1
|
Luo Z, Qiu H, Peng X, Tan Q, Chen B, Gu Q, Liu H, Zhou H. Development of potent inhibitors targeting bacterial prolyl-tRNA synthetase through fluorine scanning-directed activity tuning. Eur J Med Chem 2025; 291:117647. [PMID: 40253792 DOI: 10.1016/j.ejmech.2025.117647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
As essential enzymes encoded by single genes, aminoacyl-tRNA synthetases (aaRSs) have long been considered promising drug targets for combating microbial infections. In this study, we developed a novel class of amino acid-ATP dual-site inhibitors of prolyl-tRNA synthetase (ProRS) through the structural simplification of the intermediate product prolyl adenylate and its non-hydrolyzable mimic. The co-crystal structures of the compound PAA-5 bound to both Pseudomonas aeruginosa and human cytoplasmic ProRSs (PaProRS and HsPrors) were solved to high resolution. Utilizing the structural information gained, a fluorine scanning (F-scanning) strategy was applied to PAA-5, and the biochemical and biophysical assays demonstrated that fluorine substitutions at specific positions of PAA-5 selectively enhanced its activity against bacterial ProRS. The dual-fluorinated derivative PAA-38 exhibited the highest antibacterial potency, with a Kd value of 0.399 ± 0.074 nM and an IC50 value of 4.97 ± 0.98 nM against PaProRS and an MIC value of 4-8 μg mL-1 against tested bacterial strains. Our study provides a novel lead compound for the development of aaRS-based antibiotics and highlights F-scanning as a powerful strategy for lead optimization, particularly in pinpointing the subtle fluorophilic environments within the protein pocket to achieve better activity and selectivity.
Collapse
Affiliation(s)
- Zhiteng Luo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haipeng Qiu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoying Peng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Tan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingyi Chen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiong Gu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongwei Liu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, China.
| | - Huihao Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Li W, Wu Y, Zhang Y, Gao W, Li X, Luo H, Lu M, Liu Z, Luo A. Halofuginone Disrupted Collagen Deposition via mTOR-eIF2α-ATF4 Axis to Enhance Chemosensitivity in Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416523. [PMID: 40126173 PMCID: PMC12097005 DOI: 10.1002/advs.202416523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/14/2025] [Indexed: 03/25/2025]
Abstract
The interplay between cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) mediates progress, metastasis, and therapy resistance. However, strategy of targeting ECM remodeling to enhance chemosensitivity in ovarian cancer remains elusive. Here, a 22-gene matrisome signature predicts chemotherapy response and survival in ovarian cancer. The dense, collagen-rich ECM secreted by CAFs harbors more M2 tumor-associated macrophages (TAMs) than the looser ECM based on single cell RNA-seq (scRNA-seq) of ovarian cancer, suggesting the promising approach of targeting collagen to remodel ECM. An integrated analysis identifies collagen type I alpha 1 chain (COL1A1) as a major component of the ECM that contributes to chemoresistance and poor prognosis, highlighting its potential as a therapeutic target. Halofuginone (HF), a clinically active derivative of febrifugine, is identified as a COL1A1-targeting natural compound by screening the Encyclopedia of Traditional Chinese Medicine (ETCM). Mechanistically, HF inhibits COL1A1 production via the mTOR-eIF2α-ATF4 axis in CAFs. Notably, HF disrupts collagen deposition and promotes CD8+ T cell infiltration, partially via M2-M1 macrophage polarization to enhance chemosensitivity. Overall, the findings suggest that HF combined with chemotherapy is a promising and effective treatment for ovarian cancer.
Collapse
Affiliation(s)
- Wenxin Li
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Yenan Wu
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Yanan Zhang
- Department of Obstetrics and GynecologyPeking University Third Hospital38 Xueyuan Rd, Haidian DistrictBeijing100191China
| | - Wenyan Gao
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Xin Li
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Haixia Luo
- Department of Gynecological OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Mengmeng Lu
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Zhihua Liu
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Aiping Luo
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| |
Collapse
|
3
|
Deng Y, Yu YD, Song C, Xu GY, Xu Y, Ye CJ. Design, Synthesis, and Structure-Activity Relationship of 2-(Piperazin-1-yl)quinazolin-4(3 H)-one Derivatives as Active Agents against Toxoplasma gondii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6215-6230. [PMID: 40008850 DOI: 10.1021/acs.jafc.4c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A novel series of quinazolin-4(3H)-one derivatives were synthesized using a hybridization strategy that combined the quinazolin-4(3H)-one scaffold, the diarylether fragment, and the piperazine ring. The in vitro activity evaluation of these compounds against Toxoplasma gondii demonstrated that most of this series of compounds showed moderate to good effectiveness, with IC50 values ranging from 5.94 to 102.2 μM. Among the synthesized derivatives, compounds 11 and 18 emerged as the most potent inhibitors, significantly reducing the replication rate of T. gondii with IC50 values of 6.33 and 5.94 μM, as well as demonstrated low cytotoxicity with CC50 values of 285 and 59.2 μM, respectively. The structure-activity relationship investigation indicates that the substituent at the N-3 position of the quinazolin-4(3H)-one is important for anti-T. gondii activity while the replacements at the phenyl moiety of the quinazolin-4(3H)-one and at the diarylether fragment cannot improve activity. The invasion and proliferation assay demonstrated that compound 11 could inhibit both parasite invasion and replication ability. Further investigation of the in vitro efficacy revealed irreversible action of compound 11 against T. gondii. In vivo investigations conducted within a murine model of acute infection revealed that compounds 11 and 18 exhibited a remarkable capacity to significantly diminish the parasitic load in comparison to the control group while also extending the survival duration of the subjects. These results underscore the potential of compound 11 as a candidate for further exploration in the development of antitoxoplasmosis therapies.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Yuan-Di Yu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Chao Song
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Guo-Yang Xu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Yue Xu
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Chang-Ju Ye
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| |
Collapse
|
4
|
Mohd Azam NNSFN, Othman S, Choo YM. Antimalarial Drug Discovery from Natural and Synthetic Sources. Curr Med Chem 2025; 32:87-110. [PMID: 38818916 DOI: 10.2174/0109298673312727240527064833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Malaria remains a significant global health threat despite extensive efforts aimed at its eradication. Numerous challenges persist in eliminating the disease, chief among them being the parasite's ability to mutate, resulting in drug resistance. The discovery of antimalarial drugs has relied on both phenotypic and target-based approaches. While phenotypic screening has identified promising candidates, target-based methods offer a more precise approach by leveraging chemically validated targets and computational tools. Analysis of Plasmodium spp . protein structures reveal druggable targets, offering opportunities for in silico screening. Combining compounds from natural and synthetic sources in a target-based approach accelerates the discovery of new antimalarial agents. This review explores previous breakthroughs in antimalarial drug discovery from natural products and synthetic origins, emphasizing their specific target proteins within Plasmodium species.
Collapse
Affiliation(s)
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yeun-Mun Choo
- Department of Chemistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
5
|
Li Q, Vetter L, Veith Y, Christ E, Végvári Á, Sahin C, Ribacke U, Wahlgren M, Ankarklev J, Larsson O, Chun-Leung Chan S. tRNA regulation and amino acid usage bias reflect a coordinated metabolic adaptation in Plasmodium falciparum. iScience 2024; 27:111167. [PMID: 39524331 PMCID: PMC11544085 DOI: 10.1016/j.isci.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
An adaptive feature of malaria-causing parasites is the digestion of host hemoglobin (HB) to acquire amino acids (AAs). Here, we describe a link between nutrient availability and translation dependent regulation of gene expression as an adaptive strategy. We show that tRNA expression in Plasmodium falciparum does not match the decoding need expected for optimal translation. A subset of tRNAs decoding AAs that are insufficiently provided by HB are lowly expressed, wherein the abundance of a protein-coding transcript is negatively correlated with the decoding requirement of these tRNAs. Proliferation-related genes have evolved a high requirement of these tRNAs, thereby proliferation can be modulated by repressing protein synthesis of these genes during nutrient stress. We conclude that the parasite modulates translation elongation by maintaining a discordant tRNA profile to exploit variations in AA-composition among genes as an adaptation strategy. This study exemplifies metabolic adaptation as an important driving force for protein evolution.
Collapse
Affiliation(s)
- Qian Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Leonie Vetter
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ylva Veith
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elena Christ
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chun-Leung Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Woodland JG, Horatscheck A, Soares de Melo C, Dziwornu GA, Taylor D. Another decade of antimalarial drug discovery: New targets, tools and molecules. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:161-234. [PMID: 39370241 DOI: 10.1016/bs.pmch.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - André Horatscheck
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Candice Soares de Melo
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa.
| |
Collapse
|
7
|
Olotu F, Tali MBT, Chepsiror C, Sheik Amamuddy O, Boyom FF, Tastan Bishop Ö. Repurposing DrugBank compounds as potential Plasmodium falciparum class 1a aminoacyl tRNA synthetase multi-stage pan-inhibitors with a specific focus on mitomycin. Int J Parasitol Drugs Drug Resist 2024; 25:100548. [PMID: 38805932 PMCID: PMC11152978 DOI: 10.1016/j.ijpddr.2024.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Plasmodium falciparum aminoacyl tRNA synthetases (PfaaRSs) are potent antimalarial targets essential for proteome fidelity and overall parasite survival in every stage of the parasite's life cycle. So far, some of these proteins have been singly targeted yielding inhibitor compounds that have been limited by incidences of resistance which can be overcome via pan-inhibition strategies. Hence, herein, for the first time, we report the identification and in vitro antiplasmodial validation of Mitomycin (MMC) as a probable pan-inhibitor of class 1a (arginyl(A)-, cysteinyl(C), isoleucyl(I)-, leucyl(L), methionyl(M), and valyl(V)-) PfaaRSs which hypothetically may underlie its previously reported activity on the ribosomal RNA to inhibit protein translation and biosynthesis. We combined multiple in silico structure-based discovery strategies that first helped identify functional and druggable sites that were preferentially targeted by the compound in each of the plasmodial proteins: Ins1-Ins2 domain in Pf-ARS; anticodon binding domain in Pf-CRS; CP1-editing domain in Pf-IRS and Pf-MRS; C-terminal domain in Pf-LRS; and CP-core region in Pf-VRS. Molecular dynamics studies further revealed that MMC allosterically induced changes in the global structures of each protein. Likewise, prominent structural perturbations were caused by the compound across the functional domains of the proteins. More so, MMC induced systematic alterations in the binding of the catalytic nucleotide and amino acid substrates which culminated in the loss of key interactions with key active site residues and ultimate reduction in the nucleotide-binding affinities across all proteins, as deduced from the binding energy calculations. These altogether confirmed that MMC uniformly disrupted the structure of the target proteins and essential substrates. Further, MMC demonstrated IC50 < 5 μM against the Dd2 and 3D7 strains of parasite making it a good starting point for malarial drug development. We believe that findings from our study will be important in the current search for highly effective multi-stage antimalarial drugs.
Collapse
Affiliation(s)
- Fisayo Olotu
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa
| | - Mariscal Brice Tchatat Tali
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry & Medicinal Plants Studies, Department of Biochemistry, Faculty of Science-University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon; Advanced Research and Health Innovation Hub (ARHIH), Magzi Street, P.O. Box 812, Yaounde, Cameroon
| | - Curtis Chepsiror
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa
| | - Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry & Medicinal Plants Studies, Department of Biochemistry, Faculty of Science-University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon; Advanced Research and Health Innovation Hub (ARHIH), Magzi Street, P.O. Box 812, Yaounde, Cameroon
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa.
| |
Collapse
|
8
|
Mishra S, Malhotra N, Laleu B, Chakraborti S, Yogavel M, Sharma A. ATP mimetics targeting prolyl-tRNA synthetases as a new avenue for antimalarial drug development. iScience 2024; 27:110049. [PMID: 39104570 PMCID: PMC11298890 DOI: 10.1016/j.isci.2024.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/24/2023] [Accepted: 05/17/2024] [Indexed: 08/07/2024] Open
Abstract
The prolyl-tRNA synthetase (PRS) is an essential enzyme for protein translation and a validated target against malaria parasite. We describe five ATP mimetics (L95, L96, L97, L35, and L36) against PRS, exhibiting enhanced thermal stabilities in co-operativity with L-proline. L35 displays the highest thermal stability akin to halofuginone, an established inhibitor of Plasmodium falciparum PRS. Four compounds exhibit nanomolar inhibitory potency against PRS. L35 exhibits the highest potency of ∼1.6 nM against asexual-blood-stage (ABS) and ∼100-fold (effective concentration [EC50]) selectivity for the parasite. The macromolecular structures of PfPRS with L95 and L97 in complex with L-pro reveal their binding modes and catalytic site malleability. Arg401 of PfPRS oscillates between two rotameric configurations when in complex with L95, whereas it is locked in one of the configurations due to the larger size of L97. Harnessing such specific and selective chemical features holds significant promise for designing potential inhibitors and expediting drug development efforts.
Collapse
Affiliation(s)
- Siddhartha Mishra
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, New Delhi 110077, India
- Academy of Scientific and Innovative Research (AcSIR), UP, India
| | - Nipun Malhotra
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), International Center Cointrin (ICC), Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Soumyananda Chakraborti
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, New Delhi 110077, India
- Academy of Scientific and Innovative Research (AcSIR), UP, India
| | - Manickam Yogavel
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amit Sharma
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
9
|
Wang M, Xu XR, Bai QX, Wu LH, Yang XP, Yang DQ, Kuang HX. Dichroa febrifuga Lour.: A review of its botany, traditional use, phytochemistry, pharmacological activities, toxicology, and progress in reducing toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118093. [PMID: 38537842 DOI: 10.1016/j.jep.2024.118093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dichroa febrifuga Lour., a toxic but extensively used traditional Chinese medicine with a remarkable effect, is commonly called "Changshan" in China. It has been used to treat malaria and many other parasitic diseases. AIM OF THE REVIEW The study aims to provide a current overview of the progress in the research on traditional use, phytochemistry, pharmacological activities, toxicology, and methods of toxicity reduction of D. febrifuga. Additionally, further research directions and development prospects for the plant were put forward. MATERIALS AND METHODS The article uses "Dichroa febrifuga Lour." "D. febrifuga" as the keyword and all relevant information on D. febrifuga was collected from electronic searches (Elsevier, PubMed, ACS, CNKI, Google Scholar, and Baidu Scholar), doctoral and master's dissertations and classic books about Chinese herbs. RESULTS 30 chemical compounds, including alkaloids, terpenoids, flavonoids and other kinds, were isolated and identified from D. febrifuga. Modern pharmacological studies have shown that these components have a variety of pharmacological activities, including anti-malarial activities, anti-inflammatory activities, anti-tumor activities, anti-parasitic activities and anti-oomycete activities. Meanwhile, alkaloids, as the material basis of its efficacy, are also the source of its toxicity. It can cause multiple organ damage, including liver, kidney and heart, and cause adverse reactions such as nausea and vomiting, abdominal pain and diarrhea. In the current study, the toxicity can be reduced by modifying the structure of the compound, processing and changing the dosage forms. CONCLUSIONS There are few studies on the chemical constituents of D. febrifuga, so the components and their structure characterization contained in it can become the focus of future research. In view of the toxicity of D. febrifuga, there are many methods to reduce it, but the safety and rationality of these methods need further study.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Xin-Rui Xu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Xin-Peng Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - De-Qiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
10
|
Marín M, López M, Gallego-Yerga L, Álvarez R, Peláez R. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: A paradigm shift? Med Res Rev 2024; 44:1055-1120. [PMID: 38142308 DOI: 10.1002/med.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.
Collapse
Affiliation(s)
- Miguel Marín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Marta López
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
11
|
Yang G, Liang Y, Li X, Li Z, Qin Y, Weng Q, Yan Y, Cheng Y, Qian Y, Sun L. Competitive Inhibition of Okanin against Plasmodium falciparum Tyrosyl-tRNA Synthetase. Int J Mol Sci 2024; 25:4751. [PMID: 38731970 PMCID: PMC11084299 DOI: 10.3390/ijms25094751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Malaria is a severe disease that presents a significant threat to human health. As resistance to current drugs continues to increase, there is an urgent need for new antimalarial medications. Aminoacyl-tRNA synthetases (aaRSs) represent promising targets for drug development. In this study, we identified Plasmodium falciparum tyrosyl-tRNA synthetase (PfTyrRS) as a potential target for antimalarial drug development through a comparative analysis of the amino acid sequences and three-dimensional structures of human and plasmodium TyrRS, with particular emphasis on differences in key amino acids at the aminoacylation site. A total of 2141 bioactive compounds were screened using a high-throughput thermal shift assay (TSA). Okanin, known as an inhibitor of LPS-induced TLR4 expression, exhibited potent inhibitory activity against PfTyrRS, while showing limited inhibition of human TyrRS. Furthermore, bio-layer interferometry (BLI) confirmed the high affinity of okanin for PfTyrRS. Molecular dynamics (MD) simulations highlighted the stable conformation of okanin within PfTyrRS and its sustained binding to the enzyme. A molecular docking analysis revealed that okanin binds to both the tyrosine and partial ATP binding sites of the enzyme, preventing substrate binding. In addition, the compound inhibited the production of Plasmodium falciparum in the blood stage and had little cytotoxicity. Thus, okanin is a promising lead compound for the treatment of malaria caused by P. falciparum.
Collapse
Affiliation(s)
- Guangpu Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (G.Y.); (Y.L.); (X.L.); (Z.L.); (Y.Q.); (Q.W.); (Y.Y.); (Y.C.)
| | - Yali Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (G.Y.); (Y.L.); (X.L.); (Z.L.); (Y.Q.); (Q.W.); (Y.Y.); (Y.C.)
| | - Xiang Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (G.Y.); (Y.L.); (X.L.); (Z.L.); (Y.Q.); (Q.W.); (Y.Y.); (Y.C.)
| | - Zan Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (G.Y.); (Y.L.); (X.L.); (Z.L.); (Y.Q.); (Q.W.); (Y.Y.); (Y.C.)
| | - Yinying Qin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (G.Y.); (Y.L.); (X.L.); (Z.L.); (Y.Q.); (Q.W.); (Y.Y.); (Y.C.)
| | - Qilu Weng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (G.Y.); (Y.L.); (X.L.); (Z.L.); (Y.Q.); (Q.W.); (Y.Y.); (Y.C.)
| | - Yujuan Yan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (G.Y.); (Y.L.); (X.L.); (Z.L.); (Y.Q.); (Q.W.); (Y.Y.); (Y.C.)
| | - Yijun Cheng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (G.Y.); (Y.L.); (X.L.); (Z.L.); (Y.Q.); (Q.W.); (Y.Y.); (Y.C.)
| | - Yunan Qian
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (G.Y.); (Y.L.); (X.L.); (Z.L.); (Y.Q.); (Q.W.); (Y.Y.); (Y.C.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
12
|
Wirjanata G, Lin J, Dziekan JM, El Sahili A, Chung Z, Tjia S, Binte Zulkifli NE, Boentoro J, Tham R, Jia LS, Go KD, Yu H, Partridge A, Olsen D, Prabhu N, Sobota RM, Nordlund P, Lescar J, Bozdech Z. Identification of an inhibitory pocket in falcilysin provides a new avenue for malaria drug development. Cell Chem Biol 2024; 31:743-759.e8. [PMID: 38593807 DOI: 10.1016/j.chembiol.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/02/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.
Collapse
Affiliation(s)
- Grennady Wirjanata
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Infectious Diseases Labs & Singapore Immunology Network, Agency for Science, Technology and Research, 138648 Singapore, Singapore
| | - Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore
| | - Zara Chung
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - Josephine Boentoro
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Roy Tham
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Lai Si Jia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Ka Diam Go
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - David Olsen
- Merck & Co., Inc., West Point, PA 19486, USA
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 637551, Singapore.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore.
| |
Collapse
|
13
|
Yan Z, Chen C, Zhai S, Tang H, Zhu M, Yu Y, Zheng H. Mechanism of Qingchang compound against coccidiosis based on network pharmacology-molecular docking. Front Vet Sci 2024; 11:1361552. [PMID: 38496310 PMCID: PMC10940363 DOI: 10.3389/fvets.2024.1361552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
The aim of this study was to investigate the anti-Eimeria tenella mechanism of Qingchang Compound (QCC) and provide a basis for its clinical application. The active ingredients, active ingredient-disease intersection targets, and possible pathways of QCC for the treatment of chicken coccidiosis were analyzed, the binding ability of pharmacodynamic components and target proteins was determined by network pharmacology and the molecular docking, and a model of infection with coccidiosis was constructed to verify and analyze the mechanism of action of QCC against coccidiosis. Among the 57 components that met the screening conditions, the main bioactive components were quercetin, dichroine, and artemisinin, with IL-1β, IL-6, IL-10, IFN-γ, and IL-8 as the core targets. Simultaneously, the KEGG signaling pathway of QCC anti-coccidiosis in chickens was enriched, including cytokine-cytokine receptor interactions. The results showed that the main pharmacodynamic components of QCC and the core targets could bind well; artemisinin and alpine possessed the largest negative binding energies and presented the most stable binding states. In addition, in vivo studies showed that QCC reduced blood stool in chickens with coccidiosis, restored cecal injury, and significantly reduced the mRNA and protein expression levels of IL-1β, IL-10, and IFN-γ in ceca (p < 0.01). Our results suggest that the main active ingredients of QCC are artemisinin and alpine and its mechanism of action against coccidiosis may be related to the reduction of the inflammatory response by acting on specific cytokines.
Collapse
Affiliation(s)
- Zhiqiang Yan
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Chunlin Chen
- Chongqing Academy of Animal Sciences, Rongchang, China
- Chongqing Research Center of Veterinary Biological Products Engineering Technology, Chongqing, China
| | - Shaoqin Zhai
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Hongmei Tang
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Maixun Zhu
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Yuandi Yu
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Hua Zheng
- Chongqing Research Center of Veterinary Biological Products Engineering Technology, Chongqing, China
| |
Collapse
|
14
|
Chen J, Fan S, Guo J, Yang J, Pan L, Xia Y. Discovery of anticancer function of Febrifugine: Inhibition of cell proliferation, induction of apoptosis and suppression steroid synthesis in bladder cancer cells. Toxicol Appl Pharmacol 2024; 484:116878. [PMID: 38431229 DOI: 10.1016/j.taap.2024.116878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bladder cancer is a prevalent malignancy affecting the urinary system, which presents a significant global health concern. Although there are many treatments for bladder cancer, identifying more effective drugs and methods remains an urgent problem. As a pivotal component of contemporary medical practice, traditional Chinese medicine (TCM) assumes a crucial role in the realm of anti-tumor therapy, especially with the identification of active ingredients and successful exploration of pharmacological effects. Febrifugine, identified as a quinazoline-type alkaloid compound extracted from the Cytidiaceae family plant Huangchangshan, exhibits heightened sensitivity to bladder cancer cells in comparison to control cells (non-cancer cells) group. The proliferation growth of bladder cancer cells T24 and SW780 was effectively inhibited by Febrifugine, and the IC50 was 0.02 and 0.018 μM respectively. Febrifugine inhibits cell proliferation by suppressing DNA synthesis and induces cell death by reducing steroidogenesis and promoting apoptosis. Combined with transcriptome analysis, Febrifugine was found to downregulate low density lipoprotein receptor-associated protein, lanosterol synthase, cholesterol biosynthesis second rate-limiting enzyme, 7-dehydrocholesterol reductase, flavin adenine dinucleotide dependent oxidoreductase and other factors to inhibit the production of intracellular steroids in bladder cancer T24 cells. The results of animal experiments showed that Febrifugine could inhibit tumor growth. In summary, the effect of Febrifugine on bladder cancer is mainly through reducing steroid production and apoptosis. Therefore, this study contributes to the elucidation of Febrifugine's potential as an inhibitor of bladder cancer and establishes a solid foundation for the future development of novel therapeutic agents targeting bladder cancer.
Collapse
Affiliation(s)
- Jingyuan Chen
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Jining 272067, China
| | - Shuhao Fan
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Jining 272067, China
| | - Jianhua Guo
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Jining 272067, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Le Pan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Yong Xia
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Jining 272067, China.
| |
Collapse
|
15
|
Cheuka PM, Njaria P, Mayoka G, Funjika E. Emerging Drug Targets for Antimalarial Drug Discovery: Validation and Insights into Molecular Mechanisms of Function. J Med Chem 2024; 67:838-863. [PMID: 38198596 DOI: 10.1021/acs.jmedchem.3c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Approximately 619,000 malaria deaths were reported in 2021, and resistance to recommended drugs, including artemisinin-combination therapies (ACTs), threatens malaria control. Treatment failure with ACTs has been found to be as high as 93% in northeastern Thailand, and parasite mutations responsible for artemisinin resistance have already been reported in some African countries. Therefore, there is an urgent need to identify alternative treatments with novel targets. In this Perspective, we discuss some promising antimalarial drug targets, including enzymes involved in proteolysis, DNA and RNA metabolism, protein synthesis, and isoprenoid metabolism. Other targets discussed are transporters, Plasmodium falciparum acetyl-coenzyme A synthetase, N-myristoyltransferase, and the cyclic guanosine monophosphate-dependent protein kinase G. We have outlined mechanistic details, where these are understood, underpinning the biological roles and hence druggability of such targets. We believe that having a clear understanding of the underlying chemical interactions is valuable to medicinal chemists in their quest to design appropriate inhibitors.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Paul Njaria
- Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, P.O. Box 14548-00400, Nairobi 00100, Kenya
| | - Godfrey Mayoka
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi 00100, Kenya
| | - Evelyn Funjika
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| |
Collapse
|
16
|
Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, Shao Y, Hao M, Zhang S, Hu W, Wang Y, Zhang M, Zhu M, Wang C, Wu Y, Wang J, Xing D. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol 2024; 23:21. [PMID: 38195542 PMCID: PMC10777520 DOI: 10.1186/s12933-024-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Xiaolin Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianfeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421001, Hunan, China
| | - Yingchun Shao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Minglu Hao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shuangshuang Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Weichao Hu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China
| | - Yanhong Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Miao Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Meng Zhu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Chao Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Jie Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Ali M, Xu C, Nawaz S, Ahmed AE, Hina Q, Li K. Anti-Cryptosporidial Drug-Discovery Challenges and Existing Therapeutic Avenues: A "One-Health" Concern. Life (Basel) 2024; 14:80. [PMID: 38255695 PMCID: PMC10820218 DOI: 10.3390/life14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Cryptosporidiosis is the leading cause of life-threatening diarrheal infection, especially in infants. Oocysts contaminate the environment, and also, being a zoonotic disease, cryptosporidiosis is a threat to One Health. Nitazoxanide is the only FDA-approved drug, effective only in immunocompetent adults, and is not safe for infants. The absence of mitochondria and apicoplast, the presence of an electron-dense band (ED band), hindrances in its genetic and phenotypic manipulations, and its unique position inside the host cell are some challenges to the anti-cryptosporidial drug-discovery process. However, many compounds, including herbal products, have shown efficacy against Cryptosporidium during in vitro and in vivo trials. Still, the "drug of choice" against this protozoan parasite, especially in immunocompromised individuals and infants, has not yet been explored. The One-Health approach addresses this issue, focusing on the intersection of animal, human, and environmental health. The objective of this review is to provide knowledge about novel anti-cryptosporidial drug targets, available treatment options with associated limitations, and possible future shifts toward natural products to treat cryptosporidiosis. The current review is organized to address the treatment and prevention of cryptosporidiosis. An anti-cryptosporidial drug that is effective in immunocompromised individuals and infants is a necessity of our time.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Shaw S, Cohn IS, Baptista RP, Xia G, Melillo B, Agyabeng-Dadzie F, Kissinger JC, Striepen B. Genetic crosses within and between species of Cryptosporidium. Proc Natl Acad Sci U S A 2024; 121:e2313210120. [PMID: 38147547 PMCID: PMC10769859 DOI: 10.1073/pnas.2313210120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023] Open
Abstract
Parasites and their hosts are engaged in reciprocal coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium, genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach, multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing Cryptosporidium parvum, a parasite of cattle and humans, and Cryptosporidium tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward-genetic analysis of parasite biology and host specificity.
Collapse
Affiliation(s)
- Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Rodrigo P. Baptista
- Department of Medicine, Houston Methodist Research Institute, Houston, TX77030
| | - Guoqin Xia
- Department of Chemistry, Scripps Research, La Jolla, CA92037
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA92037
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA02142
| | | | - Jessica C. Kissinger
- Department of Genetics, University of Georgia, Athens, GA30602
- Center for Tropical and Emerging Global Diseases and Institute of Bioinformatics, University of Georgia, Athens, GA30602
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
19
|
McLellan JL, Sausman W, Reers AB, Bunnik EM, Hanson KK. Single-cell quantitative bioimaging of P. berghei liver stage translation. mSphere 2023; 8:e0054423. [PMID: 37909773 PMCID: PMC10732057 DOI: 10.1128/msphere.00544-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Plasmodium parasites cause malaria in humans. New multistage active antimalarial drugs are needed, and a promising class of drugs targets the core cellular process of translation, which has many potential molecular targets. During the obligate liver stage, Plasmodium parasites grow in metabolically active hepatocytes, making it challenging to study core cellular processes common to both host cells and parasites, as the signal from the host typically overwhelms that of the parasite. Here, we present and validate a flexible assay to quantify Plasmodium liver stage translation using a technique to fluorescently label the newly synthesized proteins of both host and parasite followed by computational separation of their respective nascent proteomes in confocal image sets. We use the assay to determine whether a test set of known compounds are direct or indirect liver stage translation inhibitors and show that the assay can also predict the mode of action for novel antimalarial compounds.
Collapse
Affiliation(s)
- James L. McLellan
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - William Sausman
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Ashley B. Reers
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Kirsten K. Hanson
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
20
|
Luo AP, Giannangelo C, Siddiqui G, Creek DJ. Promising antimalarial hits from phenotypic screens: a review of recently-described multi-stage actives and their modes of action. Front Cell Infect Microbiol 2023; 13:1308193. [PMID: 38162576 PMCID: PMC10757594 DOI: 10.3389/fcimb.2023.1308193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Over the last two decades, global malaria cases caused by Plasmodium falciparum have declined due to the implementation of effective treatments and the use of insecticides. However, the COVID-19 pandemic caused major disruption in the timely delivery of medical goods and diverted public health resources, impairing malaria control. The emergence of resistance to all existing frontline antimalarials underpins an urgent need for new antimalarials with novel mechanisms of action. Furthermore, the need to reduce malaria transmission and/or prevent malaria infection has shifted the focus of antimalarial research towards the discovery of compounds that act beyond the symptomatic blood stage and also impact other parasite life cycle stages. Phenotypic screening has been responsible for the majority of new antimalarial lead compounds discovered over the past 10 years. This review describes recently reported novel antimalarial hits that target multiple parasite stages and were discovered by phenotypic screening during the COVID-19 pandemic. Their modes of action and targets in blood stage parasites are also discussed.
Collapse
Affiliation(s)
| | | | - Ghizal Siddiqui
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Darren J. Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
21
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
22
|
Xie SC, Griffin MDW, Winzeler EA, Ribas de Pouplana L, Tilley L. Targeting Aminoacyl tRNA Synthetases for Antimalarial Drug Development. Annu Rev Microbiol 2023; 77:111-129. [PMID: 37018842 DOI: 10.1146/annurev-micro-032421-121210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Infections caused by malaria parasites place an enormous burden on the world's poorest communities. Breakthrough drugs with novel mechanisms of action are urgently needed. As an organism that undergoes rapid growth and division, the malaria parasite Plasmodium falciparum is highly reliant on protein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs) to charge tRNAs with their corresponding amino acid. Protein translation is required at all stages of the parasite life cycle; thus, aaRS inhibitors have the potential for whole-of-life-cycle antimalarial activity. This review focuses on efforts to identify potent plasmodium-specific aaRS inhibitors using phenotypic screening, target validation, and structure-guided drug design. Recent work reveals that aaRSs are susceptible targets for a class of AMP-mimicking nucleoside sulfamates that target the enzymes via a novel reaction hijacking mechanism. This finding opens up the possibility of generating bespoke inhibitors of different aaRSs, providing new drug leads.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain;
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, Spain
| | - Leann Tilley
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| |
Collapse
|
23
|
Shaw S, Cohn IS, Baptista RP, Xia G, Melillo B, Agyabeng-Dadzie F, Kissinger JC, Striepen B. Genetic crosses within and between species of Cryptosporidium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551960. [PMID: 37577700 PMCID: PMC10418217 DOI: 10.1101/2023.08.04.551960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Parasites and their hosts are engaged in rapid coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing C. parvum, a parasite of cattle and humans, and C. tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward- genetic analysis of parasite biology and host specificity.
Collapse
Affiliation(s)
- Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Guoqin Xia
- Department of Chemistry, Scripps Research, La Jolla, CA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA
| | | | - Jessica C. Kissinger
- Department of Genetics, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases and Institute of Bioinformatics University of Georgia, Athens, GA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
24
|
McLellan JL, Sausman W, Reers AB, Bunnik EM, Hanson KK. Single-cell quantitative bioimaging of P. berghei liver stage translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547872. [PMID: 37461595 PMCID: PMC10350035 DOI: 10.1101/2023.07.05.547872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Plasmodium parasite resistance to existing antimalarial drugs poses a devastating threat to the lives of many who depend on their efficacy. New antimalarial drugs and novel drug targets are in critical need, along with novel assays to accelerate their identification. Given the essentiality of protein synthesis throughout the complex parasite lifecycle, translation inhibitors are a promising drug class, capable of targeting the disease-causing blood stage of infection, as well as the asymptomatic liver stage, a crucial target for prophylaxis. To identify compounds capable of inhibiting liver stage parasite translation, we developed an assay to visualize and quantify translation in the P. berghei-HepG2 infection model. After labeling infected monolayers with o-propargyl puromycin (OPP), a functionalized analog of puromycin permitting subsequent bioorthogonal addition of a fluorophore to each OPP-terminated nascent polypetide, we use automated confocal feedback microscopy followed by batch image segmentation and feature extraction to visualize and quantify the nascent proteome in individual P. berghei liver stage parasites and host cells simultaneously. After validation, we demonstrate specific, concentration-dependent liver stage translation inhibition by both parasite-selective and pan-eukaryotic active compounds, and further show that acute pre-treatment and competition modes of the OPP assay can distinguish between direct and indirect translation inhibitors. We identify a Malaria Box compound, MMV019266, as a direct translation inhibitor in P. berghei liver stages and confirm this potential mode of action in P. falciparum asexual blood stages.
Collapse
Affiliation(s)
- James L McLellan
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - William Sausman
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ashley B Reers
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Evelien M Bunnik
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Kirsten K Hanson
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
25
|
Ansari A, Seth A, Dutta M, Qamar T, Katiyar S, Jaiswal AK, Rani A, Majhi S, Kumar M, Bhatta RS, Guha R, Mitra K, Sashidhara KV, Kar S. Discovery, SAR and mechanistic studies of quinazolinone-based acetamide derivatives in experimental visceral leishmaniasis. Eur J Med Chem 2023; 257:115524. [PMID: 37290183 DOI: 10.1016/j.ejmech.2023.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
Towards identification of novel therapeutic candidates, a series of quinazolinone-based acetamide derivatives were synthesized and assessed for their anti-leishmanial efficacy. Amongst synthesized derivatives, compounds F12, F27 and F30 demonstrated remarkable activity towards intracellular L. donovani amastigotes in vitro, with IC50 values of 5.76 ± 0.84 μM, 3.39 ± 0.85 μM and 8.26 ± 1.23 μM against promastigotes, and 6.02 μM ± 0.52, 3.55 ± 0.22 μM and 6.23 ± 0.13 μM against amastigotes, respectively. Oral administration of compounds F12 and F27 entailed >85% reduction in organ parasite burden in L. donovani-infected BALB/c mice and hamsters, by promoting host-protective Th1 cytokine response. In host J774 macrophages, mechanistic studies revealed inhibition of PI3K/Akt/CREB axis, resulting in a decrease of IL-10 versus IL-12 release upon F27 treatment. In silico docking studies conducted with lead compound, F27 demonstrated plausible inhibition of Leishmania prolyl-tRNA synthetase, which was validated via detection of decreased proline levels in parasites and induction of amino acid starvation, leading to G1 cell cycle arrest and autophagy-mediated programmed cell death of L. donovani promastigotes. Structure-activity analysis and study of pharmacokinetic and physicochemical parameters suggest oral availability and underscore F27 as a promising lead for anti-leishmanial drug development.
Collapse
Affiliation(s)
- Alisha Ansari
- Medicinal and Process Chemistry Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Anuradha Seth
- Molecular Microbiology & Immunology Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mukul Dutta
- Molecular Microbiology & Immunology Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Tooba Qamar
- Molecular Microbiology & Immunology Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarita Katiyar
- Medicinal and Process Chemistry Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Arvind K Jaiswal
- Medicinal and Process Chemistry Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ankita Rani
- Molecular Microbiology & Immunology Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Swetapadma Majhi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mukesh Kumar
- Pharmacokinetics and Metabolism Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi S Bhatta
- Pharmacokinetics and Metabolism Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rajdeep Guha
- Laboratory Animal Facility Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Susanta Kar
- Molecular Microbiology & Immunology Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
26
|
Gharibi Z, Shahbazi B, Gouklani H, Nassira H, Rezaei Z, Ahmadi K. Computational screening of FDA-approved drugs to identify potential TgDHFR, TgPRS, and TgCDPK1 proteins inhibitors against Toxoplasma gondii. Sci Rep 2023; 13:5396. [PMID: 37012275 PMCID: PMC10070243 DOI: 10.1038/s41598-023-32388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is one of the most successful parasites in the world, because about a third of the world's population is seropositive for toxoplasmosis. Treatment regimens for toxoplasmosis have remained unchanged for the past 20 years, and no new drugs have been introduced to the market recently. This study, performed molecular docking to identify interactions of FDA-approved drugs with essential residues in the active site of proteins of T. gondii Dihydrofolate Reductase (TgDHFR), Prolyl-tRNA Synthetase (TgPRS), and Calcium-Dependent Protein Kinase 1 (TgCDPK1). Each protein was docked with 2100 FDA-approved drugs using AutoDock Vina. Also, the Pharmit software was used to generate pharmacophore models based on the TgDHFR complexed with TRC-2533, TgPRS in complex with halofuginone, and TgCDPK1 in complex with a bumped kinase inhibitor, RM-1-132. Molecular dynamics (MD) simulation was also performed for 100 ns to verify the stability of interaction in drug-protein complexes. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis evaluated the binding energy of selected complexes. Ezetimibe, Raloxifene, Sulfasalazine, Triamterene, and Zafirlukast drugs against the TgDHFR protein, Cromolyn, Cefexim, and Lactulose drugs against the TgPRS protein, and Pentaprazole, Betamethasone, and Bromocriptine drugs against TgCDPK1 protein showed the best results. These drugs had the lowest energy-based docking scores and also stable interactions based on MD analyses with TgDHFR, TgPRS, and TgCDPK1 drug targets that can be introduced as possible drugs for laboratory investigations to treat T. gondii parasite infection.
Collapse
Affiliation(s)
- Zahra Gharibi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hoda Nassira
- Polymer Division, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Zahra Rezaei
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
27
|
Sun P, Wang C, Zhang Y, Tang X, Hu D, Xie F, Hao Z, Suo J, Yu Y, Suo X, Liu X. Transcriptome profile of halofuginone resistant and sensitive strains of Eimeria tenella. Front Microbiol 2023; 14:1141952. [PMID: 37065111 PMCID: PMC10098198 DOI: 10.3389/fmicb.2023.1141952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
The antiparasitic drug halofuginone is important for controlling apicomplexan parasites. However, the occurrence of halofuginone resistance is a major obstacle for it to the treatment of apicomplexan parasites. Current studies have identified the molecular marker and drug resistance mechanisms of halofuginone in Plasmodium falciparum. In this study, we tried to use transcriptomic data to explore resistance mechanisms of halofuginone in apicomplexan parasites of the genus Eimeria (Apicomplexa: Eimeriidae). After halofuginone treatment of E. tenella parasites, transcriptome analysis was performed using samples derived from both resistant and sensitive strains. In the sensitive group, DEGs associated with enzymes were significantly downregulated, whereas the DNA damaging process was upregulated after halofuginone treatment, revealing the mechanism of halofuginone-induced parasite death. In addition, 1,325 differentially expressed genes (DEGs) were detected between halofuginone resistant and sensitive strains, and the DEGs related to translation were significantly downregulated after halofuginone induction. Overall, our results provide a gene expression profile for further studies on the mechanism of halofuginone resistance in E. tenella.
Collapse
Affiliation(s)
- Pei Sun
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chaoyue Wang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dandan Hu
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Fujie Xie
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenkai Hao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yonglan Yu
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Xun Suo,
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
- Xianyong Liu,
| |
Collapse
|
28
|
Istvan ES, Guerra F, Abraham M, Huang KS, Rocamora F, Zhao H, Xu L, Pasaje C, Kumpornsin K, Luth MR, Cui H, Yang T, Diaz SP, Gomez-Lorenzo MG, Qahash T, Mittal N, Ottilie S, Niles J, Lee MCS, Llinas M, Kato N, Okombo J, Fidock DA, Schimmel P, Gamo FJ, Goldberg DE, Winzeler EA. Cytoplasmic isoleucyl tRNA synthetase as an attractive multistage antimalarial drug target. Sci Transl Med 2023; 15:eadc9249. [PMID: 36888694 PMCID: PMC10286833 DOI: 10.1126/scitranslmed.adc9249] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the P. falciparum cytoplasmic isoleucyl tRNA synthetase (cIRS). Engineering two of the mutations into drug-naïve parasites recapitulated the resistance phenotype, and parasites with conditional knockdowns of cIRS became hypersensitive to two thienopyrimidines. Purified recombinant P. vivax cIRS inhibition, cross-resistance, and biochemical assays indicated a noncompetitive, allosteric binding site that is distinct from that of known cIRS inhibitors mupirocin and reveromycin A. Our data show that Plasmodium cIRS is an important chemically and genetically validated target for next-generation medicines for malaria.
Collapse
Affiliation(s)
- Eva S. Istvan
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Francisco Guerra
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Matthew Abraham
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Frances Rocamora
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Lan Xu
- The Global Health Drug Discovery Institute, Tsinghua University 30 Shuangqing Rd, Haidian District, Beijing, China
| | - Charisse Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Madeline R. Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tuo Yang
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sara Palomo Diaz
- Global Health Medicines, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Spain
| | | | - Tarrick Qahash
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Nimisha Mittal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Jacquin Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Manuel Llinas
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Nobutaka Kato
- The Global Health Drug Discovery Institute, Tsinghua University 30 Shuangqing Rd, Haidian District, Beijing, China
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
29
|
Yogavel M, Bougdour A, Mishra S, Malhotra N, Chhibber-Goel J, Bellini V, Harlos K, Laleu B, Hakimi MA, Sharma A. Targeting prolyl-tRNA synthetase via a series of ATP-mimetics to accelerate drug discovery against toxoplasmosis. PLoS Pathog 2023; 19:e1011124. [PMID: 36854028 PMCID: PMC9974123 DOI: 10.1371/journal.ppat.1011124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/16/2023] [Indexed: 03/02/2023] Open
Abstract
The prolyl-tRNA synthetase (PRS) is a validated drug target for febrifugine and its synthetic analog halofuginone (HFG) against multiple apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Here, a novel ATP-mimetic centered on 1-(pyridin-4-yl) pyrrolidin-2-one (PPL) scaffold has been validated to bind to Toxoplasma gondii PRS and kill toxoplasma parasites. PPL series exhibited potent inhibition at the cellular (T. gondii parasites) and enzymatic (TgPRS) levels compared to the human counterparts. Cell-based chemical mutagenesis was employed to determine the mechanism of action via a forward genetic screen. Tg-resistant parasites were analyzed with wild-type strain by RNA-seq to identify mutations in the coding sequence conferring drug resistance by computational analysis of variants. DNA sequencing established two mutations, T477A and T592S, proximal to terminals of the PPL scaffold and not directly in the ATP, tRNA, or L-pro sites, as supported by the structural data from high-resolution crystal structures of drug-bound enzyme complexes. These data provide an avenue for structure-based activity enhancement of this chemical series as anti-infectives.
Collapse
Affiliation(s)
- Manickam Yogavel
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Siddhartha Mishra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Nipun Malhotra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Jyoti Chhibber-Goel
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Valeria Bellini
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), International Center Cointrin (ICC), Geneva, Switzerland
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Amit Sharma
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
30
|
Kurata K, James-Bott A, Tye MA, Yamamoto L, Samur MK, Tai YT, Dunford J, Johansson C, Senbabaoglu F, Philpott M, Palmer C, Ramasamy K, Gooding S, Smilova M, Gaeta G, Guo M, Christianson JC, Payne NC, Singh K, Karagoz K, Stokes ME, Ortiz M, Hagner P, Thakurta A, Cribbs A, Mazitschek R, Hideshima T, Anderson KC, Oppermann U. Prolyl-tRNA synthetase as a novel therapeutic target in multiple myeloma. Blood Cancer J 2023; 13:12. [PMID: 36631435 PMCID: PMC9834298 DOI: 10.1038/s41408-023-00787-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterised by aberrant production of immunoglobulins requiring survival mechanisms to adapt to proteotoxic stress. We here show that glutamyl-prolyl-tRNA synthetase (GluProRS) inhibition constitutes a novel therapeutic target. Genomic data suggest that GluProRS promotes disease progression and is associated with poor prognosis, while downregulation in MM cells triggers apoptosis. We developed NCP26, a novel ATP-competitive ProRS inhibitor that demonstrates significant anti-tumour activity in multiple in vitro and in vivo systems and overcomes metabolic adaptation observed with other inhibitor chemotypes. We demonstrate a complex phenotypic response involving protein quality control mechanisms that centers around the ribosome as an integrating hub. Using systems approaches, we identified multiple downregulated proline-rich motif-containing proteins as downstream effectors. These include CD138, transcription factors such as MYC, and transcription factor 3 (TCF3), which we establish as a novel determinant in MM pathobiology through functional and genomic validation. Our preclinical data therefore provide evidence that blockade of prolyl-aminoacylation evokes a complex pro-apoptotic response beyond the canonical integrated stress response and establish a framework for its evaluation in a clinical setting.
Collapse
Affiliation(s)
- Keiji Kurata
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Anna James-Bott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Mark A Tye
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, 02138, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Leona Yamamoto
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Mehmet K Samur
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - James Dunford
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Filiz Senbabaoglu
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Charlotte Palmer
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Karthik Ramasamy
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LD, UK
| | - Sarah Gooding
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7LD, UK
| | - Mihaela Smilova
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Giorgia Gaeta
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Manman Guo
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kritika Singh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | | | - Maria Ortiz
- Bristol Myers Squibb, Summit, NJ, 07901, USA
| | | | - Anjan Thakurta
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
- Bristol Myers Squibb, Summit, NJ, 07901, USA
| | - Adam Cribbs
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
31
|
Gill J, Sharma A. Exploration of aminoacyl-tRNA synthetases from eukaryotic parasites for drug development. J Biol Chem 2022; 299:102860. [PMID: 36596362 PMCID: PMC9978631 DOI: 10.1016/j.jbc.2022.102860] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Parasitic diseases result in considerable human morbidity and mortality. The continuous emergence and spread of new drug-resistant parasite strains is an obstacle to controlling and eliminating many parasitic diseases. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous enzymes essential for protein synthesis. The design and development of diverse small molecule, drug-like inhibitors against parasite-encoded and expressed aaRSs have validated this enzyme family as druggable. In this work, we have compiled the progress to date towards establishing the druggability of aaRSs in terms of their biochemical characterization, validation as targets, inhibitor development, and structural interpretation from parasites responsible for malaria (Plasmodium), lymphatic filariasis (Brugia,Wuchereria bancrofti), giardiasis (Giardia), toxoplasmosis (Toxoplasma gondii), leishmaniasis (Leishmania), cryptosporidiosis (Cryptosporidium), and trypanosomiasis (Trypanosoma). This work thus provides a robust framework for the systematic dissection of aaRSs from these pathogens and will facilitate the cross-usage of potential inhibitors to jump-start anti-parasite drug development.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India; Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
32
|
Cheng B, Cai Z, Luo Z, Luo S, Luo Z, Cheng Y, Yu Y, Guo J, Ju Y, Gu Q, Xu J, Jiang X, Li G, Zhou H. Structure-Guided Design of Halofuginone Derivatives as ATP-Aided Inhibitors Against Bacterial Prolyl-tRNA Synthetase. J Med Chem 2022; 65:15840-15855. [PMID: 36394909 DOI: 10.1021/acs.jmedchem.2c01496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are promising antimicrobial targets due to their essential roles in protein translation, and expanding their inhibitory mechanisms will provide new opportunities for drug discovery. We report here that halofuginone (HF), an herb-derived medicine, moderately inhibits prolyl-tRNA synthetases (ProRSs) from various pathogenic bacteria. A cocrystal structure of Staphylococcus aureus ProRS (SaProRS) with HF and an ATP analog was determined, which guided the design of new HF analogs. Compound 3 potently inhibited SaProRS at IC50 = 0.18 μM and Kd = 30.3 nM and showed antibacterial activities with an MIC of 1-4 μg/mL in vitro. The bacterial drug resistance to 3 only developed at a rate similar to or slower than those of clinically used antibiotics in vitro. Our study indicates that the scaffold and ATP-aided inhibitory mechanism of HF could apply to bacterial ProRS and also provides a chemical validation for using bacterial ProRS as an antibacterial target.
Collapse
Affiliation(s)
- Bao Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhengjun Cai
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ziqing Luo
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Siting Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhiteng Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yanfang Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ying Yu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Junsong Guo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yingchen Ju
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xianxing Jiang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Geng Li
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huihao Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
33
|
Zhang S, Cai J, Xie Y, Zhang X, Yang X, Lin S, Xiang W, Zhang J. Anti-Phytophthora Activity of Halofuginone and the Corresponding Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12364-12371. [PMID: 36126316 DOI: 10.1021/acs.jafc.2c04266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Febrifugine, a natural alkaloid, exhibits specific anti-phytophthora activity; however, its mode of action is unclear. In this study, halofuginone, a synthetic derivative of febrifugine, showed significantly higher anti-phytophthora activities than those of febrifugine and the commercial drug metalaxyl against Phytophthora sojae, Phytophthora capsici, and Phytophthora infestans with effective concentration for 50% inhibition (EC50) values of 0.665, 0.673, and 0.178 μg/mL, respectively. Proline could alleviate the growth inhibition of halofuginone on P. capsici, implying that halofuginone might target prolyl-tRNA synthetase (PcPRS). The anti-phytophthora mechanism of halofuginone was then investigated by molecular docking, fluorescence titration, and enzymatic inhibition assays. The results revealed that halofuginone could bind to PcPRS and shared a similar binding site with the substrate proline. Point mutations at Glu316 and Arg345 led to 24.5 and 16.1% decreases in the enzymatic activity of PcPRS but 816.742- and 459.557-fold increases in the resistance to halofuginone, respectively. The results further confirmed that halofuginone was a competitive inhibitor of proline against PcPRS, and Glu316 and Arg345 played important roles in the binding of halofuginone and proline. Taken together, the results indicated that halofuginone is an alternative anti-phytophthora drug candidate and that PcPRS represents a potential target for the development of new pesticides.
Collapse
Affiliation(s)
- Saisai Zhang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Jialing Cai
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Yimeng Xie
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Xinyu Zhang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin150081, China
| | - Xilang Yang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Shenyuan Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang110866, China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Ji Zhang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| |
Collapse
|
34
|
Tye MA, Payne NC, Johansson C, Singh K, Santos SA, Fagbami L, Pant A, Sylvester K, Luth MR, Marques S, Whitman M, Mota MM, Winzeler EA, Lukens AK, Derbyshire ER, Oppermann U, Wirth DF, Mazitschek R. Elucidating the path to Plasmodium prolyl-tRNA synthetase inhibitors that overcome halofuginone resistance. Nat Commun 2022; 13:4976. [PMID: 36008486 PMCID: PMC9403976 DOI: 10.1038/s41467-022-32630-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
The development of next-generation antimalarials that are efficacious against the human liver and asexual blood stages is recognized as one of the world's most pressing public health challenges. In recent years, aminoacyl-tRNA synthetases, including prolyl-tRNA synthetase, have emerged as attractive targets for malaria chemotherapy. We describe the development of a single-step biochemical assay for Plasmodium and human prolyl-tRNA synthetases that overcomes critical limitations of existing technologies and enables quantitative inhibitor profiling with high sensitivity and flexibility. Supported by this assay platform and co-crystal structures of representative inhibitor-target complexes, we develop a set of high-affinity prolyl-tRNA synthetase inhibitors, including previously elusive aminoacyl-tRNA synthetase triple-site ligands that simultaneously engage all three substrate-binding pockets. Several compounds exhibit potent dual-stage activity against Plasmodium parasites and display good cellular host selectivity. Our data inform the inhibitor requirements to overcome existing resistance mechanisms and establish a path for rational development of prolyl-tRNA synthetase-targeted anti-malarial therapies.
Collapse
Affiliation(s)
- Mark A Tye
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Catrine Johansson
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kritika Singh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sofia A Santos
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Lọla Fagbami
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Akansha Pant
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Madeline R Luth
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Sofia Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
35
|
Gill J, Sharma A. Prospects of halofuginone as an antiprotozoal drug scaffold. Drug Discov Today 2022; 27:2586-2592. [DOI: 10.1016/j.drudis.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
|
36
|
Febrifugine dihydrochloride as a new oral chemotherapeutic agent against visceral leishmaniasis infection. Exp Parasitol 2022; 236-237:108250. [DOI: 10.1016/j.exppara.2022.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022]
|
37
|
Manickam Y, Malhotra N, Mishra S, Babbar P, Dusane A, Laleu B, Bellini V, Hakimi MA, Bougdour A, Sharma A. Double drugging of prolyl-tRNA synthetase provides a new paradigm for anti-infective drug development. PLoS Pathog 2022; 18:e1010363. [PMID: 35333915 PMCID: PMC9004777 DOI: 10.1371/journal.ppat.1010363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/12/2022] [Accepted: 02/11/2022] [Indexed: 01/13/2023] Open
Abstract
Toxoplasmosis is caused by Toxoplasma gondii and in immunocompromised patients it may lead to seizures, encephalitis or death. The conserved enzyme prolyl-tRNA synthetase (PRS) is a validated druggable target in Toxoplasma gondii but the traditional ‘single target–single drug’ approach has its caveats. Here, we describe two potent inhibitors namely halofuginone (HFG) and a novel ATP mimetic (L95) that bind to Toxoplasma gondii PRS simultaneously at different neighbouring sites to cover all three of the enzyme substrate subsites. HFG and L95 act as one triple-site inhibitor in tandem and form an unusual ternary complex wherein HFG occupies the 3’-end of tRNA and the L-proline (L-pro) binding sites while L95 occupies the ATP pocket. These inhibitors exhibit nanomolar IC50 and EC50 values independently, and when given together reveal an additive mode of action in parasite inhibition assays. This work validates a novel approach and lays a structural framework for further drug development based on simultaneous targeting of multiple pockets to inhibit druggable proteins. Among infectious diseases, parasitic diseases are a major cause of death and morbidity. Toxoplasmosis is caused by an infection of the apicomplexan parasite Toxoplasma gondii. In immunocompromised patients Toxoplasmosis may lead to seizures, encephalitis or death. Novel therapeutics for human parasites are constantly needed. In recent years, the aminoacyl-tRNA synthetase (aaRS) enzyme family has been validated as a drug target for several parasitic infections. The Toxoplasma gondii prolyl-tRNA synthetase inhibitor halofuginone (HFG) has been validated earlier but here we show that an ATP-mimic called L95 is a potent inhibitor and can bind to the target enzyme in the presence of HFG. Thus, the two inhibitors described in this study simultaneously occupy all three natural substrate (ATP, L-amino acid and 3’-end of tRNA) binding pockets and thereby inhibit the enzyme leading to parasite death. This unprecedented double drugging of a pathogen enzyme may delay resistance mutation generation and this approach opens the path to multi-drugging of validated parasite proteins.
Collapse
Affiliation(s)
- Yogavel Manickam
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Nipun Malhotra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Siddhartha Mishra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- ICMR-National Institute of Malaria Research (NIMR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Palak Babbar
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abhishek Dusane
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), International Center Cointrin (ICC), Geneva, Switzerland
| | - Valeria Bellini
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
- * E-mail: (AB); (AS)
| | - Amit Sharma
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- ICMR-National Institute of Malaria Research (NIMR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- * E-mail: (AB); (AS)
| |
Collapse
|
38
|
Long S, Duarte D, Carvalho C, Oliveira R, Santarém N, Palmeira A, Resende DISP, Silva AMS, Moreira R, Kijjoa A, Cordeiro da Silva A, Nogueira F, Sousa E, Pinto MMM. Indole-Containing Pyrazino[2,1- b]quinazoline-3,6-diones Active against Plasmodium and Trypanosomatids. ACS Med Chem Lett 2022; 13:225-235. [PMID: 35178179 PMCID: PMC8842117 DOI: 10.1021/acsmedchemlett.1c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria, leishmaniasis, and sleeping sickness are potentially fatal diseases that represent a real health risk for more than 3,5 billion people. New antiparasitic compounds are urgent leading to a constant search for novel scaffolds. Herein, pyrazino[2,1-b]quinazoline-3,6-diones containing indole alkaloids were explored for their antiparasitic potential against Plasmodium falciparum, Trypanosoma brucei, and Leishmania infantum. The synthetic libraries furnished promising hit compounds that are species specific (7, 12) or with broad antiparasitic activity (8). Structure-activity relationships were more evident for Plasmodium with anti-isomers (1S,4R) possessing excellent antimalarial activity, while the presence of a substituent on the anthranilic acid moiety had a negative effect on the activity. Hit compounds against malaria did not inhibit β-hematin, and in silico studies predicted these molecules as possible inhibitors for prolyl-tRNA synthetase both from Plasmodium and Leishmania. These results disclosed a potential new chemotype for further optimization toward novel and affordable antiparasitic drugs.
Collapse
Affiliation(s)
- Solida Long
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Department
of Bioengineering, Royal University of Phnom
Penh, Russian Confederation
Blvd, 12156 Phnom
Penh, Cambodia
| | - Denise Duarte
- Global
Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina
Tropical, IHMT, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Carla Carvalho
- Parasite
Disease Group, IBMC-Instituto de Biologia
Molecular e Celular, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Rafael Oliveira
- Global
Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina
Tropical, IHMT, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Nuno Santarém
- Parasite
Disease Group, IBMC-Instituto de Biologia
Molecular e Celular, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Andreia Palmeira
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I. S. P. Resende
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Artur M. S. Silva
- QOPNA
- Química
Orgânica, Produtos Naturais e Agroalimentares, Departamento
de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui Moreira
- Research
Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade
de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Anake Kijjoa
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto
de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Anabela Cordeiro da Silva
- Parasite
Disease Group, IBMC-Instituto de Biologia
Molecular e Celular, Rua Alfredo Allen, 4200-135 Porto, Portugal
- Departamento
de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Fátima Nogueira
- Global
Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina
Tropical, IHMT, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Emília Sousa
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Madalena M. M. Pinto
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
39
|
Advances in therapeutic and vaccine targets for Cryptosporidium: Challenges and possible mitigation strategies. Acta Trop 2022; 226:106273. [PMID: 34906550 DOI: 10.1016/j.actatropica.2021.106273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Cryptosporidium is known to be the second most common diarrheal pathogen in children, causing potentially fatal diarrhea and associated with long-term growth stunting and cognitive deficits. The only Food and Drug Administration-approved treatment for cryptosporidiosis is nitazoxanide, but this drug has not shown potentially effective results in susceptible hosts. Therefore, a safe and effective drug for cryptosporidiosis is urgently needed. Cryptosporidium genome sequencing analysis may help develop an effective drug, but both in vitro and in vivo approaches to drug evaluation are not fully standardized. On the other hand, the development of partial immunity after exposure suggests the possibility of a successful and effective vaccine, but protective surrogates are not precise. In this review, we present our current perspectives on novel cryptosporidiosis therapies, vaccine targets and efficacies, as well as potential mitigation plans, recommendations and perceived challenges.
Collapse
|
40
|
Chakraborti S, Chhibber-Goel J, Sharma A. Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue. Parasit Vectors 2021; 14:605. [PMID: 34895309 PMCID: PMC8665550 DOI: 10.1186/s13071-021-05106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure-function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. METHODS We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database ( https://vectorbase.org/vectorbase/app ) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases-were generated using the I-TASSER and Phyre protein modeling servers. RESULTS Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was > 80% and in Ae. aegypti was > 50%. CONCLUSIONS Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.
Collapse
Affiliation(s)
| | - Jyoti Chhibber-Goel
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, National Institute of Malaria Research, New Delhi, India
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
41
|
Forte B, Ottilie S, Plater A, Campo B, Dechering KJ, Gamo FJ, Goldberg DE, Istvan ES, Lee M, Lukens AK, McNamara CW, Niles JC, Okombo J, Pasaje CFA, Siegel MG, Wirth D, Wyllie S, Fidock DA, Baragaña B, Winzeler EA, Gilbert IH. Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infect Dis 2021; 7:2764-2776. [PMID: 34523908 PMCID: PMC8608365 DOI: 10.1021/acsinfecdis.1c00322] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
There is a shift
in antimalarial drug discovery from phenotypic
screening toward target-based approaches, as more potential drug targets
are being validated in Plasmodium species. Given
the high attrition rate and high cost of drug discovery, it is important
to select the targets most likely to deliver progressible drug candidates.
In this paper, we describe the criteria that we consider important
for selecting targets for antimalarial drug discovery. We describe
the analysis of a number of drug targets in the Malaria Drug Accelerator
(MalDA) pipeline, which has allowed us to prioritize targets that
are ready to enter the drug discovery process. This selection process
has also highlighted where additional data are required to inform
target progression or deprioritization of other targets. Finally,
we comment on how additional drug targets may be identified.
Collapse
Affiliation(s)
- Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Andrew Plater
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Brice Campo
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | | | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Eva S. Istvan
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Marcus Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Amanda K. Lukens
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Case W. McNamara
- Calibr, a Division of The Scripps Research Institute, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge Massachusetts 02139-4307, United States
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Charisse Flerida A. Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge Massachusetts 02139-4307, United States
| | | | - Dyann Wirth
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Ian H. Gilbert
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
42
|
Sharma N, Kashif M, Singh V, Fontinha D, Mukherjee B, Kumar D, Singh S, Prudencio M, Singh AP, Rathi B. Novel Antiplasmodial Compounds Leveraged with Multistage Potency against the Parasite Plasmodium falciparum: In Vitro and In Vivo Evaluations and Pharmacokinetic Studies. J Med Chem 2021; 64:8666-8683. [PMID: 34124905 DOI: 10.1021/acs.jmedchem.1c00659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxyethylamine (HEA)-based novel compounds were synthesized and their activity against Plasmodium falciparum 3D7 was assessed, identifying a few hits without any apparent toxicity. Hits 5c and 5d also exhibited activity against resistant field strains, PfRKL-9 and PfC580Y. A single dose, 50 mg/Kg, of hits administered to the rodent parasite Plasmodium berghei ANKA exhibited up to 70% reduction in the parasite load. Compound 5d tested in combination with artesunate produced an additional antiparasitic effect with a prolonged survival period. Additionally, compound 5d showed 50% inhibition against hepatic P. berghei infection at 1.56 ± 0.56 μM concentration. This compound also considerably delayed the progression of transmission stages, ookinete and oocyst. Furthermore, the toxicity of 5d assessed in mice supported the normal liver and kidney functions. Altogether, HEA analogues (5a-m), particularly 5d, are nontoxic multistage antiplasmodial agents with therapeutic and transmission-blocking efficacy, along with favorable preliminary pharmacokinetic properties.
Collapse
Affiliation(s)
- Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur 721302, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida 201301, Uttar Pradesh, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Miguel Prudencio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Agam P Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| |
Collapse
|
43
|
Okaniwa M, Shibata A, Ochida A, Akao Y, White KL, Shackleford DM, Duffy S, Lucantoni L, Dey S, Striepen J, Yeo T, Mok S, Aguiar ACC, Sturm A, Crespo B, Sanz LM, Churchyard A, Baum J, Pereira DB, Guido RVC, Dechering KJ, Wittlin S, Uhlemann AC, Fidock DA, Niles JC, Avery VM, Charman SA, Laleu B. Repositioning and Characterization of 1-(Pyridin-4-yl)pyrrolidin-2-one Derivatives as Plasmodium Cytoplasmic Prolyl-tRNA Synthetase Inhibitors. ACS Infect Dis 2021; 7:1680-1689. [PMID: 33929818 PMCID: PMC8204304 DOI: 10.1021/acsinfecdis.1c00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Prolyl-tRNA synthetase
(PRS) is a clinically validated antimalarial
target. Screening of a set of PRS ATP-site binders, initially designed
for human indications, led to identification of 1-(pyridin-4-yl)pyrrolidin-2-one
derivatives representing a novel antimalarial scaffold. Evidence designates
cytoplasmic PRS as the drug target. The frontrunner 1 and its active enantiomer 1-S exhibited low-double-digit nanomolar activity against resistant Plasmodium falciparum (Pf) laboratory strains
and development of liver schizonts. No cross-resistance with strains
resistant to other known antimalarials was noted. In addition, a similar
level of growth inhibition was observed against clinical field isolates
of Pf and P. vivax. The slow killing
profile and the relative high propensity to develop resistance in vitro (minimum inoculum resistance of 8 × 105 parasites at a selection pressure of 3 × IC50) constitute unfavorable features for treatment of malaria. However,
potent blood stage and antischizontal activity are compelling for
causal prophylaxis which does not require fast onset of action. Achieving
sufficient on-target selectivity appears to be particularly challenging
and should be the primary focus during the next steps of optimization
of this chemical series. Encouraging preliminary off-target profile
and oral efficacy in a humanized murine model of Pf malaria allowed us to conclude that 1-(pyridin-4-yl)pyrrolidin-2-one
derivatives represent a promising starting point for the identification
of novel antimalarial prophylactic agents that selectively target Plasmodium PRS.
Collapse
Affiliation(s)
- Masanori Okaniwa
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akira Shibata
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsuko Ochida
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuichiro Akao
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sandra Duffy
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Anna Caroline C. Aguiar
- Sao Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100, São Carlos, São Paulo 13563-120, Brazil
| | - Angelika Sturm
- TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT Nijmegen, The Netherlands
| | - Benigno Crespo
- Global Health, GlaxoSmithKline R&D, Tres Cantos, Madrid 28760, Spain
| | - Laura M. Sanz
- Global Health, GlaxoSmithKline R&D, Tres Cantos, Madrid 28760, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Dhelio B. Pereira
- Tropical Medicine Research Center of Rondonia, Av. Guaporé, 215, Porto Velho, Rondonia 76812-329, Brazil
| | - Rafael V. C. Guido
- Sao Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100, São Carlos, São Paulo 13563-120, Brazil
| | - Koen J. Dechering
- TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT Nijmegen, The Netherlands
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Vicky M. Avery
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Benoît Laleu
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| |
Collapse
|
44
|
Yang T, Ottilie S, Istvan ES, Godinez-Macias KP, Lukens AK, Baragaña B, Campo B, Walpole C, Niles JC, Chibale K, Dechering KJ, Llinás M, Lee MCS, Kato N, Wyllie S, McNamara CW, Gamo FJ, Burrows J, Fidock DA, Goldberg DE, Gilbert IH, Wirth DF, Winzeler EA. MalDA, Accelerating Malaria Drug Discovery. Trends Parasitol 2021; 37:493-507. [PMID: 33648890 PMCID: PMC8261838 DOI: 10.1016/j.pt.2021.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
The Malaria Drug Accelerator (MalDA) is a consortium of 15 leading scientific laboratories. The aim of MalDA is to improve and accelerate the early antimalarial drug discovery process by identifying new, essential, druggable targets. In addition, it seeks to produce early lead inhibitors that may be advanced into drug candidates suitable for preclinical development and subsequent clinical testing in humans. By sharing resources, including expertise, knowledge, materials, and reagents, the consortium strives to eliminate the structural barriers often encountered in the drug discovery process. Here we discuss the mission of the consortium and its scientific achievements, including the identification of new chemically and biologically validated targets, as well as future scientific directions.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Pediatrics, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Eva S Istvan
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Karla P Godinez-Macias
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Beatriz Baragaña
- Wellcome Center for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Brice Campo
- Medicines for Malaria Venture, 1215 Geneva 15, Switzerland
| | - Chris Walpole
- Structural Genomics Consortium, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Building 56-341, 77 Massachusetts Avenue, Cambridge MA 02139-4307, USA
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16082, USA
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nobutaka Kato
- Global Health Drug Discovery Institute, Zhongguancun Dongsheng International Science Park, 1 North Yongtaizhuang Road, Beijing 100192, China
| | - Susan Wyllie
- Wellcome Center for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
| | - Jeremy Burrows
- Medicines for Malaria Venture, 1215 Geneva 15, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology and Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniel E Goldberg
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Ian H Gilbert
- Wellcome Center for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.
| |
Collapse
|
45
|
Pang L, Weeks SD, Van Aerschot A. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Int J Mol Sci 2021; 22:1750. [PMID: 33578647 PMCID: PMC7916415 DOI: 10.3390/ijms22041750] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.
Collapse
Affiliation(s)
- Luping Pang
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
- KU Leuven, Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49–box 822, 3000 Leuven, Belgium
| | | | - Arthur Van Aerschot
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
| |
Collapse
|
46
|
Gupta M, Patel S. Nature-derived Quinolines and Isoquinolines: A Medicinal Chemistry Perspective. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083805666190614115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quinoline and isoquinoline motifs are commonly encountered in natural products
of diverse origins. These moderately basic fused-heterocyclic rings containing natural
products are adorned with remarkable biological activities with clinical use in various diseases
demonstrating nature elegance and creativity. Therefore, these privileged rings have
attracted profound interest from the scientific community. In this perspective, we have discussed
medicinal chemistry perspective of the natural products containing quinoline and
isoquinoline scaffolds.
Collapse
Affiliation(s)
- Mohit Gupta
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Saloni Patel
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
47
|
Zhou J, Huang Z, Zheng L, Hei Z, Wang Z, Yu B, Jiang L, Wang J, Fang P. Inhibition of Plasmodium falciparum Lysyl-tRNA synthetase via an anaplastic lymphoma kinase inhibitor. Nucleic Acids Res 2021; 48:11566-11576. [PMID: 33053158 PMCID: PMC7672456 DOI: 10.1093/nar/gkaa862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023] Open
Abstract
Aminoacyl-tRNA synthetases are attractive targets for the development of antibacterial, antifungal, antiparasitic agents and for the treatment of other human diseases. Lysyl-tRNA synthetase (LysRS) from this family has been validated as a promising target for the development of antimalarial drugs. Here, we developed a high-throughput compatible assay and screened 1215 bioactive compounds to identify Plasmodium falciparum cytoplasmic LysRS (PfLysRS) inhibitor. ASP3026, an anaplastic lymphoma kinase inhibitor that was used in clinical trials for the treatment of B-cell lymphoma and solid tumors, was identified as a novel PfLysRS inhibitor. ASP3026 suppresses the enzymatic activity of PfLysRS at nanomolar potency, which is >380-fold more effective than inhibition of the human counterpart. In addition, the compound suppressed blood-stage P. falciparum growth. To understand the molecular mechanism of inhibition by ASP3026, we further solved the cocrystal structure of PfLysRS-ASP3026 at a resolution of 2.49 Å, providing clues for further optimization of the compound. Finally, primary structure-activity relationship analyses indicated that the inhibition of PfLysRS by ASP3026 is highly structure specific. This work not only provides a new chemical scaffold with good druggability for antimalarial development but also highlights the potential for repurposing kinase-inhibiting drugs to tRNA synthetase inhibitors to treat human diseases.
Collapse
Affiliation(s)
- Jintong Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhenghui Huang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Li Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhiyong Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
48
|
Clements RL, Streva V, Dumoulin P, Huang W, Owens E, Raj DK, Burleigh B, Llinás M, Winzeler EA, Zhang Q, Dvorin JD. A Novel Antiparasitic Compound Kills Ring-Stage Plasmodium falciparum and Retains Activity Against Artemisinin-Resistant Parasites. J Infect Dis 2020; 221:956-962. [PMID: 31616928 DOI: 10.1093/infdis/jiz534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 11/14/2022] Open
Abstract
Spreading antimalarial resistance threatens effective treatment of malaria, an infectious disease caused by Plasmodium parasites. We identified a compound, BCH070, that inhibits asexual growth of multiple antimalarial-resistant strains of Plasmodium falciparum (half maximal inhibitory concentration [IC50] = 1-2 µM), suggesting that BCH070 acts via a novel mechanism of action. BCH070 preferentially kills early ring-form trophozoites, and, importantly, equally inhibits ring-stage survival of wild-type and artemisinin-resistant parasites harboring the PfKelch13:C580Y mutation. Metabolomic analysis demonstrates that BCH070 likely targets multiple pathways in the parasite. BCH070 is a promising lead compound for development of new antimalarial combination therapy that retains activity against artemisinin-resistant parasites.
Collapse
Affiliation(s)
- Rebecca L Clements
- Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Vincent Streva
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Peter Dumoulin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Weigang Huang
- Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward Owens
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Dipak K Raj
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Barbara Burleigh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Manuel Llinás
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Elizabeth A Winzeler
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Qisheng Zhang
- Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
49
|
Butler JH, Baptista RP, Valenciano AL, Zhou B, Kissinger JC, Tumwebaze PK, Rosenthal PJ, Cooper RA, Yue JM, Cassera MB. Resistance to Some But Not Other Dimeric Lindenane Sesquiterpenoid Esters Is Mediated by Mutations in a Plasmodium falciparum Esterase. ACS Infect Dis 2020; 6:2994-3003. [PMID: 32970404 PMCID: PMC11075783 DOI: 10.1021/acsinfecdis.0c00487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unique lindenane sesquiterpenoid dimers from Chloranthecae spp. were recently identified with promising in vitro antiplasmodial activity and potentially novel mechanisms of action. To gain mechanistic insights to this new class of natural products, in vitro selection of Plasmodium falciparum resistance to the most active antiplasmodial compound, chlorajaponilide C, was explored. In all selected resistant clones, the half-maximal effective concentration (EC50) of chlorajaponilide C increased >250-fold, and whole genome sequencing revealed mutations in the recently discovered P. falciparum prodrug activation and resistance esterase (PfPARE). Chlorajaponilide C was highly potent (mean EC50 = 1.6 nM, n = 34) against fresh Ugandan P. falciparum isolates. The analysis of the structure-resistance relationships revealed that in vitro potency of a subset of lindenane sesquiterpenoid dimers was not mediated by PfPARE mutations. Thus, chlorajaponilide C, but not some related compounds, required parasite esterase activity for in vitro potency, and those compounds serve as the foundation for development of potent and selective antimalarials.
Collapse
Affiliation(s)
- Joshua H Butler
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, United States
| | - Rodrigo P Baptista
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, United States
| | - Ana L Valenciano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, United States
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, United States
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, California 94110, United States
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Maria B Cassera
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
50
|
Bansal R, Malhotra A. Therapeutic progression of quinazolines as targeted chemotherapeutic agents. Eur J Med Chem 2020; 211:113016. [PMID: 33243532 DOI: 10.1016/j.ejmech.2020.113016] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/16/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023]
Abstract
Presently cancer is a grave health issue with predominance beyond restrictions. It can affect any organ of the body. Most of the available chemotherapeutic drugs are highly toxic, not much selective and eventually lead to the development of resistance. Therefore, a target specific palliative approach for the treatment of cancer is required. Remarkable advancements in science have illuminated various molecular pathways responsible for cancer. This has resulted in abundant opportunities to develop targeted anticancer agents. Quinazoline nucleus is a privileged scaffold with significant diversified pharmacological activities. Numerous established anticancer quinazoline derivatives constitute a new class of chemotherapeutic agents which are found to act by inhibiting various protein kinases as well as other molecular targets. A recent update on various quinazoline derivatives acting on different types of molecular targets for the treatment of cancer has been compiled in this review. Brief SAR studies of quinazoline derivatives acting through different mechanisms of action have been highlighted. The comprehensive medicinal chemistry aspects of these agents in this review provide a panoramic view to the biologists as well as medicinal chemists working in this area and would assist them in their efforts to design and synthesize novel quinazoline based anticancer compounds.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh, 160014, India.
| | - Anjleena Malhotra
- University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh, 160014, India
| |
Collapse
|