVH) T cell that is transferred with the liver graft, but the dynamics remain poorly investigated in clinical liver transplantation GVHD. Here, we report that in two liver transplantation recipients who developed GVHD, both of whom showed donor T cell macrochimerism in the blood before clinical GVHD onset. Longitudinal tracking of GVH T cell clones in one of these recipients revealed that GVH T cell clonal expansion occurred before disease onset, and the dominant GVH T cells might also derive from non-hepatic tissue-resident memory T cells in the liver-graft. Additionally, a comparison of the inflammatory cytokine levels and TCR repertoire diversities in recipient pre-liver transplantation blood between 4 patients with GVHD and 12 non-GVHD patients showed that the levels of TNF-α and IL-8, and the overall TCR repertoire skewness in pre-transplant recipient blood samples may serve as potential independent risk factors for the disease.
Collapse
Affiliation(s)
- Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Guangyao Tian
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Yuguo Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Heyu Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Wenyu Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Ying Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
47
|
van der List ACJ, Litjens NHR, Klepper M, Prevoo F, Betjes MGH. Progressive Loss of Donor-Reactive CD4 +Effector Memory T Cells due to Apoptosis Underlies Donor-Specific Hyporesponsiveness in Stable Renal Transplant Recipients. THE JOURNAL OF IMMUNOLOGY 2022; 209:1389-1400. [DOI: 10.4049/jimmunol.2200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
|
48
|
Abstract
In this review, we summarize and discuss recent advances in understanding the characteristics of tissue-resident memory T cells (TRMs) in the context of solid organ transplantation (SOT). We first introduce the traditionally understood noncirculating features of TRMs and the key phenotypic markers that define this population, then provide a detailed discussion of emerging concepts on the recirculation and plasticity of TRM in mice and humans. We comment on the potential heterogeneity of transient, temporary resident, and permanent resident T cells and potential interchangeable phenotypes between TRM and effector T cells in nonlymphoid tissues. We review the literature on the distribution of TRM in human nonlymphoid organs and association of clinical outcomes in different types of SOT, including intestine, lung, liver, kidney, and heart. We focus on both tissue-specific and organ-shared features of donor- and recipient-derived TRMs after transplantation whenever applicable. Studies with comprehensive sample collection, including longitudinal and cross-sectional controls, and applied advanced techniques such as multicolor flow cytometry to distinguish donor and recipient TRMs, bulk, and single-cell T-cell receptor sequencing to track clonotypes and define transcriptome profiles, and functional readouts to define alloreactivity and proinflammatory/anti-inflammatory activities are emphasized. We also discuss important findings on the tissue-resident features of regulatory αβ T cells and unconventional γδ T cells after transplantation. Understanding of TRM in SOT is a rapidly growing field that urges future studies to address unresolved questions regarding their heterogeneity, plasticity, longevity, alloreactivity, and roles in rejection and tolerance.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
- Department of Surgery, Columbia University, New York, United States
- Department of Microbiology & Immunology, Columbia University, New York, United States
| |
Collapse
|
49
|
Lowsky R, Strober S. Establishment of Chimerism and Organ Transplant Tolerance in Laboratory Animals: Safety and Efficacy of Adaptation to Humans. Front Immunol 2022; 13:805177. [PMID: 35222384 PMCID: PMC8866443 DOI: 10.3389/fimmu.2022.805177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The definition of immune tolerance to allogeneic tissue and organ transplants in laboratory animals and humans continues to be the acceptance of the donor graft, rejection of third-party grafts, and specific unresponsiveness of recipient immune cells to the donor alloantigens in the absence of immunosuppressive treatments. Actively acquired tolerance was achieved in mice more than 60 years ago by the establishment of mixed chimerism in neonatal mice. Once established, mixed chimerism was self-perpetuating and allowed for acceptance of tissue transplants in adults. Successful establishment of tolerance in humans has now been reported in several clinical trials based on the development of chimerism after combined transplantation of hematopoietic cells and an organ from the same donor. This review examines the mechanisms of organ graft acceptance after establishment of mixed chimerism (allo-tolerance) or complete chimerism (self-tolerance), and compares the development of graft versus host disease (GVHD) and graft versus tumor (GVT) activity in complete and mixed chimerism. GVHD, GVT activity, and complete chimerism are also discussed in the context of bone marrow transplantation to treat hematologic malignancies. The roles of transient versus persistent mixed chimerism in the induction and maintenance of tolerance and organ graft acceptance in animal models and clinical studies are compared. Key differences in the stability of mixed chimeras and tolerance induction in MHC matched and mismatched rodents, large laboratory animals, and humans are examined to provide insights into the safety and efficacy of translation of results of animal models to clinical trials.
Collapse
Affiliation(s)
- Robert Lowsky
- Division of Blood and Marrow Transplantation and Cancer Cellular Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Samuel Strober
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
50
|
Wu Y, Zuber J, Fu J. Editorial: Immunogenomics of Solid Organ and Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:878314. [PMID: 35371062 PMCID: PMC8965839 DOI: 10.3389/fimmu.2022.878314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yongxia Wu
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Julien Zuber
- Department of Kidney Transplantation, Necker Hospital and Human Lymphohematopoiesis lab, INSERM UMR 1163, IMAGINE Institute, Paris University, Paris, France
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|